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Abstract

Restricted growth functions (RGFs) avoiding the pattern 1212 are in natural
bijection with noncrossing partitions. Motivated by recent work of Campbell et
al., we study five classical statistics bk, ls, lb, rs and rb on 1212-avoiding RGFs.
We show the equidistribution of (ls, rb, lb, bk) and (rb, ls, lb,bk) on 1212-avoiding
RGFs by constructing a simple involution. To our surprise, this result was already
proved by Simion 22 years ago via an involution on noncrossing partitions. Our
involution, though turns out essentially the same as Simion’s, is defined quite dif-
ferently and has the advantage that makes the discussion more transparent. Conse-
quently, a multiset-valued extension of Simion’s result is discovered. Furthermore,
similar approach enables us to prove the equidistribution of (mak, rb, rs,bk) and
(rb,mak, rs,bk) on 1212-avoiding RGFs, where “mak” is a set partition statistic
introduced by Steingŕımsson.

Through two bijections to Motzkin paths, we also prove that the triple of classi-
cal permutation statistics (exc + 1, den, inv − exc) on 321-avoiding permutations is
equidistributed with the triple (bk, rb, rs) on 1212-avoiding RGFs, which generalizes
another result of Simion. In the course, an interesting q-analog of the γ-positivity
of Narayana polynomials is found.

Keywords: restricted growth function; pattern avoidance; noncrossing partitions;
partition statistics; Narayana polynomials
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1 Introduction

A restricted growth function (RGF) of length n is a word w = w1w2 . . . wn on positive
integers such that

w1 = 1 and wi+1 6 1 + max{w1, w2, . . . , wi} for all i > 1.

A set partition of [n] := {1, 2, . . . , n} is a family of nonempty subsets (or blocks) B1, . . . , Bk

whose disjoint union is [n]. RGFs are of interest because they are in natural bijection with
set partitions in the following way. We first write a set partition σ of [n] as B1/ . . . /Bk

in the standard form where minB1 < minB2 < · · · < minBk. Then the associated RGF
w(σ) = w1 . . . wn is defined as

wi = j if and only if i ∈ Bj.

For example, we have w(13/24) = 1212. Note that the number of blocks of a set parti-
tion becomes the greatest integer in its associated RGF. Therefore, we denote bk(w) the
greatest integer in w.

Let Rn be the set of all RGFs of length n. Wachs and White [16] investigated four
statistics ls (left smaller), lb (left bigger), rs (right smaller) and rb (right bigger) on RGFs
defined for each w ∈ Rn by:

ls(w) :=
n∑
i=1

#{wj : j < i, wj < wi}, lb(w) :=
n∑
i=1

#{wj : j < i, wj > wi},

rs(w) :=
n∑
i=1

#{wj : j > i, wj < wi} and rb(w) :=
n∑
i=1

#{wj : j > i, wj > wi}.

For example, if w = 12334155 ∈ R8, then ls(w) = 16, lb(w) = 3, rs(w) = 4, rb(w) = 13.
Recently, a systematic study of RGF patterns with respect to ls, lb, rs and rb was carried
out by Campbell, Dahlberg, Dorward, Gerhard, Grubb, Purcell and Sagan in [1], where
interesting connections with integer partitions and Motzkin paths were exhibited. At the
end of their paper, unaware of the work by Simion [10], they conjectured that “rb” and
“ls” are equidistributed on Rn(1212), where Rn(1212) is the set of 1212-avoiding RGFs of
length n. Here an RGF w ∈ Rn avoids the pattern 1212 means that there does not exist
some indices i < j < k < l such that wi = wk < wj = wl.

Motivated by Campbell et al.’s conjecture above, we have been able to rediscover and
reprove the following quadruple equidistribution that was first established by Simion [10]
two decades ago.

Theorem 1 (Simion 1994). For any n > 0, the two four-variable statistics

(ls, rb, lb, bk) and (rb, ls, lb, bk)

are equidistributed on Rn(1212).
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Our proof of Theorem 1 is by constructing an involution φ : Rn(1212) → Rn(1212),
which interchanges the statistics “ls” and “rb” but preserves the statistics “lb” and “bk”.
It is not hard to show that a set partition is noncrossing (see [10] for the definition) if
and only if its associated RGF is 1212-avoiding. It turns out that, under the natural
bijection between set partitions and RGFs, our involution becomes Simion’s [10], which
was defined on noncrossing partitions (see Remark 1). Our involution φ is defined di-
rectly on 1212-avoiding RGFs, which is based on some kind of direct sum decomposition
and has the advantage that makes the discussion more transparent. In particular, our ap-
proach leads to the discovery of a multiset-valued extension of Theorem 1 (see Theorem 9).
Furthermore, similar approach can be applied to prove the following quadruple equidis-
tribution involving the set partition statistic “mak” introduced by Steingŕımsson [13] (see
the definition of “mak” on RGFs in Section 3).

Theorem 2. For any n > 0, the two four-variable statistics

(mak, rb, rs, bk) and (rb,mak, rs, bk)

are equidistributed on Rn(1212).

Our next result builds a relation between statistics on 1212-avoiding RGFs and clas-
sical Permutation Statistics, including excedances, inversions and Denert’s statistic, on
321-avoiding permutations. We first review the involved statistics on permutations. Let
Sn be the set of permutations of [n]. For each π = π1π2 . . . πn the inversion number of π
is

inv(π) := #{(i, j) : i < j, πi > πj},

the set of excedances (resp. excedance number) of π is

EXC(π) := {i ∈ [n− 1] : πi > i} (resp. exc(π) := #EXC(π))

and the set of non-excedances of π is

NEXC(π) := [n]− EXC(π).

