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Abstract

Generalizing the idea of viewing a digraph as a model of a linear map, we suggest
a multi-variable analogue of a digraph, called a hydra, as a model of a multi-linear
map. Walks in digraphs correspond to usual matrix multiplication while walks in
hydras correspond to the tensor multiplication introduced by Robert Grone in 1987.
By viewing matrix multiplication as a special case of this tensor multiplication, many
concepts on strongly connected digraphs are generalized to corresponding ones for
hydras, including strong connectedness, periods and primitiveness, etc. We explore
the structure of all possible periods of strongly connected hydras, which turns out
to be related to the existence of certain kind of combinatorial designs. We also
provide estimates of largest primitive exponents and largest diameters of relevant
hydras. Much existing research on tensors are based on some other definitions
of multiplications of tensors and so our work here supplies new perspectives for
understanding irreducible and primitive nonnegative tensors.
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1 Hydras and weighted hydras

We reserve the notation N for the set of positive integers. For every n ∈ N, we write [n]
for the set of the smallest n positive integers. For a set K and a positive integer t, we
understand Kt as K [t], namely the set of all maps from [t] to K. Thus, an element x ∈ Kt

can be specified by its values x(i) for i ∈ [t]. We will also often directly write xi for
x(i), as Kt can be understood as the set of all length-t words on K. The binary semifield,
denoted by T, is the ring consisting of two elements, 0 and 1, in which the arithmetic
operation is the same with the binary field, excepting that 1 + 1 now equals to 1, not to 0
as in the binary field. Note that each element f ∈ TK can be identified with its support,
i.e., {k ∈ K : f(k) = 1}, and then, TK is often naturally identified with the power set of
K, which is more commonly denoted by 2K . It is clear that the addition/multiplication
operation in TK corresponds to the taking union/intersection operation in 2K .

Let K be a set. A digraph Γ on K consists of a pair (K,E) where E ⊆ K ×K = K2.
Usually, we call K the vertex set of Γ and E the arc set of Γ, and denote them by V(Γ)
and A(Γ). More generally, given a ring R, we can consider a weight function w from A(Γ)
to R and get an R-weighted digraph. For every (k, `) ∈ (K×K)\A(Γ), we can think that
w assigns weight 0 ∈ R to (k, `) and so, in this way, a general weighted digraph on K with
weights/variables from R is simply a map wΓ from K × K to R. A digraph Γ given as
a pair (V(Γ),A(Γ)) can be viewed as a T-weighted digraph, where the associated weight
function wΓ defined on V(Γ)× V(Γ) sends (k, `) to 1 ∈ T if and only if (k, `) ∈ A(Γ).

An R-weighted digraph Γ on K can be represented as a map f from K to RK where,
for every k ∈ K, f(k) ∈ RK sends each ` ∈ K to wΓ((k, `)) ∈ R. This map f from K to
RK and the weight function wΓ from K×K to R surely determines each other and so we
will write Γf for this digraph Γ corresponding to f . In the case that R = T,

f(k) = {` ∈ K : (k, `) ∈ A(Γf )} ∈ 2K

for each k ∈ K, and
A(Γf ) = {(k, `) ∈ K2 : ` ∈ f(k)}.

This observation allows us to identify an R-weighted digraph on K with a single variable
map from K to RK , and especially, to identify a digraph with a single variable map from
K to 2K . Then, is there a multivariate counterpart for weighted digraphs? Yes, for any
positive integer t, we could simply call any map from Kt to RK a t-variable digraph on
K with variables from a ring R. But, does it lead to any interesting mathematics?

A Markov chain is a sequence of possible events in which the probability of every
event relies linearly on the probability of the states attained in the previous event. More
generally, for any positive integer t, an order-t Markov chain is a sequence of possible
events in which the probability of each event depends multi-linearly on the probability of
the states attained in the previous t events. It is widely believed that everything about
higher-order Markov chains can be encoded as something about Markov chains and so
it does not make sense to study higher-order Markov chains separately [LM95, Exam-
ple 1.5.10, Proposition 1.5.12]. We suggested multivariate graph theory in [WXZ16] as a
framework to understand multi-linear phenomena, including higher-order Markov chains.
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When modeling higher-order Markov chains with multivariate graph theory, we will be
looking at quantitative/probabilistic properties if we take variables from the ring of non-
negative reals, and we will be examining the qualitative/topological properties if we take
variables from the binary semifield. This paper will focus on the case that the variables
are from the binary semifield and develop relevant basic properties of multivariate graph
theory. We hope to convince the readers that there is something new from multivariate
graph theory and the encoding of results from Markov chains to their higher-order version
may not be so trivial. Dobzhansky [Dob73] said that “Nothing in biology makes sense
except in the light of evolution”. In general, to understand the global pictures of various
evolution models is a fundamental question in sciences [Fur14, Kra15, LM95]. Though
multivariate graph theory can be studied from many different approaches, this paper will
pay attention to some basic concepts from the dynamical system point of view.

After its invention by Eilenberg and Mac Lane [EML45], category theory has extended
its tentacles into most parts of mathematics [Lei14, p. 9] and even sciences [Coe06,
DDH83]. To justify our formalism of the concept of digraphs as maps from K to 2K , we
try to see if this leads to a system of related objects among which we have maps and
compositions of maps. At first sight, we cannot compose two digraphs as maps from
K to 2K and so we can locate neither dynamics nor category structures around this
formalism. However, as suggested by [Lei14, Example 0.4], each map f from K to 2K

induces a Boolean linear map Mf from 2K to 2K , called the Markov operator associated
to f , such that Mf (A) = ∪k∈Af(k) for each A ∈ 2K . It is useful to think of A ∈ 2K as its
characteristic column vector and think of Mf as the K by K matrix whose kth column
is f(k); in this way, you can understand Mf (A) as the product of the column vector A
left multiplied by the matrix Mf , namely Mf (A) = Mf A. For two maps f and g from
(2K)K , we can naturally compose Mf and Mg to get Mf Mg, and we thus view Mf Mg as
the product/composition of f and g, namely we set fg to be the element of (2K)K such
that Mfg = Mf Mg . This viewpoint not only allows us define compositions of digraphs but
also corresponds to important mathematical models in applications. Indeed, in a Markov
chain modelled by a digraph f ∈ (2K)K , an arc (k, `) in Γf stands for a possible transition
from state k to state `; if A is the set of states with positive probability at present,
Mf (A) = Mf A will be the set of states with positive probability at next time slot. This
connection to Markov chains explains why we call M the Markov operator. Besides the
local transition as represented by an arc, we need to understand the global dynamics,
i.e., the asymptotic behavior of the trajectories, or, in even more concrete words, a long
sequence of consecutive state transitions as signified by a path. We often use k → ` or k`
for an arc (k, `), as this allows us, for example, to write

k1 → k2 → k3 → k4

or
k1k2k3k4

for the three consecutive arcs (k1, k2), (k2, k3), (k3, k4) in the digraph Γf in a succinct
way, and so on. The phase space of f , denoted by PSf , has vertex set V(PSf ) = 2K and
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{a, b, d}

PSf

Figure 1: A digraph f on {a, b, c, d} and its phase space PSf .

arc set A(PSf ) = {A → Mf (A) : A ∈ 2K}; see Figure 1 for an example. The structure
of PSf tells us the dynamical behaviour of Mf . For any positive integer n, let Zn denote
the cyclic group of integers modulo n and let C n denote the n-cycle, which is the digraph
with V(C n) = Zn and A(C n) = {i → i + 1 : i ∈ Zn}. When K is finite, a traveller
driven by Mf in PSf will eventually run around a limit cycle repeatedly after staying for
a while, so-called transient time, in the transient part, which is an in-tree attached to the
limit cycle.

Let K be a set and t a positive integer. As advised earlier in this note, let us define
a t-variable digraph f on K to be a map from Kt to 2K . The map f induces a Boolean
t-linear map from (2K)t to (2K)t, called the Markov operator associated to f and denoted
by Mf , such that

Mf (A1, . . . , At) =
(
A2, . . . , At,∪(k1,...,kt)∈A1×···×Atf(k1, . . . kt)

)
for all (A1, . . . , At) ∈ (2K)t. The phase space of f , denoted by PSf , is the digraph which
has vertex set V(PSf ) = (2K)t and arc set A(PSf ) = {A→ Mf (A) : A ∈ (2K)t}. For an
order-t Markov chain, we can establish its nonparametric model with a t-variable digraph
in an obvious way [WXZ16, Eq. (3.3)] and the phase space of this t-variable digraph
displays the evolution of the supports of the random events. Surely, when K is finite,
to understand PSf is also to understand those limit cycles, transient time and transient
parts, as in the case of t = 1.

For A = (A1, . . . , At) ∈ (2K)t and B = (B1, . . . , Bt) ∈ (2K)t, we write A � B provided
Ai ⊆ Bi for i ∈ [t]. We identify the set K with

(
K
1

)
and so view Kt as a subset of (2K)t.

Therefore, for each A ∈ (2K)t and a ∈ Kt, a ∈ A is equivalent to a � A. For any two
t-variable digraphs f and g on K, we say that f is bigger than g provided f 6= g and
f(a) ⊇ g(a) for all a ∈ Kt. Under this partial order, the biggest t-variable digraph on K
is the digraph ft,K satisfying ft,K(a) = K for all a ∈ Kt.

For any t-variable digraph f on K, its De Bruijn form Γf is the digraph with vertex
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set Kt and arc set

{(k1, . . . , kt)→ (k2, . . . , kt+1) : kt+1 ∈ f(k1, . . . , kt), k1, . . . , kt ∈ K}.

We often directly call the set Kt = V(Γf ) the vertex set of f , denoted by V(f), and call
A(Γf ) the arc set of f , denoted by A(f). The De Bruijn form of ft,K is just the famous
dimension-t De Bruijn digraph on the alphabet K [dB46, DW05, Goo46], which we denote
by B(t,K), and the De Bruijn form of any digraph of several variables must be a spanning
subgraph of a De Bruijn digraph. Note that B(t,K) has vertex set V(ft,K) = Kt and arc
set

A(ft,K) = {(k1, . . . , kt)→ (k2, . . . , kt+1) : k1, . . . , kt+1 ∈ K},
the latter corresponding to Kt+1 in a natural way. By mapping a multivariate digraph to
its De Bruijn form and mapping a De Bruijn form to its arc set, we get a bijection from
the set of t-variable digraphs on K to the set of spanning subgraphs of B(t,K) and then
to the set of subsets of Kt+1. This suggests that multivariate digraphs are generalizations
of both hypergraphs [Ber89, Bol86, Wan08] and digraphs [BJG09, BM08, BR91]. For
this reason, we propose to call a t-variable digraph a t-head hydra, or simply a t-hydra.
When we mention a digraph below, we mean a 1-hydra; we speak of a hydra for any t-
hydra for some t ∈ N . We should mention that a natural generalization of both digraphs
and hypergraphs, called directed hypergraphs, have been well studied in the literature
[All14, GLPN93].

For a t-hydra f , one can view Γf as the local dynamical mechanism and PSf as the
global evolving picture. The question is to see how to link the local with the global. In
light of the higher-order Markov chain model, one can also think of Γf as the particle
version of f and PSf as the wave version of f . Both versions encode full information
about f in some way but the transformation between different representations may involve
nontrivial mathematics. Note that the study of PSf is nothing but the study of the t-
linear map Mf . The aim of this paper is to develop some hopefully new perspective for
getting a better appreciation of multilinear phenomena.

Let K be a set, t a positive integer and R a ring. A t-fold tensor over RK is a map f
from Kt to R. Following the convention in graph algebra [Rae05], we define the adjacency
tensor of a t-hydra f on K, denoted by A(f), to be the (t + 1)-fold tensor over TK ,

also called a Boolean

t+1︷ ︸︸ ︷
K × · · · ×K-array, whose (i1, . . . , it+1)-entry, where (i1, . . . , it+1) ∈

Kt+1, is given by

A(f)i1,...,it+1 =

{
1, if (it+1, . . . , i2)→ (it, . . . , t1) ∈ A(Γf );

0, otherwise.

When t = 1, A(f) coincides with Mf and it is more commonly known as the adjacency

matrix of f. The set of all Boolean

t+1︷ ︸︸ ︷
K × · · · ×K-arrays are often named as order-(t + 1)

dimension-K Boolean tensors (in coordinate forms). Note that every order-(t+ 1) tensor
is the adjacency tensor of a corresponding t-hydra. Therefore, hydras and tensors are
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different representations of the the same objects and we often do not distinguish between
a hydra f and its associated tensor A(f) in the rest of the paper. For any two t-hydras
f and g on K, we can surely do the composition of Mf and Mg. But, unlike the digraph
case, we should warn the reader that there may not exist another t-hydra h such that
Mh = Mf Mg . In an obvious way, we can introduce R-weighted hydras for any ring
R. All the concepts discussed above for hydras, which are simply T-weighted hydras or
Boolean hydras, can be extended to general weighted cases. Especially, t-fold tensors
over RK can be viewed the same as R-weighted (t + 1)-hydras via the general concept
of adjacency tensors. Note that tensors and its practical applications [Lan12, Stu16]
have been a very active field of research in last decade. Especially, some definitions of
tensor multiplication/composition are available from [Gro87, Sha13, Wil73, Yam65]. By
resorting to the higher-order Markov chain background, the following definition of tensor
multiplication looks to be natural and it can be checked to be isomorphic with the one
[Gro87, Eq. (2)] posed by Grone in 1987. For any two (t + 1)-fold tensors B and C over
RK , we define the product of B and C to be the (t + 1)-fold tensor over RK , which is
denoted by B C and sends (k1, . . . , kt+1) ∈ Kt+1 to

B C(k1, . . . , kt+1) =
∑
k∈K

B(k1, k, k2, . . . , kt) C(k, k2, . . . , kt+1). (1)

Surely, when K is an infinite set, to make Eq. (1) well-defined, we need to impose some
local finiteness assumption or some convergence assumption. For t = 1, Eq. (1) becomes
the rule for the usual matrix multiplication:

B C(k1, k2) =
∑
k∈K

B(k1, k) C(k, k2).

