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Abstract

Joint degree vectors give the number of edges between vertices of degree i and
degree j for 1 6 i 6 j 6 n − 1 in an n-vertex graph. We find lower and upper
bounds for the maximum number of nonzero elements in a joint degree vector as a
function of n. This provides an upper bound on the number of estimable parameters
in the exponential random graph model with bidegree-distribution as its sufficient
statistics.
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1 Introduction

Degree sequences and degree distributions have been subjects of study in graph theory and
many other fields in the past decades. In particular, in social network analysis, they have
been shown to possess a great expressive power in representing and statistically modeling
networks; see, e.g., [11] and [9]. Generally in this context, models are in exponential
family form [2, 4], known as exponential random graph models (ERGMs) [8, 17]. When
the sufficient statistic, i.e. the only information that the ERGM gathers from an observed
network, is the degree sequence of a network, the corresponding ERGM is known as the
beta-model, properties of which have been extensively studied in the recent literature; see
[3], [5], and [13]. Degree distributions have also been used as sufficient statistics; see [14].

The bidegree distribution generalizes the degree distribution and collects the relative
frequencies of the degree combinations that appear at neighbouring vertices. The non-
normalized version of the bidegree distribution is called the joint degree vector (JDV,
sometimes also called joint degree matrix ) [12, 1, 15], i.e. the elements of the JDV represent
the exact counts of edges between pairs of vertices of specified degree. Conditions for a
given vector to be the JDV of a graph were provided in [12], [15], and [6]. An ERGM
with bidegree distribution as sufficient statistics has been formalized in [14].

Bidegree distributions are network statistics that belong to the more general class of
joint degree distributions that count degree combinations of connected sets of vertices of
given size. In the computer science literature, the family of graphs with a given joint
degree distribution is called dK-graphs, where d indicates the number of vertices of the
concerned subgraphs [10]. The class of dK-graphs was originally formulated as a means
to capture increasingly refined properties of networks in a hierarchical manner based on
higher order interactions among vertex degrees (see, e.g., [7]).

One important statistical problem when working with ERGMs (or other exponential
families) is the question whether the maximum likelihood estimate (MLE) exists for a
given set of observations (in network theory, the observations most often consist just of
a single observed network). When the MLE does not exist, one or more of the model
parameters cannot be estimated. As is well-known, the information when the MLE exists
can be obtained from a facet description of the so called model polytope [2]. These facets
correspond to linear inequalities that hold among the different components of the suffi-
cient statistics. When such a description is known, it is also easy to understand which
parameters can be estimated [16].

Even though a complete description of the model polytope is hard to compute in
general, it is often possible to obtain a subset of the valid inequalities. Such partial
information about the model polytope gives partial information about MLE existence
and parameter behaviour [16]. For example, the bidegree counts (and frequencies) are
always non-negative. [14] exploited these facts to show that the MLE never exists for a
single observed network in the case of bidegree distribution as sufficient statistics. More
importantly, parameters corresponding to zeros on the bidegree vector of the observed
network are not estimable.

These results motivates us to find the maximum possible number of non-zero elements
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on the bidegree vector of a graph. This maximum number also tells us about the maximum
number of estimable parameters. In this paper, we prove that, asymptotically for large n,
the maximum number of non-zero elements lies between 0.5

(
n
2

)
and 13

24

(
n
2

)
≈ 0.5416̄

(
n
2

)
.

Thus, roughly half of the components are zero, and so, at most half of the parameters are
estimable from a single observation.

In the next section, we provide basic graph theoretical as well as statistical definitions
and preliminary results. In Section 3, we provide a lower bound for the maximum possible
number of non-zero elements of a JDV by constructing a family of graphs that reaches
this bound. In Section 4, we exploit conditions from [6] and use two different approaches
to obtain upper bounds for this desired value. The first upper bound is presented in
Theorem 11 and the second bound in Theorem 12. As shall be seen, the numerical values
for the two bounds are very close.

