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Abstract

We give three constructions of a vertex-minimal triangulation of 4-dimensional
real projective space RP4. The first construction describes a 4-dimensional sphere
on 32 vertices, which is a double cover of a triangulated RP4 and has a large amount
of symmetry. The second and third constructions illustrate approaches to improving
the known number of vertices needed to triangulate n-dimensional real projective
space. All three constructions deliver the same combinatorial manifold, which is
also the same as the only known 16-vertex triangulation of RP4. We also give a
short, simple construction of the 22-point Witt design, which is closely related to
the complex we construct.

1 Introduction

How many vertices does it take to (simplicially) triangulate real projective n-space, RPn?
It is well known that the answer is 6 when n = 2, with the triangulation realized as the an-
tipodal quotient of the icosahedron. In 1969, D.W. Walkup proved that a vertex-minimal
triangulation of RP3 requires 11 vertices, and described all such triangulations [20]. P.
Arnoux and A. Marin, in 1991, proved that the minimum number of vertices needed to
triangulate RPn, n > 3, is at least

(
n+2
2

)
+ 1 [1].

In 1987, W. Kühnel gave a triangulation of RPn using 2n+1 − 1 vertices, which takes
the barycentric subdivision of the boundary of the n + 1-simplex and quotients it by an
antipodal map [13]. The Kühnel construction gives the smallest known explicit triangula-
tions of RPn for n > 5. For a survey of these and other results on minimal triangulations,
and also all relevant definitions, see [7].

The BISTELLAR program of F.H. Lutz uses a heuristic search algorithm to reduce the
f -vector of a given complex using bistellar flips [3, 15]. Among the several combinatorial
manifolds found by this program was a 16-vertex triangulation of RP4, called RP4

16 [15,
p.77]. This complex was obtained by applying the BISTELLAR program to the 31-vertex
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RP4 due to Kühnel. The automorphism group of this particular triangulation was also
computed in [15, p.77], and was found to be S6, which acts on the 16-element vertex set
by splitting it into orbits of size 6 and 10, and on the set of 150 facets by splitting it into
orbits of size 30 and 120. No other triangulation of RP4 on 16 vertices is known. Apart
from the information described above, there does not seem to be anything else known
about a 16-vertex RP4 in the literature. We believe that this extremal object exhibiting
such a high degree of symmetry deserves to be better understood, both for its own sake
and for furthering our understanding of the general problem of triangulating RPn.

We present three constructions of a triangulated RP4 on 16 vertices, all of which
turn out to be isomorphic to RP4

16, and make some observations about the remarkable
combinatorial structure of this complex.

Construction 1 describes RP4
16 as the quotient of a triangulated 4-sphere on 32 vertices.

In order for such a construction to be possible, the S4 we construct needs to be antipodal.
We say that a simplicial complex K is antipodal if it is invariant under an involution σ
such that the (graph) distance between vertices v and σ(v) in the 1-skeleton of K is at
least 3. In particular, the links of v and σ(v) are disjoint, and isomorphic to the link of
v in the quotient complex K/〈σ〉, and we say that σ is link-separating on k. If K is a
combinatorial manifold, then it follows that K/〈σ〉 is also a combinatorial manifold. We
call σ the antipodal map. To be precise, when we refer to an antipodal complex, we are
implicitly refering to a pair (K, σ).

We also point out a connection between the triangulated RP4 of Construction 1, and
the Witt design on 22 points, W22. We note that the smaller orbit of the facets of RP4

16

under its automorphism group is closely related to a well known symmetric 2-design
or biplane on 16 points. Also, the partition of the vertex set into orbits suggests the
construction of a “dual” biplane by the introduction of six new points. The resulting
configuration can be extended to a 3-design on 22 points, with 77 blocks of size 6, of
which W22 is unique up to isomorphism.

Our construction of W22 is short and elementary, and does not seem to appear as such
in the literature. Nevertheless, no construction of an object so well understood can be
said to be entirely new, and ours has many features in common to two previously known
constructions, which we briefly note. We justify our choice to present our construction in
full detail, more for what it illuminates about RP4

16 and its automorphism group, than
for what it says about W22.

Construction 1, though it exposits the remarkable symmetries of RP4
16, seems to rely

on exceptional properties of the number 6, and is not a very encouraging as a model
for analogous constructions in higher dimensions. We give two more constructions which
are more promising in this direction. These constructions view RP4 as a 4-dimensional
ball with antipodal simplices on its boundary identified. We start with a suitable convex
4-polytope, and place it inside its dual, and triangulate the regions thus formed, till we
get a 3-sphere on the boundary, which we can glue to itself to give an RP4. Our second
and third constructions follow this strategy, starting from a 16-cell and a suspended cube
respectively. We also describe a way of looking at Walkup’s RP3

11 and even RP2
6 as 3 and

2-dimensional analogues of our constructions. Both these constructions give the same
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complex as the first. A simple observation about the automorphism groups of these
complexes allows us to identify all three constructions with each other. This supports the
conjectured uniqueness of RP4

16 as the vertex-minimal triangulation of RP4.

2 First construction and combinatorial properties

We construct RP4
16 by starting with the standard 4-sphere and constructing an antipodal

S4 on 32 vertices, by successive transformations.

Construction 1. Let ∆5 denote the standard 5-simplex in R6. Let i, where 1 6 i 6 6,
denote ei, the ith elementary vector. The set V1 = {i|1 6 i 6 6} is the vertex set of ∆5.
The boundary of ∆5 is a triangulated 4-sphere on these six vertices, and each of its facets
is a 4-simplex containing five elements of V1. Call this complex X6.

Let 1 =
∑6

i=1 i. Then the barycenter of the facet ∆i with vertex set V1 \ i of X6 is the
point ī = 1

5
(1 − i) ∈ R6, where 1 6 i 6 6. Call the set of these points V5. Introducing

these points allows us to subdivide each facet of X6 as the union of five 4-simplices, by
replacing ∆i with the cone over each of its tetrahedra at the point ī. This gives a 12-vertex
triangulated S4 with vertex set V1 ∪ V5. The facets of this complex are all the 4-simplices
of the form [i, j, k, l, m̄], where m /∈ {i, j, k, l}. Call this complex X12.

Let V3 = {ijk = 1
3
(i + j + k)|1 6 i < j < k 6 6} denote the set of barycenters of the

triangles of ∆5. We use these points to further subdivide each facet of X4
12 in the following

way. The tetrahedron [i, j, k, l] of the facet [i, j, k, l, m̄] can be decomposed into eleven
tetrahedra. These are, from the outside in, six tetrahedra of the form [i, j, ijk, ijl] corre-
sponding to every pair of elements of {i, j, k, l}, four tetrahedra of the form [i, ijk, ijl, ikl]
corresponding to every element of {i, j, k, l}, and the tetrahedron [ijk, ijl, ikl, jkl]. See
Figure 1 for an illustration of this subdivision. Here, ijk denotes ijk ∈ V3.

We take the join of m̄ with each of these tetrahedra to obtain a decomposition of the
facet. This gives us a triangulated S4 on 32 vertices, X32, with three kinds of facets,
containing two, three, and four vertices of V3 respectively. The vertex set V1 ∪ V3 ∪ V5 of
X32 suggests a natural choice of antipodal map, the one that swaps i with ī and ijk with
i′j′k′, where {i, j, k, i′, j′, k′} = {1, . . . , 6}.