The idea of Eq. (1) is that the weight for a transition from `1 · · · `t at initial t slots to
to `t+2 at time t + 2 via B C should be the sum of all weights as given by the following
transition

`1 · · · `t
C(`t+1`t···`1)−→ `2 · · · `t+1

B(`t+2`t+1···`2)−→ `3 · · · `t+2,

where `t+1 runs through all possible states of the system at time t + 1. That is, matrix
multiplication corresponds to walks in weighted complete digraphs while tensor multipli-
cation corresponds to walks in general weighted De Bruijn digraphs. With the multipli-
cation given in Eq. (1), the set of (t + 1)-fold tensors over RK form the tensor algebra
A(t+1, R,K). The map f that sends (k1, . . . , kt+1) ∈ Kt+1 to δk1,k2 is the left identity for
the tensor multiplication in A(t+ 1, R,K). Like the Lie bracket product in Lie algebras,
the tensor product defined in Eq. (1) may not be associative and so A(t + 1, R,K) is
generally not an associative algebra. We should not forget that dynamics is the study of
change and change takes place within time [Fur14, Preface]. Since our multiplication is
abstracted from the evolution of a dynamical system, it is natural that we should do the
composition of maps according to the flow of time, that is, multiplication should be done
from right to left, and so it does not really make sense to require the associativity. To
understand the structure of A(t + 1, R,K) as an nonassociative algebra [Sch95] may be
an interesting direction.
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Γf
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Γ←−
f

Figure 2: A 2-hydra and its reversal.

If the adjacency matrix A(f) of a digraph f is symmetric, the digraph f is called a
symmetric digraph or simply a graph. A large part of graph theory is about graphs and
so, for the purpose of extending that part to multivariable case, let us define symmetric

hydras. Let f be a t-hydra on a set K. The reversal of f, denoted by
←−
f , is the t-hydra

on K such that
k1 · · · kt → k2 . . . kt+1

is an arc in Γf if and only if
kt . . . k1 ← kt+1 · · · k2

is an arc in Γ←−
f

. In Figure 2, we depict a 2-hydra on {a, b} and its reversal. We call a

t-hydra symmetric provided f =
←−
f . Though the local correspondence between a hydra

and its reversal is quite straightforward, the relationship between their phase spaces seems
not so trivial to tell in case the hydra has more than one variables.

Recall that a digraph f on a set K is strongly connected if for all a, b ∈ K there exists
a nonnegative integer N such that b ∈ MN

f (a). Here is an easy way to generalize this
concept for hydras. Let f be a t-hydra on a set K. For a, b ∈ Kt, we define RIf (a, b) to
be the set

{N > 0 : b � MN
f (a)} = {N > 0 : b ∈ MN

f (a)}

and call it the set of reachable indices of f from a to b. An element from (2K)t which has
∅ as one of its t components is called a vacant element. It is clear that for any vacant
element a in (2K)t, N \RIf (a, ∅t) is a finite subset, that is, MN

f (a) = ∅t when N is large
enough. We say that f is strongly connected if RIf (a, b) 6= ∅ for all a, b ∈ Kt. When f is
strongly connected and |K| > 2, both ∅t and Kt give rise to length-1 limit cycles in PSf ,
i.e., they are fixed points of Mf . We call f primitive if there exists an integer N > 0 such
that for all a ∈ Kt, MN

f (a) = Kt. Equivalently, f is primitive if and only if we can find
N ∈ N so that

MN
f (a) =

{
∅t, if a ∈ (2K)t is vacant;
Kt, if a ∈ (2K)t is not vacant.

For a primitive t-hydra f on K, the primitive exponent of f , which we denote by g(f), is
the minimum positive integer N such that MN

f (a) = Kt for all a ∈ Kt. If g is a primitive
t-hydra on K and if f is bigger than g, we can derive that f is primitive and g(f) 6 g(g).
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Note that ft,K is primitive with

g(ft,K) =

{
1, if |K| = 1;
t, if |K| > 1.

In terms of the concept of reachable indices, many more basic concepts for digraphs can
be naturally extended to hydras, say distance, diameter, radius, girth, etc. For example,
let us define the distance from a to b in f to be

Distf (a, b) = minRIf (a, b)

for every a, b ∈ Kt, and the diameter of f to be

Dia(f) = max
a,b∈Kt

Distf (a, b).

So far, we have introduced some basic concepts in multivariate graph theory via the phase
space, namely by examining the action of the Markov operator. It is surely possible to
give these definitions via the concept of tensor multiplication as presented in Eq. (1).
The current approach focuses on the combinatorial core of many situations. But, to start
from Eq. (1) will allow us go beyond binary semifield to max-times semiring [Ser09] or to
real/complex numbers [CPZ08, Lim05], and even go from homogeneous to nonhomoge-
neous [WZ15].

In graph theory, more precisely, in one-variable graph theory, there are very rich re-
sults about strongly connected digraphs, say the cyclicity theorem [BCOQ92, Theorem
3.112][BR91, Lemma 3.4.1], Wielandt’s theorem on primitive exponent [BR91, Theorem
3.5.6], Hoffman’s theorem on Perron pairs [BR91, Theorem 5.1.3][WD06, Theorem 2.8],
Harary-Moser’s strong tournament theorem [BJG09, Theorem 11.7.2], Robbins’ theorem
on strong orientation [BD15, CT78, Rob39], Bessy-Thomassé Theorem (Gallai’s Conjec-
ture) [BT04][BM08, Theorem 19.11], just to name a few. Then, should we expect some
new mathematics in multivariate graph theory? We will first display in § 2 some possi-
bly counter-intuitive examples to acquaint the reader with some concepts in multivariate
graph theory and to show the difference caused by several variables. Our main contri-
bution in this paper will be an analysis of the structure of strongly connected hydras,
including some results related to the aforementioned cyclicity theorem and Wielandt’s
theorem. We summarize our main observations on strongly connected hydras in § 3 and
then, in § 4, § 5 and § 6 we develop some technical apparatus to verify our claims in § 3.

2 Surprises from several variables

Let f be a hydra on a finite set K. Clearly, f = Γf is strongly connected if and only if
Dia(f) <∞. If f is a strongly connected digraph, it is trivial that

Dia(f) 6 |V(f)| − 1. (2)

Note that in [WXZ16, Example 3.5] we construct a primitive 3-hydra f on [2] whose
De Bruijn form is not strongly connected and 6 = g(f) = Dia(f) = Distf (122, 212) =
|V(f)| − 2. Our new example below says that Eq. (2) does not hold for general hydras f.
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21 12

22

23

33

31

11

{3}, {2} {2}, {1} {1}, {2} {2}, {2}

{2}, {3}{3}, {3}{3}, {1}{1}, {1, 2}

{1, 2}, {2} {2}, {2, 3} {2, 3}, {3} {3}, {1, 3}

{1, 3}, {1, 2}{1, 2}, {1, 2}{1, 2}, {2, 3}

Γf3 PSf3

Figure 3: The De Bruijn form Γf3 of a 2-hydra f3 on [3] and the path in PSf3 showing
Distf3(32, 13) = 14.

Example 1. In Figure 3 we depict the De Bruijn form of a primitive 2-hydra f3 on [3].
It holds g(f3) = 23 > Dia(f3) = Distf3(32, 13) = 14 > 8 = 32 − 1 = |V(f3)| − 1. Also
observe that Γf3 is not strongly connected.

Let us recall the classical wheels-within-wheels theorem of Knuth on strongly con-
nected digraphs [Knu74, Lemma 1].

Theorem 2 (Knuth, 1974). Every strongly connected digraph f (possibly infinite) is either
a single vertex with no arcs, or it can be represented as in Figure 4 for some n ∈ N. Here
Γ1, . . . ,Γn are strongly connected digraphs; xi and yi are (possibly equal) vertices of Γi;
and ei is an arc from yi to xi+1. The original digraph f consists of the vertices and arcs
of Γ1, . . . ,Γn plus the arcs e1, . . . , en.

In fact, if σ is any given cycle of f , there exists such a representation in which each
of the ei is contained in σ.

The next example is indeed reporting our failure in extending the wheels-within-wheels
theorem to hydras.

Example 3. Let f be the 2-hydra on [4] whose De Bruijn form Γf is shown in Figure 5.
The hydra f is strongly connected but its De Bruijn form Γf has two weakly connected
components. There is no way to partition V(f) = [4]2 into V1, . . . , Vn for some n ∈ N
such that the following hold.

(a) For every i ∈ Zn and all x, y ∈ Vi, we have RIhi(x, y) 6= ∅, where hi is the 2-hydra
on [4] such that A(Γhi) = A(Γf ) ∩

(
Vi × Vi

)
;

(b) There exist xi, yi ∈ fi for all i ∈ Zn such that A(Γf ) = ∪i∈Zn

(
A(Γhi) ∪ {xi → yi+1}

)
.

For a strongly connected digraph f , its reversal must also be strongly connected and
we can establish a natural one-to-one length-preserving correspondence between the limit
cycles of PS←−

f
and those of PSf . However, when we enter the world of several variables

graph theory, the arrow of time plays some magic, as Example 4 below illustrates.
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Γ3

Γ4Γn−1

Γn

x1
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x3

x4

xn−1

xn

y1

y2

y3

y4

yn−1

yn

e1

e2

e3en−1

en

Figure 4: Wheels within wheels.

11 13 31 14 42 21

43 33 34 44

12 24 41

23 32 22

Figure 5: The De Bruijn form Γf of a 2-hydra f on [4].

Example 4. In Figure 6, we demonstrate a primitive 2-hydra f on K = {a, b} whose
reversal is not strongly connected. Note that PSf contains two limit cycles while PS←−

f

has three limit cycles.

Question 5. For any hydra f , let w(f) be the number of weakly connected components
of Γf . If f is a strongly connected t-hydra, is there any good upper bound estimate for
w(f)? Surely, w(f) equals 1 when t = 1.

As with most non-numerical properties, the study of nonnegative tensors is equiva-
lent to the study of corresponding Boolean tensors; see our brief discussion in [WXZ16,
p. 404]. Let us then formulate some discussions in the literatures on nonnegative tensors
in the language of Boolean tensors below. Following [CPZ08, Lim05], we call an order-t
dimension-K Boolean tensor A irreducible if for all nonempty subsets I ( K we can find
i1 ∈ I and i2, . . . it ∈ K \ I such that Ai1,i2,...,it = 1. A hydra is irreducible whenever
so is its adjacency tensor. It is well-known that a digraph is strongly connected if and
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ab bb

aa ba

Γf

aa aK KK

bb ba ab bK

PSf

KbKa

ba bb

aa ab

Γ←−
f

ab

Kb

bK KK

bb ba aK Ka

aa

PS←−
f

Figure 6: The 2-hydra f on K = {a, b} is primitive while its reversal is not strongly
connected. We do not include those vacant vertices when displaying the phase spaces.
The symbols aa and aK appeared in the two phase spaces should be understood as
{a} × {a} and {a} ×K, respectively, and so on.

only if it is irreducible. It is easy to show one direction of it for general hydras. But the
equivalence itself cannot be generalized to hydras.

Proposition 6. Let f be a t-hydra on a set K. If f is strongly connected, then the
adjacency tensor A(f) is irreducible.

Proof. Assume to the contrary that there is a set I such that ∅ ( I ( K and that
A(f)i1,...,it+1 = 0 for every i1 ∈ I and i2, . . . , it+1 ∈ K \ I. Pick any a ∈ (K \ I)t and
b ∈ I t. It is clear that RIf (a, b) = ∅ and so f is not strongly connected, yielding a
contradiction.

Example 7. Let f be the 2-hydra on [2] with arc set A(f) = {(1, 2) → (2, 1), (2, 1) →
(1, 2)}. Then, f is not strongly connected but is irreducible.