2 Definitions and preliminary results

2.1 Joint degree vectors

In this paper we only consider simple graphs without isolated vertices. Let G = (V,E)
be such an n-vertex graph and for 1 6 i 6 n− 1 let Vi be the set of vertices of degree i.
The joint degree vector (JDV) of G is the vector s(G) = (j11(G), j12(G), . . . , jn−1,n−1(G))
of length

(
n
2

)
with components defined by jik = |{xy ∈ E(G) : x ∈ Vi, y ∈ Vk}| for all

1 6 i 6 k 6 n− 1. For some vector m, if there exists a graph G with s(G) = m, then m
is called a graphical JDV. Note that the degree sequence of a graph is determined by its
JDV in that

|Vi| =
1

i

(
i∑

k=1

jki +
n−1∑
k=i

jik

)
.

The following characterization for a vector m with integer entries to be a graphical JDV
is proved by [12], [15], and [6]. As it provides simple necesssary and sufficient conditions
for a vector to be realized as a graphical JDV, we call the result an Erdős-Gallai type
theorem.

Proposition 1. (Erdős-Gallai type theorem for a JDV) An integer vector
m = (m11,m12, . . . ,mn−1,n−1) of size

(
n
2

)
is a graphical JDV if and only if the following

holds:

(i) for all i: ni :=
1

i

(
i∑

k=1

mik +
n−1∑
k=i

mik

)
is an integer,

(ii) for all i: mii 6

(
ni
2

)
,

(iii) for all i < k: mik 6 nink.

Moreover, ni gives the number of vertices of degree i in the graph G.
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2.2 Exponential random graph models

An exponential random graph model (ERGM) is a family of random graphs, parametrized
by finitely many parameters θi, i ∈ I. All random graphs have the same (finite) set of
vertices, denoted by V . Under this model, the probability of observing a network G with
vertex set V can be written as

P (G) = exp{
∑
i∈I

ti(G)θi − ψ(θ)}, (1)

where ti(G) are canonical sufficient statistics, which capture some important feature of
G, and ψ(θ) is the normalizing constant, which ensures that probabilities add to 1 when
summing over all possible networks.

The model is in exponential family form. Hence, the likelihood function l(θ) =
P (G1, . . . , Gm), for generic observed networks G1, . . . , Gm, is concave and, therefore, has a
unique maximum if it exists. Existence of this maximum can be described geometrically:

Suppose that the networks G1, . . . , Gm were observed. The average observed sufficient
statistic t̄ is t̄i = 1

m

∑m
j=1 ti(Gj), 1 6 i 6 d. We also define the model polytope to be the

convex hull of all the points in a d-dimensional space that correspond to the sufficient
statistics of all graphs with n vertices. We then have the following result [2, 4]:

Proposition 2. For an ERGM, the MLE exists if and only if the average observed suffi-
cient statistic t̄ lies in the (relative) interior of the model polytope.

In network analysis, there is usually only one network G observed, and therefore, the
average observed sufficient statistic is simply t(G).

In the so-called 2K-model, the sufficient statistic t(G) in (1) is the JDV s(G). As
shown in [14], if si(G) = 0, then θi is not estimable. It is also easy to observe that for
every graph, there are always some elements of the bidegree vector that are zero. In the
next sections, we investigate how many elements of the bidegree vector are always zero.

3 Lower bound construction

Let Hn denote an n-vertex graph with vertex set V (Hn) = {v1, v2, . . . , vn} and edge set
E(Hn) = {vivj : i+ j > n and i 6= j}. This graph, which is known as the half graph, has
degree sequence n − 1, n − 2, . . . ,

⌊
n
2

⌋
,
⌊
n
2

⌋
, . . . , 2, 1. Since a graph on n vertices cannot

contain both vertices with degrees 0 and n − 1, the half graph attains the maximum
number of distinct degrees.

