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Abstract

Regular edge-colored graphs encode colored triangulations of pseudo-manifolds.
Here we study families of edge-colored graphs built from a finite but arbitrary set
of building blocks, which extend the notion of p-angulations to arbitrary dimen-
sions. We prove the existence of a bijection between any such family and some col-
ored combinatorial maps which we call stuffed Walsh maps. Those maps generalize
Walsh’s representation of hypermaps as bipartite maps, by replacing the vertices
which correspond to hyperedges with non-properly-edge-colored maps. This shows
the equivalence of tensor models with multi-trace, multi-matrix models by extend-
ing the intermediate field method perturbatively to any model. We further use the
bijection to study the graphs which maximize the number of faces at fixed number
of vertices and provide examples where the corresponding stuffed Walsh maps can
be completely characterized.
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1 Introduction

Regular, bipartite, edge-colored graphs are connected, bipartite graphs with vertices of
degree (D +1) such that the (D+1) incident edges on each vertex all have a distinct color
from the set {0,..., D} (see an example in Figure 1). Throughout this article, we refer
to them simply as edge-colored graphs. By duality, they represent colored triangulations
of pseudo-manifolds in dimension D [1]. A colored triangulation consists in a gluing
of colored simplices, where a colored simplex of dimension D (D-simplex for short) is a
simplex whose (D —1)-subsimplices are colored 0,1, ..., D. In a D-simplex, a k-subsimplex
is shared by D — k of the (D — 1)-subsimplices (for instance in a tetrahedron, an edge is
share by two triangles and a vertex by three triangles). The coloring of (D — 1)-simplices
thus induces a coloring of all k-subsimplices with (all possible) sets of D — k colors, down
to k = 0. The gluing rule of colored triangulations is to glue two colored D-simplices by
identifying two of their (D —1)-subsimplices of the same color in the only way which maps
all the k-subsimplices from one (D — 1)-simplex to those of the other one while respecting
all their induced coloring!. Colored graphs encode those colored triangulations: each
vertex of a graph represents a D-simplex and an edge of color ¢ € {0,..., D} between two
vertices corresponds to the unique gluing of the two corresponding D-simplices along a
(D — 1)-simplex of color i.

The vertices of a colored triangulation are dual to the connected edge-colored sub-
graphs regular of degree D carrying all the colors but one. We will be interested in those
which have the colors 1, ..., D and call them bubbles. A bubble is a connected, bipartite,
edge-colored graph regular of degree D with D colors, dual to a triangulation of a pseudo-
manifold in dimension D — 1 and gives a D-dimensional object with boundary using
topological cones [2]. In two dimensions, bubbles are simply bipartite cycles with edges
alternating the colors 1 and 2. Taking the topological cone turns them into quadrangles,
hexangles, etc. which are the building blocks of combinatorial maps (a combinatorial maps
can be viewed or defined as a gluing of polygons into surfaces — the polygons are called
the faces of the map). We can thus think of a bubble as a higher-dimensional building
block for colored triangulations of pseudo-manifolds in arbitrary dimensions, generalizing
the triangles, quadrangles, etc. We can further think of edge-colored graphs with fixed
bubbles as a higher-dimensional extension of combinatorial maps with prescribed face
degrees. We denote Go({Ba}aca) the set of edge-colored graphs with D + 1 colors whose
bubbles are from the finite set of bubbles {B,}aca-

A special attention has been recently paid to colored graphs with quartic bubbles (four
vertices), first with the so-called quartic melonic bubbles [3] (see Figure 2) and then with
generic quartic bubbles [4]. The reason? is that in those cases, there is an extension of
Tutte’s bijection between bipartite quadrangulations (combinatorial maps whose faces are

!They are not simplicial complexes since two simplices can share more than one of the boundary
(D — 1)-subsimplices.

2The reason is in fact stronger than the bijection we describe. It is due to a non-perturbative equiv-
alence which holds between tensor integrals and matrix integrals, which are respectively perturbative
generating functions of colored graphs and colored maps.
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quadrangles) and generic maps which applies. It gives a bijection between edge-colored
graphs with quartic bubbles and generic maps whose edges can be labeled by a color or
a subset of colors.

This bijection has been really fruitful. In particular, it was used in [5] to perform a
double scaling limit in the quartic melonic case (this is a scaling limit of the generating
function which picks up the most singular contributions for all values of the difference
between the number of faces and the number of vertices).

For non-quartic bubbles, very few results exist, see for instance [6, 7] where graphs with
a single bubble, and for specific bubbles, are studied, focusing on those which maximize
the number of faces. In a few instances, a non-direct approach was developed. It was
possible to rely on results derived for quartic bubbles, typically via the bijection, and
extend them to more generic (but not arbitrary) bubbles. In particular, this strategy was
applied in [8] to derive the double scaling limit for generic melonic bubbles and in [9]
for the analysis of “melono-planar” graphs. Extending results from the quartic case to
more generic bubbles B was possible via a universality argument. The bubbles B can be
represented as gluings of quartic bubbles so that the corresponding set of colored graphs
Go(B) forms a subfamily of those built from quartic bubbles. If B is close enough to the
quartic ones, it may lead to the same combinatorial universality class.

However, this argument cannot pass to fully generic bubbles. If B becomes compli-
cated, then Go(B) will span a very special subset of the graphs with quartic bubbles
which is difficult to identify and study. Therefore the universality argument becomes
out of reach. This problem suggests that instead of the non-direct approach which goes
through the quartic model for which a bijection with maps exists, one should look for a
direct approach and find a bijection on Go(B). That bijection is the main result of this
article. Yet, the fact that all bubbles can be represented as gluings of quartic melonic
bubbles (a statement proved for the first time in the present article) is the key to extend
the bijection from quartic bubbles to arbitrary ones.

In the quartic case, the bijection works as follows. Quartic bubbles can be represented
as colored edges, where each endpoint of an edge represents a pair of vertices of the
quartic bubble. Since gluing bubbles via edges of color 0 forms cycles, the latter are then
represented as vertices locally embedded in the plane (this will be detailed in Section
2), thereby leading to (non-properly-)edge-colored maps. A generic bubble however has
more than two pairs of vertices, hence through the bijection the “edges” should have more
than two ends. This is reminiscent of hyperedges of hypermaps. Following Walsh [10], a
hypermap can be represented as a bipartite map, sometimes known in this context as a
Walsh map. Indeed, a hyperedge with n ends (called bits in [10]) can be represented as
a star centered on a white vertex incident to n half-edges. Those half-edges can then be
glued to half-edges incident to ordinary, say black, vertices and produce bipartite maps.

However, a bubble, with its colored edges, has in general more structure than a hyper-
edge. We will show that this structure can always be represented through edge-colored
maps. Then, instead of Walsh’s white vertices representing hyperedges, we will insert
those edge-colored maps. This process is a stuffing of Walsh maps with specific edge-
colored maps. It is thus a bipartite, colored extension of the stuffed maps introduced in
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[11], which we will call stuffed Walsh maps.

After setting up definitions and notations and reviewing the bijection in the quartic
melonic case in Section 2, we present the generalized bijection between Go(B) and stuffed
Walsh maps in Section 3. Although we focus for convenience on the case of a single type
of bubble B, it should be clear that the bijection generalizes to Go({Ba}aca) for a finite
set of bubbles {B,}a.ca. We then use the bijection to study the dominant edge-colored
graphs, i.e. those which maximize the number of faces at fixed number of vertices. Section
4 introduces a new approach to analyze this issue, based on the genera and circuit ranks
of monochromatic submaps of stuffed Walsh maps. While characterizing the dominant
maps remains an open issue in general, we have provided examples in Section 5 for which
the identification of dominant maps can be fully carried out. This includes bubbles for
which the problem of the dominant graphs had not been solved before.

Finally, in Section 6, we present a multi-matrix integral which generates stuffed Walsh
maps. This is expected since multi-trace matrix models generate stuffed maps as shown
n [11]. As the generating function of regular edge-colored graphs takes the form of an
integral over a tensor, known as a tensor model [2], our results mean that tensor models
are (perturbatively) equivalent to some multi-trace multi-matrix models. This is proved
directly in Section 6 using matrix and tensor integrals.

As the bijection relies on representing bubbles as edge-colored maps, we provide details
on the admissible maps in Appendix A, using the same techniques as in Section 4. In
Appendix B, we reduce the matrix model of Section 6 in the special case of the quartic
melonic bubbles to the matrix model of [3].

2 Edge-colored graphs with quartic melonic bubbles and edge-
colored maps

A closed A-edge-colored graph is a connected, bipartite, regular graph in which each edge
carries a color from {1,..., A} and such that each vertex is incident to exactly A edges
of distinct colors. An open A-colored graph may have some vertices with less than A
incident edges (all with distinct colors).

We used A in the above definition since we will consider bubbles, defined by A = D,
and gluings of bubbles which consist in edge-colored graphs with A = D + 1.

Let D > 2 be an integer. A bubble is a closed D-colored graph with colors in [D] =
{1,...,D} and we denote B, the set of bubbles with 2p vertices (p white and p black
vertices).

If {B,}aca is a finite set of bubbles, we denote G,({B,}aca) the set of (D +1)-colored
graphs with colors in {0,..., D} whose vertices have degree D + 1 except for p white
vertices (and p black vertices) which do not have an incident edge of color 0, and such
that the connected components of the graphs obtained by removing all edges of color 0
are from the set {B,}aca only. An example is given in the Figure 1.

A face of colori € [D] in a graph G € G,({Ba}aca) is a closed chain alternating edges
of colors 0 and 7. Vertices which do not have an incident edge of color 0 are called free
vertices. When G has some free vertices, there are broken faces of color ¢+ which are open
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Figure 1: A closed 5-colored graph, where the dashed lines represent the edges of color 0.

V1 U1
7 7
c@ s s

Figure 2: There is a unique bubble with two vertices (on the left). On the right is the
quartic melonic bubble B;.

chains of alternating colors 0 and ¢ between a white and a black free vertex. Broken faces
can be naturally oriented from the white free vertex to the black free vertex.

The quartic melonic bubble B; of color i € [D] has two white vertices vy, vy and two
black vertices o1, Uo such that vy is connected to o3 by D — 1 edges (and similarly for vy
and 7,) of colors different from i and v; is connected to v by an edge of color 7, as well
as vy and vy (see Figure 2).

Edge-colored maps are combinatorial maps (see [12] for instance, and a proper def-
inition below) in which each edge carries a color in [D]. Note that for maps, we use
edge-colorings which are typically non-proper, i.e. two adjacent edges may carry the
same color. We denote M, the set of edge-colored maps with p cilia, i.e. marked corners,
such that a vertex can have at most one cilium. A cilium divides a corner into two corners.

Theorem 1. There is a bijection between the sets G,({B;}icip)) of (D +1)-colored graphs
built from the quartic melonic bubbles {Bi,...,Bp} and M.