Let A be an order-(t + 1) dimension-K Boolean tensor and let f be the correspond-
ing hydra. Let CA be the map from 2K to 2K that sends A ∈ 2K to B ∈ 2K where

(

t︷ ︸︸ ︷
A, . . . , A,B) = Mf (

t+1︷ ︸︸ ︷
A, . . . , A). Following [CPZ11, WXZ16], we call A a CPZ-primitive

tensor/digraph if there exists a positive integer N such that CnA(A) = K for all integers
n > N and for all A ∈ 2K \ {∅}. Similar to Proposition 6, a CPZ-primitive tensor is
necessarily irreducible. For digraphs, being primitive and being CPZ-primitive are the
same. But they are different properties for general hydras. In [WXZ16, Example 3.5],

the electronic journal of combinatorics 24(1) (2017), #P1.47 11



12 22

11 21

Γf

11

1K

K1

12

K2 22 2K

2∅

21

KK

∅∅

1∅

K∅

∅1 ∅2

∅K
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Figure 7: A CPZ-primitive but not strongly connected hydra.

Irreducible

Strongly Connected

Primitive

CPZ-Primitive

Figure 8: Relationship among several classes of hydras.

we display a primitive hydra which is not CPZ-primitive. The next example, Example 8,
shows that being CPZ-primitive may not imply being strongly connected. In Figure 8, we
briefly demonstrate the relationship among primitive, CPZ-primitive, strongly connected
and irreducible hydras.

Example 8. Let f be the 2-hydra on [2] such that A(f)i,j,k = 1 if and only if

ijk ∈ {211, 222, 122}.

We depict Γf and PSf in Figure 7. We can check that A(f) is CPZ-primitive but not
strongly connected.

Let A be a t-hydra on a set K. Let us define A\1 to be the digraph on K with
A\1i,j = Ai1,...,it+1 where i1 = i, j1 = · · · = jt = j, and then, for every n ∈ N, define
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A\n+1 inductively by setting A\n+1
i,j = max{Ai,i1,...,it A

\n
i1,j
· · · A\nit,j : i1, . . . , it ∈ K}. For

every j ∈ K, A is said to be j-primitive [YHY14, Definition 2.14] provided there exists
n ∈ N such that A\ni,j = 1 holds for all i ∈ K. One can check that A\ni,j > 0 if and only
if i ∈ CnA({j}) for every i, j ∈ K. Therefore, A is CPZ-primitive if and only if A is
j-primitive for all j ∈ K. For t = 1, it is well-known that A is primitive if and only if it is
CPZ-primitive and if and only if it is irreducible and j-primitive for any j ∈ K. Yuan et
al. posed the conjecture [YHY15, Conjecture 4.5] that this observation for digraphs holds
for general hydras, namely a hydra A on K is CPZ-primitive if and only if A is irreducible
and there exists some j ∈ K such that A is j-primitive. The following example shows
that the situation is more intricate than expected.

Example 9. Let A be the 2-hydra on [3] such that Ai,j,k = 1 if and only if

ijk ∈ {111, 211, 311, 132, 123, 322, 233}.

We can check that A is irreducible. For n ∈ N, we can also check that

CnA({1}) = [3],

CnA({2}) =

{
{3}, if n is odd,

{2}, if n is even,
and CnA({3}) =

{
{2}, if n is odd,

{3}, if n is even.

This means that A is neither 2-primitive nor 3-primitive, and hence not CPZ-primitive,
but 1-primitive. Note that this refutes [YHY15, Conjecture 4.5]. Also observe that A is
not strongly connected as RIA(13, b) = ∅ for all b ∈ [3]2 \ {13}.

3 Main results

Let f be a t-hydra on K. It is natural to consider the asymptotic equivalence for f ,
denoted by ∼f , which is the binary relation on Kt such that, for all a, b ∈ Kt, a ∼f b
if and only if there exists a positive integer m such that Mm

f (a) = Mm
f (b). It is clear

that asymptotic equivalence is an equivalence relation. Let C(f) be the set consisting of
all equivalence classes of ∼f . We construct the digraph f ∗ with vertex set C(f) and arc
set {C1 → C2 : C1, C2 ∈ C(f) and Mf (C1) ∩ C2 6= ∅}. Let per(f) denote the greatest
common divisor of

⋃
a∈KtRIf (a, a) and call it the period of f . Having in mind the partial

order relation of divisibility on the nonnegative integers, we adopt the convention that
the greatest common divisor of the set {0} is 0. We call a digraph on one vertex without
any arc a 0-cycle. Note that both 0-cycle and 1-cycle are strongly connected, but among
them only 1-cycle is primitive. If f is strongly connected and per(f) = 0, we can deduce
that V(f) is a singleton set and A(f) = ∅ and hence Γf is a 0-cycle. The next result
means that the cyclicity theorem for digraphs indeed holds for all hydras, namely every
strongly connected hydra with a finite diameter looks like a cycle when viewed from a
distance.
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Theorem 10. Let f be a strongly connected hydra with a finite diameter. Then f ∗ is a
per(f)-cycle. Moreover, if per(f) > 0, then there exists m ∈ N such that Mn

f (b) is an
equivalence class of ∼f for every b ∈ V(f) and n > m.

Here is an immediate consequence of Theorem 10. It is noteworthy that a counterpart
of it for the CPZ-primitiveness has been established by Cui et al. [CLN15, Theorem 4] in
the language of directed hypergraph.

Corollary 11. Let f be a hydra with a finite diameter. Then, f is primitive if and only
if f is strongly connected and per(f) = 1.

Example 12. Let Z be the set of all integers. Let f be the digraph with V(f) = Z and
A(f) = {a → b : a ∈ Z, b − a = 1} ∪ {a → b : a ∈ N, b = −a − 1}. Then f is strongly
connected, per(f) = 2, no two different vertices of f can be ∼f equivalent and so surely
f ∗ is not a 2-cycle.

Let t ∈ N and let K be a set. We use P(t,K) to stand for the set of periods of all those
strongly connected t-hydras f on K with A(f) 6= ∅ and Dia(f) <∞. For any k ∈ N, we
write P(t, k) for P(t, [k]). Let P(t) stand for ∪k∈NP(t, k). Considering all cycles, we see
that P(1) = N.

The periods of strongly connected hydras turn out to be related to a problem on
combinatorial design, namely the construction of cyclic decompositions. We elucidate
this problem in the sequel. For a map Φ defined on a cyclic group Zp, we often write
Φi for Φ(i) for any i ∈ Zp. Let t be a positive integer, K a set, and X ⊆ Kt. A cyclic
decomposition of (X,K, t) with period p ∈ N, also called a cyclic decomposition of X
relative to K with period p, is a map Φ : Zp → 2K \ {∅} such that⋃

i∈Zp

(
Φi × · · · × Φi+t−1

)
= X (3)

and (
Φi × · · · × Φi+t−1

)⋂(
Φj × · · · × Φj+t−1

)
= ∅ (4)

for all {i, j} ∈
(Zp

2

)
. We use the notation per(Φ) for the period p of Φ.

Theorem 13. Let K be a set and t be a positive integer. There exists a cyclic decompo-
sition Φ of (Kt, K, t) with per(Φ) = p if and only if p ∈ P(t,K).

Theorem 14. Let t be a positive integer and let K be any infinite set. Then P(t) =
P(t,K) ⊇ · · · ) P(t, 4) ) P(t, 3) ) P(t, 2) ) P(t, 1) = {1}.

Theorem 15. For every t ∈ N, it holds |N \P(t)| <∞.

Proposition 16. Let k and t be two positive integers. If ([k]t, [k], t) admits a cyclic
decomposition of period p, then either p = 1 or p > 2t.

Theorem 17.
⋂
t∈NP(t) = {1}.
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For any two integers m and n, we often write [m,n] for {` : m 6 ` 6 n}. Note that
[1, n] = [n]. Consider t ∈ N . By Theorem 15, there exists a minimum integer α(t) such
that [α(t),∞] ⊆ P(t). By Theorem 13 and Proposition 16, we have 2t − 1 /∈ P(t) for
all t > 2. Accordingly, we have α(t) > 2t for all t > 2. We need a bit more effort to
deduce the ensuing Proposition 18. In our subsequent work [QWZ17], we will show that
α(t) > 2t − t for all t ∈ N .

Proposition 18. Take t ∈ N . If t > 2, then 2t + 1 /∈ P(t); if t > 4, then 2t + 2 /∈ P(t).
In particular, α(t) > 2t+ 2 when t > 2 and α(t) > 2t+ 3 when t > 4.

Conjecture 19. For every t ∈ N, there exists a minimum integer β(t) such that

[α(t), kt − β(t)] ⊆ P(t, k)

for all k ∈ N .

Note that α(1) = 1 and β(1) = 0. If Conjecture 19 is true, then the next proposition
means that β(t) > 2t for t > 2.

Proposition 20. Let t and k be two integers such that t > 2 and k > 2t. Then kt−2t+1 /∈
P(t, k).

Proposition 21. For every k ∈ N, it holds k2 − 1 /∈ P(2, k).

Theorem 22. P(2) = N \{2, 3, 5, 6, 7}.

Example 23. Theorem 22 asserts that 2× 2 + 2 = 6 /∈ P(2). But we cannot strengthen
the claim in Proposition 18 to 2t+ 2 /∈ P(t) for t > 2. Indeed, we let Φ be the map from
Z8 to [2] that sends i ∈ Z8 to

Φ(i) :=

{
{1}, if i ∈ {1, 2, 3, 7},
{2}, if i ∈ {4, 5, 6, 8}.

We can check that Φ is a cyclic decomposition of ([2]3, [2], 3) with period 8 – Lemma 41 will
indicate a more general result about this construction. This establishes that 2× 3 + 2 =
8 ∈ P(3, 2).

For any t ∈ N, we have found that 2t ∈ P(t) if and only if t ∈ {1, 2, 4} while
2t + 3 ∈ P(t) if and only if t = 1 [QWZ17]. In view of this, as well as Theorem 13,
Proposition 16, Proposition 18, Theorem 22 and Example 23, we can obtain the structure
of the set P(t) ∩ [2t + 2] for every t ∈ N. Going one step further, we [QWZ17] will find
that

P(t) ∩ [3t− 2] = {1}

for t > 5 and determine P(t) ∩ [2t+ 3] for t 6 4 as summarized in Table 1:
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t = 1 t = 2 t = 3 t = 4
P(t) ∩ [2t+ 3] [2t+ 3] {1, 2t} {1, 2t+ 2} {1, 2t}

Table 1: Periods of strongly connected t-hydras in [2t+ 3].

We can conclude that 9 /∈ P(3), for which we do not include a proof here due to the
length constraint. We mention that this implies α(3) > 10. Note that Theorem 22 shows
α(2) = 8 > 1 = α(1).

Conjecture 24. It holds α(t+ 1) > α(t) for all t ∈ N .

Theorem 25. P(2, 1) = {1}, P(2, 2) = {1, 4},P(2, 3) = {1, 4, 9} and P(2, 4) = {1, 4, 8,
9, 10, 11, 12, 14, 16}.

Proposition 26. P(3) ( P(2).

For t = 1, 2, the next conjecture, Conjecture 27, is verified by Theorem 22 and Propo-
sition 26, respectively.

Conjecture 27. For every t ∈ N, P(t+ 1) ( P(t).

The minimum possible m that satisfies the requirement in Theorem 10 is called the
transient time of f . When f is primitive, the transient time is just the primitive exponent
g(f). A good estimate of transient time for a strongly connected hydra may not be easy.
We only have a look at the primitive exponent in this paper. For any t, k ∈ N, define
γ(t, k) to be the maximum possible value of the primitive exponent of a primitive t-hydra
on [k].

Theorem 28 (Wielandt [Sch02]). γ(1, k) = (k − 1)2 + 1 for all k ∈ N.

Let f and g be two t-hydras on a set K. We say that f is weakly isomorphic to g if
there exists a bijection φ from V(f) to V(g), called a weak isomorphism, such that for all
x, y ∈ V(f), xy ∈ A(f) if and only if φ(x)φ(y) ∈ A(g). We say that f is isomorphic to g
if there exists a permutation τ on K such that (τ, . . . , τ︸ ︷︷ ︸

t

) gives rise to a weak isomorphism

from f to g. It is not obvious if there will be any relationship between PSf and PSg
provided f and g are weakly isomorphic. But if f and g are isomorphic, their dynamical
behaviours can be said to be really of no difference.

Example 29. We use computer programming to enumerate all 2-hydras on sets with
at most 3 elements. It is found that γ(2, 1) = 1, γ(2, 2) = 7 and γ(2, 3) = 23. Up
to isomorphism, the hydras f1, f2 and f3 given in Figure 9 are the only primitive 3-
hydras on one, two and three elements whose primitive exponents equal γ(2, 1), γ(2, 2)
and γ(2, 3), respectively.
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Figure 9: γ(2, 1) = g(f1) = 1, γ(2, 2) = g(f2) = 7, γ(2, 3) = g(f3) = 23.

Let rk be the minimum number of multiplications to multiply two k by k complex
matrices. By coincidence, r1 = 1 = γ(2, 1), r2 = 7 = γ(2, 2), r3 6 23 = γ(2, 3) [Lan12,
p. 5, p. 283]. Can we expect

rk 6 γ(2, k) (5)

for all k ∈ N? Note that we [WXZ16, Conjecture 3.6] have made the conjecture that

γ(2, k) = O(k2) (6)

when k approaches the infinity. If both Eq. (5) and Eq. (6) are correct, we will have the
astounding result that, asymptotically, it is as easy to multiply matrices as it is to add
them.