Following Foata and Zeilberger [4, Th. 2], the Denert’s statistic of π may be defined by

den(π) := inv(EXC∗(π)) + inv(NEXC∗(π)) +
∑

i∈EXC(π)

i,

where for a subset S = {i1 < i2 < . . . < ik} ⊆ [n], S∗(π) is the subword πi1πi2 . . . πik of π.
For example, if π = 2534716 ∈ S7, then inv(π) = 8, EXC(π) = {1, 2, 5}, exc(π) = 3 and
den(π) = inv(257) + inv(3416) + 1 + 2 + 5 = 10. Note that “exc” is a Eulerian statistic,
while both “inv” and “den” are Mahonian. Recall that a permutation π ∈ Sn is said to
be 321-avoiding if there does not exist indices i < j < k such that πi > πj > πk. Let
Sn(321) be the set of all 321-avoiding permutations in Sn.
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Theorem 3. There exists a bijection ψ : Sn(321) → Rn(1212) such that for each π ∈
Sn(321), we have

(exc + 1, den, inv − exc)(π) = (bk, rb, rs)(ψ(π)).

Consequently, we have the equidistribution∑
π∈Sn(321)

texc(π)+1pden(π)qinv(π)−exc(π) =
∑

w∈Rn(1212)

tbk(w)prb(w)qrs(w). (1.1)

The special q = 1 case of equidistribution (1.1) was proved by Simion [10, Theorem 5.7]
via a bijection from noncrossing partitions to Sn(321). Note that Simion’s bijection can
not be applied to show (1.1). Consider for instance, w = 12334155 associated to the
noncrossing partition 16/2/34/5/78, at the end of her paper. The RGF w is mapped to
σ = 24153867 ∈ Sn(321) under her bijection which satisfies bk(w) = 5 = exc(σ) + 1 and
rb(w) = 13 = den(σ), but meanwhile rs(w) = 4 6= 2 = inv(σ) − exc(σ). Our bijection
ψ is a function composition of two bijections to the Motzkin paths, one from Rn(1212)
to two-colored Motzkin paths of length n− 1 due to Campbell et al. [1] and the other is
from the latter object to Sn(321), which is new to the best of our knowledge.

Let
Nn(t, p, q) :=

∑
π∈Sn(321)

texc(π)pden(π)qinv(π)−exc(π). (1.2)

Since counting noncrossing partitions of [n] by the number of blocks minus 1 gives the
n-th Narayana polynomial (cf. [11, Sec. 2.6])

Nn(t) =
n−1∑
k=0

1

n

(
n

k + 1

)(
n

k

)
tk,

the polynomial Nn(t, p, q) is a (p, q)-analog of the Narayana polynomial. It is well known

that Nn(t) is γ-positive, i.e., it can be expanded as Nn(t) =
∑b(n−1)/2c

k=0 γn,kt
k(1 + t)n−1−2k

with γn,k ∈ N. Many combinatorial interpretations for γn,k are known in the litera-
ture, see the excellent exposition by Petersen [11]. For instance, Postnikov, Reiner and
Williams [12] showed that γn,k enumerates the 231-avoiding permutations of length n, with
k descents and without initial and double descents. As one application of our bijection
ψ, the following neat q-γ-positivity expansion for the q-Narayana polynomial Nn(t, 1, q)
is derived.

Theorem 4. Let

S̃n,k(321) := {π ∈ Sn(321) : exc(π) = k and whenever i < πi, (π
−1)i+1 > i}.

Then,

∑
π∈Sn(321)

texc(π)qinv(π)−exc(π) =

b(n−1)/2c∑
k=0

( ∑
π∈S̃n,k(321)

qinv(π)−exc(π)
)
tk(1 + t)n−1−2k. (1.3)
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For example, we have S̃4,0(321) = {1234} and S̃4,1(321) = {1423, 3124, 4123}. It then
follows from (1.3) that

N4(t, 1, q) = 1 + (3 + 2q + q2)t+ (3 + 2q + q2)t2 + t3 = (1 + t)3 + (2q + q2)t(1 + t).

Note that Theorem 4 implies the sequence of coefficients of the polynomial (in t) Nn(t, 1, q)
is palindromic and unimodal in the sense that if Nn(t, 1, q) =

∑n−1
i=0 an,i(q)t

i, then

• an,i(q) = an,n−1−i(q) for 0 6 i 6 n− 1 and

• an,j+1(q)− an,j(q) ∈ N[q] for 0 6 j < (n− 1)/2.

This result can be compared with the q-γ-positivity expansion of the (inv, exc)-q-Eulerian
polynomials due to Shin and Zeng [9, Theorem 1].

The rest of this paper is organized as follows. In Section 2, we define the direct sum
decomposition of RGFs and introduce the involution φ to prove Theorem 1. Based again
on the direct sum decomposition, we construct in Section 3 a new involution τ on Rn(1212)
in the same spirit as φ (but more involved) to prove Theorem 2. Theorem 3 is proved
in Section 4 by constructing the bijection ψ as function composition of two bijections to
Motzkin paths. Section 5 is devoted to further applications of ψ. Indeed, we first establish
Theorem 4 via a group action on Motzkin paths, then we continue to analyze Motzkin
paths so as to obtain a recursion for Nn(t, p, q) and a continued fraction expansion for the
generating function of Nn(t, 1, q). We conclude our paper with some further remarks.

2 Direct sum and the involution φ

We first recall one operation that is usually used to combine shorter words into longer
ones. Suppose w = w1w2 . . . wl1 and v = v1v2 . . . vl2 are two words on positive integers
with w’s (resp. v’s) maximum being m1 (resp. m2). We define the direct sum of w and v,
denoted w⊕ v, to be a word with maximum being m1 +m2 and length being l1 + l2, and
point-wisely it satisfies

(w ⊕ v)i =

{
wi, for i ∈ [1, l1];

vi−l1 +m1, for i ∈ [l1 + 1, l1 + l2].

For example, we have 121 ⊕ 12 = 12134. If a word can be written as the direct sum of
two non-empty words, we call it direct sum decomposable or simply decomposable. It is
clear that the direct sum operation is associative, i.e., u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w. The
following two fundamental lemmas are crucial for constructing our involution φ, the first
of which should be immediate.

Lemma 5. (i) A word u is in Rn−1(1212) if and only if u1 is in Rn(1212). (ii) The direct
sum w ⊕ v is a 1212-avoiding RGF if and only if both w and v are 1212-avoiding RGFs.