We describe how this bijection works. First we recall how to define a map with labeled
half-edges and cilia M = (o, 0) using two permutations a and o. Label the half-edges of
the map, including its cilia, of the map 1., 2., ..., (2E).,, where ¢; records the color of
the half-edge &, and use primed labels to distinguish the cilia (which should be considered
as having all the colors). As for ordinary combinatorial maps, the cycles of o are the
cyclically ordered labels of the half-edges around each vertex. « is an involution which
has cycles of length two for non-primed labels and a fixed point at each cilium. For non-
primed labels, it transposes labels of the same color only and thus describes the edges of
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Figure 3: Cycles which alternate edges of color 0 and parallel edges between partner
vertices are represented in M as vertices. Open chains become ciliated vertices where the
position of the cilium indicates the missing edge of color 0.

the map. A map in M, is then an equivalence class up to relabeling of the half-edges and
cilia.

Let G € Go({Bi}icip)). Each white vertex has a natural black partner: the one it is
connected to via at least D — 1 edges (it may be D edges due to the color 0). Label each
white vertex 1., ..., (2F).,, (and their black partner 1,,,...,(2E),,,) where ¢; € [D]
is the color which does not connect the white vertex k to its black partner k. The
permutation o encodes the edges of color 0: it is defined by o(a) = b if a is a white vertex
connected to b via an edge of color 0. One can thus think of ¢ as mapping a white vertex
a to b following an edge of color 0, then to its white partner b. The cycles of o therefore
represent cycles in G made of edges of color 0 and parallel edges which connect partner
vertices.

Furthermore, we get the involution o which respects the coloring by defining a(a) = b
if a labels a white vertex and b a black vertex which are not partners and if there is an
edge of color ¢ € [D] between them. In Figure 2 for instance, a(v;) = vy because there
is a single edge (of color i) between v; and vy, and «a(ve) = v; due to the single edge
between vy and v;. In other words, o encodes the fact that the pairs of partners (a,a)
and (a(a),a(a)) are connected by the color ¢ in each bubble B..

A map M € M is then obtained from those two permutations o and o up to relabel-
ings of the white vertices. In other words, as illustrated in Figure 3,

e the melonic bubbles B; are mapped to edges of color i of the map,

e the cycles alternating edges of color 0 and D —1 parallel edges are mapped to vertices
of the map,

e which means that their corners represent the edges of color 0.

In the case where G € G,({B;}icip)) for p # 0, the definition of o has to be amended.
Start from a black vertex v with no incident edge of color 0. If its white partner v also
has no incident edge of color 0, we add an edge of color 0 between them, mark it and give
it a primed label. This gives a cycle of ¢ represented in M as a vertex and the primed
label is represented with a cilium. Else, v has an incident edge of color 0 and we iterate
o until we arrive at a white vertex with no incident edge of color 0. Then a marked edge
of color 0 is added between this vertex and v. This defines a cycle of o where the marked
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Figure 4: Here are some examples of the bijection between graphs with quartic melonic
bubbles and edge-colored maps with cilia.

edge is promoted to a half-edge with a primed label. This cycle of ¢ is a vertex of the
map M and the primed label becomes a cilium (see Figure 3).

Examples of the bijection are given in Figure 4.

The monochromatic submap M@ of color i € [D] is defined as the map obtained by
removing all edges except those of color 7. It is clear that the faces of color ¢ in G become
through the bijection the faces of M@ (including its isolated vertices). If M = (a, o), one
defines ¥, 0 by removing from the cycles of a and o all the labels of color different from
i (and keeping the primed labels, which correspond to cilia). Then the faces correspond
to the cycles of a®g(® . In the presence of cilia, a cycle of a?¢(® may contain one or
more primed labels. A broken face of color ¢ is then a part of a cycle between two cilia.
It now receives its orientation from the cycle.

A melonic bubble is thus mapped to an edge of a map because it has two “ends”, i.e.
two pairs of partner vertices. Thus, for more generic bubbles, we expect “edges” with
more than two ends, i.e. hyperedges. For instance, it is clear that the bijection works
similarly if instead of quartic melonic bubbles, we use melonic cycles with n partner
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vertices, which are mapped to hyperedges with n ends. Following Walsh [10], hypermaps
are in bijection with bipartite maps, and the melonic cycle of length n can be represented
as a white vertex of degree n as shown in Figure 12. In this context, the maps which are
obtained are called Walsh maps, and here they are edge-colored Walsh maps. However,
for more generic bubbles, there is no preferred pairing of the vertices (they do not have
natural partners). Moreover, the colored structure of a bubble cannot be represented as
a simple white vertex a la Walsh, but instead we will show that a colored map can be
used. Trading Walsh’s vertices for maps leads to stuffed Walsh maps.

3 Bijection between edge-colored graphs and stuffed Walsh maps

In the above bijection, a melonic bubble is mapped to an edge of a map because it has
two “ends”, i.e. two pairs of partner vertices. Thus, for more generic bubbles, we expect
“edges” with more than two ends, i.e. hyperedges. For instance, it is clear that the
bijection works similarly if instead of quartic melonic bubbles, we use melonic cycles with
n partner vertices, which are mapped to hyperedges with n ends.

Following Walsh [10], hypermaps are in bijection with bipartite maps. They are simply
obtained by representing each hyperedge as a “star”, i.e. a white vertex with n edges
representing its n ends (which are in turn connected to the ordinary, say black, vertices of
the hypermap). We will refer to bipartite combinatorial maps as Walsh maps to emphasize
their alternative description as hypermaps. Similarly, the melonic cycle of length n can be
represented as a white vertex of degree n as shown in Figure 12. This gives edge-colored,
Walsh maps (i.e. edge-colored bipartite maps).

However, for more generic bubbles, there is no preferred pairing of the vertices (they
do not have natural partners). Moreover, the colored structure of a bubble cannot be
represented as a simple white vertex a la Walsh, but instead we will show that a colored
map can be used. Trading Walsh’s white vertices for maps leads to stuffed Walsh maps.

Definition 2 (Stuffed Walsh maps). Let M € M, be an edge-colored map with ¢ cilia.
We denote W,(M) the set of stuffed Walsh maps of submaps M and with p cilia. A
stuffed Walsh map W € W,(M) is defined by (an isomorphism class of)

e black vertices which can only be connected to blue vertices,
e cilia are attached to black vertices, one cilium per vertex at most,

e removing all the black vertices and replacing their incident edges with cilia® inci-
dent to blue vertices produces a disjoint union of edge-colored maps with cilia all
isomorphic to M,

e an edge which connects a black to a blue vertex carries a color subset of [D] which is
the set of colors incident to the blue vertex in M (i.e. the colors of the edges between
two vertices, one of which being the blue vertex adjacent to the black vertex).

3These are different cilia from those of the stuffed Walsh map W itself.
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Thus, while a black vertex is always connected to a blue vertex, blue vertices can be
connected together. In fact, they form the submaps isomorphic to M. In the following,
we will most of the time identify M with the map where the cilia are replaced with half-
edges, where a half-edge incident to a vertex of M is labeled by a color set containing the
colors incident to the vertex.

We also define the projected Walsh maps, by contracting all the edges between blue
vertices. This shrinks each submap M to a point that can be represented as a white
vertex and one obtains a bipartite map with white vertices of fixed degree and fixed
incident color sets. If W € Wy (M), we denote P(W) its projected map.

Consider a bubble B with V black vertices, and G € G,(B) a (D + 1)-colored graph
whose maximal subgraph of colors 1, ..., D is a disjoint union of bubbles B. We are going
to build a bijection which maps G to a stuffed Walsh map. This is done in three steps,

1. auniversal part, independent of the details of B, which gives rise to the black vertices
of the stuffed Walsh map,

2. a mapping of the bubble B to an edge-colored map M with V cilia,
3. finally the gluing of those edge-colored maps to the universal black vertices.
The bijection relies on a choice of pairing of B.

Definition 3 (Pairings). A pairing of the vertices of a bipartite, edge-colored graph is a
partition €2 of its vertices in pairs of black and white vertices.

3.1 The universal part of the bijection

Let Q2 be a pairing of B. By following alternatively the edges between the paired vertices
of each bubble in G and the edges of color 0, we observe cycles which we represent as

black vertices,
J
_~ ‘@ Z]k

More rigorously, those cycles can be defined as the cycles of a permutation. Denote b
the number of bubbles B in G, and V the number of white vertices of B.

e () induces a pairing ()¢ on the vertices of G: a white vertex v of G belongs to a
single bubble B in which it is paired to a black vertex v through €2, and they form
the pair (v,v) € Qg.
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e An arbitrary labeling 1,...,bV of the white vertices of G induces a labeling of the
pairs of vertices of )g: the label i goes to the pair whose white vertex has the label?
1.

e If G is a closed graph, each vertex of G is incident to an edge of color 0. Edges
of color 0 hence also induce a permutation p on the labels {1,...,0V}: © = p(y)
if there is an edge of color 0 between the black vertex of the pair y and the white
vertex of the pair x.

This way, the cycles of G which alternate edges of color 0 and parallel edges between
paired vertices are precisely the cycles of the permutation u. We represent them as black
vertices {v,}. Notice that this construction does not depend on the details of the bubble
B. This is the reason why this part of the bijection is universal.

Consider such a cycle represented as v,. At each iteration of u, arriving on a white
vertex 4 (or its black partner), we look at the colors of the edges incident to ¢ and which
do not connect it to its partner. We record those colors as the label Z C [D] of a half-edge
incident to v,.

There is a cyclic order, inherited from the order of the pairs within the cycle of u
corresponding to v,, which we represent clockwise. This way, the corners around wv,
correspond to the edges of color 0 along the cycle and they go clockwise from black
to white vertices. Equivalently, a half-edge has two sides, and after following a corner
clockwise, the side of the half-edge which is first met corresponds to a white vertex, while
the other side of the half-edge corresponds to the black vertex of the same pair.

If G is not a closed graph, i.e. G € G,(B) for p # 0, then we proceed as follows.
Consider a white vertex v € G with no incident edge of color 0. Either its black partner
also has no incident edge of color 0, or it has one which defines the image of the pair by
i. This continues until one arrives at a black vertex ¢ with no incident edge of color
0. We add an edge of color 0 between v and ¢’ and mark it. We thus get a cycle of u
which can be represented as a black vertex v,. Moreover, the marked edge of color 0 now
corresponds to a corner of v,, which we mark with a cilium,

J

3.2 Bubbles as boundary graphs of edge-colored maps: the map M (B, Q)

The black vertices {ve} and their incident half-edges represent all pairs of vertices of G,
all edges of color 0 and some of its cycles. There may be several cycles of i going through

4One could use an arbitrary labeling of the black vertices and define a permutation 7q which maps
the label of a white vertex to that of the black vertex it is paired with. Here we choose to set 7q = id.
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the same bubble B C G. Those cycles are represented as black vertices ve1, Vo2, ... Which
therefore have to be connected in some way.

e One can try and represent B as a hyperedge connecting those vertices. Via Walsh’s
bijection [10] this hyperedge is just a white vertex whose incident half-edges cor-
respond to the pairs of €2 and are labeled by the colors which do not connect the
vertices in each pair. The order of the edges around the white vertex has to be
fixed as they each represent a specific pair of vertices of B. By gluing the half-edges
incident to black vertices to the half-edges of the same color labels and incident to
such white vertices we obtain projected Walsh maps.

e However, such a white vertex does not faithfully represent B. There can be several
distinct bubbles for which the pairings are such that the incident edges have the
same color labels. For instance, the two bubbles below, equipped with the pairing
specified by the dashed ellipses,

1,2 1,2
” (3)
1,2 1,2

project onto the same white vertex. The projected Walsh maps coming from both
Go(B),Go(B') will thus be the same. This means that it is then impossible to
reconstruct the graph G without prior knowledge of the bubble B. For the same
reason, it is impossible to track down the faces of color ¢ € [D] through the bijection.

e To remedy this issue, we will find a way to faithfully represent all faces of G. Indeed,
G is fully characterized by the knowledge of which colors connect which two vertices.
Given the black vertices {v, } that we have constructed and their incident half-edges,
it therefore only remains to specify which colors (if any) connect two half-edges
incident to black vertices. B thus has to be represented as a generalized, colored
hyperedge which dispatches the colors between its incident half-edges.