For any graph G, let
A(G) = {ik : jik 6= 0}

be the set of non-zero components in the JDV of G. Clearly, |A(Hn)| = n2

4
if n is even

and |A(Hn)| = n2−1
4

if n is odd. Hence,

lim
n→∞

|A(Hn)|(
n
2

) =
1

2
,
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so about half the elements of the JDV of the half graph are non-zero.
The half graphs are not optimal, and there are constructions which achieve a higher

number of non-zero elements in the JDV. Consider the graph Hn with n > 7 odd. If
one connects the degree 1 vertex to one of the vertices with degree (n − 1)/2, the JDV
element j1,n−1 becomes 0, but the elements j2,(n+1)/2 and j(n+1)/2,(n+1)/2 become nonzero,
so the new graph has one more nonzero elements in its JDV. We found even better such
constructions, but all of these only improve |A(Hn)| by a term that is linear in n.

4 Two upper bounds

In this section, we provide two upper bounds that provide numerically very close upper
bounds, but use entirely different methods. Although we tried, we were unable to combine
these two proof techniques. We think that it is instructive to show both of them.

4.1 Continuous optimization

The following identity is a simple consequence of Proposition 1 and is due to [14]:

Proposition 3. For any graph G,∑
(k1,k2)∈A(G)

k1 + k2
k1k2

jk1k2(G) = n− n0(G), (2)

where n0(G) is the number of isolated vertices in G.

To see this, by Proposition 1(i) we have

n− n0(G) =
n−1∑
i=1

ni(G) =
n−1∑
i=1

1

i

(
i∑

k=1

jki(G) +
n−1∑
k=i

jik(G)

)

=
∑

(k1,k2)∈A(G)

(
1

k1
+

1

k2

)
jk1k2(G) =

∑
(k1,k2)∈A(G)

k1 + k2
k1k2

jk1k2(G)

Next, we show that we can assume that n0(G) = 0 without loss of generality. Consider
a graph G with n0(G) > 0. If n0(G) = 1, then let v ∈ V (G) be a largest degree vertex
in G and x be the isolated vertex, and let G′ be the graph obtained by adding the edge
xv to the graph G. If n0(G) > 1 then let G′ be the graph obtained by adding the edges
between the isolated vertices of G. In both cases G′ is a graph on the same number of
vertices as G that has at least as many nonzero entries in its JDV as G does. Thus, there
are graphs without isolated vertices that have the maximum number of nonzero entries
in their JDV.

Corollary 4. For any graph G,∑
(k1,k2)∈A(G)

k1 + k2
k1k2

6
∑

(k1,k2)∈A(G)

k1 + k2
k1k2

jk1k2(G) 6 n.
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Figure 1: The solution of the discrete and continuous relaxation. The blue curve plots the
upper bound on αn from Lemma 5. The red curve is the limit for large n of αn and α′n.

The original problem of finding the maximum possible number of non-zero elements
of a JDV for a fixed number of vertices can be formulated as the following optimization
problem:

• Maximize |A(G)| among all graphs G with n vertices.

Using the corollary, we relax this optimization problem and study the following problem,
which we will refer to as the discrete relaxation (as ultimately we will solve its continuous
version):

• Maximize the cardinality |A| among all subsets A ⊆ Pn := {(i, j) ∈ N2 : 1 6 i 6
j 6 n− 1} under the constraint

∑
(k1,k2)∈A

k1+k2
k1k2

6 n.

By the above corollary, for any n, the cardinality of a subset that solves the discrete
relaxation is an upper bound for the original optimization problem.

The discrete relaxation can be solved on a computer as follows: First, compute all
values (k1 + k2)/(k1k2) on Pn. Second, order the values. Third, start adding them up
as long as the sum does not exceed n. Finally, count the number of elements that have
been added. Let αn be the cardinality of a solution A of the discrete relaxation divided
by
(
n
2

)
, the cardinality of Pn. The values of αn are plotted in Figure 1. As a function of n,

the optimum αn decreases roughly (though not strictly) and reaches values below 0.56 for
large n.