Example 30. In Figure 10 we display two primitive 2-hydras f4 and g4 on [4]. It holds
g(f4) = g(g4) = 50. Note that f4 and g4 are weakly isomorphic but not isomorphic. We
mention that Dia(g4) = 28 > 23 = Dia(f4).
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11
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33

34
44

41

21

13

32

24

43

31

14

42

Γg4

Figure 10: γ(2, 4) > g(f4) = g(g4) = 50 > 28 = Dia(g4) = Distg4(42, 14) > 23 =
Dia(f4) = Distf4(32, 13).
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The parameter 50 appeared in Example 30 can be expressed as 50 = (2× 4− 1)2 + 1.
Our Theorem 31 explains why this expression has special meaning for us.

Theorem 31. It holds γ(2, k) > (2k − 1)2 + 1 for all k > 4.

Theorem 32. It holds γ(t, k) > kt for all k, t ∈ N.

In [CW17], we will show that γ(t, k) 6 t(k − 1)(kt − 1) + 1 for all k, t ∈ N.
Unlike the case of t = 1, to determine γ(t, k) for general t and k looks to be quite

challenging. In contrast, we mention that for the concept of CPZ-primitiveness, it turns
out that the maximum primitive exponents of Boolean tensors are not related to the order
of the tensors [YHY14, Theorem 1.2], namely the number of variables does not make any
difference then.

For any t, k ∈ N, let Dt,k be the maximum possible diameter of a strongly connected
t-hydra f on a set of size k.

Example 33. Making use of computer search, we can determine that D2,2 = 4 and
D2,3 = 15. Up to isomorphism, there are four 2-hydras on [2] whose diameters achieve
D2,2 = 4 and twenty-six 2-hydras on [3] whose diameters achieve D2,3 = 15. It is surprising
that all these 2-hydras are primitive while the reversal of none of them is strongly con-
nected. Indeed, those four 2-hydras on [2] all have primitive exponent 4 and the primitive
exponents of those twenty-six 2-hydras on [3] range among 15, 16, 17 and 18. We display
three such extremal hydras in Figure 11. The hydra g4 in Figure 10 shows the fact that
D2,4 > 28.
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13
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31

11
12
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23

32
21

13

33

Γh

Figure 11: D2,2 = Distf (12, 22) = g(f) = 4, D2,3 = Distg(32, 33) = g(g) = Disth(22, 33) =
15 and g(h) = 18.

Example 33 is about our knowledge of D2,k for k 6 4. We now provide an estimate of
D2,k for k > 5.

Theorem 34. For any integer k greater than 4, it holds

D2,k >

{
2k2, if k is odd,

2k2 − k + 1, if k is even.
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Our proof of Theorem 31 and Theorem 34 relies on the construction of a family of
2-hydras introduced at the beginning of § 6. The experience of going through that proof
leads us to the following conjecture.

Conjecture 35. γ(2, k) = (2k − 1)2 + 1 for k > 4 and limk→∞
D2,k

k2
= 2.

In order to unfold deep secrets hidden in seemingly messy high dimensional data, it
is often crucial to get a “correct” definition of a cycle in a hypergraph [Wan08, Wan11].
For hydras, we also face the problem of deciding what is a real cycle or a real hole of a
multilinear map. A cycle in the usual digraph setting could be characterized in many ways.
For example, the n-cycle C n could be characterized as the strongly connected digraph on
n vertices with maximum possible diameter and then with minimum number of arcs. We
leave it as an open problem to find a good definition of a cycle hydra, which hopefully can
bring forth many new concepts for hydra theory, say zeta functions [Ter11] or homology
theory [Big97], besides those followed from the definition of reachable indices.

4 Generalized cycles

This section is mainly devoted to a proof of Theorem 10, which closely follows the usual
proof of the corresponding result for digraphs. With the help of Theorem 10, we will
deduce Theorem 13, a result which becomes trivial for digraphs.

Lemma 36. Take a set K, an integer t ∈ N, and a, b ∈ Kt. Let f be a t-hydra on K. If
i ∈ RIf (a, b) and j ∈ RIf (b, c), then i+ j ∈ RIf (a, c).

Proof. From b ∈ Mi
f (a) and c ∈ Mj

f (b), we surely get c ∈ Mi+j
f (a), that is, i + j ∈

RIf (a, c).

Lemma 37. Let f be a strongly connected t-hydra on a set K.

(a) For every a ∈ Kt, the greatest common divisor of RIf (a, a) equals to per(f).

(b) For any a, b ∈ Kt, the elements of RIf (a, b) are congruent modulo per(f).

Proof. (a) Let a and b be two vertices of f . Let pa and pb denote the greatest common
divisors of RIf (a, a) and RIf (b, b), respectively. It suffices to show pa = pb. Let s ∈
RIf (a, a). Due to the symmetry between a and b, we need only verify that pb is a divisor
of s. Since f is strongly connected, we can take t1 ∈ RIf (b, a) and t2 ∈ RIf (a, b). By
Lemma 36, t1 + t2 and s+ t1 + t2 are contained in RIf (b, b) and therefore pb divides s, as
required.

(b) Take t1, t2 ∈ RIf (a, b). Pick s ∈ RIf (b, a) and hence, by Lemma 36, s+t1, s+t2 ∈
RIf (a, a). According to (a), per(f) is a divisor of both s+ t1 and s+ t2. This shows that
t1 − t2 = (s+ t1)− (s+ t2) is a multiple of per(f), finishing the proof.

For any hydra f with period p, any a ∈ V(f) and i ∈ N, use Ci,a(f) as a shorthand
for
⋃

m∈N∪{0}
m≡i (mod p)

Mm
f (a). Note that Ci,a(f) = Ci+p,a(f) and so it is often natural to view

the parameter i of Ci,a(f) as an element of Zp.

the electronic journal of combinatorics 24(1) (2017), #P1.47 19



Lemma 38. Let f be a strongly connected t-hydra on a set K with period p > 0.

(a) For each a ∈ V(f), {Ci,a(f) : i ∈ [p]} form a partition of V(f).

(b) For all a ∈ V(f) and i ∈ [p], Mf

(
Ci,a(f)

)
= Ci+1,a(f).

(c) Let a, b and c be three vertices of f . If b ∼f c, then there exists i ∈ [p] such that
b, c ∈ Ci,a(f).

Proof. (a) Since f is a strongly connected,
⋃
i∈[p] Ci,a(f) = V(f). By Lemma 37(b),

C1,a(f), . . . ,Cp,a(f) are mutually disjoint.
(b) It is obvious from the definition that Mf

(
Ci,a(f)

)
⊆ Ci+1,a(f). By Lemma 37(a),

RIf (a, a) contains a positive multiple of p, say rp for some r ∈ N . Since p > 0, rp−1 > 0
holds. Take any b ∈ Ci+1,a(f). By definition, there exists a nonnegative integer j such
that b ∈ Mj

f (a) and j ≡ i+ 1 (mod p). Consequently,

b ∈ Mj
f (a) ⊆ Mrp+j

f (a) = Mf

(
Mrp−1+j
f (a)

)
⊆ Mf

(
Ci,a(f)

)
.

This gives Mf

(
Ci,a(f)

)
= Ci+1,a(f).

(c) This is a consequence of (a) and (b).

The next result, Lemma 39, is in the folklore [KS76, Theorem 1.4.1] [RA05, Theorem
1.0.1]. The number N(X) appeared in it is the so-called Frobenius number in the Postage
Stamp Problem. Its estimate may be useful in bounding the transient time of a strongly
connected hydra.

Lemma 39. Let X be a nonempty subset of positive integers closed under integer addition
and let gcd(X) = p. Then there exists a smallest nonnegative integer N(X) such that,
for all integers x > N(X), x ∈ X holds if and only if p | x.

Lemma 40. Let f be a strongly connected t-hydra on set K with Dia(f) < ∞ and
per(f) = p ∈ N . Let a ∈ Kt. There exists a number m ∈ N such that M`

f (b) = Cj,a(f)
whenever b ∈ Ci,a(f), ` > m and `+ i ≡ j (mod p).

Proof. Applying Lemma 39 for X = RIf (a, a), we know the existence of a positive
integer R such that pr ∈ RIf (a, a) whenever r > R. Lemma 36 then implies that
x+ pr ∈ RIf (a, b) for any b ∈ V(f), x ∈ RIf (a, b) and r > R. By Lemma 38(b), we can
take m = Dia(f) +Rp, completing the proof.

Proof of Theorem 10. The result is trivial when per(f) = 0. When per(f) ∈ N, it follows
from Lemma 38 and Lemma 40.

Proof of Theorem 13. Let Φ be a cyclic decomposition of (Kt, K, t) with per(Φ) = p ∈ N.
For each i ∈ Zp, we let Ci be the nonempty set Φi× · · · ×Φi+t−1. Consider the t-hydra f
on K with

A(Γf ) = {(a1, . . . , at)→ (a2, . . . , at+1) : ∃i ∈ Zp, (a1, . . . , at) ∈ Ci, (a2, . . . , at+1) ∈ Ci+1}.
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It is clear that f is a strongly connected t-hydra with Dia(f) 6 p + t and with Ci,
i ∈ Zp, being all the ∼f equivalence classes. It then follows from Theorem 10 that
p = per(f) ∈ P(t,K).

Conversely, assume there exists a strongly connected t-hydra f on K with period p ∈ N
and finite diameter. Observe that, for any b ∈ Kt and n ∈ N, Mn

f (b) must be of the form
L1 × · · · × Lt, where Li are nonempty subsets of K for i ∈ [t]. Therefore, according to
Theorem 10, there exists a cyclic decomposition Φ of (Kt, K, t) with period p ∈ N, for
which Φi × · · · × Φi+t−1 is an equivalence class of ∼f for every i ∈ Zp.

5 Periods

For any set K, t ∈ N and X ⊆ Kt, we call a cyclic decomposition Φ of (X,K, t) a discrete
cyclic decomposition if per(Φ) = |X|.

Lemma 41. Let K be a set and and t be a positive integer. Then (Kt, K, t) admits a
discrete cyclic decomposition if and only if |K| ∈ N.

Proof. The existence of a discrete decomposition Φ forces |Kt| = per(Φ) ∈ N and hence
|K| ∈ N. The other direction is simply the well-known fact that “Every De Bruijn
digraph has a Hamiltonian cycle;” see [BJG09, Theorem 6.9.8] [BM08, Exercise 3.4.10]
[dB46, Goo46].

Take k, t ∈ N . If a cyclic decomposition Φ of X ⊆ [k]t relative to [k] satisfies Φi = {1}
for all i ∈ [t− 1], we call Φ a strong cyclic decomposition of (X, [k], t). For any X ⊆ [k]t,
we set

P∗(X, [k], t) := {per(Φ) : Φ is a strong cyclic decomposition of (X, [k], t)}.

Let P∗(t, k) := P∗([k]t, [k], t) and P∗(t) :=
⋃
`∈NP

∗(t, `).

Lemma 42. Let t be a positive integer.

(a) If K1 and K2 are two nonempty sets satisfying K1 ⊆ K2, then P(t,K1) ⊆ P(t,K2).

(b) If k1 and k2 are two integers such that 1 < k1 6 k2, then P∗(t, k1) ⊆ P∗(t, k2).

Proof. For any map Φ from Zp to 2K \ {∅}, any k ∈ K and any set X disjoint from K,
we put Φk,X to be the map from Zp to 2K∪X \ {∅} satisfying

Φk,X
i =

{
Φi, if k /∈ Φi,

Φi ∪X, if k ∈ Φi,

for all i ∈ Zp . If Φ is a cyclic decomposition of (Kt
1, K1, t) with period p ∈ N, we can

check that, for any k ∈ K1, Φk,K2\K1 is a cyclic decomposition of (Kt
2, K2, t) with period

p. Claim (a) now follows from Theorem 13. If Φ is a strong cyclic decomposition of
([k1]t, [k1], t) and k2 > k1 > 1, Φk1,[k1+1,k2] is a strong cyclic decomposition of ([k2]t, [k2], t)
with period p, yielding (b).

the electronic journal of combinatorics 24(1) (2017), #P1.47 21



Lemma 43. Let `, k, t ∈ N and assume ` 6 k. Then `t ∈ P(t, k). If 1 < `, then we also
have `t ∈ P∗(t, k).

Proof. This follows immediately from Lemma 41 and Lemma 42.

Proof of Theorem 14. Let k ∈ N. By Lemma 41, (k + 1)t ∈ P(t, k + 1). Since (k + 1)t >
|[k]t|, Theorem 13 says that (k + 1)t /∈ P(t, k). Therefore, thanks to Lemma 42(a), it
remains to show P(t,K) ⊆ P(t).

Take p ∈ P(t,K). By Theorem 13, there exists a cyclic decomposition Φ of (Kt, K, t)
with period p. For any x ∈ Kt, let ξ(x) denote the unique element i ∈ Zp such that

x ∈ Φi × · · · × Φi+t−1. Let Φ̂ be the map from K to {0, 1}Zp such that

Φ̂(x)i =

{
0, if x /∈ Φi,

1, if x ∈ Φi,

for i ∈ Zp . Let C ⊆ {0, 1}Zp \ {∅} be the image of the map Φ̂. Note that |C| < 2p <∞.