Now with the operation of direct sum in mind, we can give a new characterization of
RGFs avoiding 1212.
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Lemma 6. For any RGF w = w1 . . . wn ∈ Rn, the following are equivalent:

1. The RGF w avoids 1212.

2. If wi = wi′ for some i < i′, then for all j′ > i′, either wj′ 6 wi′ or wj′ >
max{w1, . . . , wi′}.

3. w is one of the following two types.

• Type I (indecomposable): w ends with 1, say w = ŵ1 . . . 1, where ŵ (possibly
empty) does not end with 1 and avoids 1212.

• Type II (decomposable): w does not end with 1, and there exists some non-
empty 1212-avoiding RGFs u and v, such that w = u⊕ v.

Proof. The equivalence of (1) and (2) is Lemma 5.2 in [1]. We show here their equivalence
with (3). When w satisfies (3), then w avoids 1212 by Lemma 5. It remains to show that
if the RGF w avoids 1212, then it must be one of the two types in (3).

Find the rightmost 1 in w, say at position i. If i = n, then clearly w is type I.
Otherwise, 1 6 i < n. Let u = w1w2 . . . wi. Since wi is the rightmost 1 of w, according
to condition (2), we have wj > max{w1, . . . , wi} for all j > i. Hence, w = u ⊕ v, where
vj = wi+j−bk(u) for all 1 6 j 6 n−i. By Lemma 5, both u and v are RGFs and avoiding
1212. This shows w is type II in this case and the proof is complete.

We are ready to define our key map φ for Theorem 1.

Definition 1. For any RGF w that avoids 1212, we define the map φ recursively and
according to the type of w (set φ(∅) = ∅):

• Type I. Suppose w = ŵ1k, where k > 1 and ŵ (possibly empty) does not end with 1.
Define

φ(w) = φ(ŵ)1k.

• Type II. Suppose w = u⊕ v, then let

φ(w) = φ(v)⊕ φ(u).

Note that Lemma 5 ensures φ(w) is a 1212-avoiding RGF. In general, the direct sum
decomposition of a 1212-avoiding RGF is not unique. For example, 12134 = 121 ⊕ 12 =
1213⊕1. However, the following lemma shows that φ is independent of the decomposition
of w, hence well-defined.

Lemma 7. Suppose w ∈ Rn(1212) has two different decompositions w = u⊕ v = u′ ⊕ v′.
Then, φ(v)⊕ φ(u) = φ(v′)⊕ φ(u′).
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Proof. We prove this result by induction on the length of w. Without loss of generality,
we suppose u ∈ Rk(1212) and u′ ∈ Rl(1212) with 1 6 k < l < n. Then, there exists a
unique c ∈ Rl−k(1212) such that u′ = u ⊕ c and v = c ⊕ v′. Hence, by induction on the
length of w and by the associativity of the direct sum,

φ(v)⊕ φ(u) = φ(c⊕ v′)⊕ φ(u) = (φ(v′)⊕ φ(c))⊕ φ(u)

= φ(v′)⊕ (φ(c)⊕ φ(u)) = φ(v′)⊕ φ(u′),

as desired.

The following result provides a proof of Theorem 1.

Theorem 8. The map φ is an involution on Rn(1212) such that

(ls, rb, lb, bk)(w) = (rb, ls, lb, bk)(φ(w)) (2.1)

for each w ∈ Rn(1212).

Proof. This result can be checked easily by induction on n. Notice that φ preserves the
type of 1212-avoiding RGFs. We discuss in two cases according to the type of w.

Type I: suppose w = ŵ1k, where k > 1 and ŵ (possibly empty) does not end with 1.
Thus, φ2(w) = φ(φ(ŵ)1k) = φ2(ŵ)1k = ŵ1k = w. When ŵ = ∅, clearly φ(w) = w = 1k,
ls(w) = rb(w) = 0 so (2.1) holds trivially. For the following we assume ŵ 6= ∅ and we
have

rb(φ(w)) = rb(φ(ŵ)1k) = rb(φ(ŵ)) = ls(ŵ) = ls(w),

bk(φ(w)) = bk(φ(ŵ)1k) = bk(φ(ŵ)) = bk(ŵ) = bk(w) and

lb(φ(w)) = lb(φ(ŵ)1k) = lb(φ(ŵ)) + k × (bk(φ(ŵ))− 1)

= lb(ŵ) + k × (bk(ŵ)− 1) = lb(w).

Type II: suppose w = u⊕v. Then, φ2(w) = φ(φ(v)⊕φ(u)) = φ2(u)⊕φ2(v) = u⊕v = w.
If v has length l with 1 6 l < n, then

rb(φ(w)) = rb(φ(v)⊕ φ(u)) = rb(φ(v)) + rb(φ(u)) + l × bk(φ(u))

= ls(v) + ls(u) + l × bk(u) = ls(u⊕ v) = ls(w).

Moreover, we have

bk(φ(w)) = bk(φ(v)) + bk(φ(u)) = bk(v) + bk(u) = bk(w)

and
lb(φ(w)) = lb(φ(v)) + lb(φ(u)) = lb(v) + lb(u) = lb(w).

In either case the statement is true, which completes the proof of Theorem 8.
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For example, if w = 1112322145541, then φ(w) = φ(111232214554)1 = (φ(1221) ⊕
φ(11123221))1 = (1121⊕ (φ(111⊕ 1211)1))1 = (1121⊕ (φ(1211)⊕ φ(111)1))1 = (1121⊕
12113331)1 = 1121343355531. We have

(ls, rb, lb, bk)(w) = (19, 24, 9, 5) = (rb, ls, lb, bk)(φ(w)).

Remark 1. We recall Simion’s involution φ′ in [10] that proves Theorem 1. Given a
noncrossing partition Π of [n] written in standard form B1/B2/ · · · /Bk. Let fi = min{a :
a ∈ Bi} for 1 6 i 6 k and fk+1 = n + 1. Relabel the elements of [n] as follows: the
elements of the last block Bk are relabeled 1, 2, . . . , |Bk| in increasing order; next, the
elements of the penultimate block Bk−1 are relabeled |Bk|+ 1, |Bk|+ 2, . . . , |Bk|+ |Bk−1|
in increasing order; and so on. Now, the i-th block of φ′(Π) consists of the set of new
labels given to the elements in the original interval {fk−i+1, fk−i+1 + 1, . . . , fk−i+2 − 1}.