The limit for n → ∞ can be computed by approximating the discrete relaxation by
the following optimization problem, which we call the continuous relaxation:

• Maximize µ(A′)
(n−1)2 (where µ denotes the Lebesque measure) among all subsets A′ ⊆

[1, n]× [1, n] that are symmetric to the line y = x and satisfy∫∫
A′

1
x
dxdy 6 n.

Let α′n be the maximum of the continuous relaxation.
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Lemma 5. αn 6 n−1
n
α′n + 1

n
.

Proof. To each (i, j) ∈ Pn associate the two squares Ai,j := [i, i + 1) × [j, j + 1) and
Aj,i := [j, j + 1)× [i, i+ 1). For A ⊆ Pn let A′′ =

⋃
(i,j)∈AAi,j and A′ = A′′ ∪

⋃
(i,j)∈AAj,i.

Then∑
(i,j)∈A

i+ j

i · j
>
∑

(i,j)∈A

∫∫
Ai,j

x+ y

x · y
dxdy =

∫∫
A′′

x+ y

x · y
dxdy

>
1

2

∫∫
A′

x+ y

x · y
dxdy =

∫∫
A′

1

x
dxdy.

Here, the first inequality follows from the fact that the maximum of x+y
xy

= 1
x

+ 1
y

over Ai,j
is at (x, y) = (i, j). The second inequality follows by not double-counting the set Ad :=⋃

(i,i)∈AAi,i corresponding to the diagonal elements of A. The last equality follows since
x+y
x·y = 1

x
+ 1

y
and since A′ is symmetric about y = x. Therefore, if A is feasible for the

discrete relaxation, then A′ is feasible solution for the continuous relaxation. Now,

|A| = µ(A′′) =
1

2
(µ(A′) + µ(Ad)) 6

µ(A′)

2
+
n− 1

2
,

and so

αn 6
(n− 1)2

2
(
n
2

) α′n +
n− 1

2
(
n
2

) =
n− 1

n
α′n +

1

n
.

Corollary 6. lim supn→∞ αn 6 lim supn→∞ α
′
n.

It is not difficult to see that, actually, limn→∞ αn = limn→∞ α
′
n. Figure 1 shows that

the upper bound from Lemma 5 is not very tight for finite n.
Next, we solve the continuous relaxation. The idea is the following: As the set A′ it

is advantageous to choose a sublevel set of the function x+y
x·y . For c > 0 let

Ac :=
{

(x, y) ∈ [1, n]2 :
x+ y

x · y
6 c
}
.

Let

yc(x) =
1

c− 1
x

=
x

xc− 1
, x1(c) =

1

c− 1
n

=
n

nc− 1
.

Lemma 7. Ac =
{

(x, y) ∈ [1, n]2 : x1(c) 6 x 6 n, yc(x) 6 y 6 n
}

. In particular, Ac 6= ∅
if and only if nc > 2.

Proof. If x < x1(c) and 1 6 y 6 n, then 1
x

+ 1
y
> c − 1

n
+ 1

n
= c. If x1(c) 6 x 6 n

and 1 6 y < yc(x), then 1
x

+ 1
y
> c − 1

x
+ 1

x
= c. For the second statement observe that

x1(c) 6 n if and only if nc > 2. Similarly, yc(x) 6 n if and only if x > x1(c).
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Lemma 8. Assume that c is such that x1(c) > 1. Then yc(x) > 1 for all x ∈ [1, n].

Proof. yc(x) decreases monotonically with x. Therefore, yc(x) > yc(n) = x1(c) for all x ∈
[1, n].

