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Abstract

We construct a lot of new [n, 4, d]g codes whose lengths are close to the Griesmer
bound and prove the nonexistence of some linear codes attaining the Griesmer bound
using some geometric techniques through projective geometries to determine the
exact value of ng(4,d) or to improve the known bound on ng(4, d) for given values
of d, where ny(k,d) is the minimum length n for which an [n, k, d],; code exists. We
also give the updated table for ng(4, d) for all d except some known cases.

Keywords: optimal linear code; Griesmer bound; projective dual; geometric punc-
turing

1 Introduction

Let F denote the vector space of n-tuples over F,, the field of g elements. An [n, k, d], code
C is a k-dimensional subspace of Fy with minimum Hamming weight d = min{wt(c) | ¢ €
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C,c#(0,...,0)}, where wt(c) is the number of non-zero entries in ¢. The weight distri-
bution of C is the list of numbers A; which is the number of codewords of C with weight 1.
The weight distribution (Ag, Ag,...) = (1,a,...) is also expressed as 0'd*---. A funda-
mental problem in coding theory is to find n,(k, d), the minimum length n for which an
[n, k, d], code exists ([8]). There is a natural lower bound on n,(k, d), the Griesmer bound:
ng(k,d) = g4(k,d) = Zi:ol [d/q"], where [z] denotes the smallest integer greater than or
equal to z. The values of n,(k,d) are determined for all d only for some small values of
q and k. The problem to determine n,(4,d) for all d has been solved for ¢ = 2,3,4 but
not for ¢ > 5. For k = 3, n,(3,d) is known for all d for ¢ < 9. In this paper, we tackle
the problem to determine ng(4, d) for all d. See [25] for the updated table of n,(k,d) for
some small ¢ and k. The following results are already known for ng(k,d) with k = 3,4,
see [5, 14, 15, 16, 17, 19, 21, 24, 25, 27).

Theorem 1.1. 19(3,d) = go(3,d) + 1 for d = 9,15-18,25-27, 33-36, 43-45, 49-54, 58-63
and ng(3,d) = go(3,d) for any other d.

Theorem 1.2. (1) ng(4,d) = go(4,d) for d = 1-7, 10-12, 19, 28-30, 64-72, 568-576,
640-801, 1054-1080, and for d > 1216.

(2) no(4,d) = go(4,d) + 1 for d = 8,9,13-18, 25-27, 33,34,49, 58-63, 73-80, 559-562,
592-594, 601-603, 610-612, 622-639, 1036-1053, 1198-1215.

(3) no(4,d) < go(4,d) + 1 for d = 20-24, 31, 32, 37-40, 46-48, 55-57, 82-88, 91-94,
100-102, 577-621, 1000-1035, 1135-1197.

(4) go(4,d)+1 < ng(4,d) < go(4,d)+2 for d = 35,36, 43-45, 50-54, 81, 514-558, 563-567.

(5) no(4,d) > go(4,d) + 1 for d = 127-162, 217-243, 289-324, 379-405, 433-486, 964-972,
1108-1134.

(6) no(4,d) < go(4,d) + 2 for d = 41,42,89,90,95-99, 103-112, 487-513.

A [g9(4,d), 4, d]y code does not exist for d € {127-162, 217-243, 289-324, 379-405, 433-
486, 514-567} since its residual [go(4,d) — d,3,[d/9]]5 code does not exist by Theorem
1.1. It follows from the following result that ng(4,d) < go(4,d) + 1 for d € {577-639,
1135-1215} and that ng(4, d) < go(4,d) + 2 for 487 < d < 567.

Theorem 1.3 ([15]). (1) There exist [05 — 012,4,¢> — qz], codes for 0 < x < ¢* — 1.
(2) There exist [2¢° — 61x,4,2¢> — 2¢* — qx], codes for 0 < z < ¢* — 1.

Corollary 1.4. There ezist [g,(4,d) + 1,4, d], codes for
(1) @ =2¢°+q+1<d< ¢ —¢*—qforq=3,
(2) 2¢° —4¢* +1 < d < 2¢* — 3¢* for q > 4.

As for the exact values of n,(4,d) for arbitrary ¢, the following results are known.
Some results in Theorem 1.2 are obtained from these theorems.

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(1) (2017), #P1.50 2



Theorem 1.5 ([21, 24]). n,(4,d) = g,(4,d) for

M)1<d<q¢—2,¢-2¢+1<d<¢@—q¢ ¢F—-2¢+1<d<@—27+q
C—@F—q+1<d<P+¢F —q;d>2¢ -3¢ +1 forallg,

(2) 2¢> =54 +1<d<2¢®—5¢*+3q forq=>T.

Theorem 1.6 ([16, 17, 21, 24]). n,(4,d) = g,(4,d) + 1 for

1) 2¢° —3¢* —q+1<d<2¢*— 3¢ for g >4,

2) 2¢° =3¢ —2¢+1<d<2¢®—3¢*—q forq =5,

2¢° =3¢ —3qg+1<d<2¢® —3¢* —2q forqg > 11,
d < 2¢% —5¢? for g > 09.

We prove that Theorem 1.6 (3) is also valid for ¢ = 9. Our new results are summarized
to the following.

Theorem 1.7. (1) ng(4,d) = go(4,d) for d = 811-837, 892-918, 973-999, 1135-1152.

(2) ng(4,d) = go(4,d) + 1 for d = 136-144, 585, 617-621, 810, 883-891, 964-972, 1108-
1134, 1189-1197.

(3) ng(4,d) < go(4,d) + 1 for d = 172-180, 802-809, 838-882, 919-963, 1081-1107.

(4) go(4,d) + 1 < no(4,d) < go(4,d) + 2 for d = 127-135, 145-152, 154-158, 214-216,
367-369, 512, 513.

(5) ng(4,d) = go(4,d) + 1 for d = 125,126,198, 206, 207, 370-378.

(6) no(4,d) < go(4,d) +2 for d =113,114,118-121, 163-171, 181-188, 208-216, 244-252,
361-369.

We also give the updated table for ng(4, d) as Table 2. We give the values and bounds
of g = g9(4,d) and n = ng(4, d) for all d except for 640 < d < 801 and for d > 1216 which
are the cases satisfying ng(4,d) = go(4,d) by Theorem 1.5. In the table, “s-t” stands for
99(47 d) +s< n9(47 d) < 99(47 d) +1.

2 Preliminary results

In this section, we give the geometric methods to construct new codes or to prove the
nonexistence of codes with certain parameters.

We denote by PG(r, q) the projective geometry of dimension r over F,. A j-flat is a
projective subspace of dimension j in PG(r,q). The O-flats, 1-flats, 2-flats, (r — 2)-flats
and (r — 1)-flats are called points, lines, planes, secundums and hyperplanes, respectively.
We denote by 6; the number of points in a j-flat, i.e., §; = (¢ —1)/(q — 1).
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Let C be an [n, k, d], code having no coordinate which is identically zero. The columns
of a generator matrix of C can be considered as a multiset of n points in ¥ = PG(k—1, q)
denoted by M. We see linear codes from this geometrical point of view. An i-point is
a point of ¥ which has multiplicity ¢ in M¢. Denote by 7y the maximum multiplicity of
a point from ¥ in M¢ and let C; be the set of -points in X, 0 < 7 < 9. We denote
by A; + .-+ + Ay the multiset consisting of the s sets Ay, ..., Ay in X. We write sA for
Ay + -+ Ay when Ay = --- = A, Then, M¢ = >"7°,iC;. For any subset S of X, we
denote by Mc(.S) the multiset {P € M. | P € S}. The multiplicity of S with respect to C,
denoted by me¢(S), is defined as the cardinality of Mc¢(S), i.e., me(S) = .2, 4:|SNCil,
where |T'| denotes the number of elements in a set 7. Then we obtain the partition
¥ = U2, C; such that n = me(X) and n — d = max{me(n) | 7 € Fy_»}, where F;
denotes the set of j-flats in X. Such a partition of 3 is called an (n,n — d)-arc of X.
Conversely an (n,n — d)-arc of ¥ gives an [n, k, d|, code in the natural manner. A line [
with t = me(l) is called a t-line. A t-plane, a t-hyperplane and so on are defined similarly.
For an m-flat Il in > we define

v;(II) = max{m¢(A) | ACII, Ae F;}, 0<j<m.

Let As(IT) be the number of s-points in II. We denote simply by v; and by A, instead of
7;(X) and A4(X), respectively. It holds that v,_o = n—d, y,—1 = n. When C is Griesmer,

the values 9,71, .., Vk—3 are also uniquely determined ([22]) as follows:
L od
v = (TW for 0 < j < k—1. 2.1
J UZ:O q’“ 1—u ( )

When vy = 2, we obtain
/\2 = /\0 +n— Qk—l (22)

from Ao+ Ay + \o = 6,1 and A\; + 2A3 = n. Denote by a; the number of i-hyperplanes in
Y. Note that a; = A,_;/(qg— 1) for 0 <i < n —d. The list of a;’s is called the spectrum
of C. We usually use 7;’s for the spectrum of a hyperplane of ¥ to distinguish from the
spectrum of C. Simple counting arguments yield the following:

Vk—2

> =01, (2.3)

1=0

Vk—2

Z 1a; = nby_q, (2.4)
i=1

Ve—2 Yo
i(i = Da; = n(n = D)z + ¢ s(s — DA, (2.5)
i=2 5=2
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When vy < 2, we get the following from (2.3)-(2.5):

"l iy —d—i n—d n
Z < 9 )ai = ( 9 )ek—l — TL(TL —d— 1)6k_2 + <2) Hk_g + qk72)\2. (26)
=0

7

If a; = 0 for all i < n —d, then every point in ¥ is an s-point for some integer s. This
fact is known as follows.

Lemma 2.1 ([1]). Any linear code over a finite field with constant Hamming weight is a
replication of simplex (i.e., dual Hamming) codes.

See also Theorem 2.3 in [20] for a geometric proof of the above lemma.

Lemma 2.2 ([29]). Let Il be an i-hyperplane through a t-secundum d. Then
(1) < g — n—1 _ z—i—qkaz—n.
q q

(2) a; =0 if an [i,k —1,dy|, code with dy > i— L

L+ qY-—2—n

J does not exist, where |z |
q

denotes the largest integer less than or equal to x.

(3) e—s(Il) = \‘HQ’%——Q—TLJ if an [i,k —1,dy], code with dy > i — \‘HWC—J_TLJ +1
q

does not exist.

(4) Let ¢; be the number of j-hyperplanes through & other than II. Then ). c; = q and

Z(%—z —J)e =1+ qyp—2 —n—qt. (2.7)

J

(5) For a ~yk_o-hyperplane 11y with spectrum (1o, ..., Ty, ), ¢ > 0 holds if i+ qyx—2 —
n—qt < q.

Lemma 2.3. Let Il be an i-hyperplane and let Cyy be an [i,k — 1,dy] code generated by
Mc(IT). If any yx_o-hyperplane has no t-secundum with t = VJ””’“T‘Q_"J, then dy >
1—t+ 1.