Since the black vertices {v,} are locally embedded, we look for a representation of the
bubble B as a map. To do so, we will use the existing bijection for edge-colored graphs
with quartic melonic bubbles.

Definition 4 (Boundary graph). The boundary graph 0G of a graph G € G,({Ba}aca)
with 2p free vertices has all the free vertices of G as vertices, and an edge of color
between two of them if there is a broken face of color ¢ (i.e. an open chain of colors 0 and
i) between them in G.

It is easy to see that the boundary graph 03 is a disjoint union of bubbles. Conversely,
we show that all bubbles can be obtained as boundary graphs of edge-colored graphs
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with quartic melonic bubbles. Thanks to the bijection between edge-colored graphs with
quartic melonic bubbles and edge-colored maps, it is then possible to represent any bubble
B as the boundary of a map.

Theorem 5. The map 0 : M, — B, which takes the boundary graph of an edge-colored
map with p cilia is surjective on the set of bubbles with p black vertices. Fach cilium of
an edge-colored map corresponds to a pair of vertices of the boundary bubble.

It is possible to prove the result for the boundary map 0 : G,({B.}c=1...p) — B, and
eventually use the bijection between G,({B.}.1,.p) and M,. Instead we offer a proof
where the boundary graphs are studied directly on M,. In particular, for any bubble and
pairing we construct in the proof a specific map M (B, ) such that

OM(B,Q) = B, (4)

and which will be used throughout the rest of the article.

Proof of Theorem 5. Consider a bubble B and equip it with a pairing €2. We orient
the edges of B from white to black vertices. We now merge the vertices (v, v) paired in
into new vertices V' = (v,0) and erase the edges which connect the two vertices of each
pairs, to obtain the graph B . Clearly, B o is equivalent to B.

Both B and B o are characterized by a set of permutations 7, ..., 7p. Label the pairs
of vertices of €2 and define 7; on B as the map which sends the pair of vertices x to the
pair y if there is an edge of color ¢ between the white vertex of the pair  and the black
vertex of the pair y. On B o, 7, maps = to y if there is an edge of color ¢ directed from
T to y. '

The subgraph Bg)g obtained by removing all edges but those of color 7 has vertices of

degree zero or two, and is thus a disjoint union of directed cycles C’fi), . C’%), each of
them corresponding to a cycle of the permutation 7;.

To eventually represent B as a map, we have to specify a way of embedding the
graph B o and marking corners while erasing the orientations. Then we will see that the
embedding determines the permutations a, ¢ which formally define the map.

There has to be exactly one cilium on each vertex. The key idea is to embed each
cycle C,gz) — C’,Sf), for Kk = 1,..., K, such that all cilia attached to (j,(;) lie on a single
face. To do so, we split the local neighborhood around each vertex into two regions, and
draw the ingoing edges in one region, and the outgoing edges in the other region. The
relative order between edges of distinct colors can be chosen arbitrarily (we will see it does
not affect the boundary graph). A cilium is finally added between the two regions, such
that the outgoing edges are encountered first when one goes around the vertex clockwise
starting from the cilium (see Figure 5). This prescription ensures that the orientations
can be safely erased. Indeed, the first time a color is encountered when one goes clockwise
around the vertex starting from the cilium, we know it is outgoing. Moreover, this allows
to identify the side of the cilium adjacent to the outgoing edges as corresponding to the
white vertex of the pair, and the other side of the cilium to the black vertex.

We thus obtain an edge-colored map M(B, €2). An example of the construction is given
in Figure 6, with two different pairings for the same bubble. As in Section 2, M (B, )
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Figure 5: Going clockwise around the vertex, one encounters the cilium, then all the
outgoing edges and then all the ingoing edges.

has to be characterized by a conjugacy class of pairs of permutations («, o). Since we
have ignored the relative order between edges of different colors around each vertex, it is
sufficient to identify the permutations a?, o for i = 1,..., D, which are the restrictions
of @ and o to the half-edges of color ¢ (including the cilia).

For a labeling {x} of the pairs of vertices of B, on which the permutations 7; are
defined, we define a labeling of the half-edges of B q: h((f?p is the half-edge of color @
incident to x, with a = 1 if it is outgoing at x and a = 2 if it is incoming.

e The permutation o describes the gluing of two half-edges into an edge. Since the
edges of M(B,€2) are the same as those of B o, we define

1,z

&(i)(hg) = hg; and a(i)(hé)) Al if 7i(z) = y. (5)
We supplement it with a fixed point at each cilium.

e As for ¢, it encodes the order of the edges of color i and the cilium at each vertex.
Since at each vertex, B q is either of degree zero or two on the color 4, so is the
monochromatic submap M®. Thus, either it gives a trivial cycle (corresponding
to the cilium) or a cycle of length three between the cilium and the two incident
half-edges. The cyclic order between the three of them has been specified by the
embedding of the cycles C’ . It gives

o = [ (ciliumg, A, 1Y) (6)

x

e Furthermore, the faces of color i are given by the cycles of a@a(®. For a vertex with
just a cilium in M®, one gets a cycle of length one. For vertices with two incident
edges of color 7, the embedding of the incident cycle CN‘,S) gives rise to two faces: one
has no cilia while the other has a cilium at each vertex. Indeed, if one starts with
a cilium at xg, one gets a cycle of the type

B

2,x1)

)

, cilium, %

. i)
(cilium,,,, A 1p>

1200 cilium,,, ...,

2,x2)

cilium,,, hﬁzx , hs i) vy Ciliumg, ), (7)

where the vertex x,4; is the vertex which comes after z, along the cycle, i.e.
T,(mq) = :vq+1 If one starts a cycle from the half-edge h1 o> 10 cilium is encountered:
(A ) n RS R RS R,

1,xg0 '°2,20>
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a)

Figure 6: In both cases a) and b), we have represented from left to right the bubble
B and its pairing, the graph B o obtained by contracting the edges between the paired
vertices and orienting the edges from white to black, and then its embedding as a ciliated
map, so that all cilia lie on the same face of each cycle for every monochromatic submap

M@

We can now verify that OM(B,Q)) = B. The boundary graph is obtained by drawing
a pair of white and black vertices for each vertex of the map and drawing an edge of color
1 from a white vertex v to a black vertex v if there is a positively oriented broken face of
color i between the vertices of M(B,€2) from which v and v come.

As seen in Section 2, a broken face of color 7 in an edge-colored map M is a part
of a cycle of aWo® between two cilia. Then, through each vertex, there is at most
one non-trivial cycle of a@o(® with cilia, coming from a cycle C,ii) of B o and given in
(7). Keeping only the ordered vertices, it reads (xq, x,. .. ,x|Cl(ci)‘) where {z,} labels the
vertices of the cycle. That information is in fact sufficient to reconstruct B since from
x4 to z,41 one goes from a white to a black vertex (this is equivalent to the labeling by
a = 1,2 of the half-edges). Then we define the permutation 7; by 7;(x,) = x,1 (cyclically
with ¢). It is well-defined since there is at most one non-trivial cycle of color ¢ through
each vertex. Finally, we observe that

%’L‘ = Ti, (8)

where 7; is the permutation of color ¢ which characterizes the edges of color ¢ of B. This
shows that OM (B, Q) = B. O

In the above proof we have constructed a map M (B, 2). There is however an infinite
number of maps M such that OM = B for a fixed B (add vertices of degree two to the
edges of M(B, ) for instance). We provide below a graphical procedure which extracts
the boundary graph of any map M € M,. The procedure obviously relies on broken
faces, introduced in Section 2. Recall that a broken face is a walk of fixed color from
one cilium to another (possibly the same). A broken face can be oriented by following
the walk clockwise around each vertex of the map. Notice that there exist trivial broken
faces, i.e. which go around a single cilium without following an edge. The others are
non-trivial broken faces.

The following procedure extracts the boundary graph of an edge-colored map.

1. Keep only the ciliated vertices in M. For each non-trivial broken face of color ¢
between two ciliated vertices, draw an edge of color ¢ between them. Each of them
is oriented as its corresponding broken face. One thus gets a directed graph G a.
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Recall from Section 2 that if M = (o, o), the faces of color i are the cycles of oo
and the broken faces are the parts of those cycles between two cilia. This shows that
the subgraph of G o containing only edges of color ¢ consists of disjoint oriented
cycles.

2. The next step is to replace each vertex V' by a pair of white and black vertex (v, v),
so that all the incoming (respectively outgoing) edges attached to V' now reach o
(resp. v). At this stage, edge orientations may be erased.

3. For each pair (v,?) coming from a vertex V of M, edges are added if necessary
between v and v so that each vertex has all D colors incident. The corresponding
non-directed graph is the boundary graph of M.

The last step represents trivial broken faces. Indeed, 0 M has one edge for each broken
face of M. The first step leading from M to G ¢ is only concerned with the non-trivial
broken faces. The trivial broken faces, which go around vertices of M without following
any edge are thus represented by edges between the vertices of (v,v) of each pair which
are added to have the correct number of colors.

The steps of this procedure are described in Figure 7. Note that the two last steps
induce a pairing 2, of OM: the paired vertices are those which come from the same
vertex of M (or G a1). We call it the pairing induced by M.

Figure 7: The steps of the procedure giving the boundary graph of a map in M,,. On
the left is the map M and to its right the graph G o¢. The third graph is obtained from
G, m by replacing each vertex with a pair of black and white vertices. Adding the missing
colors between the vertices of each pair leads to B = M.

The above constructions have introduced two types of directed graphs: B o obtained
from a bubble B equipped with a pairing €2, and G ¢ obtained from a map M. In the
proof of Theorem 5, we have built a map M (B, Q) of boundary graph B. In fact, the
equality (8) 7; = 7; for each color ¢ € [D] is equivalent to

Go,mB,0) = Boo- 9)

More generally, if one only assumes B = OM, then B o and G ¢ have the same number
of vertices but may be different. Yet, if the pairing 2, induced by M is the same as
the one equipping B, Q2 = 2, then the two graphs can only differ by the presence of
loop-edges in G5 o (which by construction B o cannot have).
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The set of graphs {B o} obtained from bubbles and pairings consists of non-properly-
edge-colored, directed, connected (since bubbles are connected), loopless (since the edges
between paired vertices have been contracted down to a vertex) graphs such that each
color incident to a vertex must have one incoming edge and one outgoing edge (there is
thus either zero or two edges of a given color incident to any vertex). A graph from this
set defines a unique bubble and pairing.

3.3 Stuffed Walsh maps

Theorem 6. For any bubble B equipped with a pairing ), there is a bijection between
G,(B) and W,(M(B,Q)). The bubbles isomorphic to B are mapped to the submaps iso-
morphic to M(B,<), the edges of color 0 to the corners around black vertices, and the
faces of each color to the faces of the same color which go along at least one black vertex.