Lemma 9. Let n > 3. The set Ac is feasible for the continuous relaxation if and only if

(nc− 2) log(nc− 1) 6 nc (3)

Proof. Assume that c is such that x1(c) > 1. Then∫∫
Ac

1

x
dxdy =

∫ n

x1(c)

dx

∫ n

yc(x)

dy
1

x
=

∫ n

x1(c)

dx
n− yc(x)

x

=

∫ n

x1(c)

dx

(
n

x
− 1

xc− 1

)
= n log

n

x1(c)
− 1

c
log

nc− 1

cx1(c)− 1
.

Now,

cx1(c)− 1 =
cn− nc+ 1

nc− 1
=

1

nc− 1
,

and so ∫∫
Ac

1

x
dxdy = n log(nc− 1)− 1

c
log(nc− 1)2 = (n− 2

c
) log(nc− 1).

Hence, Ac is feasible if and only if

(nc− 2) log(nc− 1) 6 nc.

Now suppose that n > e. If c satisfies (3), then

x1(c) >
n

exp(nc/(nc− 2))
>
n

e
> 1.

Thus, the above calculation is valid and shows that Ac is feasible. On the other hand, if
n > e and if c violates (3), then Ac is not feasible.

To find the solution of the continuous relaxation, we need to find the value of c that
solves (3) with equality. Consider the equation

log(β − 1) =
β

β − 2
.

Both the left and the right hand side change sign at β = 2. For β > 2, both sides are
positive, and for β < 2 they are negative. By Lemma 7, we are looking for a solution
larger than 2. For β > 2, the right hand side is decreasing, while the left hand side is
increasing. It follows that there is a unique solution β0 > 2. Numerically, β0 ≈ 5.68050.
Thus, Ac is feasible if and only if c 6 β0/n, and in order to maximize |Ac|, we have to
choose c = β0/n.
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Lemma 10. x1(β0/n) > 1 for n large enough.

Proof. x1(β0/n)− 1 = n−β0+1
β0−1 > 0 for n large enough.

It remains to compute the maximum value of the continuous relaxation and to put
everything together.

Theorem 11. For any graph G with n vertices,

|A(G)|(
n
2

) 6 α′n =
n2

(n− 1)2
(β0 − 2)2 − 2

β0(β0 − 2)
≈ n2

(n− 1)2
0.55225694,

where A(G) is the set of non-zero elements in the JDV of G.

Proof. If x1(c) > 1, then

|Ac| =
∫∫

A

dxdy =

∫ n

x1(c)

dx

∫ n

yc(x)

dy =

∫ n

x1(c)

dx(n− yc(x)).

Now,

yc(x) =
1

c

(
x

x− 1
c

)
=

1

c

(
1 +

1/c

x− 1
c

)
=

1

c

(
1 +

1

cx− 1

)
,

and so

|Ac| =
∫ n

x1(c)

dx(n− 1

c
− 1/c

cx− 1
) = (n− 1

c
)(n− x1(c))−

1

c2
log

cn− 1

cx1(c)− 1

= n2nc− 1

nc

nc− 2

nc− 1
− 2

c2
log(nc− 1).

Therefore,

α′n =
|Aβ0/n|

(n− 1)2
=

n2

(n− 1)2

[
β0 − 2

β0
− 2

β2
0

β0
β0 − 2

]
=

n2

(n− 1)2
(β0 − 2)2 − 2

β0(β0 − 2)
.

4.2 Second Bound

Let G = (V,E) be an n-vertex graph and let A(G) be the set of non-zero elements in
the JDV of G, as defined as in Section 4.1. Denote by ni = |Vi| the number of vertices
with degree i. We call i a single if ni = 1 and multiple if ni > 2, noting that some
i are neither single nor multiple, as they just do not occur as degrees. As before, for
1 6 i 6 k 6 n− 1, let jik be the number of edges between the ith and kth degree classes
and χik = 1 if jik > 0, and 0 otherwise. It is easy to see that |A(G)| =

∑n−1
i=1

∑n−1
k=i χik.