For example, for Π = 1 2 3 8 13/4 6 7/5/9 12/10 11,φ′(Π) = 1 2 4 13/3/5 7 8 12/6/9 10 11.
Note that w(Π) = w = 1112322145541 and φ(w) = 1121343355531 as computed in the
previous example. Now we see that φ(w(Π)) = w(φ′(Π)) for this particular Π. In fact,
this coincidence is true in general. One possible way to see this is by induction on n and
by distinguishing two types of noncrossing partitions of [n]: (i) n is in the first block and
(ii) n is not in the first block, which corresponds to type I and II of RGFs under the
natural bijection. The details are left to the interested reader.

For any w ∈ Rn, let us define the multiset-valued extension of ls(w) as the multiset

LS(w) := {ls(w1), ls(w2), . . . , ls(wn)},

where ls(wi) = #{wj : j < i, wj < wi}. Similarly, we define LB(w),RS(w) and RB(w).
Actually, the involution φ can be applied to show the following multiset-valued extension
of Theorem 1 without any difficulty.

Theorem 9. For any n > 0, the two mixed four-variable statistics (both integer-valued
and multiset-valued)

(LS,RB,LB, bk) and (RB,LS,LB, bk)

are equidistributed on Rn(1212).

3 Steingŕımsson’s set partition statistic “mak”

In [13], Steingŕımsson introduced many statistics on (ordered or unordered) set partitions,
of which the statistic “mak” is quite interesting. This statistic was inspired by the per-
mutation statistic under the same name “mak” introduced by Foata and Zeilberger [4].
Here we will define “mak” on RGFs directly as follows.

Let w ∈ Rn be a RGF. For each i ∈ [n], define

lcsi(w) := #{wj : j < i, wj < wi and wk 6= wj for all k > j}.

Let us denote lcs(w) =
∑

i lcsi(w). For example, if w = 12334155 ∈ R8, then lcs(w) =
0 + 0 + 1 + 1 + 2 + 0 + 4 + 4 = 12. Under the natural bijection, this statistic agrees with
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the “left closer smaller”, also denoted “lcs”, defined on set partitions in [13]. Now the
statistic “mak” can be defined by

mak(w) := lb(w) + lcs(w).

Continuing with our running example, we have mak(w) = 3 + 12 = 15. It turns out that
“mak” is equidistributed with “rb” on Rn and even more is true.

Theorem 10 (See [6, 7, 16]). For any n > 0, we have the quadruple equidistribution∑
w∈Rn

p
mak(w)
1 p

rb(w)
2 qrs(w)tbk(w) =

∑
w∈Rn

p
rb(w)
1 p

mak(w)
2 qrs(w)tbk(w) (3.1)

Moreover, there holds∑
w∈Rn

bk(w)=k

prb(w)qrs(w) = Sp,q(n, k) =
∑
w∈Rn

bk(w)=k

pmak(w)qrs(w), (3.2)

where Sp,q(n, k) is the (p, q)-Stirling number of the second kind defined by the recursion:

Sp,q(n, k) =

 pk−1Sp,q(n− 1, k − 1) +

(
k−1∑
i=0

piqk−1−i
)
Sp,q(n− 1, k) if 0 < k 6 n,

δn,k if n = 0 or k = 0.

Note that the first identity of (3.2) is due to Wachs and White [16], while the second
was proved by Ksavrelof and Zeng [7] in answering a conjecture of Steingŕımsson [13].
The quadruple equidistribution (3.1), as well as two different generalizations to ordered
set partitions, were proved by Kasraoui and Zeng in [6] via the intermediate structure
of path diagrams. Our quadruple equidistribution stated in Theorem 2 is a restricted
version of (3.1).

Based on the direct sum decomposition structure showed in Lemma 6, we will construct
recursively a new involution τ : Rn(1212) → Rn(1212), which interchanges the statistics
“mak” and “rb” but preserves the statistics “rs” and “bk”. This leads to a proof of
Theorem 2.

Definition 2. For any w = w1 . . . wn ∈ Rn(1212), we define τ(w) = τ(w)1τ(w)2 . . . τ(w)n
recursively according to the type of w (see Example 1). Set τ(∅) = ∅ and suppose τ is
already defined for all Rm(1212), 0 6 m < n.

• Type I. This means w must end with 1. Let w̃ be the word obtained from w by
subtracting each letter of w by 1 and then omitting all the 0s, and for any k with
wk 6= 1, define

ε(k) := |{j > k : wj 6= 1}|.
Then,

τ(w)i :=

{
1 if wn+1−i = 1,

τ(w̃)ε(n+1−i) + 1 if wn+1−i 6= 1.

For example, given w = 1112322145541, we have w̃ = 12113443 and ε(4) = 8, ε(5) =
7, ε(9) = 4, etc.
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• Type II. Suppose w = u⊕ v, then let

τ(w) = τ(v)⊕ τ(u).

When w is of type II, with the aid of Lemma 5 and 7, it is clear that τ(w) also avoids
1212 and is independent of the decomposition of w. But for those w of type I, we need
the following lemma to see that τ is indeed well-defined.

Lemma 11. For any w ∈ Rn(1212):

if τ(w)i = τ(w)j, then wn+1−i = wn+1−j. (3.3)

Consequently, τ(w) ∈ Rn(1212) and τ is well-defined.