In order to obtain an antipodal complex from X32, we need to transform the complex
to one that is invariant under the above map, and also separate antipodal vertices, till
they are far enough apart. We do this using bistellar flips.

In X32, any two vertices of V1 form an edge, but no two vertices of V5 do. Also, any
vertex in V1 is adjacent to any vertex in V5 other than its antipode. By separating each
of the edges within V1, we can reduce the asymmetry of the complex, and also increase
the distance between would-be antipodal pairs in V1 ∪ V5. To achieve this, first note that
each edge [i, j] is contained in four triangles of the form [i, j, k̄], corresponding to each
of its four neighbouring facets ∆k in X6. The link of [i, j, k̄] in X32 is the boundary of
the triangle [ijl, ijl′, ijl′′], where {i, j, k, l, l′, l′′} = {1, . . . , 6}, each edge of said triangle
corresponding to a tetrahedron containing [i, j] joined with k̄ in X12. Since any triangle
in X32 with vertices from V3 is obtained by subdividing a tetrahedron, a triangle of the
above type is not a face of X32.
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Figure 1: Tetrahedron subdivided by barycenters of its 2-faces

On the other hand, every triple of vertices of the form {ijl, ijl′, ijl′′)} is the vertex set
of the link of a unique triangle of the form [i, j, k̄], since i, j, k, l, l′, l′′ are all distinct. So
we can apply simultaneous bistellar flips to all triangles of the form [i, j, k̄], replacing the
facets of the form

[i, j, k̄] ∗ ∂[ijl, ijl′, ijl′′]

with the facets of the form
[ijl, ijl′, ijl′′] ∗ ∂[i, j, k̄].

After this round of flips, the link of [i, j] is the boundary of the tetrahedron

[ijl, ijl′, ijl′′, ijl′′′]

where i, j, l, l′, l′′, l′′′ are distinct, each face of said tetrahedron being one introduced in the
previous round of flips. As above, we can perform simultaneous bistellar flips to replace

[i, j] ∗ ∂[ijl, ijl′, ijl′′, ijl′′′]

with
[ijl, ijl′, ijl′′, ijl′′′] ∗ ∂[i, j]

The facets of the resulting complex are of four types (or two types under the action
of C2 × S6, where S6 permutes the axes of R6 and C2 is generated by the antipodal
involution):

[i, ijl, ijl′, ijl′′, ijl′′′]

(6× 5 = 30 in number),
[m̄, ijk, ijl, ikl, jkl]
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(i, j, k, l,m distinct, 30 in number),

[i, k̄, ijl, ijl′, ijl′′]

(i, j, k, l, l′, l′′ distinct, 6× 5× 4 = 120 in number),

[i, m̄, ijk, ijl, ikl]

(i, j, k, l,m distinct, 6× 5× 4 = 120 in number).
This complex, call it S4

32, is antipodal under the involution that takes i to ī and ijk to
1
3
1− i− j − k), and commutes with the S6 action induced from the permutations of V1.

This involution is link-separating on S4
32, and so quotients it to give a triangulated RP4

on 16 vertices.

If, in the above construction, we deform the 5-simplex to choose the elements of V3 and
V5 to be of the form i+ j + k and 1− i respectively, the antipodal map is just x 7→ 1− x
on V1 ∪ V3 ∪ V5, which also acts on the analogous geometric carrier of the complex above.
This gives a closer analogy to the usual geometric notion of the antipodal map on Sn.

It is clear from the above construction that the triangulated RP4 we constructed is
invariant under the action of S6 on {1, . . . , 6}. The action induced on the vertex set of
this complex splits the vertices into two orbits, of size 6 and 10, corresponding to the
quotients of V1 ∪ V5 and V3 respectively. We refer to this group of automorphisms as S̃,
and it splits the 150 facets of this complex into two orbits, of size 30 and 120.

A quick comparison of the orbit representatives shows that the complex we have
constructed is the same as the complex RP4

16 in [15, p.77], available at [16].
B. Datta [6] has also calculated using POLYMAKE [10] that if we take a 4-sphere and

choose points on it corresponding to a 5-simplex and the barycenters of its facets and
triangles, the convex hull of these points is a simplicial polytope whose boundary is S4

32.
Even though this construction fails to generalize to higher dimensions, this gives a direct
demonstration of the polytopality of S4

32, and it would be interesting to shed further light
on the effectiveness of this construction in four dimensions.

2.1 A connection to the Witt design on 22 points

A convenient mnemonic to represent the facets of RP4 in Construction 1 is as follows.
Label the vertices of the complete graph K6 with the points of the 6-vertex orbit under

S̃. Now the remaining ten vertices correspond to the ten pairs of disjoint triangles, or
bisections, in K6. We use these points to label the edges of K6 as follows. Each edge is
contained in four triangles, each of which is in turn contained in exactly one bisection.
Give each edge a label consisting of the four bisections it is contained in. Henceforth,
when we refer to K6, we mean the K6 labelled thus. We denote the set of elements of the
6-vertex orbit by {A, . . . , F}, and that of the 10-vertex orbit by {0, . . . , 9}. See Figure 2.

Now the small S̃-orbit of the set of facets can be read off Figure 2 as a vertex-edge
pair (v, e) of K6, where v ∈ {A, . . . , F} and e is an edge-label of size 4. The S̃-orbit of size
120 is given by a triple (v, v′, e(v, v′′) \ e(v, v′)), where v, v′, v′′ ∈ {A, . . . , F}, and e(u, v)
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Figure 2: K6 mnemonic for 16-vertex RP4

denotes the 4-label of the edge between u and v. The correspondence between the facets
of S4

32 listed above and the facets read off K6 above is straightforward.
It is fruitful to consider the properties of K6 and its labels, from the point of view of

combinatorial designs. Recall that a t -(v, k, λ) design D is a pair (V,B), where V is a set
of size v, whose elements are called points, and B is a set of k-subsets of V called blocks,
such that any t-subset of V is contained in exactly λ elements of B.

Let V (for vertices) denote the set {A, . . . , F}, and B (for bisections) denote the set
{0, . . . , 9}. Let E denote the set of fifteen edge-labels of K6.

Our first observation is that (B, E) is a 2 -(10, 4, 2) design. To see that this is a 2-
design with λ = 2, note that any pair of distinct bisections intersect in exactly two edges.
Note also that this design is quasi-symmetric, i.e., the intersections of any two blocks
have two possible sizes, namely 1 and 2. To see this, first note that the vertex-set of a
pair of adjacent edges in K6 forms a triangle, so it is contained in a unique bisection. So
the labels of these edges intersect in one element, the bisection containing the triangle
formed by their edges. Now if two edges are not adjacent, they are contained in exactly
two bisections, and their labels intersect in those two bisections.1 Also note that this
design naturally extends to a 2 -(16, 6, 2) design, with point-set V ∪ B, and block-set

Ẽ := {{u, v} ∪ e(u, v)|u, v ∈ V} ∪ {V}. This design is also symmetric, as the number of
blocks is the same as the number of points, and any two blocks intersect in λ = 2 points.

1 This also shows that S̃ is the full automorphism group of RP4
16. Counting the number of facets

containing each vertex in V and B, we see that the full automorphism group G preserves these orbits.
But if G > S̃ ' S6, then G can not act faithfully on V, so there exists g ∈ G \ S̃ which fixes each block of
E . Then g also fixes the intersections of these blocks, which implies g fixes B pointwise. A contradiction.
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Further, recall that a perfect matching or 1-factor of a graph is a partition (if it exists)
of its vertex set, into edges of the graph, and that being a complete graph on an even
number of vertices, K6 has perfect matchings, which we henceforth simply call matchings.
Every edge of K6 is contained in exactly three matchings. The number of matchings in
K6 is 6!