Now we set Di =
∑i

k=1 χki +
∑n−1

k=i+1 χik and B(G) =
∑n−1

i=1 Di. Note that for k 6= i, Di

counts χki = χik twice but χii is counted only once, so we get |A(G)| 6 B(G)+n−1
2

and
therefore

|A(G)|(
n
2

) 6
B(G) + n− 1

2
· 2

n(n− 1)
= (1 + o(1))

B(G)

n2
.

We use this to prove the following theorem:
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Theorem 12. For any graph G with n vertices,

|A(G)|(
n
2

) 6 (1 + o(1))
13

24
= (1 + o(1))0.5416,

where A(G) is the set of non-zero elements in the JDV of G.

The proof of Theorem 12 relies on a sequence of lemmas.

Lemma 13. Let m be the number of distinct vertex degrees of G. Then,

n−1∑
i=1

Di 6
∑

i: i single

min(m, i) +
√
m

√ ∑
i: i multiple

min(m, i)

√ ∑
i: i multiple

ni.

Proof. Observe that Di 6 m 6 mi and Di 6 ini, and hence

Di 6 min(m, ini,mni) = min(m,min(m, i) · ni) 6
√
m ·min(m, i) · ni, (4)

since the minimum of two elements is less than their average. Note that if i is single we
have

Di 6 min(m, i). (5)

Employing (4) and (5) we get that

n−1∑
i=1

Di 6
∑

i: i single

Di +
∑

i: i multiple

Di

6
∑

i: i single

min(m, i) +
√
m

∑
i: i multiple

√
min(m, i) · ni

6
∑

i: i single

min(m, i) +
√
m

√ ∑
i: i multiple

min(m, i)

√ ∑
i: i multiple

ni, (6)

where the last inequality follows from Cauchy-Schwarz.

We wish to upper bound the term from (6) over all graphs G. From our lower bound
construction we know that |A(G)| > (1 − o(1))1

2
n2. So we may assume that m > n/

√
2,

else we would have |A(G)| 6 m2 6 n2/2 and our estimation of |A(G)| would be complete.

Lemma 14.
∑
i:ni>0

min(m, i) 6 m(n−m− 1) +
n(2m− n+ 1)

2
.

Proof. We wish to upper bound
∑

i:ni>0 min(m, i) over all graphs. So assume the m
highest possible degrees occur in our graph:

n− 1, n− 2, . . . , n−m+ 1, n−m.
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Our assumption m > n/
√

2 implies m > n −m + 1, so the value of m has to appear in
the list of degrees above. There are n − 1 − m terms strictly larger than m in this list
and each contributes min(m, i) = m. The remaining terms sum up exactly

∑m
i=n−m i, and

hence ∑
i:ni>0

min(m, i) 6 m(n−m− 1) +
m∑

i=n−m

i

= m(n−m− 1) +
n(2m− n+ 1)

2
. (7)

Now if the m highest degrees do not occur in our graph, then some degree less than
n−m+ 1 must occur which clearly gives something smaller than the term in (7).

Recall from the beginning of the section that a degree i is single if ni = 1, that is, there
is only one vertex of degree i. Let s be the number of degrees i that are singles. Observe
that s 6 m and s+2(m−s) 6 n, implying that s 6 m 6 n+s

2
. Using s+

∑
i:i multiple ni = n

and substituting

y =
∑

i:i single

min(m, i), z =

√ ∑
i:i multiple

min(m, i),

we can write the term in (6) as

g(y, z, s,m) = y +
√
m · z

√
n− s.