Proof. We have dy > ¢ — ¢t by Lemma 2.2 (1). Suppose that IT has a ¢t-secundum. Since
(1 4+ qyp—2 — n)/q < t + 1, it follows from Lemma 2.2 (5) that a 7;_o-hyperplane has a
t-secundum, a contradiction. Hence, m¢(IT) > ¢ + 1 and our assertion follows. ]

Next, we give a method to construct good codes by some orbits of a given projectivity
in PG(k — 1,q). For a non-zero element o € Fy, let R = F [z]/(z"Y — a) be the ring of
polynomials over [, modulo ¥ —a. We associate the vector (ag,ay,...,an_1) € IF(]]V with

the polynomial a(z) = Zf\i_ol a;x' € R. For g = (g1(), ..., gm(z)) € R™,

Ce ={(r(2)g1 (), ..., 7(2)gm(2)) [ r(z) € R}
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is called the 1-generator quasi-twisted (QT) code with generator g. Cg is usually called
quasi-cyclic (QC) when o = 1. When m = 1, Cy is called a-cyclic or pseudo-cyclic or
constacyclic. All of these codes are generalizations of cyclic codes (a« = 1, m = 1). Take a
monic polynomial g(z) = *—>"¥! 4,2 in F,[2] dividing 2¥ —a with non-zero a € F,, and
let T be the companion matrix of g(z). Let 7 be the projectivity of PG(k—1, ¢) defined by
T. We denote by [¢"] or by [aga; - - - al_,] the k x n matrix [P,TP,T?P,...,T" ' P], where
P is the column vector (1,0,0,...,0)T (AT stands for the transpose of a row vector h).
Then [g"] generates an a~!-cyclic code. Hence one can construct a cyclic or pseudo-cyclic
code from an orbit of 7. For non-zero vectors Py, ... Pl e IFZ‘, we denote the matrix

[P, TP, T°P,...., T" 'P; Py, TP,...., T 'Py;--- ; P, TPy,,...,T" ' P,)]

by [¢"] + Py? +-- -+ P, Then, the matrix [g"] + Pi¥ + - - - + P2 defined from m orbits
of 7 of length N generates a QC or QT code, see [30]. It is shown in [30] that many good
codes can be constructed from orbits of projectivities.

An [n,k,d], code is called m-divisible if all codewords have weights divisible by an
integer m > 1. It sometimes happens that QC or QT codes are divisible or can be
extended to divisible codes.

Lemma 2.4 ([31]). Let C be an m-divisible [n,k,d), code with ¢ = p", p prime, whose
spectrum 1s

(anfdf(wfl)ma Ap—d—(w—2)my - - - s dn—d—m, an—d) = (aw—la Qy—2, - -, A1, a0)7

where m = p" for some 1 < r < h(k — 2) satisfying Ao > 0. Then there exists a t-divisible
[n*, k,d*], code C* with t = ¢*~%/m, n* = Z;J;Ol jaj =ntq— L6y, d* = ((n — d)g —n)t
whose spectrum s

(&n*,d*,’mt, Apx —d*—(yo—1)ty - + + » An*—d*—t, &n*,d*) = ()\'YO’ )\70,1, c ,)\1, )\0)

Note that a generator matrix for C* is given by considering (n — d — jm)-hyperplanes as
j-points in the dual space ¥* of ¥ for 0 < j < w — 1 [31]. So, C* is uniquely determined
up to equivalence. C* is called the projective dual of C, see also [3] and [9)].

Lemma 2.5 ([28]). Let C be an [n,k,d], code and let U}°,C; be the partition of ¥ =
PG(k—1,q) obtained from C. If Uis1C; contains a t-flat A and if d > ¢', then there exists
an [n — O, k,d, code C" with d > d — ¢".

The punctured code C’ in Lemma 2.5 can be constructed from C by removing the ¢-flat
A from the multiset M. We denote the resulting multiset by M — A. The method to
construct new codes from a given [n, k, d], code by deleting the coordinates corresponding
to some geometric object in PG(k — 1,q) is called geometric puncturing, see [24].

Lemma 2.6 ([11]). Let C; be an [ny, k,di], code and Cy be an [ng, k, ds], code. Then an
(N1 + no, k,dy + do], code C exists.
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Lemma 2.7 ([2]). Let C; be an [n1, k, dy], code containing a codeword of weight dy +m
with m > 0 and let Cy be an [nq, k —1,dy], code. Then there exists an [ny +nq, k, d], code
withd =d; +m ifm < dy andd =dy + dy if m > ds.

An [n, k,d], code with generator matrix G is called extendable if there exists a vec-
tor h € F! such that the extended matrix [G,hT] generates an [n + 1,k,d + 1], code.
The following theorems will be applied to prove the nonexistence of codes with certain
parameters in Section 4.

Theorem 2.8 ([7, 10]). Let C be an [n,k,d|, code with gcd(d,q) = 1 whose weights are
congruent to 0 or d modulo q. Then C is extendable.

Theorem 2.9 ([23, 32]). Let C be an [n, k,d], code with ¢ > 5, d = —2 (mod q), k > 3.
Then C is extendable if A; =0 for all i #0,—1,—2 (mod q).

Theorem 2.10 ([4]). Let C be an [n,k,d], code with ¢ > 4, whose weights are con-
gruent to 0,—1 or —2 (mod q) and d = —1 (mod q). Then C is extendable except
the case (Po, ®1) = ((1)¢" > + Op—s, (1)¢"™3) with q odd, where &y = q—%zqu,boAi:

1
(bl - q—1 Zi;‘éo,d(mod q) Al'

Next, we give a survey of the known results on n,(4, d) apart from Theorems 1.5 and
1.6.

Theorem 2.11 ([17, 21]). n,(4,d) = g,(4,d) + 1 for

(1) @¢—q+1<d<q*—1 forq>=3,

(2) d=q* forq=2", h>2,

B) - —-rq—2<d<@F - —rquithd<r <6 forq=9

Theorem 2.12 ([21]). n,(4,d) > g,(4,d) + 1 for

(1) d=q—1,q forq =>4,

(2) d=2q—1,2q forq =>4,

(3) (w—1)g—2<d< (v—1)q for4d < v < q with v not dividing q,

(4) 2¢*> —2q+1<d<2¢* for q >4,

(5) (w=1)¢*=3¢+1<d< (v—1)¢* for 4 < v < q with v not dividing q.

Theorem 2.13 ([21]). For ¢ > r, r = 3,4 and for ¢ > 2(r — 1), r > 5, it holds that
ng(4,d) = gq(4,d) + 1 for 2¢° —r¢* —q+1 < d < 2¢° —rg*.

Theorem 2.14 ([16]). n,(k,d) > g,(k,d) + 1 for (k —2)¢" ' —r¢d"? —qg+1 < d <
(k —2)g" 1t — k2f07"3<k:—1 r<q—q/p, q=p" wzthppmme

Theorem 2.15 ([17]). n,(4,d) > g,(4,d) + 1 for
(1) 2¢° —r¢° =2+ 1<d<2¢° —r¢* —q for 3<r < (q+1)/2,q>5,
(2) 2¢3 —4¢®> — 3¢+ 1 <d < 2¢3 —4¢> — 2q for g = 9.

d)+1 for¢®—¢*—(s+1)g+1<d<¢*—¢*—sq

Theorem 2.16 ([27]). n,(4,d) > g,(4,
=2,9=24;, (3)s=3,q=27,q#9.

for (1)s=1Lg>3 (2)s
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By Theorem 2.16 and Corollary 1.4, we get the following.
Theorem 2.17. n,(4,d) = g,(4,d) +1 for ¢* —¢* —3¢+1<d < ¢®—q¢*>—q forq > 4.

Theorem 2.18 ([5]). There exist codes with parameters [10,3,8|g, [17, 3, 14]o, [16,4, 12]y,
24, 4,19, [36,4, 30]5, [41,4, 34]y, [48,4, 40]9, [58,4,49]9, [92, 4,80]o, [102, 4, 8],
109, 4,94]y, [118, 4, 102, [125,4, 108y and [130, 4, 112],.

3 New codes

In this section, we construct several [n,4,d|y codes to give the upper bounds on ng(4, d).
Let Fg = {0,1,a,---,a"}, with o® = a+1. For simplicity, we denote a, ---,a” by 2,3, -+, 8
so that Fg = {0,1,2,-- -, 8}.

Lemma 3.1. There exists a [132,4,114]¢ code.

Proof. Let C be the [132,4,114]y code with generator matrix G = [5510'3] + 1017'3 +
12151 4+ 103113 + 116713 + 121113 + 1705 + 1382% + 17062 + 133413 4 1051 + 1051
Then C has weight distribution 011142288117228812012481234161263121328. O

Lemma 3.2. There exists a [s(¢*+1),4, sq(q —1)], code for 1 < s < q—1 with spectrum
(a37 as(q-l—l)) = (q2 + 17 q3 + Q>’

Proof. Let C be a [¢* + 1,4, ¢* — q], code. Recall that M¢ is just an elliptic quadric in
PG(3,q) with spectrum (a1, a,+1) = (¢* + 1,¢* + q), see [13]. Hence, the multiset sM
consisting of the s copies of M gives the desired code. n

Corollary 3.3. n,(4,d) < g,(4,d) +s—1 ford = s(q> — q) with1 <s < q— 1.
Lemma 3.4. There exist [140,4,121]q, [174,4,152]9 and [181,4,158]¢ codes.

Proof. By Theorem 2.18 and Lemma 3.2, there exist [17,3, 14]q, [58,4,49]q, [82,4, 729,
[92,4,80]9 codes. There also exists a [164, 4, 144]9 code containing a codeword of weight
162 by Lemma 3.2. Hence, there exist [140,4,121]y and [174, 4, 152]¢ codes by Lemmas
2.6 and a [181,4, 158]9 code by Lemma 2.7. O

Lemma 3.5. There exist a QT [205,4,180]y code and a [215,4,188]y code.

Proof. Let C be the [205,4,180]¢ code with generator matrix G = [1218%] 4 6100* +
3210* + 3310* + 7310*. Then C has weight distribution 0118049918960 On the other
hand, by Theorem 2.18, there exists [10, 3,8y code. Hence, by Lemma 2.7, there exists
[215,4, 188]y code. O

Lemma 3.6. There exists a QT [287,4,252]y code.

Proof. Let C be the [287,4,252]y code with generator matrix G = [1218*'] + 1000* +
6100*! + 3210*" + 3310*! + 7310*! + 1510*!. Then C has weight distribution 02524592
2611640270328, O
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Lemma 3.7. There exists a [418,4,369]y code.

Proof. Let C be the [418,4,369]y code with generator matrix G = [5510'%] + 1313'3 +
1628'3 +1145" + 1473 + 1652' + 1031" + 1815 + 173813 +1160" + 1080 + 121813 +
113613 + 13841 + 116713 + 124113 4+ 185013 + 100513 + 14073 4+ 120713 + 111613 + 121113 +
185113 + 14373 + 138813 + 113713 + 10163 + 150713 + 16433 + 133413 + 126113 + 125213 +
10511 + 10511, Then C has weight distribution 0*369478437816643871044058, [

Lemma 3.8. There exist [913, 4,810]o, [923,4, 819],, [933, 4,828]y and [943, 4,837]y codes.

Proof. Let C be the extended QC [41,4,33]y code with generator matrix G = [1000%] +
7211% + 1116% 4+ 1574* + 1376 + 1507* + 12474 4 1426* + 1237* + 1860* + 1515'. Then
C has weight distribution 0!33%%136369839198  Applying Lemma 2.4, as the projective
dual of C, one can get a [943,4,837]¢ code C* with weight distribution 0183763286432,
It can be checked that the multiset for C* has three mutually disjoint lines (1000, 1018),
(1002, 1102), (1003, 1114), where zgzy - - - 3 stands for the point P(zg, 1+ ,23) of ¥ =
PG(3,9) and (P, Q) stands for the line through the points P and @ in . Hence, we get
(913, 4, 810]y, [923, 4,819 and [933, 4,828]g codes by Lemma 2.5. O

Lemma 3.9. There exist [954, 4, 846]y, [064, 4, 855]9, [974, 4, 864]q, [984, 4, 873],,
094, 4, 882]9, [1004, 4, 891],, [1014, 4,900]9, [1024,4,909]y and [1034,4, 918y codes.