Proof. We prove (3.3) by induction on n. It holds trivially for n = 1 since τ(1) = 1. Now
suppose w ∈ Rn(1212) is of type I. If τ(w)i = τ(w)j = 1, then by definition wn+1−i =
wn+1−j = 1. Otherwise τ(w)i = τ(w)j = a > 1, hence τ(w̃)ε(n+1−i) = τ(w̃)ε(n+1−j) =
a − 1. Now since w̃ is of shorter length than w, say w̃ ∈ Rm(1212),m < n, by inductive
hypothesis we get w̃m+1−ε(n+1−i) = w̃m+1−ε(n+1−j). A moment of reflection reveals that
the (m + 1− ε(n + 1− i))-th letter in w̃ is indeed the (n + 1− i)-th letter in w. We get
wn+1−i = wn+1−j as desired. The case with w being of type II is similar by induction,
thus omitted.

Next we use (3.3) to show that τ(w) ∈ Rn(1212) for any w of type I. Again we use
induction on n. Suppose on the contrary that τ(w) 6∈ Rn(1212), by induction we can
assume such occurrence of pattern 1212 involves letter 1. More precisely, suppose there
exists some indices i < j < k such that

τ(w)1 = τ(w)j = 1, τ(w)i = τ(w)k = a > 1.

Then by (3.3) we have

wn = wn+1−j = 1, wn+1−i = wn+1−k = a′ > 1.

Now the subword w1wn+1−kwn+1−jwn+1−i forms a pattern 1212 in w, a contradiction. This
completes the proof.

The following result parallels Theorem 8 and proves Theorem 2.

Theorem 12. The map τ is an involution on Rn(1212) such that

(mak, rb, rs, bk)(w) = (rb,mak, rs, bk)(τ(w)) (3.4)

for each w ∈ Rn(1212).

Proof. That τ is an involution and bk(τ(w)) = bk(w) can be easily checked by definition
and induction. Notice that τ also preserves the type of 1212-avoiding RGFs, so we deal
with two types respectively.
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Type II is simpler so we consider it first. Given any w = u ⊕ v ∈ Rn(1212), suppose
u ∈ Rm(1212), 1 6 m < n, then v ∈ Rn−m(1212). We compute directly the remaining
three statistics.

rb(τ(w)) = rb(τ(v)⊕ τ(u)) = (n−m)× bk(u) + rb(τ(v)) + rb(τ(u))

= (n−m)× bk(u) + mak(v) + mak(u)

= (lb(u) + lb(v)) + ((n−m)× bk(u) + lcs(u) + lcs(v))

= lb(w) + lcs(w) = mak(w),

mak(τ(w)) = mak(τ(v)⊕ τ(u)) = lb(τ(v)⊕ τ(u)) + lcs(τ(v)⊕ τ(u))

= lb(τ(v)) + lb(τ(u)) + lcs(τ(v)) + lcs(τ(u)) +m× bk(v)

= mak(τ(v)) + mak(τ(u)) +m× bk(v)

= rb(v) + rb(u) +m× bk(v) = rb(w),

rs(τ(w)) = rs(τ(v)⊕ τ(u)) = rs(τ(v)) + rs(τ(u)) = rs(v) + rs(u) = rs(w).

Type I is more involved. First note that since τ is an involution, we can strengthen
(3.3) to the following form:

τ(w)i = τ(w)j if and only if wn+1−i = wn+1−j. (3.5)

This is the key to the ensuing argument. Given any w of type I, for each a, 1 < a 6 bk(w),
we consider the maximal subword of w formed purely by 1 and a, it must be of the following
form since w avoids 1212

w(a) = wi1 . . . wirwj1 . . . wjswk1 . . . wkt = 1ras1t,

where the sub-indices are the original ones in w. As a result of property (3.5), we see that

τ(w)(b) = τ(w)n+1−kt . . . τ(w)n+1−k1τ(w)n+1−js . . . τ(w)n+1−j1τ(w)n+1−ir . . . τ(w)n+1−i1

= 1tbs1r

must be the maximal subword of τ(w) composed of 1 and b only, for certain 1 < b 6 bk(w).
And when a runs over 2, 3, . . . , bk(w), so does b. Now we analyse their contributions to
each of the three statistics.

• mak = lb + lcs: w(a) adds t to lb, 0 to lcs, while τ(w)(b) adds r to lb, 0 to lcs;

• rb: w(a) adds r to rb, while τ(w)(b) adds t to rb;

• rs: both w(a) and τ(w)(b) add s to rs.

We sum up all the contributions when a and b traverse 2, 3, . . . , bk(w) respectively, and
use induction on w̃, this amounts to establish (3.4), and the proof ends here.

Example 1. For instance, if w = 1112322145541, then we need to first compute

τ(w̃) = τ(1211⊕ 1221) = τ(1221)⊕ τ(1211) = 1221⊕ 1121 = 12213343,

which in turn gives us τ(w) = 1233214454111. And we check that

(mak, rb, rs, bk)(w) = (17, 24, 11, 5) = (rb,mak, rs, bk)(τ(w)).
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Figure 1: A two-colored Motzkin path in M(2)
12

4 The bijection ψ and a proof of Theorem 3

The Motzkin paths are at the heart of our proof of Theorem 3. Recall that a Motzkin path
of length n is a lattice path in N2 starting at (0, 0), ending at (n, 0), with three possible
steps:

(1, 1) = U (up step), (1,−1) = D (down step) and (1, 0) = H (horizontal step).

For our purpose, we color each horizontal step of a Motzkin path by color a or b. We
call such a Motzkin path a two-colored Motzkin path. See Fig. 1 for a display of the
two-colored Motzkin path UbUaUDbDDUaD. Denote byM(2)

n the set of all two-colored
Motzkin paths of length n. Note that M(2)

n−1 is enumerated by the famous n-th Catalan
number

Cn =
1

n+ 1

(
2n

n

)
,

as well as Rn(1212) and Sn(321). There is a bijection from M(2)
n−1 to Rn(1212) due to

Campbell et al. [1] which forms one step of our bijection ψ that we now describe.

Let M = s1s2 . . . sn−1 be a two-colored Motzkin path in M(2)
n−1. Given a step si in

M , we realize si geometrically as the line segment in the plane that connects two lattice
points in the obvious way. If si = U then we pair it with the first D-step sj to its right,
i.e. j > i, whose midpoint has the same height as the midpoint of si. Continuing with our
running example path, s3 is paired with s8 (see the dashed line in Fig. 1). The associated
RGF ψ1(M) = w = w1 . . . wn of M is then defined as follows. Let w1 = 1 and

wi+1 =


1 + max{w1, . . . , wi} if si = U or si = b,

wi if si = a,

wj if si = D is paired with the U -step sj.