We wish to maximize g subject to the constraints

1. All variables are non-negative and s 6 n,

2. s 6 m 6 n+s
2

, and

3. y + z2 6 m(n−m− 1) + n(2m−n+1)
2

,

where constraint 3 follows from Lemma 14.
Note that g(y, z, s,m) = O(n2), so we wish to determine how large the coefficient of n2

in g can be as n→∞. To do this we set S = s/n, M = m/n, Y =
∑

i:i single min(m, i)/n2,

and Z =
√∑

i:i multiple min(m, i)/n2 and turn to the following numeric optimization prob-

lem: maximize
f(Y, Z, S,M) = Y +

√
M · Z

√
1− S

subject to the constraints

(a) All variables are non-negative and S 6 1,

(b) S 6M 6 1+S
2

, and

(c) Y + Z2 6M(1−M) + 2M−1
2

.
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By routine arguments, it follows that g(y, z, s,m) 6 (1 + o(1)) f(Y, Z, S,M)n2. Also note
that (b) implies that M 6 1.

Lemma 15. If constraints (a), (b), and (c) hold, then

f(Y, Z, S,M) 6
13

24
.

Proof. For fixed values of S, M and Z, the function f is monotone in Y . Therefore, we
have to choose Y as large as possible, which, according to the last constraint, implies that
Y = −M2 + 2M − 1

2
− Z2. Also the right hand side of constraint (c) is non-negative if

and only if 1−
√

2/2 6M 6 1 +
√

2/2, so 1−
√

2/2 6M 6 1.
For fixed values of Z and M the target function f decreases with S. Hence we need to

choose S as small as possible. The constraints imply S > max{0, 2M −1}, so we consider
the following two cases.

If M 6 1/2, then S = 0. In this case, we need to optimize

f(Z,M) = −M2 + 2M − 1

2
− Z2 +

√
M · Z

subject to

1. 1−
√

2/2 6M 6 1/2,

2. Z2 6 −M2 + 2M − 1
2
.

The target function f is quadratic in Z with maximum at Z0(M) =
√
M/2. Observe that

f(Z0(M),M) = −M2 +
9

4
M − 1

2
.

This function is quadratic in M , with maximum at M = 9
8
> 1

2
. Therefore, it is maximized

by the largest feasible M = 1/2. In total,

f(Z,M) 6 f(Z0(M),M) 6 f(Z0(1/2), 1/2) =
3

8

for all feasible values of (Z,M). Finally, (Z0(1/2), 1/2) is feasible, since

Z0(1/2)2 =
1

8
<

1

4
= −1

4
+ 1− 1

2
.

For the second case, suppose that M > 1/2. Then S = 2M − 1, and we need to
optimize

f(Z,M) = −M2 + 2M − 1

2
− Z2 +

√
M · Z ·

√
2(1−M)

subject to

1. 1/2 6M 6 1,
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2. Z2 6 −M2 + 2M − 1
2
.

Again, f is quadratic in Z, with maximum at Z0(M) =
√
M(1−M)/2. To see that

(Z0(M),M) is feasible, we have to check that

0 6 −M2 + 2M − 1

2
− Z0(M)2 = −1

2
M2 +

3

2
M − 1

2
.

The right hand side is a quadratic polynomial with zeros at (3 −
√

5)/2 < 1/2 and (3 +√
5)/2 > 1, which proves that (M,Z0(M)) satisfies all constraints.

Therefore, we need to maximize the quadratic function

f(M) = −M2 + 2M − 1

2
+

1

2
M(1−M) = −3

2
M2 +

5

2
M − 1

2

with 1/2 6M 6 1. The maximum is at M = 5/6, where the value is

f(5/6) = −75

72
+

25

12
− 1

2
=

13

24
= 0.5416.

Proof (of Theorem 12). By Lemma 13 and Lemma 15,

B(G) =
n−1∑
i=1

Di

6
∑

i:i single

min(m, i) +
√
m

√ ∑
i:i multiple

min(m, i)

√ ∑
i:i multiple

ni

= g(y, z, s,m)

6 (1 + o(1)) f(Y, Z, S,M)n2

6 (1 + o(1))
13

24
n2,

implying that
|A(G)|(

n
2

) = (1 + o(1))
B(G)

n2
6 (1 + o(1))

13

24
.
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