Let Ψ be the map from Zp to 2C such that Ψi = {Φ̂(x) : x ∈ Φi} for all i ∈ Zp. For every

(c1, . . . , ct) ∈ Ct and any x, y ∈ Φ̂−1(c1) × · · · × Φ̂−1(ct), the definition of Φ̂ guarantees
that y ∈ Φξ(x) × · · · × Φξ(x)+t−1, and so, the definition of a cyclic decomposition ensures
ξ(x) = ξ(y), which means that ξ(x) is the only element i in Zp such that (c1, . . . , ct) ∈
Ψi × · · · × Ψi+t−1. We now conclude that Ψ is a cyclic decomposition of (Ct, C, t) with
period p, and so, by Theorem 13, p ∈ P(t, |C|) ⊆ P(t), as was to be shown.

For a map Φ defined on Zp, we let σp(Φ) be the map on Zp such that(
σp(Φ)

)
i

= Φi+1 (7)

for all i ∈ Zp. If Φ is a map defined on [p], we naturally identify it as a map on Zp and
in this way we can also talk about the map σp(Φ).

Lemma 44. Let K be a set and t be a positive integer. Let X ⊆ Kt. If Φ is a cyclic
decomposition of (X,K, t) with period p, then so is σp(Φ).

Proof. Write Ψ = σp(Φ). Firstly, Ψi = Φi+1 6= ∅ for i ∈ Zp . Secondly,⋃
i∈Zp

(
Ψi × · · · ×Ψi−t+1

)
=
⋃
i∈Zp

(
Φi+1 × · · · × Φi−t+2

)
= X.

Lastly, for any {i, j} ∈
(Zp

2

)
,(

Ψi × · · · ×Ψi+t−1

)⋂(
Ψj × · · · ×Ψj+t−1

)
=
(
Φi+1 × · · · × Φi+t

)⋂(
Φj+1 × · · · × Φj+t

)
= ∅.

This finishes the proof.
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For any p ∈ N, when we are considering the cyclic group Zp of p elements, we often
think of it as the set of all residue classes modulo p. Thus, we may use [m,n]p for the
residue classes to modulus p as represented by m,m + 1, . . . , n, and view it as a subset
of Zp; we sometimes drop the subscript p from the notation [m,n]p if it is clear from the
context. Let Φ be a map on Zp and Ψ a map on Zq . We view them as words indexed by
Zp and Zq and so it is natural to use ΦΨ to denote the map defined on Zp+q, called the
concatenation of Φ and Ψ, such that, for i ∈ Zp+q, it holds

(ΦΨ)i =

{
Φi, if i ∈ [p]p+q,

Ψi−p, if i ∈ [p+ 1, p+ q]p+q.

Lemma 45. Take a set K, t ∈ N and X, Y ⊆ Kt. Assume that X ∩ Y = ∅. Let Φ be
a cyclic decomposition of (X,K, t) with period p and let Ψ be a cyclic decomposition of
(Y,K, t) with period q. If Φi = Ψi for i ∈ [t − 1], then ΦΨ is a cyclic decomposition of
(X ∪ Y,K, t) with per(ΦΨ) = p+ q.

Proof. Put ∆ = ΦΨ. Note that⋃
i∈[p]p+q

(
∆i × · · · ×∆i+t−1

)
=(

⋃
i∈[p−t+1]

∆i × · · · ×∆i+t−1) ∪ (
⋃

i∈[p−t+2,p]

∆i × · · · ×∆i+t−1)

=(
⋃

i∈[p−t+1]

Φi × · · · × Φi+t−1) ∪ (
⋃

i∈[p−t+2,p]

Φi × · · · × Φp ×Ψ1 × · · · ×Ψi+t−1−p)

=(
⋃

i∈[p−t+1]

Φi × · · · × Φi+t−1) ∪ (
⋃

i∈[p−t+2,p]

Φi × · · · × Φi+t−1)

=
⋃
i∈Zp

(
Φi × · · · × Φi+t−1

)
= X.

Similarly, we have
⋃
i∈[p+1,p+q]p+q

(
∆i×· · ·×∆i+t−1

)
= Y . By checking some other obvious

conditions, we conclude that ΦΨ is a cyclic decomposition of (X ∪ Y,K, t).

For any t ∈ N and any set K, we define dK,t to be the map on Kt ×Kt which sends
(x, y) ∈ Kt ×Kt to

dK,t(x, y) :=

{
0, if x = y,

t+ 1−min{i ∈ [t] : xi 6= yi}, if x 6= y.

For any two subsets X and Y of Kt, we write dK,t(X, Y ) for min{dK,t(x, y) : x ∈ X, y ∈
Y }. If two nonempty subsets X and Y of Kt fulfils dK,t(X, Y ) > 1, it is apparent that
(X ∪ Y,K, t) has no discrete cyclic decomposition.

Lemma 46. Let K be a set and t a positive integer. Let X, Y ⊆ Kt and let Φ and Ψ be
discrete cyclic decompositions of (X,K, t) and (Y,K, t), respectively. If dK,t(X, Y ) = 1,
then there is a discrete cyclic decomposition of X ∪ Y relative to K.
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Proof. Suppose dK,t(X, Y ) = 1. Then, in light of Lemma 44, we can assume Φi = Ψi for
i ∈ [t−1]. Applying Lemma 45, we see that ΦΨ is a cyclic decomposition of (X ∪Y,K, t),
as desired.

Lemma 47. Let c and t be two positive integers. Put X = [c + 1]t \ [c]t. If t > 1, then
there exists a discrete cyclic decomposition ∆ of (X, [c+ 1], t) such that

∆i =

{
{c+ 1}, if i ∈ [2t− 1] \ {t},
{c}, if i = t.

(8)

Proof. If t = 2, we let

∆i =

{
{c+ 1}, if i ∈ {1, 3, . . . , 2c+ 1},
{c+ 1− i

2
}, if i ∈ {2, 4, . . . , 2c}.

(9)

and the resulting ∆ as a map on Z2c+1 is what we want.
We proceed to deal with the case of t > 2.
We view the elements of [c+ 1]t as maps on Zt and this allows us consider the action

of σt on the elements of X – recall the definition of σ as given in Eq. (7). For each
x ∈ [c + 1]t, let x refer to the orbit of x under the action of σt. It is clear that σt gives
rise to a permutation of X, namely X is the disjoint union of several orbits of σt.

For any x ∈ X, let {
nx := |{xi : xi = c+ 1}| ∈ N,
ox := |x| ∈ N,

and define Λx to be the map from Zox to 2[c+1] that sends i ∈ Zox to {xi}. For our
subsequent proof, the important thing is that

Λx is a discrete cyclic decomposition of (x, [c+ 1], t). (10)

For any i ∈ [t], let Ωi := {x ∈ X : nx = i} and Πi := {x ∈ X : nx 6 i},
which are both closed under the action of σt. Let Ωi = {x : nx = i, x ∈ X} and
Πi = {x : nx 6 i, x ∈ X} for i ∈ [t]. Let G be the digraph with vertex set V(G) = Πt−2

and arc set AG = {(x, y) : d[c+1],t(x, y) = 1, x, y ∈ V(G)}. Note that G[Π1] is a connected
graph with diameter at most t− 1 and, for i ∈ [t− 3], in G[Πi+1] every vertex from Ωi+1

is adjacent to some vertex in Ωi ⊆ Πi. By successive applications of Lemma 46 and fact
(10), we derive the existence of a discrete cyclic decomposition Q of (Πt−2, [c+ 1], t).

Let
y = (c+ 1, . . . , c+ 1︸ ︷︷ ︸

t−1

, c) ∈ X ⊆ [c+ 1]t.

Let Y := Ωt−1\y. Note that d[c+1],t(Y,Πt−2) = 1 and d[c+1],t(Ωt, Y ∪Πi−2) = 1. Combining
Lemma 46 and fact (10), we can start from Q to get a discrete cyclic decomposition Φ of
(X \ y, [c+ 1], t).
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Since (

t︷ ︸︸ ︷
c+ 1, . . . , c+ 1) ∈ X \ y, we can assume, in view of Lemma 44, that Φ begins

with

(Φ1, . . . ,Φt−1) = (

t−1︷ ︸︸ ︷
{c+ 1}, . . . , {c+ 1}).

Putting ∆ = ΛyΦ, then from Lemma 45 and (10) we obtain that ∆ is a discrete cyclic
decomposition of (X, [c+ 1], t) with

(∆1, . . . ,∆2t−1) = (

t−1︷ ︸︸ ︷
{c+ 1}, . . . , {c+ 1}, {c},

t−1︷ ︸︸ ︷
{c+ 1}, . . . , {c+ 1}),

as wanted.

Lemma 48. Let k and t be two integers greater than 1 and let X = [k + 1]t \ [k]t. Then
{3t − 2t + jt : j ∈ [0, k − 2]} ⊆ P∗(X, [k + 1], t).

Proof. Let r = 3t − 2t. Applying Lemma 47 for c = 2, we can get a discrete cyclic
decomposition ∆ of ([3]t \ [2]t) relative to [3] such that

(∆1, . . . ,∆2t−1) = (

t−1︷ ︸︸ ︷
{3}, . . . , {3}, {2},

t−1︷ ︸︸ ︷
{3}, . . . , {3}). (11)

Now we construct Φ(0) : Zr → 2[k+1] by putting

Φ
(0)
i =


{1}, if ∆i = {1},
[2, k], if ∆i = {2},
{k + 1}, if ∆i = {3}.

For j ∈ [k − 2], we then construct Φ(j) : Zr+jt → 2[k+1] by putting

Φ
(j)
[t] = (

t−1︷ ︸︸ ︷
{k + 1}, . . . , {k + 1}, {2}),

Φ
(j)
[t+1,2t] = (

t−1︷ ︸︸ ︷
{k + 1}, . . . , {k + 1}, {3}),

...
...

Φ
(j)
[(j−1)t+1,jt] = (

t−1︷ ︸︸ ︷
{k + 1}, . . . , {k + 1}, {j + 1}),

Φ
(j)
[jt+1,(j+1)t] = (

t−1︷ ︸︸ ︷
{k + 1}, . . . , {k + 1}, [j + 2, k]),

and, for i ∈ [r − t],

Φ
(j)
(j+1)t+i =


{1}, if ∆i+t = {1},
[2, k], if ∆i+t = {2},
{k + 1}, if ∆i+t = {3}.
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For j ∈ [0, k − 2], it follows from Eq. (11) that

Φ
(j)
[(j+1)t+1,(j+2)t−1] = (

t−1︷ ︸︸ ︷
{k + 1}, . . . , {k + 1}).

This enables us to check that Φ(j) is a cyclic decomposition of (X, [k + 1], t) with period
r + jt for j ∈ [0, k − 2].

Let j ∈ [0, k − 2]. Since Φ(j) is a cyclic decomposition of (X, [k + 1], t), there exists a
unique i(j) ∈ Zr+jt such that

(

t−1︷ ︸︸ ︷
1, 1, . . . , 1, k + 1) ∈ Φ

(j)

i(j)
× Φ

(j)

i(j)+1
× · · · × Φ

(j)

i(j)+t−1
.

Checking our construction of Φ(j), we see that, for any s ∈ Zr+jt, 1 ∈ Φ
(j)
s is possible

only if {1} = Φ
(j)
s . Thus, by virtue of Lemma 44, σr+jt+1−i(j)

r+jt (Φ(j)) is a strong cyclic
decomposition of (X, [k + 1], t) with period r + jt.

Lemma 49. For every t ∈ N, the set P∗(t) contains a complete residue system modulo t.

Proof. For i = 0, . . . , t−1, we shall show inductively the existence of pi ∈ P∗(t) such that
pi ≡ i (mod t).

When i = 0, by Lemma 41 there exists a discrete cyclic decomposition of [t]t relative
to [t]. Since t | tt, we can set p0 = tt ∈ P∗(t).

Assume that i 6 t − 1 is a positive integer and we have known the existence of the
required pi−1. We are going to prove the existence of pi. Let us assume that pi−1 ∈ P∗(t, d)
for some d ∈ N, namely there exists a strong cyclic decomposition Φ of ([d]t, [d], t) with
period pi−1. Let c be a positive multiple of t satisfying c > d. By Lemma 42(b), we can
find a strong cyclic decomposition Ψ of ([c]t, [c], t) with period pi−1. By Lemma 44 and
Lemma 47, we can find a strong cyclic decomposition ∆ of [c+ 1]t \ [c]t relative to [c+ 1]
with period (c + 1)t − ct. We then employ Lemma 45 to deduce that Ψ∆ is a strong
cyclic decomposition of ([c + 1]t, [c + 1], t) with period pi−1 + (c + 1)t − ct. Noting that
(c+ 1)t − ct ≡ 1 (mod t), we can take pi = pi−1 + (c+ 1)t − ct, finishing the proof.

Lemma 50. Let t be a positive integer. Then |N \P∗(t)| <∞.