Proof. Let C be the [38,4,30]y code with generator matrix G = [1000%] + 1721% 4 1215* +
1056 4 1574* + 1542* + 1761* + 1065* + 1168* + 1515 + 1357!, where P(1,5,1,5) and
P(1,3,5,7) are fixed points under the projectivity defined by the companion matrix
of #* — 1. Then C has weight distribution 0'30672333°043623%4,  Applying Lemma 2.4,
as the projective dual of C, one can get a [1034,4,918]y code C* with weight distribu-
tion 0918525694534 Tt can be checked that the multiset for C* has eight mutually dis-
joint lines (1000, 1103), (1002, 1111), (1003, 1017}, (1005, 1121), (1006, 1132), (1007, 1140),
(1008, 1150), (1010,1105). So, we get [1034 — 10t,4,918 — 9¢t|g codes for 1 < ¢t < 8 by
Lemma 2.5. O

Lemma 3.10. There exist [1045,4,927)y, [1055,4,936]y, [1065, 4,945, [1075,4,954],,
(1085, 4,963]9, [1095,4,972]9, [1105,4,981]y, [1115,4,990]y and [1125,4,999] codes.

Proof. Let C be the [35,4,27]y code with generator matrix G' = 1018* + 1077* + 1220* +
1550 +1034* +1566* 4 1356 + 13132 + 16522 + 1357 +1111' +1753", where the columns
of G consist of seven orbits of length 4, two orbits of length 2 and three fixed points
under the projectivity defined by the companion matrix of #* — 1. Then C has weight
distribution 0!'274403032403328%0  Applying Lemma 2.4, as the projective dual of C, one
can get a [1125,4,999]y code C* with weight distribution 0'999°2891026%%°. It can be
checked that the multiset for C* has eight mutually disjoint lines (1000, 1001), (1011, 1100),
(1012,1114), (1013,1120), (1014, 1130), (1015, 1140), (1016, 1150), (1017,1161). Hence,
applying Lemma 2.5, we get [1045,4,927]y, [1055,4,936]9, [1065,4,945]9, [1075,4, 954]9,
(1085, 4,963]y, [1095, 4,972]9, [1105,4,981]¢ and [1115,4,990]¢ codes. O
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Lemma 3.11. There exist [1257,4,1116]q, [1267,4,1125]9 and [1277,4,1134]¢ codes.

Proof. Let C be the [39,4, 30]g code with generator matrix G' = [1000?] + 1721 + 1846* +
1473* 4+ 1300* + 1851* 4 1574* + 1281* + 1405* + 12562 + 1515, where the columns of
GG consist of nine orbits of length 4, one orbit of length 2 and a fixed point under the
projectivity defined by the companion matrix of 2* — 1. Then C has weight distribution
013027233261636341639256  Applying Lemma 2.4, as the projective dual of C, one can get a
[1277,4,1134]y code C* with weight distribution 011134%24811613!2. Tt can be checked that
the multiset for C* has two mutually disjoint lines (1000, 1015) and (1002, 1102). Hence,
we get [1257,4, 11169 and [1267,4,1125]¢ codes by Lemma 2.5. O

Lemma 3.12. There exist [1227,4,1089]o, [1237,4,1098]g and [1247,4,1107]9 codes.

Proof. Let C be the QT [49, 4, 39]y code with generator matrix G = [11317] + 10007 +
14027 4 18467 + 14077 + 14457 + 17057, giving weight distribution 0!3978442213645308048560
Applying Lemma 2.4, as the projective dual of C, one can get a [1247,4,1107]y code C*
with weight distribution 0'1107%224113428°11615%. It can be checked that the multiset for
C* has two mutually disjoint lines (1000, 1111), (1003, 1126). Hence, we get [1227, 4, 1089],
and [1237,4,1098]¢ codes by Lemma 2.5. ]

Lemma 3.13. There exist [1287,4,1143]9 and [1297,4, 1152y codes.

Proof. There exist a [1216, 4, 1080]g code with weight distribution 0110805016108951211523
and a [1206, 4, 1071]g code with weight distribution 0'1071°9%61080°°21143%? see [24]. Since
a [81,3,72]y code exists, one can apply Lemma 2.7 to obtain the desired codes. O

We have also constructed new codes for other values of d to make Table 2, e.g.,
(274, 4,240)9, [312,4,273]y, [378,4,332]g and so on with the aid of a computer, but the
upper bounds are still weak to be improved. So, we omit the proof of their constructions.

4 Nonexistence of some codes

In this section, we prove the nonexistence of some Griesmer codes to give the lower bounds
on ng(4,d).

Lemma 4.1. The spectrum of a [64,3,56]9 code satisfies ag < 64.

Proof. 1t follows from (2.3) x6—(2.4) x3+(2.5) /2 that 6ao+3a; +as+as+3as+6ar+10ag =
642. Hence ag < 64. O

The following can be obtained in the same way.

Lemma 4.2. The spectrum of a [65,3,57]9 code satisfies ag < 67.

Lemma 4.3. There exists no [1339,4,1189]y code.
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Table 1: The spectra of some [n, 3, d]g codes.

parameters  possible spectra reference
0.3,7]9 (a0, a1, a2) = (37,18, 36) 3]
[10,3,8)9 (a0, a1,a2) = (36, 10,45) [13]
[17,3,14]9 (ap,a1,a2,a3) = (18,15,19, 39) (18]

)

(a0, a1,a2,a3) = (17,18, 16, 40)

(ap,a1,a2,a3) = (19,12,22, 38)

(ao,a1,az,as3) = (18,15,19, 39)
[48,3,42]9 (ap,as,as) = (3,16,72) [26]
[78,3,69]9 (ao, as,as,a9) = (1,1,27,62) Lemma 4.7

(ap,ar,as,a9) = (1,3,24,63)

(ag,a9) = (13,63)

[81,3,72]9 (a0, ag) = (1,90) [6]

(88,3, 78]9 (a7,a9,a10) = (1,27,63) (6]
(ag,ag9,a10) = (3,24, 64)

[90, 3,80]9 (ag,a10) = (10, 81) [6]

[91, 3,81]9 aip =91 [6]

[150,3,133]9  (as,as,a16,a17) = (1,2,18,70) (15]

(a7,as8,a15,a16,a17) = (2,1,1,16,71)
(a7,as,a1s5,a16,a17) = (1,2,1,17,70)
(as,a15,a16,a17) = (3,1, 18,69)
(ag,a1s, a17) = (3, 10, 78)

Proof. Let C be a putative Griesmer [1339,4,1189]¢ code. It follows from Lemma 2.1
that v = 2, 11 = 17, 79 = 150. From Table 1, the spectrum of a ~s-plane A is
one of (A) (76,78, 716, 717) = (1,2,18,70), (B) (77,78, 715, T16, 117) = (2,1,1,16,71), (C)
(77, T8, T15, T16, T17) = (1,2, 1,17,70), (D) (78, 715, 716, T17) = (3, 1,18,69), (E) (73, 715, T17) =
(3,10,78). Thus, a j-line on A satisfies

j€{6,7,8,15,16,17}. (4.1)

From (2.2) and (2.5), we have A\g(A) = 5,5,4, 3,4 for the cases A,B,C,D,E, respectively.
Since an i-plane § can not meet A in a t-line with ¢t € {0,...,5,9,...,14}, one can show
a; =0 forall i ¢ {43,...,48,52,...,55,61,...,65,79,80,81,88,...,91,124,...,150} us-
ing Lemmas 2.2, 2.3, the Griesmer bound and Theorem 1.1. We refer to this procedure
as the first sieve in the proofs of the nonexistence results in this section. For example,
if there exists a 49-plane, then it corresponds to a [49, 3,43], code by Lemma 2.2 (1),
which does not exist by Theorem 1.1. If there exists a 82-plane, then it corresponds to a
82,3, 73], code by Lemma 2.3, which does not exist by the Griesmer bound.

We also have ag; = agp = ag; = 0 since the spectra of codes with parameters [81, 3, 72]o,
90, 3,80]9, [91, 3,81]y are (ag, ag) = (1,90), (a9, aip) = (10,81), a;p = 91, respectively, see
Table 1. From (2.6), we get

148 .
150 —
) ( 0 Z)ai:81/\2—34091. (4.2)

: 2
=43

For any w-plane through a t-line, (2.7) gives

> (150 — j)ej = w+ 11— 9t. (4.3)

J
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with > . c; = 9. The equality (3.2) yields
o = 519+ Ao, (4.4)

Suppose ayq3 > 0. Since a t-line in a 43-plane § satisfies ¢ < 6, we may assume that
every vo-plane has spectrum (A). Since the RHS of (4.3) is at most 54 and since the
coeflicient of cgg in (4.3) is 61, we get aq3 = 1 and a; = 0 for j < 89 with j # 43.
Setting w = 150, the maximum possible contributions of ¢;’s to the LHS of (4.2) are
(€43, ¢c150) = (1,8) for t = 6; (124, €139, C150) = (3,1,5) for t = 8; (133, c150) = (1,8) for
t = 16; (c142, c150) = (1,8) for ¢ = 17. Estimating the LHS of (4.2) for the spectrum (A),
we get

(LHS of (4.2)) < 567175 + (3 - 325 + 55)75 + 136735 + 28717 = 12139.

Hence Ay < 570. On the other hand, (c43, c150) = (1,8) is the unique solution of (4.3) for
(w,t) = (150, 6) since aqg > 0. Since each of the eight 150-planes through the 6-line in A
and A itself contains a 0-point out of the 6-line 6NA, (4.4) yields Ay > 519+ (02 —43)+9 =
576, giving a contradiction. Hence ay3 = 0. One can prove ayy = a45 = Q46 = a47 = a43 = 0
similarly.

Suppose ase > 0. Since a t-line in a 52-plane § satisfies v, (J) < 7, we may assume that
every 7o-plane has spectrum (B) or (C). Since the RHS of (4.3) with w = 52 is at most
63 and since the coefficient of cgg in (4.3) is 61, we get ase = 1 and a; = 0 for j < 89 with
J # 52. Setting w = 150, the maximum possible contributions of ¢;’s to the LHS of (4.2)
are (652,6150) = (1, 8) fort =7 if C50 > O; (6124,6130,0150) = (3, 1, 5) fort =7 if Cro — 0;
(€124, €139, C150) = (3,1,5) for t = 8; (c124, c150) = (1, 8) for t = 15; (¢33, c150) = (1,8) for
t = 16; (c142, c150) = (1,8) for ¢t = 17. Estimating the LHS of (4.2), we get

(LHS of (4.2)) <4753+ (3325 +190) (77 — 1) + (3 - 325 4 55)75 + 325715 + 136716 + 28717.

When A has spectrum (C), we have 81Xy < 45501, i.e.; Ay < 561. On the other hand,
(€52, c150) = (1, 8) is the unique solution of (4.3) for (w,t) = (150,7) when as > 0. Since
each of the eight 150-planes through the 7-line in A and A itself contains one 0-point out
of 0N A, (4.4) yields Ay > 519 + (A — 52) 4+ 8 = 566, giving a contradiction. We also get
a contradiction similarly when A has spectrum (B). Hence as; = 0. One can similarly
prove that ass = asy = as5 = 0.

Suppose a; > 0 with ¢ = 88. Then, § corresponds to a Griesmer [88, 3, 78]y code, whose
spectrum is (77, 79, T10) = (1,27,63) or (75, 79, T10) = (3,24, 64) from Table 1. Setting w =
88, the maximum possible contributions of ¢;’s to the LHS of (4.2) are (124, c140, C150) =
(1,1,7) for t = 7, (012470149,0150) = (1,1,7) for t = 87 (0140,Cl4g> = (1,8) for t = 97
c1a9 = 9 for ¢ = 10. Estimating the LHS of (4.2), we get

(LHS of (4.2)) < 1891 + (325 + 45)77 + 32575 + 457y.