In fact, any map W € W,(M) for any edge-colored map M such that OM = B
represents a unique graph G € G,(B). Also any graph G € G,(B) can be represented
as a stuffed Walsh map for any given choice of M such that B = 0M. However, the
stuffed Walsh map may not be unique if M does not have the symmetries of B under the
exchange of pairs of vertices. This is the reason why we use the specific map M (B, ).
Proof. We prove the bijection explicitly for p = 0. Let G € Gy(B) with b bubbles and
let V be the number of white vertices of B. We label the bubblesin G as xk = 1,...,b and
the pairs of vertices of Bin 2 as x = 1,...,V. Since the b bubbles of G are isomorphic
to B, we can find an isomorphism as graphs with labeled pairs, thus inducing a labeling
1., ...,V of the pairs of the bubble k.

We have seen in Section 3.1 that each pair of vertices appears in a cycle made of edges
of color 0 and parallel edges. Each such cycle is represented as a black vertex whose
incident half-edges represent the pairs of vertices and whose corners represent the edges
of color 0. This way, we represent all pairs as labeled half-edges incident on black vertices.

Each bubble x with labeled pairs of vertices is represented as a map M(B,),. We
color its vertices in blue to distinguish them from the black vertices, as in Definition 2.
Its cilia receive the labels of the pairs they correspond to. Each cilium can be replaced
with a half-edge carrying all the colors incident to the vertex it is attached to.

Therefore each pair of vertices z,, for x = 1,...,V and x = 1,...,b is represented
both as a half-edge incident to a black vertex and as a half-edge incident to a blue vertex
of M(B,Q),.. We glue the half-edges which correspond to the same pairs (without twist),
and this way obtain a stuffed Walsh map W(G), where the relabeling of the pairs in G
correspond to relabelings of the edges between black and blue vertices of W(G).

This construction may however seem ambiguous, which could result in the fact that a
graph G could be represented by several distinct stuffed Walsh maps. The only apparent
ambiguity lies in the isomorphism between the bubbles x and B as graphs with labeled
pairs. Given one such isomorphism, they may be others which differ by some permutations
S on the labels 1,...,V. Such symmetries of B still remain symmetries of M (B, ) by
construction, i.e. M(B,) is invariant under the action of S on the labeled cilia (or
half-edges). It means that there is a unique way to glue each submap M(B,), to the
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black vertices. Thus all the possible isomorphisms lead to the same stuffed Walsh map
and the construction is uniquely defined.

Conversely, each stuffed Walsh map W € Wy(M) where OM = B gives rise to a
colored graph G € Gy(B). It is obtained by taking the boundary of M to extract B, and
use the Section 3.1 to reconstruct the edges of color 0 of G out of the black vertices of W.

For p # 0, the bijection works similarly, using the part of Section 3.1 on open cycles
which map to black vertices with cilia.

By construction, the bijection maps the bubbles Kk = 1,....b of G € G,(B) to the
submaps M(B,Q), in W € W,(M(B,)), and the edges of color 0 of G to the corners
around the black vertices of W. We will study the faces below in Section 3.4. O

Quite clearly, the bijection extends to colored graphs built from several distinct bub-
bles. Each of them can be represented as a map with cilia. They are then assembled via
black vertices as constructed in Section 3.1, whose presence is universal.

3.4 Face preserving and the reduced map ./\;l(B, Q)

Using a slight modification to M(B,2), the faces of each color can also be preserved.
First we have to show that the faces of G become the faces of the corresponding stuffed
Walsh map which go along at least one black vertex. To do so, we extend the definition
of the monochromatic submap of an edge-colored map to stuffed Walsh maps: W®, for
i € [D], is the (typically disconnected) submap obtained from W by removing all the
edges whose color labels do not contain i. W is an ordinary combinatorial map, and its
faces are the faces of color ¢ of W.

Let G € Go(B) and W the corresponding stuffed Walsh map. The faces of color ¢ in G
become the faces of color ¢ in VW which go along at least one black vertex. Indeed, a face
of G necessarily goes along an edge of color 0, which becomes a corner of a black vertex
in W. After such a corner, we meet a half-edge which corresponds to a pair of vertices
of B. More precisely, by following the corner clockwise, the side of the half-edge which is
met after the corner corresponds to the white vertex of the pair (see Section 3.1), while
the other side of the half-edge corresponds to the black vertex. We have to check that
the construction glues to that half-edge a half-edge attached to a blue vertex such that
the black and white vertices are correctly identified. It can be checked from Section 3.2
that when following a corner of M(B,Q)® in a counter-clockwise fashion, the side of the
cilium which is met after the corner corresponds to a white vertex of B. Therefore, by
gluing the two half-edges without twist we correctly identify the two copies of the white
and black vertices of each pair and thus reconstitute the faces of G which go through this
pair of vertices.

However, if M(B,2) contains (non-broken) faces of color i, then they give rise to
faces of W only bounded by blue vertices and which are not present in G. Therefore, we
will modify M(B,) so that the monochromatic submap M@ (B,Q) becomes a forest.
This can be done in one of two possible ways. Recall that the monochromatic submap
M (B,Q) consists of a disjoint union of cycles, where each cycle is incident to a face
with no cilia. These faces are the supernumerary faces of WW. To get rid of them, we can
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Figure 8: b) is the map M(B,Q) for the bubble in @). In ¢) we find a reduced map

M(B,€)) obtained by removing an edge of color 1, an edge of color 2 and an edge of
color 3.

Figure 9: a) is an example of a colored graph with three bubbles isomorphic to the one of

Figure 8. It gives rise to a map W € Wy(M(B,2)) in ¢) where we have used the reduced
map M(B, Q) of Figure 8. In b), this is the projected version of the map.

simply remove an edge of color 7 from each cycle. That merges the face with no cilia with
the other face incident to the cycle which carry all the cilia.

Another way to remove the supernumerary faces is to add a vertex for each cycle of
M@ (B,9Q) and connect it to the vertices of the cycle while removing the edges of the
cycle. The order of the edges around the new vertex is the order of the vertices along
the cycle. This turns each cycle into a star and the monochromatic submap M@ (B, Q)
becomes a forest of stars.

Thus, both methods typically lead to different maps which we call reduced maps for
(B, ), which are characterized by the fact that their monochromatic submaps are forests.

This means that the faces of G can be mapped to the faces of W € W,(M(B,(2)) where
M(B, ) is a reduced map for (B, 2) obtained by either method.

An example of a bubble and one of its reduced maps is given in Figure 8. A colored
graph using the same bubble together with a stuffed Walsh map using the corresponding

reduced map are shown in Figure 9.
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3.5 Recovering the bijection between edge-colored graphs with quartic mel-
onic bubbles and edge-colored maps

We now compare the bijection we have constructed in the case of edge-colored graphs with
quartic melonic bubbles with the known bijection presented in Section 2. The quartic
melonic bubbles of color ¢ = 1,..., D have two possible pairings. Using the notations of
Figure 2, one is denoted Q2 = {(v1,v1), (v2,02)} which pairs a white vertex to the black
vertex it is connected to by D — 1 parallel edges of colors different from ¢, and the other
one denoted €' = {(vy, 2), (v2, 1)} which pairs it to the black vertex it is connected to
by an edge of color i. They lead to two different bijections.

In the first case, the map M(B;,Q) is a cycle of length two with two cilia on the
same face. Therefore /\;l(Bi, (1), obtained by removing one edge and replacing the cilia by
half-edges of color i, consists of an edge with two half-edges attached to two bivalent blue
vertices. It can obviously be simplified to a single edge of color ¢ and therefore stuffed
Walsh maps reduce to edge-colored maps (there are no blue vertices and all the edges
carry a single color). This is the bijection of Section 2.

The map M(BZ-, (V) also consists of an edge with two cilia, but the edge now gets the
complementary label Z = [D] \ {i}. This set of maps is obviously the same as with the
pairing €2, except for the color labels.

The difference between the two pairings appears upon investigating the number of faces
of those maps. For instance, the graph G obtained by adding edges of color 0 between
the vertices paired in Q has 2(D — 1) + 1 faces. It is represented in Wo(M(B;,Q)) as
a map m with an edge joining two black vertices. Since this edge has the color i, the
monochromatic submap of color 7 has a single face around the edge, while the (D—1) other
monochromatic submaps of color j # i consists of two isolated vertices, hence reproducing

the counting of faces of G. G is also represented in Wo(M(B;, Q) as a loop edge with
color set Z and a single vertex. On the other hand, the map m, seen in Wo(/\;l([)’i, ),
has a single non-loop edge with color set Z, hence it has (D — 1) monochromatic submaps
with a single face. Only the monochromatic submap of color ¢ has two isolated vertices
and two faces, leading to an overall number of 2 + (D — 1) faces. Therefore the loop
edge has more faces than the non-loop edge with €', while it works the other way around

with €.

4 Dominant maps

Planar combinatorial maps are those which maximize the number of faces at fixed numbers
of edges and vertices, or for regular maps, e.g. triangulations, quadrangulations, they
maximize the number of faces at fixed number of vertices. This idea can be extended
to colored graphs. Among all colored graphs, the maximal number of faces for a fixed
number of white vertices is reached for melonic graphs, and only them [13]. Melonic
graphs can be built recursively, starting from the two-vertex graph with all D + 1 colors
between them, and cutting any edge of color 7 in half and inserting between the two halves
a pair of vertices with all the colors between them except ¢ (melon insertions). Melonic
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bubbles are defined similarly with D colors only (see example in Figure 12). Melonic
graphs exist in Go(B) if and only if B is a melonic bubble. If B is a melonic bubble with
p white vertices and G € Gy(B) a melonic graph with b bubbles, then the number of faces
of G is

F(G) =) FUG) =(D-1)(p-1)b+D. (10)

The quantity w(G) = D+ (D —1)(p—1)b— F(G), called the reduced degree, is a positive
integer which vanishes if and only if G is melonic. However, if B is not melonic, the set
Go(B) does not contain melonic graphs.

We call the dominant graphs in Go(B) those which maximize the number of faces at
fixed number of bubbles (or vertices, since the number of white vertices is pb). Since the
bijection preserves the faces, we can instead look for the dominant stuffed Walsh maps.
In fact, projected Walsh maps will be the most useful representation in this section, so
that we will call dominant maps the dominant projected Walsh maps.

4.1 Choice of pairing

As seen in Section 2 with quartic melonic graphs, the structure of dominant maps depends
on the pairing chosen for the bubble B. In the quartic melonic case, the pairing €2 is such
that the dominant maps are exactly the trees. However, if one uses €’ instead, dominant
maps will look different and have cycles.

Since our bijection extends the existing bijection for edge-colored graphs with quartic
melonic bubbles, it seems reasonable to look for a pairing which makes trees dominant
maps (notice that in general the stuffed Walsh maps cannot be trees since the submap

M(B, Q) itself is generically not a tree; however it makes sense for a projected Walsh map
to be a tree).