2!2!2!3!
= 15. The three pairwise disjoint edges in any matching have labels which

intersect pairwise in two elements of B each. But the bisections containing one pair of
disjoint edges do not contain the third of these edges. So the union of three elements of E
in a given matching is a subset of B of size 6. So we can label each matching by the four
elements of B not in the labels of any of its three edges. The set M (for matching) of
these 4-labels is the block set of another quasi-symmetric 2 -(10, 4, 2) design, whose blocks
intersect in one point if the corresponding matchings are disjoint and in two points if the
matchings intersect in an edge. To see that (B,M) is a 2-design, note that deleting a pair
of bisections from K6 leaves the disjoint union of an edge and a 4-cycle, which contains
exactly two matchings. Also, to see that the intersection sizes are 2 and 1, note that the
union of a pair of intersecting matchings is the disjoint union of an edge and a 4-cycle,
the complement of a pair of bisections, and that the union of two disjoint matchings is a
hexagon, whose complement in K6 contains exactly one bisection.

We introduce one final set of objects, the 1-factorizations of K6. Recall that a 1-
factorization of a graph is a partition of its edge-set, where each block in the partition is
a matching of the graph. The graph K6 has six 1-factorizations, which can be thought of
as 5-edge-colourings where the matchings are the colour-classes. We label these from the
set {U, V, . . . , Z} = F (for factorization).

It can also be seen that any matching is contained in exactly two 1-factorizations,
and that any two disjoint matchings determine a unique 1-factorization. Now since any
two 1-factorizations can have at most one matching in common, and there are fifteen
pairs of 1-factorizations, any two 1-factorizations, say f, g intersect in a unique matching
m(f, g). This gives an extension of the design (B,M) to a symmetric 2 -(16, 6, 2) design

(B ∪ F ,M̃), where M̃ = {{f, g} ∪m(f, g)|f, g ∈ F} ∪ {F}.
This can be represented by a “dual K6”, K∗6 with vertices labelled by F and edges

labelled by the elements of M, with m(f, g) labelling the edge joining f and g. Figure 3
illustrates the two copies of K6 with their edges labelled by the elements of B. Note that
the set B also indexes the bisections of K∗6 . This gives a correspondence between the
(3, 3)−partitions of V and those of F .

We note the following type of triple-incidence between the sets V ,B, and F . Given
any two bisections b, b′, each triangle in b intersects one triangle in b′ in an edge e. This
gives a partition of V into two edges and two points. The edges each correspond to
the intersections of two triangles, one from b and one from b′. The two points left over
determine a third edge disjoint from the other two. Moreover, this edge, as a 4-set in E
contains neither b nor b′. Also, since the pair b, b′ is contained in the labels of the other
two edges, the 4-label inM of the 1-factor m composed of the three edges above is disjoint
from {b, b′}. Since e ∈ m, the 4-labels of e and m are disjoint.

Similarly, given an incident edge-1-factor pair (e,m), their 4-labels are disjoint, and
subtracting the union of these 4-labels from B leaves two bisections such that the triangles
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Figure 3: K6 and K∗6

of one intersects the triangles of the other in the two edges of f \ e. So we have a
correspondence between pairs of bisections and incident edge-1-factor pairs of K6.

We are now ready to describe the 22-point Witt design, the unique 3 -(22, 6, 1) design
first independently constructed by R.D. Carmichael and E. Witt in the 1930s [5, 21]. To be
accurate, we construct a 3 -(22, 6, 1) design, and make no claims as to its uniqueness. See,
for example, [18] for a proof of the uniqueness of W22, which relies on the embeddability

in it of a 16-point biplane, which can be seen to be isomorphic to either (V ∪ B, Ẽ) or

(B ∪ F ,M̃) described above. For our point set of W22, we take V ∪ B ∪ F . The blocks

are of three types. The first two sets of blocks are Ẽ and M̃, the block-sets of the two
2 -(16, 6, 2) designs we described earlier. The third set of blocks is obtained as follows.
For any incident edge-matching pair (e,m) in K6, let v, v′ ∈ V be the vertices that make
up e, and let f, f ′ ∈ F be the 1-factorizations that intersect in m. Let e and m be the
4-sets corresponding to e and m in E andM respectively. Now for each of the 45 incident
pairs (e,m), we take the block {v, v′, f, f ′} ∪ (B \ (e ∪ m)). Call the set of such blocks
EM.

Theorem 1. The pair (V ∪ B ∪ F , Ẽ ∪ M̃ ∪ EM) defined above is a 3 -(22, 6, 1) design.

Proof. There are 77 blocks, each of size 6. As there are 22 points, and since
(
22
3

)
= 77×

(
6
3

)
,

it is enough to show that every 3-subset of the point set appears in some block.
Consider the 3-subsets of V ∪ B ∪ F . As V and F are themselves blocks, any 3-

subset of either is in a block. There are
(
10
3

)
= 120 subsets of B of size 3. Consider

the 3-subsets of E or M. If we can show that no two sets of these forms have a 3-
subset in common, it will follow that there are 2 × 15 × 4 = 120 such sets, and that
every 3-subset of B is in exactly one block. Two elements of E intersect in at most
two points of B. Similarly, two elements of M intersect in at most two points of B.
Now consider the intersection of an element e ∈ E with m ∈ M. If the corresponding
edge and matching of K6 are incident, they do not intersect at all. Otherwise, the edge
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corresponding to e has its vertices in two (disjoint) edges of m, say uu′ and vv′ ⊂ V . (We
write a set as a string from here on, for convenience and brevity.) Now since the labels of
incident edges have one element in common, |e(u, v) ∩ e(u, u′)| = |e(u, v) ∩ e(v, v′)| = 1.
Also since u′ 6= v′, e(u, v) ∩ e(u, u′) 6= e(u, v) ∩ e(v, v′). Since the labels of the third
edge in the matching corresponding to m are contained in e(u, u′) ∪ e(v, v′), we have
|e ∩m| = |e ∩ (B \ (e(u, u′) ∪ e(v, v′)))| = 2. So all the 3-subsets of the 4-labels of edges
and matchings are distinct, and there are 120 such sets, so each 3-subset of B is in exactly
one block.

Now consider a 3-set consisting of two elements of V and one element of F , say vv′f .
Since f contains exactly one matching containing the edge vv′, this 3-set is contained in
exactly one block of EM. Similarly, given a 3-set of the form vff ′, the 1-factorizations
f and f ′ intersect in a unique matching, which is a partition of the vertex set of K6. So
vff ′ is in exactly one element of EM.

A 3-set of the form vv′b is of one of the following types. If b ∈ e(v, v′), then vv′b is

contained (again, in fact, exactly once) in a block of Ẽ . If b /∈ e(v, v′), then v, v′ are in
different triangles of b, and v, v′ together with the remaining edges of these triangles forms
a matching whose label does not contain b. So vv′b is contained in a block of EM.

Similarly, if b ∈ m(f, f ′), then ff ′b, is contained in exactly one block of M. If
b /∈ m(f, f ′), then it is an element of a 4-label of two of the edges in the matching m that
f and f ′ intersect in. Let e be the third edge of this matching. Then ff ′b is in the block
of EM corresponding to (e,m).