From the possible spectra for §, we have 81\ < 38037, i.e., Ay < 469. On the other
hand, (4.4) implies Ay > 519, giving a contradiction. Hence agg = 0. We can prove
agg = A79 — aAgp = 0, similarly.
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Suppose ag; > 0. A t-line in a 61-plane § satisfies ¢ < 8. Since the RHS of (4.3) is
at most 72 and since the coefficient of cg5 in (4.3) is 85, we get ag; = 1 and a; = 0 for
J < 65 with j # 61. Setting w = 150, the maximum possible contributions of ¢;’s to the
LHS of (4.2) are (124, €147, C150) = (4,1,4) for t = 6; (124, 130, C150) = (3,1,5) for t = T,
(06170150) = (178) for t = 8 if Ce1 > 0, (6124,0139,0150) = (3, ].,5) for t = 8 if Ce1 — 0,
(0124,0150> = (]_, 8) for t = ]_5, (013370150) = (1,8) for t = ]_6, (Cl4270150) = (1,8) for t = 17.
We may assume that § meets A in a 8-line. Then, estimating the LHS of (4.2), we get

(LHS of (4.2)) < 3916 + (4 - 325 + 3)75 + (3 - 325 + 190)77 + (3 - 325 + 55) (75 — 1)
+325715 + 136716 + 2877.

When A has spectrum (D), we have 81y < 44772, i.e.;, Ay < 552. On the other hand,
we have c¢150 > 8 as the solution of (4.3) for (w,t) = (150, 8) since ag; > 0. Since each of
the eight 150-planes through the 8-line in A and A itself contains a 0-point out of 6 N A,
(4.4) yields Ay > 519 + (03 — 61) + 1 -9 = 558, giving a contradiction. One can get a
contradiction similarly when A has any other spectrum. Hence ag; = 0. We can prove
agz = agz = 0 similarly.

Suppose agg > 0. A t-line in a 64-plane § satisfies ¢ < 8. Since the RHS of (4.3) is
at most 75 and since the coefficient of cg5 in (4.3) is 85, we get agy = 1 and ags = 0.
Setting w = 150, the maximum possible contributions of ¢;’s to the LHS of (4.2) are
(0647 C147, 015()) = (1, 17 7) for t = 8 if Ceq > 0, (0124, C139, 6150) = (3, ]_, 5) for t = 8 if Cgq — 07
and the same ¢;’s for other ¢ with the case assuming ag; > 0. Estimating the LHS of
(4.2), we get

(LHS of (4.2)) < (3655 +3) + (4325 + 3)76 + (3 - 325 + 190)77
+(3 - 325 + 55) (7—8 — 1) + 3257’15 + 1367'16 + 287’17. (45)

When A has spectrum (D), (4.5) gives 81y < 44514, i.e., A2 < 549. On the other hand,
we have c¢150 > 5 as the solution of (4.3) for (w,t) = (150, 8) since ags > 0. Since each of
the five 150-planes through the 8-line in A and A itself contains a 0-point out of 6NA, (4.4)
yields Ay > 519+ (62 —64)+1-6 = 552, giving a contradiction. One can get a contradiction
similarly when A has spectrum (C), (A) or (B). Now, we may assume that every ~o-plane
has spectrum (E). Then, (4.5) gives 81\ < 45243, i.e., Ay < 558. To calculate the RHS
of (4.5), the number of ~,-plane is estimated as 7+ 5-2+ 8- 10+ 8 - 78 = 721. This
contradicts that ai50 < 64-8 = 512 since 0 meets a 150-plane in an 8-line and § contains at
most 64 8-lines by Lemma 4.1. So, we need to reduce the estimated number of v,-planes
from 721 to at most 512, which yields the RHS of (4.5) to 45243 — (721 — 512) - 2, since
we set c148 = 0 to maximize the LHS of (4.2). Hence Ay < 553. On the other hand, we
have c150 > 5 as the solution of (4.3) for (w,t) = (150, 8) since agq > 0. Since each of the
five 150-planes through the 8-line in A and A itself contains two 0-points out of d N A,
(4.4) yields Ay > 519+ (A — 64) +2- 6 = 558, giving a contradiction. Hence agqy = 0. We
can prove ag; = 0 similarly using Lemma 4.2.

Therefore, a; > 0 implies 124 < ¢ < 150. Setting w = 150, the maximum possi-
ble contributions of ¢;’s to the LHS of (4.3) are (ci24,c147,¢150) = (4,1,4) for t = 6;
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(124, €130, C150) = (3,1,5) for t = 7; (c124, €139, C150) = (3,1, 5) for t = 8; (ci24, €150) = (1,8)
for t = 15; (133, c150) = (1,8) for t = 16; (c142, c150) = (1,8) for ¢ = 17. Estimating the
LHS of (4.3), we get

(LHS of (4.2)) < (4-325+3)75+ (3-3254190) 77 + (3- 325+ 55)75 + 325715 + 136716 + 28717.

When A has spectrum (D), we have 81\y < 41886, i.e., Ay < 517. On the other hand, we
have Ay > 519, giving a contradiction. One can get a contradiction similarly when A has
spectrum (A), (B) or (C). Hence, we may assume that every 150-plane has spectrum (E).
When A has spectrum (E), we have 81y < 42615, i.e., Ay < 526. Since the ten 15-lines
on A are passing through a fixed 0-point (see the proof of Lemma 4.4 in [15]), one can
take a 17-line £ on A containing no 0-point. Then, there is another 150-plane A’ through
¢ since we have c¢150 > 1 as the solution of (4.3) for (w,t) = (150,17). Counting the
number of O-points in A U A’, (4.4) yields Ay > 519 4+ 2 - 4 = 527, giving a contradiction.
This completes the proof. O]

Lemma 4.4. There exists no [995,4,883]g code.

Proof. Let C be an [995,4, 883]¢ code. By Lemma 2.1, 79 = 2, 74 = 13, 72 = 112. Let
A be a 7p-plane. Then, Mc(A) is just two copies of A with a 7-arc of lines deleted by
Theorem 43 in [12] since the multiset 2A — M (A) forms a (70, 7)-minihyper whose point
multiplicity is at most 2. Hence, the spectrum of A is (74,713) = (7,84). By the first
sieve, we have a; = 0 for all ¢ ¢ {23-28, 77-81, 86-91, 104-112}. If a 77-plane ¢ exists, then
it meets A in a 4-line. On the other hand, ¢ corresponds to a [77, 3, 68|y code by Lemma
2.2 containing no 4-line, a contradiction. Hence a;; = 0. Similarly, we have a; = 0 for
i=18,...,81,86,...,91. For any w-plane through a t-line, (2.7) gives

D (112 j)e; =w+5 -9t (4.6)

J

with Zj c; = 9. Suppose azs > 0 and let 6 be a 23-plane. Then, we have az; = 1
and a; = 0 for 24 < j < 28 from (4.6). Take a 4-line [ on A which is not 6 N A and
consider the planes through [ from (4.6) with (w,?) = (112,4). Then, the equation (4.6)

has no solution. Hence as3 = 0. We get asy = -+ = ass = 0 similarly. Now, a; > 0
implies 104 < ¢ < 112. Setting (w,t) = (112,4), the equation (4.16) has no solution, a
contradiction. This completes the proof. O

Lemma 4.5. There exists no [912,4,810]y code.

Proof. Let C be an [n = 912,4,d = 810]g code. By Lemma 2.1, 79 = 2, 73 = 12,
v = 102. Let A be a 7yp-plane. Let [ be an i-line with ¢ > 0 containing a 1-point
P. Counting the 1-points on the lines through P, we get v2 = 102 < (12 — 1) - 9 + 4,
hence 3 < 7. So a j-line with 5 > 1 on A satisfies 3 < j < 12. We have a; = 0 for all
i ¢ {48,75,76,77,78,79,80, 81,102} by the first sieve. From (2.6), we get

891&48 + 81&75 + 65&76 + 50&77 + 36(178 + 23&79 + 11@80 = 81)\2 — 10692. (47)
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For any w-plane through a t-line, (2.7) gives

D (102 = j)e; = w+6 — 9t (4.8)

J

with Zj ¢; = 9. Suppose asg > 0. The spectrum of a 48-plane is (19,73, 76) = (3, 16, 72)
from Table 1. Setting w = 48 and t = 0, the equation (4.8) has no solution. Hence
ass = 0. Suppose a; > 0 for 76 < i < 81. Setting w =i and ¢ = 9, the equation (4.8) has
no solution. Hence a; = 0 for 76 < ¢ < 81.

Suppose a5 > 0. Then, we have ¢75 = 3 — t/3 from (4.8). Setting w = ¢ and
t ¢ {0,3,6,9}, the equation (4.8) has no solution. Let § be a 75-plane and !’ be a line on
d. We have ['NéNCy| =1,4,7,10. Then, |§ N Cy| = 91 — 75 = 16. Considering the lines
through a fixed 0-point of § not on I, we have [0 N Cy| > 3-10+ 1 = 31 if I’ is a O-line, a
contradiction. If " is a 3-line, we have |0 N Cy| = 3 -7+ 1 = 22, a contradiction. Let the
spectrum of a [75, 3,66]y code corresponding to § be (74, 79). Since the code is Griesmer,
we have 75 + 79 = 91 and 675 + 979 = 750 from (2.3), (2.4). Hence (75,79) = (23,68), a
contradiction to (2.5). Hence a5 = 0.

Setting w = 102, we have 0 = 108 — 9¢ from (4.8). Let the spectrum of a [102, 3, 90]y
code corresponding to d be 712. Then, we have 115 = 91 and 12775, = 1020 from (2.3) and
(2.4), giving a contradiction. This completes the proof. ]

If a 3-divisible [24,4, 18]y code exists, then so does a 27-divisible [912,4,810]y code as
a projective dual, which is impossible by the above lemma. Hence we get the following.

Corollary 4.6. There exists no 3-divisible [24,4, 18]y code.

Let C be a [78,3,69]g code. Since C is Griesmer, the set Cy of 0-points for C forms a
(13, 1)-blocking set in PG(2,9). If Cy contains a line [, then Cy consists of [ and three
points, say 1, @2, Q3. In this case, there are two possibilities according to the condition
if the three points @)1, @2, Q3 are collinear or not. If Cy contains no line, Cy forms a
non-trivial blocking set (see [13]) and is a subgeometry PG(2,3) by Theorem 13.11 in
[13]. Hence we get the following.

Lemma 4.7. The spectrum of a [78,3,69]y code is one of the following:
(a) (a07 ag, Ag, CLQ) = (1; 1, 27, 62),
(b) (ao,ar,as,a9) = (1,3,24,63),
(c) (ag, ag) = (13,78).

Lemma 4.8. There exists no [695,4,617]y code.

Proof. Let C be a putative Griesmer [695,4,617]g code. Let A be a 7p-plane in ¥ =
PG(3,9). Then the spectrum of A is one of (a), (b), (¢) in Lemma 4.7.

Let 6; be an i-plane in ¥ and let [ be a t-line in ¢;. Then, by Lemma 2.2 (1), we have
t < (i+7)/9. By the first sieve, we get

a; =0 for all ¢ ¢ {0,47,48,65,74,75,76,77,78}.
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Suppose ag > 0 and let g be a O-plane. If there exists an i-plane 6 (# &y) with i < 65,
then, considering the planes through dy N9, we have

695 < 65 4+ 78 X 8 = 689,
a contradiction. Thus, we have ag = 1 and a7 = a4s = ags = 0. Hence, from (2.6), we get
6&74 + 3&75 + arg = 1242. (49)

Setting ¢ = ¢ = 0, the maximum possible contributions of ¢;’s in (2.7) to the LHS of (4.9)
are (cr4, C75,c78) = (1,1,7). Estimating the LHS of (4.9) we get

1242 < (6 + 3) x 91 = 819,
a contradiction. Hence ag = 0. From (2.6), we have
465a47 + 43bays + 78ags + 6ary + 3ars + arzg = 4245. (4.10)

Next, we show that a 78-plane in ¥ has spectrum of type (c) in Lemma 4.7. Setting
i = 78, the maximum possible contributions of ¢;’s in (2.7) to the LHS of (4.10) are
(047, C65, C74, Crg, 678) = (2, 1, 2, ]_, 3) fort = 0, <C47, 078) = (]., 8) for t = 6, (0657 Cr4,Cr7, C78>
= (1,2,1,5) for t = 7; (cg5,c78) = (1,8) for t = 8 and (c74, ¢c78) = (1,8) for t = 9.
Estimating the LHS of (4.10) for the spectrum (a) in Lemma 4.7, we get

4245 < (465 X 2478 46 x 2+ 1) + 465 + 78 X 27 + 6 x 62 = 3964,
a contradiction. Similarly for the spectrum (b) in Lemma 4.7, we get
4245 < (465 X 2+ T8+ 6 x 2+ 1) + (784 6 x 2) X 3+ 78 x 24 + 6 x 63 = 3541,

a contradiction again. Hence, every 78-plane has spectrum of type (c¢) in Lemma 4.7.
Using this fact, we rule out a 65-plane.