Definition 7 (Covering and Optimal pairing). Let B be a bubble. A covering of B is a
(D +1)-colored graph obtained from B by connecting every white vertex to a black vertex
with an edge of color 0. A pairing €2 is equivalent to a covering denoted B where an
edge of color 0 is added between the vertices of each pair of €. An optimal pairing is a
pairing € whose covering B maximizes the number of faces F/(B*) among all coverings,
i.e. such that

F(BY) = max F(BY). (11)

In the quartic melonic case, there are two pairings 2, Q)" described in Section 3.5 with
their corresponding coverings,

CoBY = i i (12)
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Figure 10: A new black vertex is added, and the edge e is unhooked from its black
endpoint and attached to the new black vertex.

The covering B has 1 face of colors (0i) and 2 faces of colors (05) for j # 4, hence
F(B®) = 2D — 1. The covering B has 2 faces of colors (0i) and 1 face of colors (0j) for
j #1, hence F(BY) = D + 1. There is a single optimal pairing which is €.

Recall that a projected Walsh map shrinks the reduced submaps /\;I(B, Q) to white
vertices. Therefore the covering graphs, which have a single bubble, are mapped to
projected maps with a single white vertex. Let €2 be an optimal pairing. The covering
B maximizes the number of faces for graphs with a single bubble. It is mapped to a
map 7T (B, ) obtained from M (B, ) by replacing each cilium with an edge carrying the
colors incident to its vertex and ending on a univalent black vertex. Therefore, it projects
onto a tree: by construction, performing the bijection with an optimal pairing maps the
corresponding optimal covering to the unique tree with a single white vertex.

4.2 Trees

We recall that a bridge in a graph or a combinatorial map is an edge whose removal
disconnects the graph or the map. A graph whose edges are all bridges is a tree (a plane
tree in the case of a map). Notice that a bridge in a map is incident to a single face (which
thus goes along both sides of the edge). The converse is true, i.e. an edge incident to a
single face is a bridge, in a planar map.

To study projected maps with more than a single white vertex, we will use the following
lemma.

Lemma 8. Let W be a projected Walsh map and e an edge. We define the edge unhooking
W — W, of e as in Figure 10 where a new black vertex is created in the vicinity of a
corner incident to e and the edge e is unhooked from its black endpoint and connected to
the new black vertex instead (W, may be disconnected). The colors of the unhooked edge
are unchanged.

Denote Z(e) the set of colors labeling e, and Zy(e) C Z(e) the set of colors for which two
distinct faces run along e. Then the variation of the number of faces AF = F(W,)—F (W)
is

AF = D — 2|Ty(e). (13)

Notice that if the monochromatic submap W® is planar, then i € Z,(e) if and only if
e is not a bridge in M®,
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Figure 11: The projected tree Ty, always has a white vertex such that all paths to other
white vertices go along the bridge e. Unhooking e gives two trees, 7Ty, 1 and 7Tj.

Proof. For each color, there are either 0, 1, or 2 faces running along e. The set of colors
for which there is no face along e is Zy(e) = [D] \ Z(e). Denote Z;(e) C Z(e) the set of
colors for which there is a single face running along e. Clearly Z;(e) and Zy(e) form a
partition of Z(e) and

|Z1(e)| + |Za(e)| = [Z(e)]- (14)

For each color i € Zy(e), W, has one more face than W, sitting around the new black
vertex. The face of color i € Z;(e) along e in W is split into two faces in W,. Conversely
the two faces of color i € Zy(e) in W are merged in W,. This exhausts all the possible
colors. Therefore,

AF = [Zo(e)] + |Ti(e)| — |Za(e)| = D — 2/Tae)]. (15)
]

Proposition 9. The number of faces of a projected tree T, on V, white vertices is
F(Ty,) = (F(BY) — D)V, + D. (16)

Proof. One of the white vertices of Ty, is adjacent to a single white vertex, connected to
it by a bridge e. Unhooking the bridge breaks up the tree into two trees, 7; which has a
single vertex and 7y, _; with V, — 1 white vertices, see Figure 11. Lemma 8 applies and
gives

AF = F(Ti) + F(Tv,1) = F(T,) = D, (17)

since Zy(e) = 0 for all edges of the tree. A trivial recursion leads to
F(Tv.) = (F(T)) = D)Ve + D (18)

and we conclude by noticing that the tree on one white vertex is the covering 7; = B%. [

In the quartic melonic case, F(B%) = 2D — 1 and with p = 2, we recover the ex-
pected relation (10) between the numbers of faces and vertices, F(Ty,) — (D — 1)V, = D.
Moreover, in that case, F(W) < D + (D — 1)V, for a projected map. In a generic model
however, it is unclear that adding a new white vertex cannot increase the number of faces
more than (F(B?)— D), and hence whether D+ (F(B%)— D)V, —F (W) is always positive
or zero. We can nevertheless easily rule out the case where W has a single cycle.
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Proposition 10. Let Q) be an optimal pairing and VW a projected map with a single cycle.
Then W has fewer faces than any tree with the same number of white vertices as V.

Proof. It relies on a lemma proved in [14] (lemma 6) which states that in an optimal
covering of B, the number of faces incident to two different edges of color 0 cannot be
greater than D /2. It can be reformulated as the fact that there cannot be more than D/2
faces shared by two pairs of €. Since those pairs become edges of projected maps through
the bijection, it means that the number of faces shared by two edges incident to a white
vertex is bounded by D/2.

Let 7 be a spanning tree in W and e the only edge of W not in T, with label set Z(e),
and Zy(e) C Z(e) the set of colors for which two distinct faces run along e. There is a
single path P in T between the endpoints of e, with edges eq,...,ep where e; is incident
to the same white vertex as e. Denote Z(e, e;) the set of colors of the faces shared by e
and e;. Then

Ir(e) C I(e, e). (19)

To prove this, we introduce W the stuffed Walsh map which projects on W, i.e. P (W) =
W, and W its monochromatic submaps for i € [D]. Let i € Zy(e), then e is not a bridge
in W@ (else there would be a single face of color 4 incident to e). It means that there is
a path in W® between the two endpoints of e which does not contain e. This path thus
has to go along ey, ..., ep. Therefore i belongs to the set of colors of the faces shared by
all those edges and in particular Z(e,e;). To conclude, we know from Lemma 6 in [14]
that

|Z(e, e1)| < D/2, (20)

and thus
AF =D —2|Ty(e)| = D —2|Z(e,e1)| = 0, (21)
where the first equality is Lemma 8. O]

Finally we can relate the number of faces of a stuffed Walsh map to that of a projected
tree in terms of topological quantities.

Theorem 11. Let W € Wo(M(B,R)) and P(W) its projection and T a projected tree
with the same number of white vertices as P(W). Then,

FW) = F(T) = =DLW) +2> 1(WD) —2) "W). (22)

=1

Here (W) and gOW®) denote the circuit rank and the genus of the monochromatic
submap of color i while L(W) is the circuit rank of the projected map P(W).

Proof. Denote V. £, F, k, g the numbers of vertices, edges, faces, connected components
and the genus of a map and [ the circuit rank of the underlying graph. For any map, the
circuit rank is

I=E-V+Ek (23)
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so that Euler’s relation reads
F=2k—-29+E-V=20—29g—E+V. (24)

We denote W@ the monochromatic submap of color i € [D]. Using (24) in each monochro-
matic submap, the number of faces of YV can be written

FW) = Z Zzz —2gWD) — WD) £ VW), (25)

The formula also works for 7, with the simplification [(7®) = g(T®) = 0. Moreover,
we know from Proposition 9 that the number of faces of a projected tree only depends
on its number of white vertices and not on its shape. Therefore, we can choose 7T to
be obtained out of W by unhooking the edges which are not in a spanning tree. This
shows that the number of edges with a fixed color label are the same in 7 and W,
hence EWW) = £(TW). Furthermore, every vertex of W belongs to all monochromatic
submaps, may it be as an isolated vertex, meaning that V(W(i)) = V(W) and similarly
for 7. Therefore,

FW) —F(T)=D(VW) )+ Z A(WD) — 2g(WD). (26)

Clearly W and T have the same number of blue vertices (because they have the same
number of submaps M (B,Q)), implying that the difference V(W) — V(T is only due to
black vertices. This difference is thus preserved by projection of the submaps M(B, Q)
onto white vertices, leading to VW) —=V(T) = V(P(W))—=V(P(T)). The projected maps
P(W) and P(T) also have the same number of edges and are both connected, hence

VW) =V(T) =v(PW)) =V(P(T)) =U(P(T)) = L (PW)) = =L(P(W)),  (27)

which concludes the proof. O

5 Examples of applications of the bijection to identify dominant
graphs

5.1 Melonic graphs

Consider a melonic bubble B. It can be constructed from the unique bubble on two
vertices (with D parallel edges) by adding recursively on any edge a new pair of vertices
with D — 1 parallel edges (an example is shown in Figure 12). This process is called a
(D — 1)-dipole insertion. Vertices thus have a natural pairing €2 on a melonic bubble,
where a pair corresponds to the two vertices added at any dipole insertion. Moreover,
B is the only covering which maximizes the number of faces, making €) the only optimal
pairing for a melonic bubble [14].
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Figure 12:  On the left is a melonic bubble alternating color ¢ and the D — 1 other
colors; next to it, the map M (B, {2) and on the right a reduced map M(B, 1), obtained
by replacing the cycle with a star and with cilia replaced with half-edges. Note that the
latter is unchanged by the projection onto a white vertex, meaning that in this example
stuffed Walsh maps coincide with projected Walsh maps. In fact, it really is a white
vertex in the sense of Walsh, i.e. a hyperedge of a hypermap.

It is easy to see that the edge-colored map M(B, 1) is a tree. Therefore, a stuffed
Walsh map is a map whose edges between blue vertices form prescribed subtrees. Notice
that with the bubble shown in Figure 12, the stuffed Walsh map really are standard Walsh
maps, since then all edges carry the same color and the white vertices can be mapped to
hyperedges of fixed degree [10].

The dominant graphs in Go(B) are the melonic ones built out of B and they are
mapped to projected trees.

5.2 Bipartite maps

A necklace bubble with 2n vertices at D = 4 is depicted in Figure 13 (there are two
others, obtained by transposing the colors 2 and 3, and 2 and 4). All planar coverings
are optimal. We choose the pairing which pairs adjacent vertices sharing the edges of
colors 3 and 4. The map M (B, 2) thus only has the colors 1 and 2 and is in fact a cycle
of parallel edges with colors 1, 2, and cilia on the outside of the cycle. Clearly, we can
merge parallel edges into regular edges with the pair of colors (1,2). To reduce the map
so that the monochromatic submaps are forests, we add a vertex inside the cycle and form
a star. This reduced map M (B, Q) is shown on the right of Figure 13. Since M(B,Q) is
star-shaped, the stuffed maps coincide with the projected maps. Furthermore, since all
edges carry the same couple of colors (1,2), M(B ,2) really is a hyperedge in the sense of
Walsh and the stuffed maps are in fact ordinary Walsh maps [10].

Since each edge is labeled by D/2 = 2 colors, we get from Lemma 8 that trees are
dominant maps. Dominant maps are thus maps for which the difference AF in Theorem
11 vanishes.