Proof. Let r = 3t − 2t. By Lemma 49, P∗(t) contains a complete residue system modulo
t, say p1, . . . , pt.

Take i ∈ [t]. According to Lemma 42(b), there is si ∈ N such that

pi ∈ ∩ki∈[si,∞]P∗(t, ki). (12)

For any ki ∈ [si,∞], choose a strong cyclic decomposition Φpi,ki of ([ki]
t, [ki], t) with period

pi. By Lemma 48, for any

p ∈ {r, r + t, r + 2t, . . . , r + (ki − 2)t}, (13)
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there exists a strong cyclic decomposition Ψp,ki of ([ki+ 1]t \ [ki]
t, [ki+ 1], t) with period p.

From Lemma 45 we derive that Φpi,kiΨp,ki is a cyclic decomposition of ([ki+ 1]t, [ki+ 1], t)
with period p + pi. Putting together Eq. (12) and Eq. (13), we see that p can take all
values of the form r + `t, ` ∈ N. As p1, . . . , pt form a complete residue system modulo t,
the freedom in choosing i from [t] says that every large enough integer can be expressed as
p+pi, the period of Φpi,kiΨp,ki for suitable i, ki and p. This demonstrates that |N \P∗(t)| <
∞.

Proof of Theorem 15. It follows from Theorem 13 that P∗(t) ⊆ P(t). Thus, the claim is
direct from Lemma 50.

Let k, t and p be three positive integers and let Φ be a map from Zp to 2[k]. We write
ρΦ,t for the map from Zp to 2[k] such that ρΦ,t(i) =

⋂
j∈[t] Φi−1+j for i ∈ Zp.

Lemma 51. Let k, t and p be three positive integers and let Φ be a cyclic decomposition
of ([k]t, [k], t) with period p. We adopt the shorthand ρ for the map ρΦ,t.

(a) If ρ(i) 6= ∅, ρ(j) 6= ∅ and i 6= j, then ρ(i) ∩ ρ(j) = ∅.

(b)
⋃
i∈Zp

ρ(i) = [k].

(c) If ρ(i) 6= ∅ and p > 2, then ρ(i+ 1) = ρ(i+ 2) = · · · = ρ(i+ t− 1) = ∅.

(d) If p > 2, then X = {i ∈ Zp : ρ(i) 6= ∅} contains at least two elements.

(e) If ρ(i) 6= ∅ and p > 2, then Φi+t ∩ ρ(i) = ∅ = Φi−1 ∩ ρ(i).

Proof. (a) Assume, for the sake of contradiction, that a ∈ ρ(i)∩ρ(j). Then Φi×· · ·×Φi+t−1

and Φj×· · ·×Φj+t−1 contain (
t︷ ︸︸ ︷

a, . . . , a) as a common element. This violation with Eq. (4)
says that Φ cannot be a cyclic decomposition.

(b) By Eq. (3),

⋃
i∈Zp

(
Φi × · · · × Φi+t−1

)
⊇ {(

t︷ ︸︸ ︷
a, . . . , a) : a ∈ K}, (14)

and thus the claim follows from the definition of ρΦ,t.
(c) Assume that a ∈ ρ(i) and b ∈ ρ(i+ j) for some j ∈ [t− 1]. Then

(

j︷ ︸︸ ︷
a, . . . , a,

t−j︷ ︸︸ ︷
b, . . . , b) ∈

(
Φi × · · · × Φi+t−1

)⋂(
Φi+1 × · · · × Φi+t

)
.

This is impossible, as Φ satisfies Eq. (4).
(d) Claim (b) asserts that X 6= ∅. If X contains only one element, say i, then Claim (b)

shows that Φi × · · · × Φi+t−1 = Kt, and hence Eq. (4) forces p = 1.
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(e) If a ∈ ρ(i) ∩ Φi+t, then

(
t︷ ︸︸ ︷

a, . . . , a) ∈
(
Φi × · · · × Φi+t−1

)⋂(
Φi+1 × · · · × Φi+t

)
;

if a ∈ ρ(i) ∩ Φi−1, then

(
t︷ ︸︸ ︷

a, . . . , a) ∈
(
Φi × · · · × Φi+t−1

)⋂(
Φi−1 × · · · × Φi+t−2

)
.

In both cases, Eq. (4) becomes impossible to hold, which is a desired contradiction.

Proof of Proposition 16. It is immediate from Lemma 51 (c) and Lemma 51(d).

Proof of Theorem 17. This is a result of Theorem 13 and Proposition 16.

Proof of Proposition 18. First we prove that 2t + 1 /∈ P(t) when t > 2. If it were not
true, then Theorem 13 says that there exists a cyclic decomposition Φ of ([k]t, [k], t) for
some k ∈ N with per(Φ) = 2t + 1. Let ρ = ρΦ,t and let X = {i ∈ Z2t+1 : ρ(i) 6= ∅}.
By Lemma 44 and Lemma 51(a)(b)(c)(d), there is no loss of generality in assuming that
X = {1, t + 1}, and ρ(1) and ρ(t + 1) form a partition of [k]. Using Lemma 51 (e) for
i ∈ {1, t + 1}, we obtain Φ2t+1 ∩ ρ(1) = Φ2t+1 ∩ ρ(t + 1) = ∅. This ensures Φ2t+1 = ∅,
which is absurd.

Next we show 2t + 2 /∈ P(t) when t > 4. By Theorem 13, our job is to demonstrate
the nonexistence of any cyclic decomposition Φ of ([k]t, [k], t) with per(Φ) = 2t + 2 for
every k ∈ N. By way of contradiction, assume that such a Φ exists. Let ρ = ρΦ,t and let
X = {i ∈ Z2t+2 : ρ(i) 6= ∅}. By Lemma 44 and Lemma 51(a)(b)(c)(d), we need only
address the following two cases.

Case 1. X = {1, t+ 2}, and ρ(1) and ρ(t+ 2) form a partition of [k].
Using Lemma 51 (e) for i ∈ {1, t+2}, we obtain Φt+1∩ρ(1) = ∅ and Φt+1∩ρ(t+2) = ∅.

This gives Φt+1 = ∅, a contradiction.

Case 2. X = {1, t+ 1}, and ρ(1) and ρ(t+ 1) form a partition of [k].
Using Lemma 51 (e) for i ∈ {1, t+ 1}, we obtain

Φt = ρ(1),Φ2t+1 ⊆ ρ(1), (15)

and
Φ2t+2 ⊆ ρ(t+ 1). (16)

Take a ∈ Φ2t+1 and b ∈ Φ2t+2. From b ∈ Φ1 we would obtain (b,
t−1︷ ︸︸ ︷

a, . . . , a) ∈
(
Φ2t+2× · · ·×

Φt−1

)
∩
(
Φ1 × · · · × Φt

)
while from b ∈ Φ2 we will derive (a, b,

t−2︷ ︸︸ ︷
a, . . . , a) ∈

(
Φ2t+1 × · · · ×

Φt−2

)
∩
(
Φ1 × · · · × Φt

)
, both of which surely violate (4). Consequently, we get

b /∈ Φ1 ∪ Φ2. (17)

the electronic journal of combinatorics 24(1) (2017), #P1.47 28



We also claim that
a /∈ Φ2t. (18)

If this did not hold, we would have (

t−1︷ ︸︸ ︷
b, . . . , b, a) ∈

(
Φt×· · ·×Φ2t

)
∩
(
Φt+1×· · ·×Φ2t+1

)
, which

is impossible. By Eq. (3), there exists i ∈ Z2t+2 such that (

t−2︷ ︸︸ ︷
b, . . . , b, a, a) ∈ Φi×· · ·×Φi+t−1.

By Eqs. (15) and (17), we see that b /∈ Φ1 ∪Φ2 ∪Φt ∪Φ2t+1 and so {1, 2, t, 2t+ 1} ∩ [i, i+
t − 3]2t+2 = ∅. As t > 4, this can happen only if i ∈ {t + 1, t + 2, t + 3}. On the other
hand, Eq. (16) along with Eq. (18) says that {2t, 2t + 2} ∩ [i + t − 2, i + t − 1]2t+2 = ∅,
and therefore i /∈ {t+ 1, t+ 2, t+ 3}. This contradiction completes the proof.

Proof of Proposition 20. If the assertion would not hold, then, according to Theorem 13,
there is a cyclic decomposition Φ of ([k]t, [k], t) with per(Φ) = kt − 2t + 1. We write
p for per(Φ) and note that p > 2t. It is also obvious that Φ is not discrete and hence
maxj∈Zp |Φj| > 1.

Case 1. There exists j ∈ Zp such that |Φj| > 3.
This implies

kt =
∑
i∈Zp

|Φi × · · · × Φi+t−1|

>
( ∑
i∈[j+1,j−t+1+p]p

+
∑

i∈[j−t+1,j]p

)
|Φi × · · · × Φi+t−1|

> (kt − 2t+ 1− t) + 3t = kt + 1,

giving a desired contradiction.

Case 2. There is a unique j ∈ Zp such that |Φj| = 2 and |Φj′ | = 1 for all j′ ∈ Zp \{j}.
We now have

kt =
∑
i∈Zp

|Φi × · · · × Φi+t−1|

=
( ∑
i∈Zp \[j−t+1,j]p

+
∑

i∈[j−t+1,j]p

)
|Φi × · · · × Φi+t−1|

= (kt − 2t+ 1− t) + 2t = kt − t+ 1 < kt,

again a contradiction.

Case 3. There exists {j1, j2} ∈
(Zp

2

)
such that |Φj1| = |Φj2| = 2.

We first consider the case of j1 ∈ [j2 − t + 1, j2 + t − 1]p. Without loss of generality,
we assume that j1 = j2 − a where a ∈ [t− 1]. It follows that

kt =
∑
i∈Zp

|Φi × · · · × Φi+t−1|

=
( ∑
i∈[j2+1−p,j1−t]p

+
∑

i∈[j1−t+1,j2−t]p

+
∑

i∈[j2−t+1,j1]p

+
∑

i∈[j1+1,j2]p

)
|Φi × · · · × Φi+t−1|

> (kt − 2t+ 1− a− t) + 2a+ 4(t− a) + 2a = kt + 1 + (t− a) > kt + 1,
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which is absurd.
It remains to consider the case that j1 /∈ [j2 − t+ 1, j2 + t− 1]p. We can derive that

kt =
∑
i∈Zp

|Φi × · · · × Φi+t−1|

=
( ∑
i∈Zp \([j1−t+1,j1]p∪[j2−t+1,j2]p)

+
∑

i∈[j1−t+1,j1]p

+
∑

i∈[j2−t+1,j2]p

)
|Φi × · · · × Φi+t−1|

>
(
(kt − 2t+ 1)− 2t

)
+ 2t+ 2t = kt + 1,

which is a contradiction, and so the proposition follows.

Proof of Proposition 21. If k = 1, the result is trivial. Assume then k > 2. By Theo-
rem 13, our task is to show the nonexistence of a cyclic decomposition Φ of ([k]2, [k], 2)
with period k2 − 1. If such a Φ exists, then there exists j ∈ Zk2−1 such that |Φj| > 2.
Hence

k2 =
∑

i∈Zk2−1

|Φi × Φi+1| >
∑

i∈Zk2−1 \{j−1,j}

|Φi × Φi+1|+ |Φj−1 × Φj|+ |Φj × Φj+1|

> (k2 − 3) + 2 + 2 = k2 + 1.

This is impossible and hence we are done.

Let k be a positive integer and let Φ be a cyclic decomposition of ([k]2, [k], 2). For
any x ∈ [k], define δ(x,Φ) := {i : x ∈ Φi}, δ+(x,Φ) := {i + 1 : i ∈ δ(x,Φ)} and
δ−(x,Φ) := {i− 1 : i ∈ δ(x,Φ)}.

Lemma 52. Take k ∈ N . Let Φ be a cyclic decomposition of ([k]2, [k], 2) and let x ∈ [k].

(a) Let S be a subset of δ+(x,Φ) and let Ai be a subset of Φi for all i ∈ S. Then,⋃
i∈S Ai = [k] if and only if S = δ+(x,Φ) and Φi = Ai for all i ∈ S.

(b) Let S be a subset of δ−(x,Φ) and let Ai be a subset of Φi for all i ∈ S. Then,⋃
i∈S Ai = [k] if and only if S = δ−(x,Φ) and Φi = Ai for all i ∈ S.

Proof. (a) By Eq. (3), each element of {x}×K appears in a set of the form Φi−1×Φi for
exactly one i ∈ S. The result thus follows.

(b) By Eq. (3), each element of K × {x} appears in a set of the form Φi × Φi+1 for
exactly one i ∈ S. This implies the claim, as desired.

Lemma 53. {5, 6} ∩ P(2) = ∅.

Proof. By Proposition 18, we only need to show 6 /∈ P(2). We assume that there exists a
cyclic decomposition Φ of ([k]2, [k], 2) with per(Φ) = 6 and, in light of Theorem 13, aim
to find a contradiction. Let ρ = ρΦ,2 and let X = {i ∈ Z6 : ρ(i) 6= ∅}. By Lemma 44 as
well as Lemma 51(a)(b)(c)(d), it suffices to consider the following cases.