Suppose ags > 0. Then dg5 N Cy forms a (65, 8)-arc by Lemma 2.2(1). Setting ¢ = 65
and t = 8, (2.7) has the unique solution c¢zs = 9, which contradicts to the fact that a
78-plane has no 8-line. Hence ags = 0.

Suppose aqg > 0. Then dyig N Cy forms a (48,6)-arc by Lemma 2.2(1). Setting
i = 48, the maximum possible contributions of ¢;’s in (2.7) to the LHS of (4.10) are
(€47, C4, Cr6, C77) = (1,5,1,2) for t = 0; (¢4, 16, c77) = (6,1,2) for t = 3 and (c77,¢78) =
(1,8) for t = 6, since a 78-plane has only 6-lines or 9-lines. Recall from Table 1 that the
spectrum of a 48-plane is (79, 73, 76) = (3, 16, 72). Estimating the LHS of (4.10) we get

4245 < (46546 x5+ 1) x 34+ (6 x 6+ 1) x 16 + 435 = 2515,
a contradiction. Hence ayg = 0. Now, we have

a; = 0 for all i & {47,74,75,76,77, 78}
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One can obtain the following two equalities

3las; + 4ars + 3ars + 2a76 + a7y = 715, (411)

1922047 + 302ar4 + 228ars + 153ars + T7azs = 50810 (4.12)
from (2.3)-(2.5). So, (4.11) x 151 — (4.12) x 2 gives
83Tay; = 6345 + 3ars + 4arg + 3ar; = 6345,
whence we have
as7 2 8. (4.13)
On the other hand, (4.12) — (4.11) x 62 gives
54ary + 42az75 + 29a76 + 15a77 = 6480. (4.14)

Setting ¢ = 78, the maximum possible contributions of ¢;’s in (2.7) to the LHS of (4.14)
are (cry, c75,c78) = (7,1,1) for t = 6 and (74, c7g) = (1, 8) for t = 9. It follows from (4.13)
that ¢;’s in (2.7) must be (ca7, c7s) = (1,8) for at least eight 6-lines in d75. Hence, from
the spectrum (c) in Lemma 4.7, estimating the LHS of (4.14) yields

6480 < (54 x 7+ 42) x (13 —8) 4+ 54 x 78 = 6312,
a contradiction. This completes the proof. ]

The above theorem implies ng(4,d) > go(4,d) + 1 for 617 < d < 621, but we do not
know whether [go(4, d), 4, d]o codes exist or not for 613 < d < 616. So, Theorem 2.16 (3)
is still open for ¢ = 9.

Lemma 4.9. There exists no [659,4, 585]y code.

Proof. Let C be a putative Griesmer [n = 659, 4, d = 585]¢ code. By Lemma 2.1, v = 1,
v1 =9, 72 = 74. Let A be a vo-plane. Let [ be an i-line with ¢ > 0 containing a 1-point
P. Counting the 1-points on the lines through P, we get 75 = 74 < (9 — 1) - 9+ 4, hence
2 <i. So a j-line with 7 > 1 on A satisfies j € {2,3,4,5,6,7,8,9}. We have a; = 0 for
all 7 ¢ {0,47,48,65,74} by the first sieve. From (2.3)-(2.5), we get

2405@0 + 243&47 + 221@48 = 2349. (415)

For any w-plane through a t-line, (2.7) gives

> (14— j)e;=w+T7—0t (4.16)

J

with Zj c; = 9. Suppose ay > 0. Setting w =t = 0, the RHS of (4.16) is 7, and the
equation (4.16) has no solution. Hence ay = 0. Suppose ags > 0. The spectrum of a
[48,3,42]9 code is (79,73, 7¢) = (3,16,72) from Table 1. Setting w = 48 and ¢t = 6, the
equation (4.16) has no solution. Hence ass = 0. Then, we have 243a47 = 2349 from (4.15),
i.e., as7 is not integer, a contradiction. This completes the proof. O
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Lemma 4.10. There exists no [578,4,513]y code.

Proof. Let C be a putative Griesmer [578,4,513]9 code. Then, we have vy = 1 from (2.1),
and an i-plane corresponds to an [i,3, d;]o code with ¢ — d; < (i 4+ 7)/9. Hence, we have
a; = 0 for all i ¢ {0,47,48,65} by the first sieve. Since (2.7) has no solution for (i,t) =
(0,0) and (48, 6), we obtain ag = ass = 0. Now, (2.3) and (2.4) yield (a47, ags) = (39, 781),
giving a contradiction in (2.5) with vy = 1. O

Lemma 4.11. There exists no [577,4,512]¢ code.

Proof. Let C be a putative Griesmer [577,4,512]g code. Then, an i-plane corresponds to
an [i,3,d;]g code with ¢ — d; < (i 4+ 8)/9, and we have a; = 0 for all i ¢ {0, 1, 10, 28, 37,
46, 47, 48, 55, 64, 65} by the first sieve. By Lemma 4.10, we may assume that C is not
extendable. It follows from Theorem 2.10 that ®; = ays = 324. Let  be a 48-plane, which
has spectrum (79,73, 76) = (3,16, 72) from Table 1. Let ¢43 be the number of 48-planes
(# 9) through a fixed t-line on §. Then, we have ¢y;3 < 3 for t = 0; c4s < 1 for ¢ = 3;
cys = 0 for t = 6. Hence, aygs < 379 + 73 + 1 = 26, a contradiction. This completes the
proof. ]

Lemma 4.12. There exists no [418,4,370]y code.

Proof. Let C be a putative Griesmer [n = 418,4,d = 370]y code. By Lemma 2.1, 7o = 1,
7 = 6, 72 = 48. Let A be a vo-plane, which has spectrum (79, 73, 76) = (3,16, 72) from
Table 1. Then, we have a; = 0 for all i ¢ {0, 13-17, 40-48} by the first sieve. From (2.6),
we get

1128@0 + 595@13 + 5610,14 + 528@15 + 496&16 + 465&17 + 28&40
+21ag + 15a42 + 10a43 + 6a4o + 3ays + age = 8704. (417)

For any w-plane through a t-line, (2.7) gives

D (48— j)ej =w+ 14— 9t (4.18)
J
with > ;¢ =9 Suppose ag > 0. Setting w = t = 0, the maximum possible contribution
of ¢;’s in (4.18) to the LHS of (4.17) is (c4o, a2, cas) = (1,1,7). Estimating the LHS of
(4.17) we get
8704 < 1128 4+ (28 4 15) x 6y = 5041,

a contradiction. Hence ay = 0.

Next, suppose a;3 > 0. Then, from (4.18) with w = 13, we have a;3 = 1 and a; = 0 for
14 < j < 17. Setting w = 48, the maximum possible contributions of ¢;’s in (4.18) to the
LHS of (417) are (013, C40, C45, 048) = (1, 3, ]_, 4) fort =0 if C13 > 0, (640, Cy42, 648) = (7, 1, ].)
for t =0 if ¢;5 = 0; (c13,ca8) = (1,8) for t = 3 if ¢33 > 0; (ca0, Caa, cas) = (4,1,4) for t =3
if ¢13 = 0; (ca0, cas) = (1,8) for t = 6. Since a3 = 1, estimating the LHS of (4.17) we get

8704 < (595 4+ 3 X 28+ 3) + (7 x 28 + 15) (19 — 1) + (4 x 28 + 6)73 + 2875 = 5008,
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a contradiction. Hence a;3 = 0. One can prove a1y = a15 = a1 = ay7 = 0 similarly.

Now, we have a; = 0 for all j < 39. Considering the maximum possible contributions
of ¢;’s in (4.18) with w = 48 to the LHS of (4.17), we get a contradiction similarly as
above. This completes the proof. O]

Lemma 4.13. There exists no [416,4,369]y code.

Proof. Let C be a putative Griesmer [416,4,369]9 code. Then, an i-plane corresponds to
an [i,3,d;]g code with ¢ —d; < (i +7)/9, and we have a; = 0 for all ¢ ¢ {0,47} by the
first sieve. Since (2.7) has no solution for (i,¢) = (0,0), we obtain agp = 0. Hence, C is
one-weight, which is contradictory to Lemma 2.1. O

Lemma 4.14. There exists no [415,4,368]y code.

Proof. Let C be a putative Griesmer [415, 4, 3689 code. Then, an i-plane corresponds to an
4,3, di]o code with i —d; < (i48)/9, and we have a; = 0 for all ¢ ¢ {0, 1,10, 28, 37,46, 47}
by the first sieve. Hence C is extendable by Theorem 2.8, which contradicts Lemma
4.13. m

Lemma 4.15. There exists no [414,4,367]y code.

Proof. Let C be a putative Griesmer [414, 4, 367]9 code. Then, an i-plane corresponds to an
[i,3, d;]o code with i—d; < (i+9)/9, and we have a; = 0 for all i ¢ {0, 1,9, 10, 27, 28, 36, 37,
45,46,47} by the first sieve. Hence C is extendable by Theorem 2.9, which contradicts
Lemma 4.14. O

The following three lemmas can be proved similarly to Lemmas 4.13-4.15.
Lemma 4.16. There exists no [244,4,216]y code.
Lemma 4.17. There exists no [243,4,215]y code.
Lemma 4.18. There exists no [242,4,214]y code.
Lemma 4.19. There exists no [234,4,207]y code.

Proof. Let C be a putative Griesmer [234,4,207]y code. Then, an i-plane corresponds to
an [1,3, d;]o code with i —d; < (1 +9)/9, and we have a; = 0 for all ¢ ¢ {0,1,9,10,27} by
the first sieve. Since (2.7) has no solution for (i,t) = (0,0), (1,0), (9,1) and (10,1), we
obtain ay = a1 = ag = ay9 = 0. Thus, C is one-weight, which is contradictory to Lemma
2.1. ]

Lemma 4.20. There exists no [233,4,206]y code.

Proof. Let C be a putative Griesmer [233, 4, 206]9 code. Then, an i-plane corresponds to an
4,3, d;]g code with i—d; < (i410)/9, and we have a; = 0 for alli ¢ {0,1,8,9,10, 17, 26,27}
by the first sieve. By Lemma 4.19, we may assume that C is not extendable. It follows
from Theorem 2.10 that ®; = a; + ay9 = 324. Suppose a; > 0. Then, (2.7) with i = 1,
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t < 1 has no solution of ¢; > 0 for j < 10. This means that a; = 1 and a9 = 0, giving
a contradiction. Hence a; = 0 and a;g = 324. Let 6 be a 10-plane, which has spectrum
(70, 71, T2) = (36,10, 45) from Table 1. Let ¢;¢ be the number of 10-planes (# d) through
a fixed t-line on §. Then, we have ¢ < 1 for t = 0 and ¢ = 0 for t = 1,2. Hence,
a9 < 7o + 1 = 37, a contradiction again. This completes the proof. O

Lemma 4.21. There exists no [224,4,198]y code.

Proof. Let C be a putative Griesmer [224,4,198]¢ code. Then, vy = 1 from (2.1), and we
have a; = 0 for all i ¢ {0,1,8,9,10,17,26} by the first sieve. Since (2.7) has no solution
for (i,t) = (0,0), (1,0), (9,1) and (10,1), we obtain ag = a3 = ag = ajp = 0. It follows
from (2.3)-(2.5) that C has spectrum (as, a17,a26) = (36,32,752). Let § be a 17-plane,
whose spectrum (79, 71, T2, 73) is one of the four possible spectra for [17,3,14]¢ codes in
Table 1. Let ¢i7 be the number of 17-planes (# §) through a fixed ¢-line on §. Then, we
have c;7 = 1lor3fort =0;ci; =0or2fort =1, ¢y =1fort =2; ¢;7 =0 for t = 3.
Hence, a17 > 19+ 1 + 1 > 34 > 32, a contradiction. This completes the proof. O

Lemma 4.22. There exists no [143,4,126]y code.