For all W € Wy(M(B,)), the monochromatic submaps W = W® coincide with
the map W itself. This together with the fact that the stuffed maps coincide with their
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Figure 13: On the left, we have a necklace alternating colors 1,2 and colors 3,4 and
the pairing indicated by dashed circles pairs vertices connected by the colors 3,4. In
the middle, this is the map M(B,Q), and on the right a reduced map M(B,Q) with
cilia replaced with half-edges, which turns out to coincide with the white vertex of the
projected maps.

projections, implies that

ALW) = 2) IW9) =41(W) —2) 1w =0, (28)

i=1 =1

(recall that L(W) is the circuit rank of the projected map while (W) is the rank of the
map itself). Therefore, Theorem 11 reduces the criterion for dominant maps AF = 0 to
2g(W) = 0, meaning that the dominant maps are the planar maps.

If the three necklace bubbles are now allowed in the colored graphs, each with 2n
vertices, we choose the pairings so that two vertices of each bubble are paired if they are
adjacent and not connected by an edge of color 1. Due to this, all the edges of the maps
will have the color 1 in their labels. Again, the stuffed maps and the projected maps
are the same. However, they are not ordinary Walsh maps due to the different possible
colorings. There are indeed three types of vertices like the one on the right of Figure 13.
The three edges incident to a white vertex all have label (1,2), or (1,3), or (1,4). Notice
that WU =W,

Trees are dominant maps. Imposing AF = 0 in Theorem 11 then gives

gWD)y =gW)=0 and (W) =IWP) +1WS) +1(WW). (29)

Consider three forests 7, i = 2,3,4 spanning each W@ . The edges in W® W),
W are all distinct so that the edges in the complements W® \ T identify [(W®)) +
I(W®) + 1(WW) cycles of W. Those cycles each have one edge obviously not contained
in U?:g T . The existence of another cycle, necessarily in U?:z T® would then imply
(W) > 2?22 I(W). The dominant maps are therefore planar maps such that the union
U?:Q T@ of any three forests respectively covering W®, W& and W® is a tree. This
extends the result of [9] to non-quartic necklace bubbles.
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Figure 14: The bubble is on the left. In the center, we have a reduced map for the
optimal pairing {(a, da’), (b,V'), (¢,)}. It can be further simplified to the star on the right
which has exactly the same broken faces.

5.3 A six-vertex graph at D =4

We consider the bubble in Figure 14. It has four different optimal pairings, among which
Q= {(a,d), (bV),(c,d)}. The map M(B,Q2) has a cycle of color 2 and length 2, same
for the color 4, and a cycle of length 3 on the color 3. A reduced map is shown in the
center of Figure 14, where the cycle of color 3 has been traded for a star, while we have
removed an edge of color 2 and one of color 4 too. Looking at the pattern of incidence
of broken faces onto the vertices, it is clear that it can be further reduced to a star with
different color sets on its three edges as shown on the right of Figure 14. This way, stuffed
maps and projected maps are the same.

The white vertex has three distinct edges. Since one of them has the color set Z =
{2,3,4}, hence |Z| = 3 > D/2, we cannot use directly Lemma 8 and conclude that trees
are dominant maps. However, the white vertex is such that in a map W, the submap
with edges only labeled by Z is a forest. It is always possible to complete this forest into
a tree T spanning V. The edges of W\ T are all labeled by D/2 = 2 colors. Unhooking
them and using Lemma 8 shows that

FW) < F(T). (30)

As a consequence, trees are dominant maps, and a map W is dominant if and only if
AF =0 in Theorem 11. In this case, since W®) = W, AF = 0 becomes

1OW) = V) = 1VD) + W) + gW2) + gV D) = 0. (3)

We first analyze the sign of the quantity [(W) — I[(W®) — [((W®). Consider the forest
T3 made of all the edges labeled by T = {2,3,4}. It is a sub-forest of W® and W®.
Respectively complete it into two forests, 7 spanning W® and 7™ spanning W®.
Since

W UWww =w, (32)

the union 7® U T® is a connected® map which spans WW. Let T be a spanning tree of
T@ UTW, hence also a spanning tree of W. Let e € W\ T. Either e € TA UT® or

5Assume 73 U TM® is the disjoint union of two components. Since W is connected, there is a path
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Figure 15: The bubble we consider is the complete bipartite graph K3 3. In the middle
we have drawn a reduced map with B as boundary graph. It can be further simplified as
shown on the right picture.

e @ T UTW, In the first case, e lies in 73 U T® but not in its spanning tree and
therefore identifies a cycle of TAUTW. If e & T UT®, it identifies a cycle in W or
W, Since the edges carrying both the colors 2 and 4 are labeled with {2,3,4} and all
belong to T3 UT®W, it cannot be a cycle common to both W and W®. We thus have
shown that

IOW) = (TP UTW) +1W3) +1(WW). (33)
In particular, (W) > I(W®) + 1I(W®), so that equation (31) is equivalent to

9OW) = g = W9) =0
| (34)
(W) =1WD) +1WD) - & TOUTW s a tree.

5.4 The complete bipartite graph in D = 3

We consider the complete bipartite graph K33 with a proper 3-edge-coloring, represented
in Figure 15. It has six different pairings: either vertices inside pairs are all linked by
the same color i = 1,2, 3, or each one of the three pairs contains a different color. The
last three are optimal and equivalent by symmetry. For this pairing €2, we arrive at a
reduced map M(B, ) like in the middle of Figure 15. It can be turned into a star-shaped
structure without changing the boundary graph, as shown on the right of Figure 15. This
way, the stuffed maps and the projected maps are the same.

Here, Lemma 8 does not directly show that trees are dominant maps. We thus focus

in W between them. This path only contains black vertices since a white vertex always has an incident
edge of label {2,3,4} and is thus contained in T@ UT®. The path thus has at most a single black
vertex v, with at least two edges €1, es which connect it to the two components of 72 U T, Without
loss of generality, assume that e; is of type {2,3}. It thus belongs to a connected component of W(2),
The restriction of 7(®) to this connected component is a spanning tree. Therefore there exists a path in
this spanning tree which joins the two ends of e, meaning that v is in fact connected to one of the two
components of 7 UT® . We are left with the edge e connecting those two components, and a similar
reasoning shows that they are in fact connected.

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(1) (2017), #P1.56 28



on Theorem 11 instead. It gives

5(T) = (W) = 31(W) =2 IWW) +2> " g(W®). (35)

Notice that in contrast with the previous example in Section 5.3, no monochromatic
submaps W cover the whole map W, because there is no color shared by the three types
of edges®. However, the union of any two of them covers W, i.e. for any i # j € {1, 2, 3},

WO uwl =w. (36)

We can therefore perform an analysis of the cycles very similar to that of Section 5.3.
Indeed, the union of two forests respectively spanning W® and WY is a map which
spans WW. We choose two such forests in the following way: first observe that W® nw)
is a forest (a cycle would have both colors (7, j) all along which is impossible), which can
thus be completed into both a forest 7 spanning W and a forest 7U) spanning WU).
This ensures that W® \ T® and W \ T do not have any common edges. This choice
of spanning forests gives us the following inequalities,

ViZj W) =UTOUTD) +1WD) +1WD) = (WD) + 1w, (37)

Summing the three different relations for i # j € {1, 2,3}, we obtain that
3
BIW) =2 IWD) > 0. (38)
i=1
This implies that
AF = — <3l(W) -2} z(wm)) —23" gowt) (39)
i=1 i=1

in Theorem 11 is a sum of integers which are negative or zero. Identifying the maps which
maximize the number of faces requires maximizing that quantity. We thus look to find if
it is possible to impose all at the same time

BIW) =2) 1(W) (40a)
gWwt) = ;_W@)) =gW¥) =0. (40b)

This is certainly true for trees which consequently are dominant maps. Now we look for
the full set of solutions.

6In fact, our approach in Section 5.3 did not rely on the fact that W) = W. It could have been used
to first show that g(W) = 0, implying gW®?)) = g(W®) = 0, leaving us with the analysis of the cycles,
which we therefore had to perform anyway.
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Figure 16: This figure shows the bridgeless dominant maps with two fundamental cycles.

Because of the relations (37), the constraint (40a) is equivalent to [((W® U WW) =0
for all ¢ # j which back into (37) leads to the system

VD) 1) =1W), WD) +1WD) =1W), 1V +1W) = 1(W),

(41)
whose solution is
AWD) = 2A(WP) = 2q(WE) = 1(W). (42)
We now study the case [(W) = 2, for which (42) rewrites
WD) = 1(W@) = (W) =1, (43)

and identify the bridgeless solutions. There are three distinct cycles C, Cs, C5, one for
each color, but only two fundamental cycles. It means that every cycle is the symmetric
difference of the other two. W thus has the structure of a Theta graph, i.e. two nodes
with three segments between them. Each segment must be part of two cycles, meaning
that the edges of a segment all have the same couple of colors. Bipartiteness and the
structure of the white vertex prevent any map from having a chain with more than two
consecutive edges with the same couple of colors. Therefore, each segment has one or
two edges, with the same colors. The allowed maps are thus restricted to those shown in
Figure 16.

We now prove by induction on the circuit rank [ that any map W which has no submap
homeomorphic to one of those of Figure 16 and which is not a tree verifies

3I(W) — 2 i W) > 0, (44)

i=1

and is therefore not a dominant map.

We saw that this property is true for (W) < 2. Let [ > 2 and W such that (W) = [.
We distinguish two cases.

First, assume there exists an edge e which is not a bridge and such that |Zy(e)| < 1.
By Lemma 8, unhooking this edge gives rise to a map with more faces, so VW cannot be
dominant.

If there is no such edge, then all edges which are not bridges are such that |Zy(e)| =
2. Let e;; be one of them, with colors {i,j}. It is not a bridge in any of the two
monochromatic submaps it is contained in. Let us unhook that edge, which leads to a
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map W' with [(W') = (W) — 1 and Z (W’ @) =32 I(WD) — 2, so that 3I(W) —
230, (WD) = 3IW) — 221 N

As e;; is not a bridge in W and WU, he adjacent edges ej, e;;, at its white endpoint
also are not bridges respectively in W(J and W . Indeed, ei; belongs to two distinct
cycles, one containing e;, and whose edges all contain the color ¢ and one containing e,

and whose edges all contain the color j. Let us denote those two cycles C; = (e, . . ., €;;),
and Cj = (ejk, - - -, i), and e;; the first edge they have in common (which might be €ij)-
Then the concatenation of the two chains (ej;, ..., e};) C C; and (e, ..., e;;) C Cj, with

e;j excluded, is also a cycle in W'. This implies that e;; and ej; are not bridges in W'.
Furthermore, e;; is now attached to a leaf in W', so that e;;, and ej, are respectively
bridges in W and W'U). When unhooking, say, e; from its black endpoint, we get
a map W" such that I(W") = (W) — 1 and S0 IW"@) = 322 1(W'®D) — \ with
A € {0,1}. It comes that

BIW) = ) 1) = 31(W') — 2 Zz(w’@) —1=3IW") =2 IW"D) +2(1-))
3IW") — 22[ (W), (45)

Notice that W is not a tree as (W) > 2 = [(W") > 0. Moreover, unhooking e;; and
e;r cannot create a submap homeomorphic to one of Figure 16. The induction hypothesis
thus applies on W’ from which we conclude that 3I(W) — 320_ I(W®) > 0.

As a consequence, a dominant map W has its monochromatic submaps planar and is
characterized as follows. First break it into 1-edge-connected components, then identify
the submaps homeomorphic to Figure 16 and unhook two of their edges, and then repeat
this process until W is a tree. An example is given in Figure 17.