Now if a 3-set is of the form vbb′, we have two possibilities. Consider the two blocks of
E containing bb′. If v is in either of the corresponding edges of K6, then vbb′ is in Ẽ . The
two vertices not in either of these edges, form the third edge of the matching containing
the two edges whose labels contain bb′. So if v is on this edge, vbb′ is in a block of EM.
Similarly a 3-set of the form fbb′ is in a block of either M̃ or EM.

The only remaining type of 3-set is of the form vfb. These can only be contained in
blocks of EM. Now there are 45 blocks in EM, each corresponding to a pair of elements
in B. So each element b of B is in nine blocks of EM, corresponding to the nine edges
of K6 not labelled by b. Let v ∈ V and let the bisection of K6 corresponding to b be
vv′v′′, uu′u′′. Then v ∈ V is in three edges whose labels do not contain b, each of which
determine exactly one matching whose label does not contain b. All three matchings
intersect in the edge v′v′′. Since a 1-factorization is a partition of the edge set of K6,
no 1-factorization contains more than one of these matchings. So the pairs of 1-factors
which intersect to give each of these matchings partition the vertex set of K∗6 . In other
words, the two elements of F in each of the three blocks of EM containing a pair vb are
all distinct. So any triple vfb is in a block of EM. This completes the proof.

The arguments above also illustrate the duality between K6 and K∗6 . All properties
of the vertices and edges of K6 have analogues in its 1-factorizations and matchings, or
the vertices and edges of K∗6 . Applying the dual construction on K∗6 simply recovers K6.
Let S ′6 be the group of permutations of F induced by the permutation group S6 of V via
permutations of B. The actions of S6 and S ′6 on V and F respectively are dual or non-
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conjugate to each other, i.e., there is no one-to-one map between the elements of these two
sets which send either group to the other. Abstractly, any isomorphism between these two
sets corresponds to an outer automorphism of S6. See [4, Chapter 6] for a more thorough
treatment and several applications. In particular, we note that our construction of W22

has interesting parallels with the construction of the 5 -(12, 6, 1) Witt design on [4, p.86].
The reader familiar with the Witt designs and their automorphism groups will recog-

nise that our description of W22 can be recovered from its usual forms by fixing any pair of
its disjoint blocks and mapping it to (V ,F). The ten remaining points correspond exactly
to (3, 3)-partitions of V , and also of F .

We take this occasion to note early, if not original, appearances of the various objects
that feature in our construction in the literature. The remarkable duality between the
vertices and edges of K6 and its 1-factors and 1-factorizations was noted by J.J. Sylvester
in a paper from 1844, republished in [19]. The origins of the (isomorphism class of)
16-point biplanes are historic, and can be traced back to Kummer’s 166 configuration.
The combinatorial aspects of this configuration are studied in great depth in the classic
treatise of R.W.H.T. Hudson, [11, Sections 5,92,23,24,25,26]. The observation that the
actions of S6 and S ′6 on V and F respectively induce the same group of permutations on
the set B of bisections of K6 and K∗6 appears in [8].

We also point out some similarities and differences between our construction and two
earlier ones. In [17, Table 8.2], D.M. Mesner, at the time unaware of the preexistence of
W22 in the group theoretic literature, lists the blocks of a 3 -(22, 6, 1) design discovered by
empirical search. In his proof of the uniqueness of this design [17, Theorem 8.7], he notes
and relies on the facts that every block is disjoint from 16 other blocks, that every pair
of points is contained in five blocks, and that the possible intersection sizes of blocks are
0 or 2. These observations enable him to fix an initial block, list up to relabellings the
60 blocks that intersect the initial block, then show that the remaining 16 blocks disjoint
from the initial block are also fixed, noting that these are the blocks of a 2-design. See [12]
for a historical account and survey of these and further implications of Mesner’s work.

In [18], N.N. Roghelia and S.S. Sane, independently of Mesner, but familiar with the
work of Witt as expounded by H. Lüneberg [14], prove the existence and uniqueness of
W22 based on the classification of 16-point biplanes by the number of their ovals, or sets
of four points, no three of which are in a block. They show that the unique 16-point
biplane with 60 ovals is uniquely embeddable in W22, by way of the 2 -(16, 4, 3) design
with these ovals as blocks, and six new points. We also note that though Roghelia and
Sane’s construction refer to the complete graph K6, this graph is indexed by blocks, unlike
our K6.

We would like to think of the construction of Mesner as starting with 6 + 16 points
and constructing 1 + 60 + 16 blocks on them. Roghelia and Sane proceed in the opposite

2We would like to draw special attention to this section, which demonstrates, for any choice of bisection
b of K6, a correspondence between the set V∪B\{b} consisting of its vertices and the remaining bisections,
and the set of the edges of K6. When the 1-factors of K6 are added to both sets, the latter set corresponds
to the point-set of the 21-point projective plane Π4. The bisection b now corresponds to the one point
which is used to extend Π4 in the Witt-Lüneberg construction of W22.
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direction, starting with 16 + 6 points and constructing 16 + 60 + 1 blocks. Within this
point of view, our construction starts with 6 + 10 + 6 points and constructs 16 + 45 + 16
blocks on these. At the time of discovering our construction, this author was only aware of
the better known construction of W22 via the extension of the projective plane Π4, and as
embedded in the larger design W24. Despite some objects in our construction pre-existing
in the literature, we find our rather more unified view of W22, where two biplanes coexist,
mediated by the bisections of the dual pair of K6 and K∗6 , to be of some interest.

We also remark that the connection between the 16-vertex RP4 we constructed earlier
and the above 3-design is not simply restricted to the 2 -(16, 6, 2) design (V∪B, Ẽ). The S̃-
orbit of the facets of our RP4 split naturally into fifteen sets of size eight, each containing
a pair of vertices v, v′ in V . The closure of any of these 8-sets as facets, is the join of the
edge [v, v′] with its link in our RP4, an octahedron with vertices from B. Any octahedron
is determined by three pairs of opposite vertices on each “axis”, say b1b

′
1, b2b

′
2, b3b

′
3 in this

case. Then each of the 15 × 3 = 45 quadruples vv′bib
′
i, 1 6 i 6 3 is contained in a block

of EM.3 Also if we take the blocks of W22 and delete the elements of one block from
all the others, the remaining blocks split into a set of sixteen blocks of size 6, and sixty
blocks of size 4. The set B6 with sixteen blocks of size 6 form the block-set of a symmetric
2 -(16, 6, 2) design, which corresponds to the block-set Ẽ we started with. Now if we fix
a block B of B6, this further splits the set B4 of 4-sets into 15 sets that are disjoint from
it, (i.e., M), and 45 sets that intersect B in two points, in correspondence with EM. So
we can think of each block of W22 as sitting in the centre of a configuration of 16 copies
of RP4

16.

3 Further Constructions

It would be of interest to know if there is a general “algorithm” to construct minimal, or
even smaller-than-known triangulations of real projective spaces. Our first construction
of triangulated RP4, though short and straightforward, has some exceptional properties
which may well be the results of numerical coincidences, and do not offer much hope of
analogous constructions in higher dimensions. We provide two more ways of constructing
a 16-vertex RP4 which are easier to generalise.

Remark 2. It must be borne in mind here that even though our choice of notation in the
following constructions represents the vertices of n-dimensional complexes as points in
Rn, the objects we construct are purely abstract simplicial complexes, which we do not
need to view as embedded in RN for any N . Indeed, they most definitely do not embed in
Rn. Our choice of notation is motivated by ease of handling and conceptual visualization.