Proof. Let C be a putative Griesmer [143,4, 126]¢ code. Then, we have vy = 1 from (2.1),
and an i-plane corresponds to an [i,3, d;]o code with i — d; < (i + 10)/9. Hence, we have
a; = 0 for all ¢ ¢ {0,1,8,9,10,17} by the first sieve. Since (2.7) has no solution for
(1,t) = (0,0), (1,1), (9,2), and (10, 2), we obtain ag = a; = ag = a;p = 0. Now, (2.3) and
(2.4) yield (as, a17) = (103,717), giving a contradiction in (2.5) with o = 1. O

Lemma 4.23. There exists no [142,4,125]y code.

Proof. Let C be a putative Griesmer [142,4,125]q code. We have o = 1 by Lemma 2.1.
Let A be a vo-plane, whose spectrum is one of the four spectra for [17,3,14]y codes in
Table 1. We have a; = 0 for all i ¢ {0,1,7,8,9,10,16,17} by the first sieve. From
(2.3)-(2.5), we get

136ag + 120a; + 45a7 + 36ag + 28ag + 21ao = 4878. (4.19)

For any w-plane through a t-line, (2.7) gives

> (7= j)ej=w+11-9t (4.20)

J
with > ;¢ =9 Suppose ag > 0. Setting w = t = 0, the maximum possible contribution
of ¢;’s in (4.18) to the LHS of (4.17) is (¢7,c16,¢17) = (1,1,7). Estimating the LHS of
(4.19) we get 4878 < 456, + 136 = 4231, a contradiction. Hence ay = 0. Similarly, one

can prove that a; = ag = a9 = 0 using the spectra in Table 1. Now, applying Theorem
2.8, C is extendable, which contradicts Lemma 4.22. This completes the proof. m
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Proof of Theorem 1.7. We first note that one can get an [n — 1, k,d — 1], code from a
given [n, k, d|, code by puncturing and that the nonexistence of an [n — 1, k,d — 1], code
implies the nonexistence of an [n, k,d|, code. For example, the existence of a [82,4, 72|
code implies ng(4,d) = go(4, d) for 64 < d < 72, and the nonexistence of a [84, 4, 73|y code
implies ng(4,d) > g9(4,d) + 1 for 73 < d < 81. The part (5) follows from Lemmas 4.12,
4.19-4.23. See Lemmas 3.8, 3.9, 3.10, 3.13 for (1), and Lemmas 3.5, 3.8, 3.9, 3.10, 3.12
for (3).

(2) For the nonexistence of Griesmer codes, see Theorem 1.2 (5), Lemmas 4.9, 4.8,
45, 4.4, 2.14, 2.15, 2.15, 2.14, 4.3 for d = 136, 585, 617, 810, 883, 964, 1108, 1117, 1126,
1189, respectively. The existence of [g9(4, d) + 1,4, d]y codes follows from Theorem 1.4 for
d = 585, 621, 1189-1197 and Lemmas 3.2, 3.8, 3.9, 3.10, 3.11, for d = 144, 810, 891, 972,
1108-1134, respectively.

(4) The nonexistence of Griesmer codes for d = 127, 214, 367, 512 follows from The-
orem 1.2 and Lemmas 4.18, 4.15, 4.11, respectively. It follows from Theorem 2.12 (4)
that Griesmer codes do not exist for d = 145, 154. On the other hand, there exist
[g0(4,d) + 2,4,d]y codes for d = 135 by puncturing from a [164,4, 144]y code and for
d = 152, 158 by Lemma 3.4. As for the existence of [go(4,d) + 2,4, d]y codes for other d,
see Theorem 1.2 for d = 513 and the next (6) for d = 216, 369.

(6) See Lemmas 3.1, 3.4, 3.5, 3.2, 3.6, 3.7 d = 114, 121, 188, 216, 252, 369, respectively.
A [g9(4,d)+2,4,d]y code for d = 171 is obtained by puncturing from a [205, 4, 180]y code.
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Appendix: Table 2. Values and bounds for n = ng(4, d) with g = go(4, d)

d g n d g n d g n d g n d g n
1 4 4 64 74 74 127 | 145 | 1-2 190 | 216 | 0-3 || 253 | 287 | 0-3
2 5 5 65 75 75 128 | 146 | 1-2 191 | 217 | 0-3 || 254 | 288 | 0-3
3 6 6 66 76 76 129 | 147 | 1-2 192 | 218 | 0-3 || 255 | 289 | 0-3
4 7 7 67 77 Yud 130 | 148 1-2 193 | 219 | 0-3 256 | 290 | 0-3
5 8 8 68 78 78 131 | 149 | 1-2 194 | 220 | 0-4 || 257 | 291 | 0-3
6 9 9 69 79 79 132 | 150 1-2 195 | 221 | 04 258 | 292 | 0-3
7 |10 | 10 70 80 80 133 | 151 | 1-2 196 | 222 | 0-4 || 259 | 293 | 0-3
8 11 | 12 71 81 81 134 | 152 | 1-2 197 | 223 | 0-4 || 260 | 294 | 0-3
9 12 13 72 82 82 135 | 153 1-2 198 | 224 | 1-4 261 | 295 | 0-3
10 | 14 | 14 73 84 85 136 | 155 | 156 || 199 | 226 | 0-3 || 262 | 297 | 0-3
11 | 15 | 15 74 85 86 137 | 156 | 157 || 200 | 227 | 0-3 || 263 | 298 | 0-3
12 | 16 | 16 75 86 87 138 | 157 | 158 || 201 | 228 | 0-3 || 264 | 299 | 0-3
13 | 17 | 18 76 87 88 139 | 158 | 159 || 202 | 229 | 0-3 || 265 | 300 | 0-3
14 | 18 | 19 77 88 89 140 | 159 | 160 || 203 | 230 | 0-3 || 266 | 301 | 0-3
15 | 19 | 20 78 89 90 141 | 160 | 161 || 204 | 231 | 0-3 || 267 | 302 | 0-4
16 | 20 21 79 90 91 142 | 161 162 205 | 232 | 0-3 268 | 303 | 0-4
17 | 21 | 22 80 91 92 143 | 162 | 163 || 206 | 233 | 1-3 || 269 | 304 | 0-4
18 | 22 | 23 81 92 | 1-2 144 | 163 | 164 || 207 | 234 | 1-3 || 270 | 305 | 0-4
19 | 24 24 82 95 0-1 145 | 165 1-2 208 | 236 | 0-2 271 | 307 | 0-3
20 | 25 | 0-1 83 96 | 0-1 146 | 166 | 1-2 209 | 237 | 0-2 || 272 | 308 | 0-3
21 | 26 | 0-1 84 97 | 0-1 147 | 167 | 1-2 210 | 238 | 0-2 || 273 | 309 | 0-3
22 | 27 | 0-1 85 98 0-1 148 | 168 1-2 211 | 239 | 0-2 274 | 310 | 0-4
23 | 28 | O0-1 86 99 0-1 149 | 169 1-2 212 | 240 | 0-2 275 | 311 | 04
24 | 29 | 0-1 87 100 | O-1 150 | 170 1-2 213 | 241 | 0-2 276 | 312 | 0-4
25 | 30 31 88 101 | 0-1 151 171 1-2 214 | 242 | 1-2 277 | 313 | 04
26 | 31 32 89 102 | 0-2 152 | 172 1-2 215 | 243 | 1-2 278 | 314 | 0-4
27 | 32 | 33 90 | 103 | 0-2 || 153 | 173 | 1-3 216 | 244 | 1-2 || 279 | 315 | 0-4
28 | 34 | 34 91 105 | 0-1 154 | 175 | 1-2 217 | 246 | 1-3 || 280 | 317 | 0-3
29 | 35 35 92 106 | 0-1 155 | 176 1-2 218 | 247 | 1-3 281 | 318 | 0-3
30 | 36 | 36 93 | 107 | 0-1 156 | 177 | 1-2 219 | 248 | 1-3 || 282 | 319 | 0-3
31 | 37 | 0-1 94 | 108 | 0-1 157 | 178 | 1-2 220 | 249 | 1-3 || 283 | 320 | 0-3
32 | 38 | 0-1 95 | 109 | 0-2 || 158 | 179 | 1-2 221 | 250 | 1-3 || 284 | 321 | 0-3
33 | 39 | 40 96 110 | 0-2 159 | 180 | 1-3 222 | 251 | 1-3 || 285 | 322 | 0-3
34 | 40 | 41 97 | 111 | 0-2 || 160 | 181 | 1-3 223 | 252 | 1-3 || 286 | 323 | 0-3
35 | 41 1-2 98 112 | 0-2 161 182 1-3 224 | 253 | 1-3 287 | 324 | 0-3
36 | 42 | 1-2 99 113 | 0-2 162 | 183 1-3 225 | 254 | 1-3 288 | 325 | 0-3
37 | 44 | O-1 100 | 115 | O-1 163 | 186 0-2 226 | 256 | 1-3 289 | 327 | 14
38 | 45 | 0-1 101 | 116 | 0-1 164 | 187 | 0-2 227 | 257 | 1-3 || 290 | 328 | 1-4
39 | 46 | O-1 102 | 117 | O-1 165 | 188 0-2 228 | 258 | 1-3 291 | 329 | 14
40 | 47 | 0-1 103 | 118 | 0-2 || 166 | 189 | 0-2 229 | 259 | 1-3 || 292 | 330 | 14
41 | 48 | 0-2 || 104 | 119 | 0-2 167 | 190 | 0-2 230 | 260 | 1-3 || 293 | 331 | 14
42 | 49 | 0-2 105 | 120 | 0-2 168 | 191 0-2 231 | 261 | 14 294 | 332 | 14
43 | 50 | 1-2 106 | 121 | 0-2 169 | 192 0-2 232 | 262 | 14 295 | 333 | 14
44 | 51 | 1-2 107 | 122 | 0-2 170 | 193 0-2 233 | 263 | 14 296 | 334 | 14
45 | 52 | 1-2 108 | 123 | 0-2 171 194 | 0-2 234 | 264 | 14 297 | 335 | 14
46 | 54 | 0-1 109 | 125 | 0-2 172 | 196 | 0-1 235 | 266 | 1-3 || 298 | 337 | 14
47 | 55 | 0-1 110 | 126 | 0-2 173 | 197 | O-1 236 | 267 | 1-3 299 | 338 | 14
48 | 56 | 0-1 111 | 127 | 0-2 || 174 | 198 | 0-1 237 | 268 | 1-3 || 300 | 339 | 14
49 | 57 58 112 | 128 | 0-2 175 | 199 0-1 238 | 269 | 1-3 301 | 340 | 14
50 | 58 | 1-2 || 113 | 129 | 0-2 || 176 | 200 | O-1 239 | 270 | 1-3 || 302 | 341 | 1-4
51 | 59 | 1-2 || 114 | 130 | 0-2 177 | 201 | 0-1 240 | 271 | 1-3 || 303 | 342 | 1-5
52 | 60 | 1-2 115 | 131 | 0-3 178 | 202 0-1 241 | 272 | 14 304 | 343 | 1-5
53 | 61 | 1-2 || 116 | 132 | 0-3 || 179 | 203 | 0-1 242 | 273 | 1-4 || 305 | 344 | 1-5
54 | 62 | 1-2 || 117 | 133 | 0-3 || 180 | 204 | O-1 243 | 274 | 1-4 || 306 | 345 | 1-5
55 | 64 | 0-1 118 | 135 | 0-2 || 181 | 206 | 0-2 244 | 277 | 0-2 || 307 | 347 | 14
56 | 65 | 0-1 119 | 136 | 0-2 182 | 207 | 0-2 245 | 278 | 0-2 || 308 | 348 | 14
57 | 66 | 0-1 120 | 137 | 0-2 || 183 | 208 | 0-2 246 | 279 | 0-2 || 309 | 349 | 14
58 | 67 | 68 121 | 138 | 0-2 || 184 | 209 | 0-2 247 | 280 | 0-2 || 310 | 350 | 14
59 | 68 69 122 | 139 | 0-3 185 | 210 0-2 248 | 281 | 0-2 311 | 351 1-4
60 | 69 | 70 123 | 140 | 0-3 || 186 | 211 | 0-2 249 | 282 | 0-2 || 312 | 352 | 14
61 | 70 | 71 124 | 141 | 0-3 || 187 | 212 | 0-2 250 | 283 | 0-2 || 313 | 353 | 14
62 | 71 72 125 | 142 | 1-3 188 | 213 0-2 251 | 284 | 0-2 314 | 354 | 14
63 | 72 | 73 126 | 143 | 1-3 || 189 | 214 | 0-3 252 | 285 | 0-2 || 315 | 355 | 14
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Table 2 (continued)