6 Matrix models for stuffed Walsh maps

(D+1)-edge-colored graphs with bubbles in a finite set {B, }nca are generated by a tensor
model. First assign a polynomial invariant under U(N)? to each bubble in the following
way. Every white vertex of B receives a copy of a tensor T and every black vertex its com-
plex conjugate T. This tensor has D indices, each ranging from 1 to N, and components
T4, ..ap- When an edge of color ¢ connects two vertices in B, the indices in position ¢ of their
corresponding tensors are identified and summed over, Z =1 T, ...al...aDT d)alal 6%@;.
Performing all those contractions for a bubble, one obtains an invariant polynomial de-

noted B(T,T). In particular, there is a single bubble on two vertices, which corresponds

to the single quadratic invariant T - T = Zah Ta1--~aDTa1~~-aD-
Consider
A
Z({A\a}, N) =exp F = / exp <— ZNS&AQBQ(T,TO duo(T, T), (46)
a=1
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Figure 17: This is an example of a dominant map.

where dpo(T, T) is the Gaussian measure,

Ty, ., dT

20w

dpo(T, T) = exp (-N"7'T - T) H

al,...,ap

LD (47)

Notice that the integers {s,} are here unspecified, but will be discussed in the next
paragraph.

We perform a Feynman expansion of Z. First expand each exp(N®*\,B,(T,T)) as
a series in )\, and commute the sums with the integral. We are then left with Gaussian
moments. By Wick’s theorem, they are evaluated as sums over all pairings between T"s
and T’s. Those pairings are represented by new edges to which the color 0 is assigned.
Thus F' = In Z generates connected (D + 1)-colored graphs whose bubbles are from the
set {Ba}aca. Moreover, each graph G receives an amplitude

A
NF@-(D-DE@+Y 4, saba(9) H (=X

a=1

Oé)ba(g)j (48)

where b,(G) is the number of copies of the bubble B, in G. It is standard to require a
large N limit to exist, meaning that the exponent of IV is bounded, say by Siz,)

F(G) = (D = 1)E(G) + Y 5aba(G) < Siaay (49)

implying that In Z({\,}, N) = O(N%5a}). This requires the integers s, not to be too
large. To further constrain them we require that they be as large as possible while still
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maintaining the existence of the bound. This way, the rescaled free energy

1
NS{Ba}

In(Z({Xa}, N))

is a non-trivial power series in the couplings {\,}. Clearly, the dominant graphs intro-
duced and defined in Section 4 are those which should reach the bound Syz,, and the
values of s, are thus determined by the number of faces of the dominant graphs.

In the present section, we rewrite tensor models as matrix models which generate
stuffed Walsh maps. We will focus on the case of a single bubble B with partition function

Zg(\,N) = / exp {—)\NSB(T, T)] dpo(T, T). (50)
The generating function of the cumulants is
In Zg[\,N;J,J] = ln/e_ANSB(T’T)_j‘T_T‘Jdug(T, T). (51)

The matrix model we are going to present is a multi-matrix model, with matrices of
various sizes, and multi-trace interactions. It has a Gaussian measure, while its potential
is a sum of two distinct terms. The first one stands for the interaction bubble B and can
be graphically interpreted as M(B, 2), while the second one, which does not depend on
B, is an infinite series in the conjugate matrices which performs all the possible gluings
of interaction bubbles and corresponds to the black vertices of stuffed Walsh maps.

The matrices involved in this new representation are indexed by all possible color sets
T € P([D]), where P([D]) is the set of subsets of [D]. The matrix o7 is of size NI x NI,
and has complex entries OZ((i1 vt 7)) (1o 7))

We introduce the notations Z = [D]\ Z, and if Z = {k(1),...,k(|Z|)}, then define
OZ|(ir,....ip);(j1,-D) = (H 5%%) X O i1y i1 z))i (1) dn(z))) -
keZ

Note that while the o7 generally do not commute, [o7,07] =0if ZNJ = 0.

6.1 Matrix bubbles

Given a bubble B with V black vertices and an arbitrary labeling of both its black and
white vertices from 1 to V), there exist D permutations 71, ...,7p of {1,...,V} which are
defined by the fact that 7; maps the white vertex of label a to the black vertex of label
7;(a) if there is an edge of color i between a and 7;(a). Then B can be written in the
following form

~ N N v ) D
B(T, T) = Z Z H Eg.--i%ﬂg...ij Haig,j;k(a)' (52)
i1yt it k=1
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Since the key ingredient to go from B to the edge-colored map M(B, 2) which encodes
B through its broken faces is a pairing €2 of B, we re-organize the sums over tensor indices
according to 2. The pairing can also be thought of as a permutation 79 that maps each
white vertex a to its black partner 7o(a). The permutation 7y induces a partition of the
edges of B as follows. For each white vertex a, we partition the D edges incident to
a according to whether they are incident to its black partner m(a) or to another black
vertex. Denote fa the set of colors incident to both a and my(a), ie. if i € fa then
7:(a) = 7o(a). Its complement Z, = [D] \ Z, is the set of colors incident to a but not to
mo(a), i.e. for all i € Z,, 7;(a) # 1o(a).

We re-organize the above expression of B according to that partition,

N N v
g 5 H 11 4% 7’0(‘1 j To(a) H 5 Tp(a) H 5 "q(‘l)' (53)
7’17 711D7 j17 7]1D7 pEIa qe a

ZY,‘,ZV =1 jl, ,jD—l
Each index ¢ on the color ¢ and incident to a is identified with the index jCTC(a) incident
to the black vertex 7.(a). We first perform the sum over those indices whose colors are
in the sets fa, i.e. which connect the vertices of a pair of €). After performing this sum,
we recognize the matrix elements of the partial contraction of T and T along the set of
colors Ia, denoted T - T The remaining sum runs over the indices ¢ of colors ¢ € Z,.
Denote Z, = {qa.1, - - - ,qa 1z} It comes

B(T,T) = > I [T

es el
{ZQa,l""’any‘Ia‘

L0, e (54)

ya ya . ya ya
(zqa,l7“"an"1@‘)7(]qa,1’..."]qa7|la| q>
q€L,

3 o3
40,1740, |74

In order to obtain the matrix potential of the bubble B, we simply use the above
expression with the replacement rule

T 'z, T — 07T, (55)
Each pairing €2 thus defines a matrix potential for B,

v
Viol{orh) = > HUIE\(i‘f,...,ilaIal);(jf,...,jlazal) 11 Oy jrate)- (56)

{i?v"':i‘aza‘ a=1 q€L,
3 it}

Clearly, there is one matrix o7 for each couple of vertices of B paired in ) and an index
of color 7 is contracted between two matrices if and only if there is a broken face of
color i between the corresponding pairs in M(B,2). We therefore have an algebraic
representation of M (B, Q).
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6.2 The matrix models

Theorem 12. For any bubble B equipped with a pairing €2, the partition function and
generating function of cumulants rewrite as

Zp(\, N) = / e MBI gy(T, T) = / eV Vsaller) V) T dpolos, o),

ZeP([D])
(57)
Zp[A,N;J, j] = /e_)‘NSVz?,Q({UI})—V'({UI})—TY [J®3(H®D+ZI€P([D])6I)71:| H duo(oz, 1),
ZeP([D])
(58)

where Vi o({oz}) is given in (56), duo(oz,5z1) is the Gaussian measure which propagates
each matriz element of oz to the same element of 6z, and

Vo{oz}) = Trln(1l®D + Z O'I). (59)

ZeP(|D])

The matrices oz, 07 are square matrices of size NI s N We use 61 as an extension
to the set [D] of all colors, i.e. 67 =07 @ Lippz.

These equalities between tensor integrals and matriz integrals are perturbative, i.e.
they hold order by order in powers of the coupling constant X.

The strategy is simply to expand the exponentials of the non-quadratic terms and
prove the equalities order by order in A. The proof then relies on the one-dimensional
case which we present as a lemma.

Lemma 13. For all a € C and p € N, the following relation holds

(2P e %) = / 2P e Ydug(z,z) = aP. (60)
C
Proof.
k k
/ p —az deZdZ — €£%6a22p — i 2 P 2 e®
o T 0o K[\ 0z oL\ 0Z o
1
=Y L) =@ a
k>0

This is easily extended to products of multivariate polynomials.

Lemma 14. For any K € N, {a;} € CK, and given Pz, ..., zk] and Q|z, ..., zk] two
complex polynomaals, the following relation holds

(P(z1,...,26)Q(21, ..., zg) e Zi%%),

E/ P(Zl,...,ZK)Q(Zl,...,ZK) Giziaigin/J/()(Zi,zi)
CK i

:P(ah'"vaK)Q(al?"':aK)
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Proof. The generalization of (60) to K complex variables z1, ..., zx is the obvious rela-

tion
K K
/ H e it H dpo(zi, 2;) = H a;’, (62)
CK G ; i=1

For two polynomials P(z1,...,2x) = >, o [[; 27" and Q(z1,...,2x) = >, B [, 2™,
this implies by linearity

(P(21, .., 2K)Q(21, .. ., 2i) € Zi %), Zamﬁn H Pmitnd a3y
_Zamﬁn Hapmﬁ‘%m a§>0:P(al,...,aK)Q(al,...,aK)_ ]

Proof of Theorem 12. Given a bubble B, {2 a pairing of its vertices, and p € N, we
now prove that the following equality holds

[B(T,T)]p:/[Vg”Q({JI})}p exp{— Z Tr [T - TO'I:| H dpo(oz,0k).  (63)

ZeP([D]) ZeP([D])

We use expression (54) for the bubble B. Relation (62) applied to the products over
the vertices of matrix elements of T -z T gives

Tir T

(lq 17“'77;8(1 |Ia|);(‘jga,l7.“’j(qla ‘Ia‘)

Tr([T- 57T)o) t
/H Zal(zqal, Gy 7 |)(an1, JGy 174 ‘) R ([ I H djtg UI,Uz)
ZeP([D])

a=1

since the integration over the matrix elements of oz for Z # Z, contributes to a factor
one, as well as integration over the matrix elements of o7, with indices different from
(iga,l7 to ’iga,\za\); (j:]la,ﬁ e ’jga,|1a|)'

Inserting this relation into (54) and using expression (56), one gets relation (63) for
p = 1. The relation for p > 0 then follows from applying Lemma 14.

Now notice that Tr [T -5 T]O‘I =D it,in Liy- in Ty 0O T((ir,sin)i(1rjn) SO that

J1y--5JD
_ _ 1
dpo(T, T) exp {— Te[T -5 T]a}} = -
/ zg»z(w]) : det [197 + 37 cp(p)) O1] (64)
= exp [— Tr ln(IL®D + Z 5’1)}

ZeP([D])
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Integrating (63) over T, T thus yields the matching of each term of the perturbative series

—N3\)P _ _
EO [ [0r D) (. T)
—N\)P . I . B
:( [ ) /[V&Q({Ufc})}pe e o) H dpo(oz,0z). (65)
P ZeP([D])
Equation (58) works similarly with sources. =

We now perform the Feynman expansion of the matrix model (57). There are two
types of non-quadratic terms in the action which give rise to two types of vertices.

e V/*in (59), is expanded as an infinite sum of monomials,

V*({oz}) = Tr1n<11®D + Z 6’1> = Trzﬂ< Z U'I>k
ZeP([D]) k>0 b ZeP([D])
1)kl
— Z% Z Tréz, - 61,

k>0 T1,..., I

(66)

where the last sum is taken over non-necessarily distinct Z; € P([D]) and up to
a cyclic permutation of the sets. To each distinct monomial Tré&z, - - - &7, , one
associates a black vertex of degree k. Its incident half-edges are labeled with the
color sets 7y, ...,Z;. They are cyclically ordered (clockwise or counter-clockwise)
according to their order in the trace.