For instance, for the two-colored Motzkin path M in Fig. 1, we have ψ1(M) = w =
1234454631771 and rb(w) = 28, rs(w) = 16, bk(w) = 7. Campbell et al. [1, Th. 5.7]

showed that ψ1 :M(2)
n−1 → Rn(1212) is a bijection that satisfies the property

area(M) = rs(w),
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where w = ψ1(M) and area(M) is the area between M and the x-axis. More precisely,
they proved that rs(wi) equals h(si) (resp. h(si) + 1) if si = a, b or U (resp. si = D). But
what are the two statistics “rb” and “bk” on RGFs corresponding to?

To answer this question, we need to introduce a set-valued extension of “rb”, which
is different from the multiset-valued statistic “RB” introduced earlier. For each RGF
w ∈ Rn(1212), a shifted left-to-right maximum (position) of w is an index i ∈ [n − 1]
such that wi+1 > wj for all j < i + 1. Let SLR(w) be the set of all shifted left-to-right
maximum of w. For example, SLR(1234454631771) = {1, 2, 3, 5, 7, 10}.

Lemma 13. For w ∈ Rn(1212), we have

bk(w) = #SLR(w) + 1 and rb(w) =
∑

i∈SLR(w)

i.

Proof. For any integer t ∈ {2, 3, . . . , bk(w)}, from left to right, wi is the first occurrence
of letter t in w if and only if i− 1 is a shifted left-to-right maximum of w. Thus, the first
equality follows.

Note that if wk = wk′ for some k < k′, then all the letters in between positions k
and k′ should be no less than wk. Otherwise, say wl < wk with k < l < k′, then there
must exist a letter wl′ = wl that occurs before wk, but this means wl′wkwlwk′ is a 1212
pattern, a contradiction. Therefore, for any fixed letter t ∈ {2, 3, . . . , bk(w)}, only the
first occurrence of t in w could contribute one to rb(wi) for each letter wi (wi < t) to the
left of it. The second equality then follows.

Let us introduce the statistic Ub(M) for a two-colored Motzkin path M ∈M(2)
n−1 as

Ub(M) := {i ∈ [n− 1] : si = U or si = b},

with its cardinality denoted ub(M) := #Ub(M). It is clear from the definition of ψ1 that
Ub(M) = SLR(ψ1(M)). Hence,

Lemma 14. For each M ∈M(2)
n−1, we have

Ub(M) = SLR(ψ1(M)) and area(M) = rs(ψ1(M)).

Next, we will introduce a bijection ψ2 : Sn(321) →M(2)
n−1 which transforms the pair

(EXC, inv − exc) to (Ub, area). Our bijection ψ2 is inspired by a bijection of Foata and
Zeilberger [4] from permutations to Laguerre histories and a bijection of Cheng et al. [2]
from 321-avoiding permutations to two-colored Motzkin paths.

We need two important vectors to keep track of the values and positions of excedances.
For π = π1 . . . πn ∈ Sn(321), let

val(π) = (v1, . . . , vn) and pos(π) = (p1, . . . , pn),

where vi = χ(i > π−1i ) and pi = χ(πi > i). For instance, for π = 3 7 8 1 9 2 10 4 5 13 6 11 12
in S13(321), we have

val(π) = (0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1), pos(π) = (1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0).
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Now, the associated two-colored Motzkin path ψ2(π) = M = s1s2 . . . sn−1 is defined by

si =


U if vi+1 = 0 and pi = 1,

b if vi+1 = pi = 1,

D if vi+1 = 1 and pi = 0,

a if vi+1 = pi = 0.

(4.1)

Continuing with our example, ψ2(3 7 8 1 9 2 10 4 5 13 6 11 12) = UbUaUDbDDUaD, which
is the path in Fig. 1.

We first need to show that ψ2 is well defined, that is the path M as produced above
ends on x-axis and stays weakly above it during the process. In other words, we require
the number of U ’s in any prefix of M is at least as great as the number of D’s and
with equality for M in its entirety. This follows from the simple fact that for any fixed
i ∈ [n− 1],

|{j ∈ EXC(π) : j 6 i}| > |{j ∈ EXC(π) : πj 6 i+ 1}|,

and with equality when i = n− 1.
For each i ∈ EXC(π) (resp. i ∈ NEXC(π)), we call πi the excedance (resp. non-

excedance) value of π. We will also need the following characterization of 321-avoiding
permutations, which is folkloric in pattern avoidance.

Lemma 15. A permutation is 321-avoiding if and only if both the subsequence formed by
its excedance values and the one formed by the remaining non-excedance values are increas-
ing. Equivalently, π is 321-avoiding if and only if inv(EXC∗(π)) = inv(NEXC∗(π)) = 0.

We are ready for the key lemma of this section.

Lemma 16. The mapping ψ2 : Sn(321) → M(2)
n−1 is a bijection such that for each π ∈

Sn(321), we have

EXC(π) = Ub(ψ2(π)) and (inv − exc)(π) = area(ψ2(π)). (4.2)

Proof. Given a two-colored Motzkin path M that is an image under ψ2, we have the
information for the positions and values of all the excedances of π such that ψ2(π) = M .
Hence, by Lemma 15 such a π must be unique. This shows that ψ2 is injective and thus
bijective, since the cardinalities of M(2)

n−1 and Sn(321) are both the Catalan number Cn.
The first equality in (4.2) is clear from the definition of ψ2 and we will prove the second

one by calculating (inv−exc)(π) via the two associated vectors val(π) and pos(π). Indeed,
using the characterization given in Lemma 15, we see that for any π = π1 . . . πn ∈ Sn(321),
an excedance of π must also be a left-to-right maximum of π. Consequently, an excedance,
say πi, contributes πi − i to the value of inv(π), while each non-excedance contributes
nothing. This observation leads to the following computation of inv(π) and exc(π):

inv(π) = 〈val(π),n〉 − 〈pos(π),n〉, n = (1, 2, . . . , n),

exc(π) = 〈val(π), e〉 = 〈pos(π), e〉, e = (1, 1, . . . , 1),
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where 〈·,·〉 is the usual inner product for vectors in Rn. Note that by definition, val(π)
(resp. pos(π)) always begins (resp. ends) with 0. Now suppose ψ2(π) = M = s1s2 . . . sn−1,
then using (4.1) and a little bit of linear algebra, we get

(inv − exc)(π) =
∑
si=D

i−
∑
sj=U

j = area(M),

where the last equality is due to the fact that all U -steps and D-steps are paired up, and
the distance from U to D in any given pair is exactly the amount they contributes to the
value of area(M). The proof of the lemma is complete.