d g n d g n d g n d g n d g n
316 | 357 | 1-3 || 379 | 428 | 1-4 || 442 | 499 | 1-3 || 505 | 570 | 0-2 568 | 641 | 641
317 | 358 | 1-3 || 380 | 429 | 1-4 || 443 | 500 | 1-3 || 506 | 571 | 0-2 569 | 642 | 642
318 | 359 | 1-3 || 381 | 430 | 1-4 || 444 | 501 | 1-3 || 507 | 572 | 0-2 570 | 643 | 643
319 | 360 | 1-3 382 | 431 1-4 445 | 502 | 1-3 508 | 573 | 0-2 571 | 644 | 644
320 | 361 | 1-3 || 383 | 432 | 1-4 || 446 | 503 | 1-3 || 509 | 574 | 0-2 572 | 645 | 645
321 | 362 | 1-3 384 | 433 | 14 447 | 504 | 1-3 510 | 575 0-2 573 | 646 | 646
322 | 363 | 1-3 || 385 | 434 | 1-4 || 448 | 505 | 1-3 || 511 | 576 | 0-2 574 | 647 | 647
323 | 364 | 1-3 || 386 | 435 | 1-4 || 449 | 506 | 1-3 || 512 | 577 | 1-2 575 | 648 | 648
324 | 365 | 1-3 || 387 | 436 | 1-4 || 450 | 507 | 1-3 || 513 | 578 | 1-2 576 | 649 | 649
325 | 368 | 0-3 || 388 | 438 | 1-3 || 451 | 509 | 1-3 || 514 | 580 | 1-2 577 | 651 | 0O-1
326 | 369 | 0-3 || 389 | 439 | 1-3 || 452 | 510 | 1-3 || 515 | 581 | 1-2 578 | 652 | 0-1
327 | 370 | 0-3 || 390 | 440 | 1-3 || 453 | 511 | 1-3 || 516 | 582 | 1-2 579 | 653 | 0-1
328 | 371 | 0-3 || 391 | 441 | 1-4 || 454 | 512 | 1-3 || 517 | 583 | 1-2 580 | 654 | 0-1
320 | 372 | 0-3 || 392 | 442 | 1-4 || 455 | 513 | 1-3 || 518 | 584 | 1-2 581 | 655 | 0-1
330 | 373 | 0-3 || 393 | 443 | 1-4 || 456 | 514 | 1-3 || 519 | 585 | 1-2 582 | 656 | 0-1
331 | 374 | 0-3 394 | 444 | 14 457 | 515 | 1-3 520 | 586 1-2 583 | 657 | 0-1
332 | 375 | 0-3 || 395 | 445 | 1-4 || 458 | 516 | 1-3 || 521 | 587 | 1-2 584 | 658 | 0-1
333 | 376 | 0-4 || 396 | 446 | 1-4 || 459 | 517 | 1-3 || 522 | 588 | 1-2 585 | 659 | 660
334 | 378 | 0-4 || 397 | 448 | 1-4 || 460 | 519 | 1-3 || 523 | 590 | 1-2 586 | 661 | 0-1
335 | 379 | 0-4 || 398 | 449 | 1-4 || 461 | 520 | 1-3 || 524 | 591 | 1-2 587 | 662 | 0-1
336 | 380 | 0-4 || 399 | 450 | 1-4 || 462 | 521 | 1-3 || 525 | 592 | 1-2 588 | 663 | 0-1
337 | 381 | 0-4 || 400 | 451 | 1-4 || 463 | 522 | 1-3 || 526 | 593 | 1-2 589 | 664 | 0-1
338 | 382 | 0-4 || 401 | 452 | 1-4 || 464 | 523 | 1-3 || 527 | 594 | 1-2 590 | 665 | 0-1
339 | 383 | 0-4 || 402 | 453 | 1-4 || 465 | 524 | 1-3 || 528 | 595 | 1-2 591 | 666 | 0-1
340 | 384 | 0-4 || 403 | 454 | 1-4 || 466 | 525 | 1-3 || 529 | 596 | 1-2 592 | 667 | 668
341 | 385 | 0-4 404 | 455 | 14 467 | 526 | 1-3 530 | 597 1-2 593 | 668 | 669
342 | 386 | 0-4 || 405 | 456 | 1-4 || 468 | 527 | 1-3 || 531 | 598 | 1-2 594 | 669 | 670
343 | 388 | 0-4 || 406 | 459 | 0-3 || 469 | 529 | 1-3 || 532 | 600 | 1-2 595 | 671 | 0-1
344 | 389 | 0-4 407 | 460 | 0-3 470 | 530 | 1-3 533 | 601 1-2 596 | 672 0-1
345 | 390 | 0-4 || 408 | 461 | 0-3 || 471 | 531 | 1-3 || 534 | 602 | 1-2 597 | 673 | 0-1
346 | 391 | 0-4 || 409 | 462 | 0-3 || 472 | 532 | 1-3 || 535 | 603 | 1-2 598 | 674 | 0-1
347 | 392 | 0-4 || 410 | 463 | 0-3 || 473 | 533 | 1-3 || 536 | 604 | 1-2 599 | 675 | 0-1
348 | 393 | 0-4 || 411 | 464 | 0-3 || 474 | 534 | 1-3 || 537 | 605 | 1-2 600 | 676 | 0-1
349 | 394 | 0-4 || 412 | 465 | 0-3 || 475 | 535 | 1-3 || 538 | 606 | 1-2 601 | 677 | 678
350 | 395 | 0-4 || 413 | 466 | 0-3 || 476 | 536 | 1-3 || 539 | 607 | 1-2 602 | 678 | 679
351 | 396 | 0-4 414 | 467 | 0-3 477 | 537 | 1-3 540 | 608 1-2 603 | 679 | 680
352 | 398 | 0-3 || 415 | 469 | 0-3 || 478 | 539 | 1-3 || 541 | 610 | 1-2 604 | 681 | O-1
353 | 399 | 0-3 || 416 | 470 | 0-3 || 479 | 540 | 1-3 || 542 | 611 | 1-2 605 | 682 | 0-1
354 | 400 | 0-3 417 | 471 | 0-3 480 | 541 1-3 543 | 612 1-2 606 | 683 0-1
355 | 401 | 0-3 || 418 | 472 | 0-3 || 481 | 542 | 1-3 || 544 | 613 | 1-2 607 | 684 | 0-1
356 | 402 | 0-3 || 419 | 473 | 0-3 || 482 | 543 | 1-3 || 545 | 614 | 1-2 608 | 685 | 0-1
357 | 403 | 0-3 || 420 | 474 | 0-3 || 483 | 544 | 1-3 || 546 | 615 | 1-2 609 | 686 | 0-1
358 | 404 | 0-3 || 421 | 475 | 0-3 || 484 | 545 | 1-3 || 547 | 616 | 1-2 610 | 687 | 688
359 | 405 | 0-3 || 422 | 476 | 0-3 || 485 | 546 | 1-3 || 548 | 617 | 1-2 611 | 688 | 689
360 | 406 | 0-3 || 423 | 477 | 0-3 || 486 | 547 | 1-3 || 549 | 618 | 1-2 612 | 689 | 690
361 | 408 | 0-2 || 424 | 479 | 0-3 || 487 | 550 | 0-2 || 550 | 620 | 1-2 613 | 691 | 0-1
362 | 409 | 0-2 || 425 | 480 | 0-3 || 488 | 551 | 0-2 || 551 | 621 | 1-2 614 | 692 | 0-1
363 | 410 | 0-2 || 426 | 481 | 0-3 || 489 | 552 | 0-2 || 552 | 622 | 1-2 615 | 693 | 0-1
364 | 411 | 0-2 427 | 482 | 0-3 490 | 553 | 0-2 553 | 623 1-2 616 | 694 | 0-1
365 | 412 | 0-2 || 428 | 483 | 0-3 || 491 | 554 | 0-2 || 554 | 624 | 1-2 617 | 695 | 696
366 | 413 | 0-2 || 429 | 484 | 0-3 || 492 | 555 | 0-2 || 555 | 625 | 1-2 618 | 696 | 697
367 | 414 | 1-2 || 430 | 485 | 0-3 || 493 | 556 | 0-2 || 556 | 626 | 1-2 619 | 697 | 698
368 | 415 | 1-2 || 431 | 486 | 0-3 || 494 | 557 | 0-2 || 557 | 627 | 1-2 620 | 698 | 699
369 | 416 | 1-2 || 432 | 487 | 0-3 || 495 | 558 | 0-2 || 558 | 628 | 1-2 621 | 699 | 700
370 | 418 | 1-4 || 433 | 489 | 1-3 || 496 | 560 | 0-2 || 559 | 630 | 631 || 622 | 701 | 702
371 | 419 | 1-4 || 434 | 490 | 1-3 || 497 | 561 | 0-2 || 560 | 631 | 632 || 623 | 702 | 703
372 | 420 | 1-4 || 435 | 491 | 1-3 || 498 | 562 | 0-2 || 561 | 632 | 633 || 624 | 703 | 704
373 | 421 | 1-4 || 436 | 492 | 1-3 || 499 | 563 | 0-2 || 562 | 633 | 634 || 625 | 704 | 705
374 | 422 | 14 437 | 493 | 1-3 500 | 564 | 0-2 563 | 634 1-2 626 | 705 | 706
375 | 423 | 1-4 || 438 | 494 | 1-3 || 501 | 565 | 0-2 || 564 | 635 | 1-2 627 | 706 | 707
376 | 424 | 1-4 || 439 | 495 | 1-3 || 502 | 566 | 0-2 || 565 | 636 | 1-2 628 | 707 | 708
377 | 425 | 1-4 || 440 | 496 | 1-3 || 503 | 567 | 0-2 || 566 | 637 | 1-2 629 | 708 | 709
378 | 426 | 1-4 || 441 | 497 | 1-3 || 504 | 568 | 0-2 || 567 | 638 | 1-2 630 | 709 | 710