3.1 Constructions using cross-polytopes and hypercubes

We explore the possibility of constructing triangulated real projective n-space, RPn in the
following way. Take an n-dimensional cross-polytope and triangulate its interior, possibly

3These are also ovals of the biplane (V ∪ B, Ẽ) used in [18]. The remaining 15 ovals are the blocks of
the design (B,M).
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by adding an extra point 0. Say we denote the vertices of the cross-polytope Cn by the
vectors ±ei ∈ Rn, where ei is the ith elementary vector, 1 6 i 6 n.

Then we add 2n simplices of the form [ε1e1, ε2e2, . . . , εnen,
∑n

i=1 εiei], where ε =
(ε1, ε2, . . . , εn) ∈ {±1}n. Let qε denote

∑n
i=1 εiei, the new vertex in each of the above sim-

plices, and let Q = {qε|ε ∈ {±1}n}. The set of vertices in our complex is now V = C tQ,
where C is the vertex set of the triangulated Cn.

Now we consider subsimplices of ∂Cn going down in dimension, and triangulate the
links of each without adding any more vertices. We do this subject to the following
conditions. First, for every facet

[εi1ei1 , εi2ei2 , . . . , εikeik , qεj1 , qεj2 , . . . , qεjn−k+1 ]

in the complex, its “opposite” facet

[−εi1ei1 ,−εi2ei2 , . . . ,−εikeik , q−εj1 , q−εj2 , . . . , q−εjn−k+1 ]

is also in the complex. Second, no vertex qε in Q is joined to its “opposite” vertex
q−ε = −qε. In other words [qε, q−ε] is not an edge of the complex. Third, if a vertex
u ∈ V is joined to another vertex v ∈ V , i.e, if [u, v] is an edge of the complex, then
[u,−v] is not an edge of the complex. These conditions are equivalent to the existence of
a link-separating involution on the complex.

Our goal is to continue this till the boundary of the link of every vertex in C (with
two possible exceptions) is a triangulated 2n−1-vertex (n − 2)-sphere. We then apply
the identification map qε ∼ q−ε on Q, leaving us with 2n (or 2(n − 1)) suspended Sn−2.
We then triangulate the interiors of these (2n−1 + 2)-vertex (n − 1)-spheres, to get a
triangulation of RPn.

Example 3. It is easily seen that the paradigm outlined above can be used to construct
RP2

6 as follows. See Figure 4. We triangulate the square with vertices ±e1,±e2 by joining
+e1 with −e1, into triangles [e1,−e1, e2], [e1,−e1,−e2].

Next we add the triangles ±[e1, e2, e1+e2],±[e1,−e2, e1−e2]. The links of the vertices
±e1 are 5-vertex 1-spheres, and the links of ±e2 have boundaries ±{[e1 + e2], [−e1 + e2]}
respectively. Now we apply the map qε ∼ q−ε. We triangulate the 1-sphere contain-
ing ±e2 by adding the triangles [+e2,−e2, e1 + e2], [+e2,−e2, e1 − e2]. Since the link of
[+e1,−e1] is already a 0 sphere in our complex, we triangulate the remaining square as
[+e1, e1 + e2, e1 − e2], [−e1, e1 + e2, e1 − e2]. This gives us RP2

6.

Example 4. In order to construct RP3 by the same approach, start with the octahedron
C3 spanned by the points ±ei, where i = 1, 2, 3. We can triangulate the interior of the
octahedron by taking the cone over its boundary at the point 0. This gives us eight
tetrahedra of the form

[0, ε1e1, ε2e2, ε3e3].

The boundary of the octahedron consists of the eight triangles of the form [ε1e1, ε2e2, ε3e3],
where εi = ±1, 1 6 i 6 3. Now add a set Q of eight new “outer” vertices qε =

∑3
i=1 εiei

for each ε = (ε1, ε2, ε3) ∈ {±1}3, by taking the eight tetrahedra of the form

[ε1e1, ε2e2, ε3e3, ε1e1 + ε2e2 + ε3e3].
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e1−e1

e2

−e2

e1 + e2−e1 + e2

e1 − e2−e1 − e2
e2

Figure 4: RP2 triangulated with squares

0 ej−ej

ek

−ek

εiei

qεi++

qεi−+

qεi+−qεi−−

Figure 5: Neighbourhood of εiei in a 3-ball before quotienting.

The boundary of this complex is a triangulated S2 with f -vector [14, 36, 24].
Now consider the link of an edge of C3. The link of [εiei, εjej] is the path [εiei+εjej−

ek,−ek], [−ek,0], [0, ek], [ek, εiei + εjej + ek], where {i, j, k} = {1, 2, 3}. Its boundary
consists of the two points εiei + εjej ± ek. Close the boundary of [εiei, εjej] by adding
the tetrahedron

[εiei, εjej, εiei + εjej − ek, εiei + εjej + ek].

This gives twelve new tetrahedra, and the boundary of the new complex is still a trian-
gulated S2 with fourteen vertices. But the boundary of the link of a vertex εiei of C3 is
now the boundary of a square, whose vertices are all its neighbours in Q. See Figure 5
for an illustration of the neighbourhood of εiei. Also note that the subcomplex spanned
by Q is the set of edges of the 3-dimensional cube Q3.

We can now identify
∑3

i=1 εiei with the point −
∑3

i=1 εiei, and close the boundary of
the link of εiei by taking its cone at the point −εiei. That is, for each pair ±ei, we take
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the four tetrahedra

[εiei,−εiei,±ej + ek + εiei, ej + ek + εiei]

The link of the vertex εiei is now the triangulated 8-vertex S2 with facets

[0,±ej,±ek],±[ej, ek, ej + ek + εiei],±[ej,−ek, ej − ek + εiei],

[±ej, ej + ek + εiei, ej − ek + εiei], [ej + ek + εiei, ej − ek + εiei,−εiei]

The above complex is an 11-vertex triangulation of RP3. This complex is the same as the
minimal RP3

11 described by Walkup in [20], as the antipodal quotient of a 22-vertex S3.

We now tackle RP4.

Construction 2. We start with a 4-dimensional (solid) hyperoctahedron C4, given by
the convex hull of {±e1,±e2,±e3,±e4}. We triangulate C4 by joining the vertices +e1

and −e1. The resulting complex is a set of eight 4-simplices which can be visualized as
the join of the line segment [−e1,+e1] with the boundary of the octahedron spanned by
{±e2,±e3,±e4}.

The boundary of this triangulated C4 is just the boundary ∂C4 of C4, which is a
triangulated 3-sphere with f -vector [8, 24, 32, 16]. Now we take the cone over each of the 16
facets of this boundary with a different point. That is, for each facet [ε1e1, ε2e2, ε3e3, ε4e4]
of ∂C4, take the cone over this facet at the point qε =

∑4
i=1 εiei, where ε = (ε1, ε2, ε3, ε4) ∈

{±1}4. This gives sixteen such 4-simplices, and the boundary now has 24 vertices, 16 ×
4 + 24 = 88 edges, 16×

(
4
2

)
+ 32 = 128 triangles and 16× 4 = 64 tetrahedra. Denote this

triangulation of S3 by X(1).
Now consider the link of each triangle [εiei, εjej, εkek] of ∂C4 in X(1). These are of

two kinds. If 1 /∈ {i, j, k}, then the link of [εiei, εjej, εkek] is

[−e1 + εiei + εjej + εkek,−e1], [−e1,+e1], [+e1,+e1 + εiei + εjej + εkek].