Case 1. ρ(1) and ρ(3) form a partition of [k] and X = {1, 3}.
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Using Lemma 51 (e) for i = 1 and i = 3, we find Φ6 ∩ ρ(1) = ∅ and Φ5 ∩ ρ(3) = ∅,
respectively. This implies that Φ5 × Φ6 ⊆ ρ(1) × ρ(3) ⊆ Φ2 × Φ3, a contradiction with
Eq. (4).

Case 2. ρ(1) and ρ(4) form a partition of [k] and X = {1, 4}.
We employ Lemma 51 (e) for i ∈ {1, 4} to get Φ3 ∩ ρ(1) = ∅ and Φ3 ∩ ρ(4) = ∅. This

is impossible as we have assumed that Φ3 ∩
(
ρ(1) ∪ ρ(4)

)
= Φ3 ∩ [k] = Φ3 6= ∅.

Case 3. ρ(1), ρ(3) and ρ(5) form a partition of [k] and X = {1, 3, 5}.
By Lemma 51 (e), it holds

Φ6 ∩ ρ(1) = Φ3 ∩ ρ(1) = ∅. (19)

Case 3.1. Φ4 ∩ ρ(1) = ∅ and Φ5 ∩ ρ(1) = ∅.
Take x ∈ ρ(1). By Eq. (19) and the standing assumption for Case 3.1, we have

δ(x,Φ) = {1, 2}, δ+(x,Φ) = {2, 3} and δ−(x,Φ) = {6, 1}. It follows from Lemma 52 that

Φ2 ∪ Φ3 = [k] (20)

and
Φ6 ∪ Φ1 = [k]. (21)

Take any element z ∈ ρ(5), which must fall into Φ2 ∪ Φ3 by Eq. (20).
We first deal with the case that z ∈ Φ2. We have {z} × ρ(3) ⊆ Φ2 × Φ3. Eq. (4) says

(Φ2 × Φ3) ∩ (Φ5 × Φ6) = ∅. Thus, considering that z ∈ ρ(5) ⊆ Φ5, we obtain

Φ6 ∩ ρ(3) = ∅. (22)

Eq. (4) also says (Φ2 × Φ3) ∩ (Φ6 × Φ1) = ∅. Thus, considering that z ∈ ρ(5) ⊆ Φ6, we
obtain

Φ1 ∩ ρ(3) = ∅. (23)

Note that Eq. (21) says that Eq. (22) and Eq. (23) cannot hold simultaneously, a contra-
diction.

We now consider the case that z ∈ Φ3. We have {z} × ρ(3) ⊆ Φ3 × Φ4. In the same
manner as in the previous case, we get Φ6∩ρ(3) = Φ1∩ρ(3) = ∅, which again contradicts
Eq. (21).

Case 3.2. Φ4 ∩ ρ(1) = ∅ and Φ5 ∩ ρ(1) 6= ∅.
Take x ∈ Φ5 ∩ ρ(1). Due to Eq. (19), we have δ(x,Φ) = {1, 2, 5}, δ+(x,Φ) = {2, 3, 6}

and δ−(x,Φ) = {1, 4, 6}.
Recall that ρ(1)∪ρ(3)∪ρ(5) = [k]. Applying Lemma 52(a) for S = {2, 3, 6}, A2 = ρ(1),

A3 = ρ(3) and A6 = ρ(5), we obtain

Φ2 = ρ(1),Φ3 = ρ(3),Φ6 = ρ(5); (24)

applying Lemma 52(b) for S = {1, 4, 6}, A1 = ρ(1), A4 = ρ(3) and A6 = ρ(5), we obtain

Φ1 = ρ(1),Φ4 = ρ(3),Φ6 = ρ(5). (25)

the electronic journal of combinatorics 24(1) (2017), #P1.47 31



By Lemma 51 (e) for i = 3, it holds

Φ5 ∩ ρ(3) = ∅. (26)

It follows from Eqs. (24), (25) and (26) that
(
ρ(5)×ρ(3)

)
∩
(
∪i∈Z6 Φi×Φi+1

)
= ∅, arriving

at a contradiction with Eq. (3).

Case 3.3. Φ4 ∩ ρ(1) 6= ∅ and Φ5 ∩ ρ(1) = ∅.
Analogous to the analysis of Case 3.2, we derive in this case that Φ1 = Φ2 = ρ(1),Φ3 =

ρ(3),Φ5 = Φ6 = ρ(5) and Φ4∩ρ(5) = ∅. This leads to
(
ρ(5)×ρ(3)

)
∩
(
∪i∈Z6(Φi×Φi+1)

)
= ∅,

a contradiction with Eq. (3) as well.

Case 3.4. Φ4 ∩ ρ(1) 6= ∅ and Φ5 ∩ ρ(1) 6= ∅.
Take x1 ∈ Φ4 ∩ ρ(1) and x2 ∈ Φ5 ∩ ρ(1). Then (x1, x2) ∈ (Φ4×Φ5)∩ (Φ1×Φ2), which

violates Eq. (4).

Lemma 54. 7 /∈ P(2).

Proof. By Theorem 13, we need to show that there is no cyclic decomposition Φ of
([k]2, [k], t) with per(Φ) = 7 for all k ∈ N. Suppose for a contradiction that such a Φ exists.
Let ρ = ρΦ,2 and let X = {i ∈ Z7 : ρ(i) 6= ∅}. By Lemma 44 and Lemma 51(a)(b)(c)(d),
there are three cases to consider.

Case 1. X = {1, 3}, and ρ(1) and ρ(3) form a partition of [k].
Using Lemma 51 (e) for i = 1, we have Φ7 ∩ ρ(1) = ∅ and hence

∅ 6= Φ7 ⊆ ρ(3); (27)

using Lemma 51 (e) for i = 3, we have Φ5 ∩ ρ(3) = ∅ and hence

∅ 6= Φ5 ⊆ ρ(1). (28)

Take x ∈ Φ6. It follows from Eq. (4) that
(
Φ2 × Φ3

)
∩
(
Φ6 × Φ7

)
= ∅ and

(
Φ2 × Φ3

)
∩(

Φ5 × Φ6

)
= ∅. The former means that x /∈ ρ(1), as otherwise, by virtue of Eq. (27),

(x, x′) will appear in both Φ2×Φ3 and Φ6×Φ7, where x′ is any element of Φ7; the latter
shows that x /∈ ρ(3), as otherwise, in light of Eq. (28), (x′, x) will appear in both Φ2×Φ3

and Φ5×Φ6, where x′ is any element of Φ5. Since ρ(1)∪ρ(3) = [k], we have now obtained
a required contradiction.

Case 2. X = {1, 4}, and ρ(1) and ρ(4) form a partition of [k].
Using Lemma 51 (e) for i ∈ {1, 4}, we have Φ3 ∩ ρ(1) = ∅ and Φ3 ∩ ρ(4) = ∅. This

forces Φ3 = ∅, which is a contradiction.

Case 3. X = {1, 3, 5}, and ρ(1), ρ(3) and ρ(5) form a partition of [k].
Utilizing Lemma 51 (e) for i ∈ {1, 5} gives Φ7 ∩ ρ(1) = ∅ and Φ7 ∩ ρ(5) = ∅, and so

Φ7 ⊆ ρ(3) (29)

follows. Pick x ∈ Φ7. Then δ(x,Φ) ⊇ {3, 4, 7}, δ+(x,Φ) ⊇ {1, 4, 5} and δ−(x,Φ) ⊇
{2, 3, 6}.
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Remember that ρ(1) ∪ ρ(3) ∪ ρ(5) = [k]. Accordingly, by applying Lemma 52 (a) for
S = {1, 4, 5}, A1 = ρ(1), A4 = ρ(3) and A5 = ρ(5), we can deduce

Φ1 = ρ(1),Φ4 = ρ(3),Φ5 = ρ(5). (30)

Moreover, making use of Lemma 52(b) for S = {2, 3, 6}, A2 = ρ(1), A3 = ρ(3) and
A6 = ρ(5), we can find that

Φ2 = ρ(1),Φ3 = ρ(3),Φ6 = ρ(5). (31)

Considering Eqs. (29), (30) and (31), we know that
(
ρ(5)×ρ(1)

)
∩
(
∪i∈Z7 (Φi×Φi+1)

)
=

∅, arriving at a contradiction with Eq. (3).

Let Φ be a cyclic decomposition of (X, [k], t) with period p. The matrix form of Φ is
the k × p matrix MΦ whose (i, j) entries, (i, j) ∈ [k]× [p], equal to 1 if i ∈ Φj and equal
to 0 otherwise.

Example 55. For each p ∈ {8, 10, 11, 12, 14}, we can find a strong cyclic decomposition
Φ(p) of ([4]2, [4], 2) with period p and hence we get

{8, 10, 11, 12, 14} ⊆ P∗(2, 4).

We display the matrix form of these Φ(p), p ∈ {8, 10, 11, 12, 14}, as below:

MΦ(8) =


1 1 0 0 0 1 0 0
0 1 0 0 1 1 0 0
0 0 1 1 0 0 0 1
0 0 0 1 0 0 1 1

 ,

MΦ(10) =


1 1 0 0 0 0 0 1 0 0
0 1 0 1 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 1

 ,

MΦ(11) =


1 0 0 1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 1

 ,

MΦ(12) =


1 1 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 1 0 1 1 0 0 1 0 0

 ,

MΦ(14) =


1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0 1 0 0 0 0 1

 .
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Example 56. We find a strong cyclic decomposition Φ(15) of ([5]2, [5], 2) with period 15
and so see that

15 ∈ P∗(2, 5).

The matrix form of Φ(15) is given by

MΦ(15) =


1 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0 1 0

 .

Lemma 57. For every integer k > 4, [8, k2] ⊆ P∗(2, k + 1).

Proof. We prove the claim by induction on k. First consider the starting case of k =
4. Example 56 tells us 15 ∈ P∗(2, 5). By Lemma 42(b), Lemma 43 and Example 55,
we have {8, 9, 10, 11, 12, 14, 16} ⊆ P∗(2, 4) ⊆ P∗(2, 5). It follows from Lemma 48 that
5 ∈ P∗([5]2 \ [4]2, [5], 2). Since we know that 8 ∈ P∗(2, 4), applying Lemma 45 yields
13 = 8 + 5 ∈ P∗(2, 5). In conclusion, we see that [8, 16] ⊆ P∗(2, 5).

We next suppose that k > 5 and [8, (k − 1)2] ⊆ P∗(2, k). By Lemma 42(b), [8, (k −
1)2] ⊆ P∗(2, k+ 1). Owing to Lemmas 45 and 48, we have {p+ 5, p+ 7, . . . , p+ 2k+ 1} ⊆
P∗(2, k + 1) for every p ∈ P∗(2, k). Putting together, we get to

P∗(2, k + 1) ⊇
⋃

i∈{5,7,...,2k−1}

[8 + i, (k − 1)2 + i] ∪ [8, (k − 1)2] = [13, k2] ∪ [8, (k − 1)2].

As k > 5, it holds 8 < 13 < (k − 1)2 and so [13, k2] ∪ [8, (k − 1)2] = [8, k2]. Thus,
P∗(2, k + 1) ⊇ [8, k2] follows.

Proof of Theorem 22. This is a consequence of Theorem 13, Proposition 16, Lemmas 43,
53, 54, 57, and Example 55.

Proof of Theorem 25. A combination of Theorem 13, Proposition 20, Proposition 21, The-
orem 22, Lemma 43 and Example 55 completes the proof.

Proof of Proposition 26. By Theorem 22, P(2) = N \{2, 3, 5, 6, 7}. By Theorem 13 and
Proposition 16, P(3) ⊆ N \{2, 3, 4, 5}. Therefore, our goal is to show 6, 7 /∈ P(3).

Let p be either 6 or 7. In view of Theorem 13, we are going to show the nonexistence
of a cyclic decomposition Φ of ([k]3, [k], 3) with period p for any k ∈ N. For sake of
contradiction, assume that such a Φ exists for some k ∈ N . Let ρ = ρΦ,3. By Lemma 44
and Lemma 51(a)(b)(c)(d), we may assume that ρ(1) and ρ(4) form a partition of [k].

If p = 7, by appealing to Lemma 51 (e) for i ∈ {1, 4}, we obtain respectively Φ7∩ρ(1) =
∅ and Φ7 ∩ ρ(4) = ∅. We now see that Φ7 = Φ7 ∩ [k] =

(
Φ7 ∩ ρ(1)

)
∪
(
Φ7 ∩ ρ(4)

)
= ∅,

which is impossible as Φ is a cyclic decomposition.
It remains to consider p = 6. If there exists x ∈ ρ(1) ∩ Φ5, then {x} × ρ(4) × {x} ⊆

(Φ3 × Φ4 × Φ5) ∩ (Φ5 × Φ6 × Φ1), reaching a contradiction. Applying Lemma 51(e) for
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i = 1 yields (Φ6 ∪ Φ4) ∩ ρ(1) = ∅ and hence the elements of ρ(1) only appear in Φ1,Φ2

and Φ3. The same reasoning shows that the elements of ρ(4) only appear in Φ4,Φ5 and
Φ6. Take x ∈ ρ(1) and y ∈ ρ(4). We now see that

(x, y, x) /∈ ∪i∈Z6

(
Φi × Φi+1 × Φi+2

)
.