Combining Lemma 14 and Lemma 16, we arrive at the following result.

Theorem 17. The composition ψ = ψ1 ◦ ψ2 : Sn(321) → Rn(1212) is a bijection such
that for each π ∈ Sn(321), we have

EXC(π) = SLR(ψ(π)) and inv(π)− exc(π) = rs(ψ(π)).

In view of Lemmas 13 and 15, Theorem 17 implies Theorem 3.

5 Further applications of ψ

5.1 Proof of Theorem 4

We will apply a simple group action on two-colored Motzkin paths which results in a
proof of Theorem 4. Let x ∈ [n− 1] and M = s1 . . . sn−1 ∈ M(2)

n−1. Define the action Θx

on M by

Θx(M) =


M if sx = U or sx = D,

s1 . . . sx−1bsx+1 . . . sn−1 if sx = a,

s1 . . . sx−1asx+1 . . . sn−1 if sx = b.

In other words, Θx changes the color of the x-th step of M . Note that all actions commute
with each other, i.e., Θy ◦ Θx(M) = Θx ◦ Θy(M) for any x, y ∈ [n − 1]. Moreover, each

Θx is an involution on M(2)
n−1. For any subset S ⊆ [n − 1], we then define the function

ΘS :M(2)
n−1 →M

(2)
n−1 by ΘS =

∏
x∈S Θx, the function compositions of all Θx with x ∈ S.

Hence, the group Zn−12 acts on M ∈M(2)
n−1 via the function ΘS (S ⊆ [n−1]). For example,

Θ{1,2,4,7}(UbUaUDbDDUaD) = UaUbUDaDDUaD.

This Zn−12 -action divides the set M(2)
n−1 into disjoint orbits and each orbit has exactly

one two-colored Motzkin path whose H-steps, if any, all have color a. For example,
under the Z2

2-action, the disjoint orbits of M(2)
2 are {UD} and {aa, ab, ba, bb} with the

representatives being UD and aa, respectively. Note that this Zn−12 -action preserves the
area of any two-colored Motzkin path. Therefore, if we choose the set of representatives
of all the disjoint orbits under the Zn−12 -action on M(2)

n−1 as

On−1 := {M ∈M(2)
n−1 : M has no b-step},

then we have
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Lemma 18. For n > 1, we have∑
M∈M(2)

n−1

tub(M)qarea(M) =
∑

M∈On−1

qarea(M)tub(M)(1 + t)n−1−2ub(M). (5.1)

Since M ∈M(2)
n−1 has no b-step if and only if ψ−12 (M) = π1 . . . πn has no excedance, say

at i, such that π−1i+1 6 i, applying ψ−12 to both sides of (5.1) then gives the q-γ-positivity
expansion in Theorem 4.

Parallel to Theorem 4, there is also a similar expansion regarding 1212-avoiding RGFs.
Let

R̃n(1212) := {w ∈ Rn(1212) : whenever wi < wi+1, there exists j > i+ 1 s.t. wj = wi}.

Applying ψ1 to both sides of (5.1) we get

Theorem 19. Let R̃n,k(1212) := {w ∈ R̃n(1212) : bk(w) = k − 1}. Then,

∑
w∈Rn(1212)

tbk(w)qrs(w) = t

b(n−1)/2c∑
k=0

( ∑
π∈R̃n,k(1212)

qrs(w)
)
tk(1 + t)n−1−2k.

5.2 A recurrence for Nn(t, p, q)

It is known that the Catalan numbers Cn satisfy the recurrence relation

C0 = 1 and Cn+1 =
n∑
k=0

CkCn−k.

Regarding our (p, q)-Narayana polynomials Nn(t, p, q), we have the following Catalan-like
recursion, which can be derived easily from Lemma 16 by using the usual decomposition
of two-colored Motzkin paths.

Theorem 20. The (p, q)-Narayana polynomials satisfy the recurrence formula:

Nn+1(t, p, q) = (1 + tp)Nn(tp, p, q) + tp

n−1∑
k=1

qkNk(tp, p, q)Nn−k(tp
k+1, p, q) (5.2)

for n > 0 and N0(t, p, q) = 1.

Proof. It follows from Lemma 16 that (for n > 0)

Nn+1(t, p, q) =
∑

M∈M(2)
n

tub(M)p
∑

i∈Ub(M) iqarea(M). (5.3)

Now for each M ∈M(2)
n , we distinguish three cases according to the first step of M :
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• It is an U -step, then M can be decomposed uniquely as M = UM1DM2 with
M1 ∈ M(2)

k−1 and M2 ∈ M(2)
n−k−1 for some 1 6 k 6 n − 1. In this case, we have

ub(M) = 1 + ub(M1) + ub(M2),
∑

i∈Ub(M) i = 1 +
∑

i∈Ub(M1)
(i+ 1) +

∑
i∈Ub(M2)

(k+

1 + i) and area(M) = k + area(M1) + area(M2).

• It is a b-step, then M = bM ′ with M ′ ∈ M(2)
n−1. In this case, we have ub(M) =

1 + ub(M ′),
∑

i∈Ub(M) i = 1 +
∑

i∈Ub(M ′)(i+ 1) and area(M) = area(M ′).