Now suppose 1 ∈ {i, j, k}, then the link of the triangle is

[−el +
∑
i,j,k

εαeα,−el], [−el,−ε1e1], [−ε1e1,+el], [+el,+el +
∑
i,j,k

εαeα],

where l is the coordinate in {1, 2, 3, 4} \ {i, j, k}. In either case the endpoints of the
link of the triangle are the two points qε+l and qε−l corresponding to the two tetrahedra
containing it in C4.

We can now close the links of the triangle [εiei, εjej, εkek] by adding the 4-simplices

[εiei, εjej, εkek,
∑
i,j,k

εαeα − el,
∑
i,j,k

εαeα + el]

where {i, j, k, l} = {1, 2, 3, 4}. We have added 32 such 4-simplices, and the boundary of the
new complex is a triangulated S3 with 24 vertices, 88+32 = 120 edges, 128−32+(32×3) =
192 triangles, and 64 + 32 = 96 tetrahedra. Call the boundary X(2).
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el−el

ek

−ek

εiei + εjej + ek + elεiei + εjej + ek − el

εiei + εjej − ek + elεiei + εjej − ek − el

Figure 6: Antiprism in the link of [εiei, εjej] in X(2)

Observe now that the subcomplex spanned by the subset of vertices Q = {qε|ε ∈
{±1}4} is the 1-skeleton of a 4-dimensional hypercube, which is the dual of C4.

Now consider the links of the edges of C4. The link of the edge [εiei, εjej], when 1 /∈
{i, j} has eight vertices, namely ±ek,±e1, εiei + εjej ± ek± e1, where {i, j, k} = {2, 3, 4}.
These vertices can be seen as forming the corners of a 4-sided antiprism whose opposite
squares are (+e1,+ek,−e1,−ek) and (εiei + εjej + ek + e1, εiei + εjej + ek − e1, εiei +
εjej − ek − e1, εiei + εjej − ek + e1). All edges and triangles of this antiprism are faces
of X(2). The (cyclically ordered) square (+e1,+ek,−e1,−ek) is triangulated by the edge
[e1,−e1], and no triangle with vertices from the other square is a face of X(2). The link
of the edge [ε1e1, εjej] is almost the same, with the only difference being that the square
(+ek,+el,−ek,−el) is triangulated by taking the cone of its boundary at −ε1e1. See
Figure 6.

In either case, the boundary of the link of the edge [εiei, εjej] is the boundary of the
square

(εiei + εjej + ek + el, εiei + εjej + ek − el, εiei + εjej − ek − el, εiei + εjej − ek + el).

We triangulate each of these squares by joining one pair of non-adjacent vertices by a
diagonal. Prima facie, we seem to have some amount of choice in this situation. All we
have to ensure here is that if we introduce an edge [qε, qε′ ], then we also include the edge
[−qε,−qε′ ].

Recall that the 4-dimensional hypercube Q4 is bipartite, and any vertex-colouring
partitions the vertices {qε|ε ∈ {±1}4} into two sets,

Qe = {qε|ε ∈ {±1}4,
4∏
i=1

εi = +1} and Qo = {qε|ε ∈ {±1}4,
4∏
i=1

εi = −1}.

Also note that qε and −qε = q−ε are always in the same block of the partition. Also any
square in Q4 contains exactly two vertices from Qo and two from Qe.
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So we can triangulate each square with boundary

(εiei + εjej + ek + el, εiei + εjej + ek − el, εiei + εjej − ek − el, εiei + εjej − ek + el)

by joining its vertices in either of Qo or Qe by a diagonal.
But, since the link of [e1,−e1] is already a sphere, we need to triangulate the bound-

aries of the links of ±e1 “internally”. Additionally, this triangulation can not introduce a
diagonal through the interiors of either sphere, as any point u ∈ Q at (Hamming) distance
3 to a point v is at distance 1 to its antipode −v. There is one way of triangulating an
8-vertex 2-sphere with the given partial 1-skeleton without interior diagonals, i.e., the
triangulation of the solid cube into five tetrahedra. So we triangulate each square in the
link of ±e1 by joining the elements of say, Qo, by edges.

Now each element u of Qo is joined to three other elements v1, v2, v3 of Qo at distance
2 from it. The other three elements of Qo at distance 2 from u are −v1,−v2, and −v3.
So none of the elements of Qo can be joined when triangulating the remaining squares.
This forces us to triangulate the remaining squares by joining the vertices in Qe by an
edge. This is possible, since for each vertex of Qe, the three vertices at distance 2 from
it, which are across a square in the link of some [±e1,±ei], have been ruled out in the
previous step.

So for {i, j, k} = {2, 3, 4}, we replace the join of a line segment and the boundary of
a square in X(2), i.e,

[εiei, εjej] ∗ (∂[εiei + εjej + e1 + εiεjek, εiei + εjej − e1 − εiεjek]∗
∂[εiei + εjej − e1 + εiεjek, εiei + εjej + e1 − εiεjek]),

with the join of a new line segment with the boundary of another square, i.e,

[εiei + εjej + e1 + εiεjek, εiei + εjej − e1 − εiεjek] ∗ (∂[εiei, εjej]∗
∂[εiei + εjej − e1 + εiεjek, εiei + εjej + e1 − εiεjek])

So we are adding two 4-simplices for every edge in C4, 24× 2 = 48 in total. The f -vector
of the boundary remains [24, 120, 192, 96], the same as that of X(2). Call the boundary of
the current complex X(3).

Now consider the link of a vertex from C4 in X(3). The vertex-set of the link of εiei in
X(3) is the set of vertices of the hypercube Q4 whose ith co-ordinate is εi. These vertices
span a 3-dimensional cube, and the triangles of the link of εiei in X(3) are “halves” of
squares of Q4.

Now consider opposite pairs of vertices of C4. The boundaries of the links of +ei
and −ei are opposite (cubical) faces of Q4. Moreover, the map x 7→ −x swaps the
triangulations of these cubes. So the boundary of X3 is an antipodal S3.

In order to triangulate the link of εiei, 2 6 i 6 4, we could triangulate the interior
of the 8-vertex 2-sphere (or triangulated cube) described above by taking its cone at the
point −εiei. In other words, we take the join of the edge [±ei] with the 8-vertex S2 which
is now the link of both ei and −ei.
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This leaves the pair ±e1. The boundaries of the links of either vertex is an 8-vertex
S2, or the boundary of a cube triangulated by joining “every other vertex by an edge”. As
mentioned above, we triangulate the links of each vertex by splitting it into five tetrahedra,
the vertices of four of which have one element each of Qe and its three neighbouring
elements of Qe. The vertices of the fifth are four elements of Qo.

Now we apply the map x 7→ −x on Q. This gives a triangulated RP4 with 16 vertices.

We give one more way of triangulating RP4 with 16 vertices. Here we work with
polyhedral complexes instead of the usual simplicial complexes. Again, the idea is to
construct a 4-dimensional ball with antipodal boundary, then to quotient via a restriction
of the antipodal map. The description of the polyhedral complex used in this construction
sacrifices rigour in the service of intuition. See [2, Appendix A] for a more rigorous
treatment.

Construction 3. Start with a (solid, 3-dimensional) cube Q3, embedded in R4 with
vertices (±1,±1,±1, 0). Consider its suspension SQ3 at the points (0, 0, 0,±1). The
boundary of this object is a 3-dimensional polyhedral complex with ten vertices and
2× 6 = 12 (square-)pyramidal faces. The base of each of these pyramids is a face S(±i)
of the cube Q3 given by xi = ±1, x4 = 0, where 1 6 i 6 3. We avoid triangulating the
interior of SQ3 for the time being.