This contradiction with Eq. (3) finishes the proof.

The latter part of the above proof of Proposition 26 is devoted to proving 6 /∈ P(3).
We should mention that it is a special case of the aforementioned result (see Table 1) that
2t ∈ P(t) if and only if t ∈ {1, 2, 4} [QWZ17].

6 Large primitive exponents and large diameters

Let k be a positive integer. For any subset X of Zk, we use θk(X) to represent {x + 1 :
x ∈ X} ⊆ Zk. We define two 2-hydras hk and fk on Zk such that

A(hk) := {(i, j)→ (j, i+ 1) : i, j ∈ Zk}

and
A(fk) := (A(hk) \ E1) ∪ E2,

where

E1 :=
{

(q, 1)→ (1, q + 1) : q ∈ [dk
2
e]k
}

and

E2 :=
{

(q, 1)→ (1, 2) : q ∈ [0, dk
2
e]k
}
.

We refer the readers to Figure 3, Figure 9 and Figure 10 for an illustration of f1, f2, f3

and f4.
For every k ∈ N, we write Vk for the set {(q, 1) : q ∈ [0, dk

2
e]k}.

Lemma 58. Let k be a positive integer. Then Distfk
(
v, (1, 2)

)
6 2k for all v ∈ V(f). If

k > 4, then Distfk
(
(1, 3), (1, 2)

)
= 2k.

Proof. The result is trivial for k = 1. We hence assume k > 2. For all q ∈ [dk
2
e], we define

Cq := {(x, y) ∈ (Zk)2 : y − x = q} ∪ {(x, y) ∈ (Zk)2 : y − x = 1− q}.

Note that they are all connected components of Γhk and they all induce cycles in Γhk .
Moreover, we have

|Cq| =

{
k, if k is odd and q = dk

2
e,

2k, otherwise.

For q ∈ [2, dk
2
e], the subgraph of Γfk induced by Cq is a path which starts at (1, q + 1)

and ends at (q, 1). For q = 1, the subgraph of Γfk induced by Cq is a 2k-cycle plus an
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additional arc (0, 1) → (1, 2). Therefore, every element v of (Zk)2 can reach a vertex in
Vk in the digraph Γfk in at most 2k − 1 steps and then can go one step further there to
(1, 2). This proves that Distfk

(
v, (1, 2)

)
6 2k for every v ∈ (Zk)2.

If k > 4, then |C2| = 2k, and so the subgraph of Γfk induced by C2 is a path from
(1, 3) to (2, 1) whose length equals to 2k − 1. It tells us that Distfk

(
(1, 3), (1, 2)

)
=

Distfk
(
(1, 3), (2, 1)

)
+ Distfk

(
(2, 1), (1, 2)

)
= 2k, as wanted.

Let D = {(a, b) ∈ N×N : a 6 b}. For any (a, b) ∈ D, we write

φk(a, b) := [a, b]k ⊆ Zk

and
N ((a, b)) := {(a, b), (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1)} ∩ D.

Lemma 59. Take x ∈ D and x′ ∈ N (x). Let k be an integer greater than 2. If 1 ∈ φk(x′),
then {0, 1} ∩ φk(x) 6= ∅.

Proof. If {0, 1}∩φk(x) = ∅, then φk(x) ⊆ [2, k−1]k and so, as x′ ∈ N (x), φk(x
′) ⊆ [2, k]k,

showing that 1 /∈ φk(x′).

Lemma 60. Take k > 3, x ∈ D and x′ ∈ N (x). Then exactly one of the following two
cases happens.

(a) It holds
(0, 1) /∈ φk(x)× φk(x′) or (1, 1) ∈ φk(x)× φk(x′), (32)

and
Mfk

(
φk(x), φk(x

′)
)

=
(
φk(x

′), θkφk(x)
)
. (33)

(b) There is p ∈ [2, k] such that

(x, x′) = ([p, k]k, [p, k + 1]k) or (x, x′) = ([p, k]k, [p+ 1, k + 1]k) (34)

and
Mfk

(
φk(x), φk(x

′)
)

=
(
φk(x

′), θkφk(x) ∪ {2}
)
. (35)

Note that (a) and (b) together tells us that there exists x′′ ∈ N (x′) such that

Mfk

(
φk(x), φk(x

′)
)

=
(
φk(x

′), φk(x
′′)
)
. (36)

Proof. It is obvious that either Eq. (32) or Eq. (34) holds but not both. So we just need
to show Eq. (33) follows from Eq. (32) and Eq. (35) follows from Eq. (34). We will only
do the former one and leave the routine calculation for the latter to readers.

Since we have (
φk(x

′), θkφk(x)
)

= Mhk

(
φk(x), φk(x

′)
)
,

we shall try to establish

Mfk

(
φk(x), φk(x

′)
)

= Mhk

(
φk(x), φk(x

′)
)

(37)
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under the assumption of Eq. (32). By the definition of the Markov operator, our task at
this moment is to prove ⋃

v∈φk(x)×φk(x′)

fk(v) =
⋃

v∈φk(x)×φk(x′)

hk(v).

By the definition of hk and fk, we have hk(v) = fk(v) for all v ∈ Z2
k \Vk. Hence we only

need to prove the fact that ⋃
v∈
(
φk(x)×φk(x′)

)
∩Vk

fk(v) ⊆
⋃

v∈φk(x)×φk(x′)

hk(v) (38)

and ⋃
v∈
(
φk(x)×φk(x′)

)
∩Vk

hk(v) ⊆
⋃

v∈φk(x)×φk(x′)

fk(v). (39)

If
(
φk(x)×φk(x′)

)
∩Vk = ∅, Eq. (38) and Eq. (39) will be trivially true. So, we proceed

to the case that (
φk(x)× φk(x′)

)
∩ Vk 6= ∅, (40)

which surely implies
1 ∈ φk(x′). (41)

By Eq. (41) and Lemma 59,

{(0, 1), (1, 1)} ∩
(
φk(x)× φk(x′)

)
6= ∅. (42)

According to Eq. (32), (0, 1) ∈ φk(x) × φk(x
′) will force (1, 1) ∈ φk(x) × φk(x

′). This
combined with Eq. (42) gives⋃

v∈φk(x)×φk(x′)

hk(v) ⊇

{
hk(0, 1) ∪ hk(1, 1) = {1, 2}, if (0, 1) ∈ φk(x)× φk(x′),
hk(1, 1) = {2}, otherwise.

Note that ⋃
v∈(φk(x)×φk(x′))∩Vk

fk(v) =

{
{1, 2}, if (0, 1) ∈ φk(x)× φk(x′),
{2}, otherwise.

This proves Eq. (38).
To prove Eq. (39), we distinguish two cases. If |φk(x′)| > 1, we are able to choose

a ∈ φk(x′) \ {1} and so every element v ∈
(
φk(x) × φk(x′)

)
∩ Vk, say v = (i, 1) for some

i ∈ Zk, satisfies
hk(v) = hk(i, 1) = {i+ 1} = fk(i, a),

verifying Eq. (39). It remains to consider the case that |φk(x′)| = 1. Note that Eq. (41)
now implies that φk(x

′) = {1}. Since x′ ∈ N (x), we infer from φk(x
′) = {1} that

φk(x) ∈ {{0}, {1}, {0, 1}}. By Eq. (32) as well as Eq. (40), we obtain that φk(x) = {0, 1}.
This shows that the left hand side of Eq. (39) is {1} and the right hand side of Eq. (39)
is [2], and so Eq. (39) is valid.
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Lemma 61. Take an integer k > 3 and let N = (2k − 2)(2k − 1) = 4k2 − 6k + 2. Then,

MN−1
fk

({1}, {2}) = (Zk \{1},Zk)

and
MN
fk

({1}, {2}) = (Zk,Zk).

Proof. Pick p ∈ [2, k + 1]. By Eq. (36), we can apply Eq. (33) 2k − 2 times to get

M2k−2
fk

(
[p, k + 1]k, θk([p, k + 1]k)

)
=
(
[p− 1, k]k, [p, k + 1]k)

)
(43)

and
M2k−2
fk

(
[p, k + 1]k, θk([p− 1, k + 1]k)

)
=
(
[p− 1, k]k, [p− 1, k + 1]k

)
. (44)

Combining Eq. (35), Eq. (36) and Eq. (43), we find that

M2k−1
fk

(
[p, k + 1]k, θk([p, k + 1]k)

)
=
(
[p, k + 1]k, θk([p− 1, k + 1]k)

)
; (45)

while combining Eq. (35), Eq. (36) and Eq. (44) we obtain

M2k−1
fk

(
[p, k + 1]k, θk([p− 1, k + 1]k)

)
=
(
[p− 1, k + 1]k, θk([p− 1, k + 1]k)

)
. (46)

By repeated usages of Eq. (45) and Eq. (46), we get

MN−1
fk

(
[k + 1, k + 1]k, θk([k + 1, k + 1]k)

)
= M2k−2

fk

(
[3, k + 1]k, θk([2, k + 1]k)

)
. (47)

This leads to

MN−1
fk

({1}, {2}) = MN−1
fk

(
[k + 1, k + 1]k, θk([k + 1, k + 1]k)

)
= M2k−2

fk

(
[3, k + 1]k, θk([2, k + 1]k)

)
(By Eq. (47))

= (Zk \{1},Zk), (By Eq. (44))

and hence

MN
fk

({1}, {2}) = Mfk

(
MN−1
fk

({1}, {2})
)

= Mfk(Zk \{1},Zk)
= (Zk,Zk).

This is the end of the proof.

Lemma 62. Let k be an integer not less than 4. Then the 2-hydra fk is primitive with
primitive exponent g(fk) = 4k2 − 4k + 2.

Proof. Lemma 58 and Lemma 61.

Proof of Theorem 31. This follows immediately from Lemma 62.
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Proof of Theorem 32. Let f be the t-hydra on [k] such that Γf has arc set {(k1, . . . , kt)→
(k2, . . . , kt+1) : k1, . . . , kt+1 ∈ [k]}. By Lemma 41, Γf has Hamiltonian cycles. Let f ′ be
the t-hydra on [k] such that Γf ′ is a Hamiltonian cycle of Γf . Put a = (1, . . . , 1︸ ︷︷ ︸

t

). Let h be

another t-hydra on [k] such that A(Γh) = A(Γf ′) ∪ {a→ a}. It is clear that h is strongly
connected. Because per(h) = gcd(RIh(a, a)) = 1, we know from Corollary 11 that h is
primitive and g(h) > kt. Accordingly, γ(t, k) > g(h) > kt.

Lemma 63. Let k be an integer larger than 4. Then

Dia(fk) >

{
2k2, if k is odd,

2k2 − k + 1, if k is even.
(48)

Proof. Let x = (1, 3), y = (1, dk+3
2
e), and z = (1, 2) be vertices of fk.

First we consider the case that k is odd. Observe that

M2k2−2k
fk

(z) = Mk−1
fk

(
M

(k−1)(2k−1)
fk

([k + 1, k + 1]k, θk([k + 1, k + 1]k))
)

= Mk−1
fk

(
[
k + 3

2
, k + 1]k, θk([

k + 3

2
, k + 1]k)

)
= ([1,

k + 1

2
]k, [2,

k + 3

2
]k),

where the last equality is due to Lemma 60 and to obtain the second equality we need to
apply Eqs. (45) and (46) k−1

2
times. This implies y = (1, k+3

2
) ∈ M2k2−2k

fk
(z). We can also

check that for all nonnegative integers N < 2k2 − 2k,

y /∈ MN
fk

(z).

Therefore Distfk(z, y) = 2k2 − 2k. It then follows Dia(fk) > Distfk(x, y) = Distfk(z, y) +
Distfk(x, z) = Distfk(z, y) + 2k > 2k2.

Next we turn to the case that k is even. By using Eq. (45) and Eq. (46) k
2

times and
k−2

2
times respectively, we have

M2k2−3k+1
fk

(z) = M
(k−1)(2k−1)
fk

(
[k + 1, k + 1]k, θk([k + 1, k + 1]k)

)
=
(
[
k + 4

2
, k + 1]k, θk([

k + 2

2
, k + 1]k)

)
= ([

k + 4

2
, k + 1]k, [

k + 4

2
, k + 2]k).

This says that y = (1, k+4
2

) ∈ M2k2−3k+1
fk

(z). We can also check that for all nonnegative
integers N < 2k2 − 3k + 1,

y /∈ MN
fk

(z).

Therefore Distfk(z, y) = 2k2 − 3k + 1. Finally, we come to Dia(fk) > Distfk(x, y) =
Distfk(z, y) + Distfk(x, z) = Distfk(z, y) + 2k > 2k2 − k + 1, as desired.
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Let us mention that some more complicated computations will show that equality
holds in Eq. (48) for all k > 5.

Proof of Theorem 34. Lemma 62 implies that fk is strongly connected for all k ∈ N.
Thus, the result is direct from Lemma 63.
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