• It is an a-step, then M = aM ′′ with M ′′ ∈ M(2)
n−1. In this case, we have ub(M) =

ub(M ′′),
∑

i∈Ub(M) i =
∑

i∈Ub(M ′′)(i+ 1) and area(M) = area(M ′′).

Summarizing all the above three cases then gives (5.2).

This recursion is a new generalization of [2, Theorem 1.1]. For the reader’s convenience,
we list the first few values of Nn(t, p, q) in the following:

N1(t, p, q) = 1;N2(t, p, q) = 1 + pt;N3(t, p, q) = 1 + (p+ p2 + pq)t+ p3t2;

N4(t, p, q) = 1 + (p+ p2 + pq + p3 + p2q + pq2)t(1 + tp2) + p6t3;

N5(t, p, q) = 1 + (p+ p2 + pq + p3 + p2q + pq2 + p4 + p3q + p2q2 + pq3)t(1 + t2p5)

+ (p3 + p4 + p3q + 2p5 + 2p4q + 2p3q2 + p6 + 2p5q + p4q2 + p3q3

+ p7 + p6q + 2p5q2 + p4q3 + p3q4)t2 + p10t4.

Let Γd+ be the set of all polynomials in N[t, q] that have coefficients in N[q] when

expanded in {tk(1 + t)d−2k}bd/2ck=0 . Expansion (1.3) shows that Nn(t, 1, q) ∈ Γn−1+ , a fact
which was already known in [8, Corollary 2.1]. We note that this fact also follows
immediately from Theorem 20. Actually, setting p = 1 in (5.2) we get

Nn+1(t, 1, q) = (1 + t)Nn(t, 1, q) + t
n−1∑
k=1

qkNk(t, 1, q)Nn−k(t, 1, q).

Since Γn+ · Γm+ := {fg : f ∈ Γn+ and g ∈ Γm+} ⊆ Γn+m+ , we see Nn(t, 1, q) ∈ Γn−1+ from the
above recursion by induction on n.

5.3 Continued fraction expression for Nn(t, 1, q)

LetMn be the set of all Motzkin paths of length n. For a Motzkin path M = s1s2 . . . sn ∈
Mn, we define the height h(si) of the step si to be the y-coordinate of the starting point of
si. According to the combinatorial theory of continued fractions developed by Flajolet [3],
if we weight each up (resp. down, horizontal) step of a Motzkin path M with height h
by uh (resp. dh and lh) and define the weight of M as the product of its step weights,
denoted by w(M), then

1 +
∑
n>1

∑
M∈Mn

w(M)xn =
1

1− l0x−
u0d1x

2

1− l1x−
u1d2x

2

· · ·

. (5.4)
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The following continued fraction expansion for Nn(t, 1, q) is a direct consequence of Fla-
jolet’s result and our bijection ψ2.

Theorem 21. The ordinary generating function N(t, q;x) :=
∑

n>1Nn(t, 1, q)xn has the
continued fraction expansion

N(t, q;x) =
x

1− (1 + t)x− tqx2

1− (1 + t)qx− tq3x2

1− (1 + t)q2x− tq5x2

· · ·

.

Proof. By setting the weights lh = (1 + t)qh, uh = tqh and dh = qh in (5.4) and using the
interpretation of Nn(t, 1, q) in (5.3), we get the desired continued fraction expansion.

6 Final remarks

Wachs and White [16] proved that “rb” and “ls” are equidistributed on the whole set
Rn. In view of Theorem 1, one may wonder if the stronger property that the two paris
(rb, ls) and (ls, rb) are equidistributed on Rn would hold. This is not true, the first
counterexample occurs when n = 6.

Let (q; q)n :=
∏n

i=1(1− qi) and [n]q := 1 + q + · · · + qn−1. Recall that the q-binomial

coefficients
[
n
k

]
q

are defined by
[
n
k

]
q

:= (q;q)n
(q;q)n−k(q;q)k

for 0 6 k 6 n. The Fürlinger-Hofbauer

q-Narayana polynomials [5] that we denote as Cn(t, q) are defined by

Cn(t, q) :=
n−1∑
k=0

qk(k+1) 1

[n]q

[
n

k

]
q

[
n

k + 1

]
q

tk.

This q-analog of Narayana polynomials is different from Nn(t, 1, q) and has already been
widely studied in the literature (cf. [2, 5, 14, 17]). A natural question that one may ask
is if there are interpretations of Cn(t, q) in terms of pattern avoiding permutations or
RGFs that are similar to Theorem 3. This question is answered by works of Fürlinger-
Hofbauer [5], Stump [14, Section 3] and Zhao-Zhong [17, Theorem 4.2] that we organize
as a result in the following.

Theorem 22 (See [5, 14,17]). The following equidistribution holds:

Cn(t, q) =
∑

π∈Sn(231)

tdes(π)qmaj(π)+maj(π−1) =
∑

w∈Rn(1212)

tbk(w)−1qls(w)−rb(w)+n(bk(w)−1),

where Sn(231) is the set of 231-avoiding permutations in Sn, des(π) :=
∑

πi>πi+1
1 and

maj(π) :=
∑

πi>πi+1
i for each permutation π.
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Recently, Dilks, Krattenthaler and Wachs [15] proved via q-hypergeometric techniques
the following q-γ-positivity expansion of Cn(t, q):

Cn(t, q) =

b(n−1)/2c∑
k=0

γn,k(q)t
kqk(k+1)

n−k−1∏
i=k+1

(1 + tq2i),

where γn,k(q) = qk
[
n−1
2k

]
q
Ck(q

2) with Ck(q) := 1
[k+1]q

[
2k
k

]
q

= Ck(1, q). In view of Theo-

rems 19 and 22, we would like to pose the following open problem for further investigation.

Problem 23. Is there a combinatorial interpretation for the γ-coefficients γn,k(q) in terms
of 231-avoiding permutations or 1212-avoiding RGFs? Or more precisely, can one find
certain statistic, say “st”, on R̃n(1212) so that γn,k(q) =

∑
w∈R̃n(1212)

qst(w)?
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