First, we construct a “dual” cell complex D outside SQ3 by adding faces of increasing
dimension, starting with points.

Corresponding to each face with base square S(±i) and apex (0, 0, 0, ε) of SQ3, (where
ε ∈ {±1}), take the point 3(σ1, σ2, σ3, ε), where σ = (σ1, σ2, σ3) is the vector in R3 taking
value ±i at the i-th coordinate and 0 elsewhere. So for example, the pyramid with apex
(0, 0, 0, 1) and base S(−2) gives the point (0,−3, 0, 3). Corresponding to each of the 12
faces of the boundary of the suspended cube, we get 12 points.

Now join each pair of points in D by an edge if the corresponding facets of SQ3

intersect in a triangle or square. This gives six edges corresponding to each square of Q3.
Additionally, SQ3 has 2× 12 = 24 triangles corresponding to each point in {(0, 0, 0,±1)}
and each edge of Q3. This gives 24 more edges.

Next, consider the edges of SQ3, of which there are 12 + 2×8. The twelve edges of Q3

give twelve rectangles in D, of which the long pair of edges corresponds to the squares of
Q3 which intersect in this edge, while the short pair corresponds to the two triangles of
SQ3 intersecting this edge. Each of the remaining sixteen edges has as endpoints a vertex
v of Q3 and a point in {(0, 0, 0,±1)}. Each such edge gives a triangle of D, whose edges
correspond to the three squares in Q3 intersecting in v.

Now for each of the 8 + 2 = 10 vertices of SQ3, we add a polyhedron to D. The
eight vertices of Q3 give triangular prisms, whose faces are the three rectangles in D
corresponding to the three edges intersecting in this vertex, and the two triangles corre-
sponding to the edges joining the vertex to each of (0, 0, 0,±1). Corresponding to either
of the vertices (0, 0, 0,±1), we have an octahedron whose faces correspond to the 8 edges
of SQ3 intersecting at the chosen vertex.
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(3, 0, 0, 3)(−3, 0, 0, 3)

(0, 3, 0, 3)

(0,−3, 0, 3)

(0, 0, 3, 3)

(0, 0,−3, 3)

(3, 0, 0,−3)(−3, 0, 0,−3)

(0, 3, 0,−3)

(0,−3, 0,−3)

(0, 0, 3,−3)

(0, 0,−3,−3)

(1, 1, 1, 0)

(1, 1,−1, 0)

(1,−1, 1, 0)

(1,−1,−1, 0)

(−1, 1, 1, 0)

(−1, 1,−1, 0)

(−1,−1, 1, 0)

(−1,−1,−1, 0)

Figure 7: Cube Q3 and octahedral prism D

We summarize the dualities described above in a table.

SQ3 D
Dim Faces Faces Dim

0 8 + 2 points 8 prisms+2 octahedra 3
1 12 + 2× 8 edges 12 rectangles+2× 8 triangles 2
2 6 squares+2× 12 triangles 6 + 2× 12 edges 1
3 2× 6 pyramids 2× 6 points 0

We can visualize the complex D as a prismed octahedron, as in Figure 7.
Now we can write down some of the 4-simplices in our triangulation. Join each triangle

in SQ3 to its corresponding edge in D. This gives 24 facets. Join each triangle in D to
its corresponding edge in SQ3. This gives 16 more facets.

Each vertex of D is adjacent to five other vertices in D. In the 40 simplices listed above,
each vertex of D is joined to four vertices of Q3 and one vertex of {(0, 0, 0,±1)}. Also, each
of the vertices (0, 0, 0,±1) is joined to the six vertices of the octahedron corresponding
to it in D. Each vertex of Q3 is joined to three other vertices of Q3, both of (0, 0, 0,±1),
and the six vertices of the triangular prism corresponding to it in D. Since the restricted
antipodal map we wish to apply to the complex we are constructing takes v ∈ D to −v,
we can not add any more edges to our complex that contain a vertex of D.

Now we consider the links of the 24 triangles in SQ3 in our complex so far. The
triangle containing an edge whose i, jth coordinates satisfy xi = εi, xj = εj, and the
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suspension point (0, 0, 0, ε), is already joined to the (short) edge of D whose endpoints
correspond to the squares xi = εi, x4 = ε, and xj = εj, x4 = ε. Now we join each tetra-
hedron, obtained by joining the above triangle to each of the vertices of the edge (in
D) above, to a third point on the corresponding square in Q3. Of the two remaining
points on each square in Q3, we choose the point the product of whose first three co-
ordinates is 1. For example, the triangle [(1, 1,−1, 0), (1,−1,−1, 0), (0, 0, 0,−1)] has as
link [(3, 0, 0,−3), (0, 0,−3,−3)]. The corresponding simplices we add are the cones over
tetrahedra

[(1, 1,−1, 0)(1,−1,−1, 0), (0, 0, 0,−1), (3, 0, 0,−3)] ∗ [(1, 1, 1, 0)] and

[(1, 1,−1, 0), (1,−1,−1, 0), (0, 0, 0,−1), (0, 0,−3,−3)] ∗ [(−1, 1,−1, 0)].

Note that any such 4-simplex can be obtained by starting with either of the two edges of
Q3 contained in it. So we get 2× 12× 2/2 = 24 simplices.

The link of each of the 24 triangles in SQ3 is now a path of length 3 with endpoints from
the vertices of Q3. Moreover, if the triangle T is obtained by joining an edge E of Q3 with a
point in (0, 0, 0,±1), with v ∈ E such that the product of the first three co-ordinates is −1,
then the endpoints of the link of T are the neighbours of v in the square in Q3 containing
v but not E. For the next set of 4-simplices, join the endpoints of the link of each triangle
in SQ3 by an edge. For example, the triangle [(1, 1,−1, 0), (1,−1,−1, 0), (0, 0, 0,−1)] is
joined to the edge [(1, 1, 1, 0), (−1, 1,−1, 0)]. So for each choice of {(0, 0, 0,±1)} and each
of the four vertices v = (ε1, ε2, ε3, 0) of Q3 such that ε1ε2ε3 = −1, we have a simplex
whose vertices are v, its three neighbours in Q3, and one of (0, 0, 0,±1). This gives eight
more simplices. The link of every triangle in SQ3 is now a circle.

In constructing the previous two sets of simplices, we added one diagonal to each square
face of Q3. Recall that each square in Q3 given by the equation xi = εi corresponds to
the edge of D spanned by 3(σ1, σ2, σ3,±1), where σj = εi if i = j and 0 otherwise. Now
consider a triangle in our complex with vertices in this square, say [v0, v1, v2], and let the
product of the first three coordinates of v0 be −1. The link of this triangle has four edges.
Let v′0 denote the third vertex adjacent to v0 in Q3. In the link of this triangle, v′0 is
joined to (0, 0, 0,±1), and the latter vertices are respectively joined to 3(σ1, σ2, σ3,±1).
We join the triangle [v0, v1, v2] to the line segment [3(σ1, σ2, σ3, 1), 3(σ1, σ2, σ3,−1)]. The
twelve triangles with vertices on a square in Q3 give one simplex each, so we get twelve
new simplices.