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(1) (2017), #P1.50

25



Table 2 (continued)

d g n d g n d g n d g n d g n
631 | 711 | 712 || 856 | 965 0-1 919 | 1036 0-1 982 | 1107 | 1107 || 1045 | 1177 | 1178
632 | 712 | 713 || 857 | 966 0-1 920 | 1037 0-1 983 | 1108 | 1108 || 1046 | 1178 | 1179
633 | 713 | 714 || 858 | 967 0-1 921 | 1038 0-1 984 | 1109 | 1109 || 1047 | 1179 | 1180
634 | 714 | 715 859 968 0-1 922 | 1039 0-1 985 1110 | 1110 1048 | 1180 | 1181
635 | 715 | 716 || 860 | 969 0-1 923 | 1040 0-1 986 | 1111 | 1111 1049 | 1181 | 1182
636 | 716 | 717 861 970 0-1 924 | 1041 0-1 987 1112 | 1112 1050 | 1182 | 1183
637 | 717 | 718 || 862 | 971 0-1 925 | 1042 0-1 988 | 1113 | 1113 || 1051 | 1183 | 1184
638 | 718 | 719 || 863 | 972 0-1 926 | 1043 0-1 989 | 1114 | 1114 || 1052 | 1184 | 1185
639 | 719 | 720 || 864 | 973 0-1 927 | 1044 0-1 990 | 1115 | 1115 || 1053 | 1185 | 1186
802 | 904 | 0-1 865 | 975 0-1 928 | 1046 0-1 991 1117 | 1117 || 1054 | 1188 | 1188
803 | 905 | 0-1 866 | 976 0-1 929 | 1047 | 0-1 992 | 1118 | 1118 || 1055 | 1189 | 1189
804 | 906 | O-1 867 | 977 0-1 930 | 1048 0-1 993 | 1119 | 1119 || 1056 | 1190 | 1190
805 | 907 | 0-1 868 | 978 0-1 931 | 1049 0-1 994 | 1120 | 1120 || 1057 | 1191 | 1191
806 | 908 | O-1 869 979 0-1 932 | 1050 0-1 995 1121 1121 1058 | 1192 | 1192
807 | 909 | 0-1 870 | 980 0-1 933 | 1051 0-1 996 | 1122 | 1122 || 1059 | 1193 | 1193
808 | 910 | 0-1 871 981 0-1 934 | 1052 0-1 997 1123 | 1123 1060 | 1194 | 1194
809 | 911 | 0-1 872 | 982 0-1 935 | 1053 0-1 998 | 1124 | 1124 || 1061 | 1195 | 1195
810 | 912 | 913 || 873 | 983 0-1 936 | 1054 0-1 999 | 1125 | 1125 1062 | 1196 | 1196
811 | 915 | 915 874 985 0-1 937 | 1056 0-1 1000 | 1127 0-1 1063 | 1198 | 1198
812 | 916 | 916 || 875 | 986 0-1 938 | 1057 | 0-1 1001 | 1128 0-1 1064 | 1199 | 1199
813 | 917 | 917 || 876 | 987 0-1 939 | 1058 0-1 1002 | 1129 0-1 1065 | 1200 | 1200
814 | 918 | 918 || 877 | 988 0-1 940 | 1059 0-1 1003 | 1130 0-1 1066 | 1201 | 1201
815 | 919 | 919 || 878 | 989 0-1 941 | 1060 0-1 1004 | 1131 0-1 1067 | 1202 | 1202
816 | 920 | 920 || 879 | 990 0-1 942 | 1061 0-1 1005 | 1132 0-1 1068 | 1203 | 1203
817 | 921 | 921 || 880 | 991 0-1 943 | 1062 0-1 1006 | 1133 0-1 1069 | 1204 | 1204
818 | 922 | 922 881 992 0-1 944 | 1063 0-1 1007 | 1134 0-1 1070 | 1205 | 1205
819 | 923 | 923 || 882 | 993 0-1 945 | 1064 0-1 1008 | 1135 0-1 1071 | 1206 | 1206
820 | 925 | 925 || 883 | 995 996 946 | 1066 0-1 1009 | 1137 0-1 1072 | 1208 | 1208
821 | 926 | 926 884 996 997 947 | 1067 0-1 1010 | 1138 0-1 1073 | 1209 | 1209
822 | 927 | 927 || 885 | 997 998 948 | 1068 0-1 1011 | 1139 0-1 1074 | 1210 | 1210
823 | 928 | 928 || 886 | 998 999 949 | 1069 0-1 1012 | 1140 0-1 1075 | 1211 | 1211
824 | 929 | 929 || 887 | 999 | 1000 || 950 | 1070 0-1 1013 | 1141 0-1 1076 | 1212 | 1212
825 | 930 | 930 || 888 | 1000 | 1001 || 951 | 1071 0-1 1014 | 1142 0-1 1077 | 1213 | 1213
826 | 931 | 931 || 889 | 1001 | 1002 || 952 | 1072 0-1 1015 | 1143 0-1 1078 | 1214 | 1214
827 | 932 | 932 || 890 | 1002 | 1003 || 953 | 1073 0-1 1016 | 1144 0-1 1079 | 1215 | 1215
828 | 933 | 933 891 1003 | 1004 954 | 1074 0-1 1017 | 1145 0-1 1080 | 1216 | 1216
829 | 935 | 935 892 | 1006 | 1006 955 | 1076 0-1 1018 | 1147 0-1 1081 1218 0-1
830 | 936 | 936 || 893 | 1007 | 1007 || 956 | 1077 | O-1 1019 | 1148 0-1 1082 | 1219 0-1
831 | 937 | 937 894 | 1008 | 1008 957 | 1078 0-1 1020 | 1149 0-1 1083 | 1220 0-1
832 | 938 | 938 || 895 | 1009 | 1009 || 958 | 1079 0-1 1021 | 1150 0-1 1084 | 1221 0-1
833 | 939 | 939 || 896 | 1010 | 1010 || 959 | 1080 0-1 1022 | 1151 0-1 1085 | 1222 0-1
834 | 940 | 940 || 897 | 1011 | 1011 || 960 | 1081 0-1 1023 | 1152 0-1 1086 | 1223 0-1
835 | 941 | 941 898 | 1012 | 1012 961 1082 0-1 1024 | 1153 0-1 1087 | 1224 0-1
836 | 942 | 942 || 899 | 1013 | 1013 || 962 | 1083 0-1 1025 | 1154 0-1 1088 | 1225 0-1
837 | 943 | 943 || 900 | 1014 | 1014 || 963 | 1084 0-1 1026 | 1155 0-1 1089 | 1226 0-1
838 | 945 | 0-1 901 | 1016 | 1016 || 964 | 1086 | 1087 || 1027 | 1157 0-1 1090 | 1228 0-1
839 | 946 | 0-1 902 | 1017 | 1017 || 965 | 1087 | 1088 || 1028 | 1158 0-1 1091 | 1229 0-1
840 | 947 | 0-1 903 | 1018 | 1018 || 966 | 1088 | 1089 || 1029 | 1159 0-1 1092 | 1230 0-1
841 | 948 | 0-1 904 | 1019 | 1019 967 | 1089 | 1090 1030 | 1160 0-1 1093 | 1231 0-1
842 | 949 | 0-1 905 | 1020 | 1020 || 968 | 1090 | 1091 1031 | 1161 0-1 1094 | 1232 0-1
843 | 950 | 0-1 906 | 1021 | 1021 || 969 | 1091 | 1092 || 1032 | 1162 0-1 1095 | 1233 0-1
844 | 951 | 0-1 907 | 1022 | 1022 || 970 | 1092 | 1093 || 1033 | 1163 0-1 1096 | 1234 0-1
845 | 952 | 0-1 908 | 1023 | 1023 || 971 | 1093 | 1094 || 1034 | 1164 0-1 1097 | 1235 0-1
846 | 953 | 0-1 909 | 1024 | 1024 || 972 | 1094 | 1095 || 1035 | 1165 0-1 1098 | 1236 0-1
847 | 955 | 0-1 910 | 1026 | 1026 || 973 | 1097 | 1097 || 1036 | 1167 | 1168 || 1099 | 1238 0-1
848 | 956 | 0-1 911 | 1027 | 1027 || 974 | 1098 | 1098 || 1037 | 1168 | 1169 || 1100 | 1239 0-1
849 | 957 | 0-1 912 | 1028 | 1028 || 975 | 1099 | 1099 || 1038 | 1169 | 1170 || 1101 | 1240 0-1
850 | 958 | 0-1 913 | 1029 | 1029 || 976 | 1100 | 1100 || 1039 | 1170 | 1171 1102 | 1241 0-1
851 | 959 | 0-1 914 | 1030 | 1030 977 | 1101 1101 1040 | 1171 1172 1103 | 1242 0-1
852 | 960 | 0-1 915 | 1031 | 1031 978 | 1102 | 1102 1041 | 1172 | 1173 1104 | 1243 0-1
853 | 961 | 0-1 916 | 1032 | 1032 || 979 | 1103 | 1103 || 1042 | 1173 | 1174 || 1105 | 1244 0-1
854 | 962 | 0-1 917 | 1033 | 1033 || 980 | 1104 | 1104 || 1043 | 1174 | 1175 || 1106 | 1245 0-1
855 | 963 | 0-1 918 | 1034 | 1034 || 981 | 1105 | 1105 || 1044 | 1175 | 1176 || 1107 | 1246 0-1
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Table 2 (continued)

d g n d g n

1108 | 1248 | 1249 1171 | 1319 0-1
1109 | 1249 | 1250 1172 | 1320 0-1
1110 | 1250 | 1251 1173 | 1321 0-1
1111 | 1251 | 1252 1174 | 1322 0-1
1112 | 1252 | 1253 1175 | 1323 0-1
1113 | 1253 | 1254 1176 | 1324 0-1
1114 | 1254 | 1255 1177 | 1325 0-1
1115 | 1255 | 1256 1178 | 1326 0-1
1116 | 1256 | 1257 1179 | 1327 0-1

1117 | 1258 | 1259 1180 | 1329 0-1
1118 | 1259 | 1260 1181 | 1330 0-1
1119 | 1260 | 1261 1182 | 1331 0-1
1120 | 1261 | 1262 1183 | 1332 0-1
1121 | 1262 | 1263 1184 | 1333 0-1
1122 | 1263 | 1264 1185 | 1334 0-1
1123 | 1264 | 1265 1186 | 1335 0-1
1124 | 1265 | 1266 1187 | 1336 0-1
1125 | 1266 | 1267 1188 | 1337 0-1

1126 | 1268 | 1269 1189 | 1339 | 1340
1127 | 1269 | 1270 1190 | 1340 | 1341
1128 | 1270 | 1271 1191 | 1341 | 1342
1129 | 1271 | 1272 1192 | 1342 | 1343
1130 | 1272 | 1273 1193 | 1343 | 1344
1131 | 1273 | 1274 1194 | 1344 | 1345
1132 | 1274 | 1275 1195 | 1345 | 1346
1133 | 1275 | 1276 1196 | 1346 | 1347
1134 | 1276 | 1277 1197 | 1347 | 1348

1135 | 1279 | 1279 1198 | 1349 | 1350
1136 | 1280 | 1280 1199 | 1350 | 1351
1137 | 1281 | 1281 1200 | 1351 | 1352
1138 | 1282 | 1282 1201 | 1352 | 1353
1139 | 1283 | 1283 1202 | 1353 | 1354
1140 | 1284 | 1284 1203 | 1354 | 1355
1141 | 1285 | 1285 1204 | 1355 | 1356
1142 | 1286 | 1286 1205 | 1356 | 1357
1143 | 1287 | 1287 1206 | 1357 | 1358

1144 | 1289 | 1289 1207 | 1359 | 1360
1145 | 1290 | 1290 1208 | 1360 | 1361
1146 | 1291 | 1291 1209 | 1361 | 1362
1147 | 1292 | 1292 1210 | 1362 | 1363
1148 | 1293 | 1293 1211 | 1363 | 1364
1149 | 1294 | 1294 1212 | 1364 | 1365
1150 | 1295 | 1295 1213 | 1365 | 1366
1151 | 1296 | 1296 1214 | 1366 | 1367
1152 | 1297 | 1297 1215 | 1367 | 1368

1153 | 1299 0-1
1154 | 1300 0-1
1155 | 1301 0-1
1156 | 1302 0-1
1157 | 1303 0-1
1158 | 1304 0-1
1159 | 1305 0-1
1160 | 1306 0-1
1161 | 1307 0-1

1162 | 1309 0-1
1163 | 1310 0-1
1164 | 1311 0-1
1165 | 1312 0-1
1166 | 1313 0-1

1167 | 1314 0-1
1168 | 1315 0-1
1169 | 1316 0-1
1170 | 1317 0-1
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