Also, in our last but one set of simplices, we introduced four new triangles, each
consisting of three vertices of Q3, such that the first three coordinates of each have product
1. The link of each such triangle consists of two edges, where the common neighbour of
the three vertices is joined to each of (0, 0, 0,±1). So we have four triangles forming
the boundary of a tetrahedron, the boundaries of the links of each being the vertices
(0, 0, 0,±1). We add two new simplices, by taking the tetrahedron consisting of these
four vertices of Q3 and joining it to each of the points (0, 0, 0,±1).

So now the links of all triangles with vertices from SQ3 are circles. We consider the
links of edges in SQ3.
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The link of an edge of the form [(ε1, ε2, ε3, 0), (0, 0, 0, ε)], where ε1ε2ε3 = −1, is an octa-
hedron. One of the faces of this octahedron consists of the three neighbours of (ε1, ε2, ε3, 0)
in Q3 and its opposite face in this octahedron is the triangle corresponding to the chosen
edge in D.

The link of an edge of the form [(ε1, ε2, ε3, 0), (0, 0, 0, ε)], where ε1ε2ε3 = 1, is a 9-vertex
S2 with six vertices from Q3 and the remaining three vertices from its corresponding
triangle in D.

The boundary of the link of an edge in Q3 is the boundary of its corresponding square
in D.

Note that the boundary of this complex is now a triangulated S3 with f -vector
[22, 102, 160, 80].

Now consider each edge [v1, v2] in Q3 and its opposite edge in Q3, [−v1,−v2]. If the
boundary of the links of the first edge is [w1, w2], [w2, w3], [w3, w4], [w4, w1], then the link
of the opposite edge is [−w1,−w2], [−w2,−w3], [−w3,−w4], [−w4,−w1].

Now we apply the antipodal map v 7→ −v on the vertices of D, the two above squares
will be identified. So will the two octahedra O+ and O− which are the boundaries of the
links of ±(0, 0, 0, 1) respectively.

We close the links of the edges ±[v1, v2] by joining each of the tetrahedra containing
[v1, v2] to that vertex of [−v1,−v2], the product of whose first three coordinates is −1.

We close the boundary by adding the simplices obtained by joining each of the triangles
[(1, 1, 1, 0), (1, 1,−1, 0), (−1,−1,−1, 0)] and [(−1,−1,−1, 0), (−1,−1, 1, 0), (1, 1,−1, 0)]
with each of the edges in S. This gives 2× 6× 4 = 48 simplices.

Now we have joined each vertex v in Q3 to its opposite vertex −v. The link of the
edge [v,−v] consists of twelve triangles. Suppose v = (ε1, ε2, ε3, 0) where ε1ε2ε3 = 1, and
let Pv be the image under the antipodal map on D of the prism(s) corresponding to v
(and −v) in D. Then the faces of the link of [v,−v] are the three square faces of Pv, each
subdivided by the corresponding neighbour of v. The boundary of this complex is the set
of edges of two disjoint triangles in the image of O+ (and O−) under the map x 7→ −x.
We add the joins of [v,−v] with each of these triangles. This gives 4× 2 = 8 simplices.

We close the boundaries of ±(0, 0, 0, 1) by joining each of the faces of the octahedron
to the edge [(0, 0, 0, 1), (0, 0, 0,−1)]. This gives eight more simplices.

This gives a 16-vertex triangulation of RP4 with 150 simplices.

4 Similarities, differences, and concluding remarks

The starting objects of our two latter constructions, such as the hyperoctahedron, the
4-cube, the suspended cube, and octahedral prism suggest that automorphism groups of
the triangulations we constructed are very close to C2 × S4. In fact the simplices we add
in each step of each construction are typically orbits under this group. But on explicit
computation, the automorphism groups of both complexes turn out to be isomorphic to
S6, acting on 10 + 6 vertices.

In Construction 2, the vertex-orbit of S6 of size 6 consists of the two points of the
hyperoctahedron C4 used to triangulate it internally, (namely ±e1), and the vertices of
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Qe.
In Construction 3, the smaller S6 orbit consists of the suspension points (0, 0, 0,±1),

and the four vertices of the cube the product of whose first three coordinates is −1.
One construction starts with a suspended octahedron (hyperoctahedron) on the inside

and a cubical prism (hypercube) on the outside of our 4-dimensional ball. The other starts
with a suspended cube on the inside and an octahedral prism on the outside. This gives
us a way of visualizing either construction as the other one “turned inside-out”.

Also recall that the C2×S4 is the stabilizer of a 2-subset in S6. If we consider any pair
of elements of the orbit O6 of size 6 in either construction, we find that the link of the
edge joining them is an octahedron consisting of six points of the longer orbit O10, and
that the intersection of their links is a solid cube triangulated with five tetrahedra, where
the vertices of the inner tetrahedron are the remaining vertices of O10 and the other four
vertices are the remaining vertices of O6. This also gives a correspondence with the vertex
set of the triangulated RP4 of Construction 1, which induces simplicial isomorphisms
between all three complexes. This gives weight to our belief that the following is true.

Conjecture 5. [7] RP4
16 is the unique 16-vertex triangulation of RP4.

Their close connection not withstanding, Constructions 2 and 3 offer different per-
spectives on how to construct triangulations of RPn for other values of n. The boundaries
of the very final 4-balls we construct before applying the antipodal map are antipodal
3-spheres. In the first case, the 3-sphere has 24 vertices, and the quotient only gives a
12-vertex RP3, whereas in the second construction, we get the same 3-sphere constructed
by Walkup as the double cover of his RP3

11.
Also note that Walkup’s RP3

11 also fits into the paradigm outlined in Construction 3.
Recall that the initial object of our construction was an octahedron, surrounded by a
cube. Observe that the octahedron and cube are respectively a suspension of a square
and a prismed (solid) square.

The two constructions in Section 3 point to different possible generalizations. Con-
struction 2 suggests constructions using a hyperoctahedron placed within a hypercube
to obtain an RPn on 2(n−1) + 2n or 2(n−1) + 2n + 1 vertices. This author has tested
this approach to construct an RP5 on 2(5−1) + 2 × 5 + 1 = 27 vertices and an RP6 on
25 + 12 + 1 = 45 vertices.

Construction 3 suggests the possibility of taking a mixture of suspended and prismed
polyhedra in higher dimensions to lower the number of vertices needed even further. If
this can be realized by starting with a double suspension of the 3-cube, then it may be
possible to triangulate RP5 with only 8 + 4 + 24

2
= 24 vertices. F.H. Lutz has discovered

an S4-invariant 24-vertex triangulation of RP5, the facet-list of which is available at [16].
This author has not investigated the possibility that this complex is isomorphic to the
one we postulate. The BISTELLAR program used to discover this triangulation is available
through the GAP package simpcomp [9], along with a library of known triangulations and
other tools for calculating with complexes.

Our observation that double covers of RPn−1 appear as boundaries of n-balls in the
constructions of RPn suggests the following question. Given an antipodal n-sphere, is it
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possible to “thicken” it to an (n + 1)-ball while preserving a suitable restriction of the
antipodal map, then glue the quotiented boundary to itself to get a triangulated RPn+1?
If the answer is yes, it suggests the possibility of inductively triangulating RPn. In the
case of the double cover of RP4

16 in Construction 1, it is easy to construct a B5 on 32
vertices such that the antipodal map applies to the orbit of size 20. But the question of
whether there exists a gluing of the quotiented boundary which produces a triangulated
RP5 is harder to answer. If such a triangulation exists, it would have 12+ 20

2
= 22 vertices,

which would make it vertex-minimal by the theorem of Arnoux and Marin.
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