Since a matrix o7 represents a pair of vertices of B, it is clear that Tré&yz, - - o7,
corresponds to a cycle of a colored graph which alternates pairs of vertices and edges
of color 0 (represented as corners around the vertex). One thus recovers the black

vertex of stuffed Walsh maps, introduced in Section 3.1.

e To Vg g, one can associate a white vertex of degree V (half the number of vertices of
the bubble B). The incident edges are labeled with color sets Z which correspond to
the labels of the matrices oz which do appear in the expression of Vi ,. The order
of those incident edges around each white vertex is fixed.

e The quadratic term of the action propagates a o7 to a gz and thus gives rise to
edges which carry a color set Z € P([D]) and connect black to white vertices.

e When Vj, is represented as a white vertex, we thus recover the projected Walsh
maps. However, in matrix models (and tensor models), a map of the Feynman ex-
pansion receives a factor N for each face of each color. Clearly, representing V5
does not allow to track the faces graphically. To do so, one needs to represent graph-
ically the pattern of identification of matrix indices in V. By construction, this

is what the edge-colored map M(B,Q) (or M(BS)) does. This way, one sees that
the matrix model of Theorem 12 generates the stuffed Walsh maps Wy (M (B, )).
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7 Conclusion

We have established a bijection between colored graphs with prescribed bubbles and
stuffed Walsh maps. Those maps extend the ordinary hypermaps, which can be repre-
sented as bipartite maps [10], by stuffing the hyperedges with prescribed maps. This
shows in a precise way to what extent edge-colored graphs generalize combinatorial maps
and in particular the recently introduced stuffed maps [11].

We hope that this bijection will be useful to tackle some interesting problems about
colored graphs. The main objective is to classify the graphs according to their number
of faces at fixed number of vertices or bubbles. This was done in [15] for generic colored
graphs (no prescription on the allowed bubbles) and with a different notion of faces
(including those which carry couples of colors {i,j} for i,7 # 0). If B is a melonic
bubble with p white vertices, then Go(B) contains melonic graphs for which we know the
maximal ratio r = (D —1)(p—1) between the number of faces and the number of bubbles.
It is then possible to perform an analysis similar to that [15], see [8]. However, if B is
generic, the maximal value of the ratio » between the number of faces and the number of
bubbles is unknown. Using the bijection, we have found in Section 4 that projected trees
have a fixed ratio r = F(B%) — D and then expressed in Theorem 11 the difference of the
number of faces between a stuffed Walsh maps and a projected tree in terms of circuit
ranks and genera. Yet we do not know if the ratio obtained for projected trees is the
maximum. If true, it requires  to be an optimal pairing, so that F(B%) is maximized.

Using the formula of Theorem 11 we have nevertheless proved that projected trees
are dominant maps in some examples in Section 5 (projected trees are in fact dominant
maps in all known cases), and identified the other dominant maps. This is an important
step towards understanding and solving models with non-Gaussian behaviors as proposed
in [16] such as that of Section 5.3. The main criterion we have used is to minimize the
number of rainbow cycles (whose edges do not all have the same color sets) which can be
done using spanning forests.

Another interesting question is whether stuffed Walsh maps satisfy the topological
recursion. Indeed, stuffed maps, introduced in [11], do satisfy the topological recursion.
It is a recursion on the generating functions with n marked faces and genus g, which comes
out as a solution of Tutte’s equations for combinatorial maps. In the case of stuffed maps,
the recursion in fact receives a non-universal, stuffing-dependent part.

Finally, we would like to point out a crucial difference between the quartic case and
the generic case presently studied. We have mentioned in Section 6 that tensor integrals
generate colored graphs and matrix integrals generate maps. This holds via a formal
expansion of the integrals in powers of the counting parameters. However, the integrals
themselves are expected to be analytic in a certain domain of the complex plane for the
counting parameter (typically a cardioid) which in particular contains zero only on its
boundary, meaning that there is more to the integrals than their formal expansions as
power series in the counting parameters. In the quartic case, the bijection in fact lifts
to a true equality between the tensor and matrix integrals, said to be a non-perturbative
equality. The reason is that in this case, the equality of Theorem 12 can be obtained
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via a Hubbard-Stratonovich transformation which introduces the matrices o7 without the
need to expand the exponential of the bubble polynomials into power series in AB(T, T).
In our case however, the equality of Theorem 12 only holds perturbatively, i.e. order by
order in powers of the counting parameter A. A non-perturbative version would be very
important, but we cannot expect it to exist for arbitrary bubbles.
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A Edge-colored maps

Proposition 15. Fach pairing €2 of the vertices of B € B generates an infinite family of
maps M(B, Q) with boundary graph B. Since any map in 0~ (B) induces a unique pair-
ing, this defines a partition 0~ (B) = Uq,M(B, ), where the union is over inequivalent
PALTINGS.

Proof. Any map has a unique boundary graph and induces a unique pairing of its ver-
tices, so that the only unproven point is that given any B, the family Mg is infinite,
which is true e.g. because the addition of degree 2 vertices on edges does not change the
boundary graph. O

Note that two pairings may generate the same family in which case they are equivalent.
The more a bubble has symmetries, the fewer disjoint families there are. See for example
the case of the complete bipartite graph in Subsection 5.4.

Definition 16. The power 6(M) of an edge-colored map M € M, is
(M) =F(M)—(D—-1)EM). (67)

It corresponds to the exponent of N in the amplitude of M in the Feynman expansion
of the quartic melonic tensor model after a Hubbard-Stratonovich transformation [5, 3.

Proposition 17. The power of a map M € My is
D
(M) = D(1 = I(M)) +2) (UMD) = g(MD)), (68)
i=1
where | = & —V + 1 is the circuit rank of a connected graph, g the genus of a map, given

by2—2g9=V —E+F, and MY is the monochromatic submap of color i.

Proof. By induction, it is easy to see that trees in My have power D, hence the number
of faces of a tree T with £(T) edges is

F(T)=(D—-1ET)+ D. (69)

One can then apply Theorem 11 to the quartic melonic case and notice that stuffed and
projected maps are the same in this case, so that their circuit ranks are equal. O
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Corollary 18. The power 6 of a map My € My verifies
6(Mo) < D, (70)
and the inequality is saturated if and only if the map My s a tree.

This is a very well-known result for colored graphs [2], see also [5, 3] for his translation
in terms of edge-colored maps. In the context of edge-colored maps, there is a particularly
simple proof: by induction, it is shown that (M) = D for trees, and since every edge
carries a single color, |Zy(e)| < 1 so that Lemma 8 ensures that the number of faces
increases upon unhooking edges until M becomes a tree. We offer here an alternative
proof using circuit ranks.

Proof. To prove that result, we use (68) and first show that

—z (Mp) > Zz M) (71)

For each i € [D], consider a forest 7 spanning Méz). There are l(./\/l(()i)) edges in
Méz) \ 7@ and they identify fundamental cycles. The union Uie[ D] T is connected and
spans M. A spanning tree T of UiE[D] T is thus a spanning tree of M. Since all the

edges in ;¢ p (MY\ T®) are distinct,

D
>3 myY), (72)
=1

and (71) follows from D > 2. Since g(./\/l(()z)) > 0, one obtains (70).
Furthermore, if ¢ &€ T, then either e € UiE[D]T(i) or e ¢ UiE[D]T(i) and since T is a
spanning tree for Use;p7T®, we find

D

I(Mo) = (UL, TO) + Y iM), (73)
i=1
so that (68) can be rewritten as
D ' D '
6(Mo) = D = DU T) = (D =2) 3 IM) =23 _gM”),  (T4)
i=1 i=1

and the inequality is saturated if and only if (U2, 7®) = (M) = g M) =0, ie. if
and only if M, is a tree. n

Lemma 19. Given an edge-colored map M, with p cilia and M, obtained from M, by
removing the cilia and merging their incident corners, the power of M, is related to that
of My by the following relation,

§(My) = 6(Mo) — F(B?) (75)
where B = OM,, Q is the pairing of B induced by M, and B is the corresponding

covering.
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Proof. §(M,) and 6(M,) only differ due to the numbers of faces. Every face of M, is
a face of M. However, removing the cilia and merging their incident corners turn the
broken faces into a set of closed faces. This operation consists in adding an edge of color
0 between the white vertex and the black vertex of each pair defined by ). Those faces
are thus described by the covering B%. O

Lemma 20. Let M be an edge-colored map with boundary graph OM = B and induced
pairing Q and monochromatic submaps denoted M. The directed graph B q is obtained
from B by orienting the edges from white to black vertices, then contracting the pairs of
vertices defined by ) and removing the edges which connect the vertices of a pair. Then

D D

(M) =3 UMD) > 1(Bog) = S UBYY) = opt(€). (76)

i=1 i=1
We call opty(§2) € N the optimality of the pairing €.

The quantity (M) — Zil I(M®) is the number of independent (proper) rainbow
cycles of a graph, i.e. cycles in which edges do not all have the same color. When each
monochromatic submap is a forest, it coincides with the circuit rank of the map itself.

Proof. For each color i, consider 7 a forest that spans M®. As in the proof of

Corollary 18, the number of rainbow cycles of M is

(M) = (MDY = LU, TD). (77)

i=1

Consider 7'652 the subforest of 7 made of its connected components which have at least
two marked vertices. The union Ule’ﬁ(ﬁ is a subgraph of U2, 7®  hence

(U2, TO) > (Ul 79, (78)

Notice that every cilium belongs to at least one 7;(;2, else there would be one cilium for
which all broken faces which start at this cilium end at it and B would be disconnected.
Therefore U2, 7.0) is connected. Moreover, (U2, T = 2 £(T), so that

ext xt
(U275 = E(T) = VUL, TAS) + 1. (79)

Since T is a forest, £(TL)) = V(TY)) — k(TY)). Furthermore, a vertex v € U2 T\

ext xt ext

is in as many distinct subforests 7;(;2), 7;5;52), ... as the number col(v) of incident colors,
meaning
ST = 3 (col(v) - 1). (80)
i€lbl veul 7S
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It comes that

O, TE) = D (col(v) — 1) =Y B(T)) + 1. (81)

veul 74 i=1

ext

Moreover, U; 7; has no isolated vertices, hence col(v) — 1 > 0, and

Y (eol(v)=1)= > (col(v)—1)= > (col(v) - 1). (82)

D ) v ciliated vEBy,Q
’UGUZ- 17;xt in UD 7—1) ’

ext

To understand the last equality, construct the graph G U7l 38 in Section 3.2: only keep

the ciliated vertlces and draw a directed edge for each broken face. Since all connected

components of 7;” have at least two ciliated vertices, G . o 0T has no loop-edges. That

ext

implies QO LT = Bso. In addition, since the closed Walks of fixed color 5 and which
(i)

encounter c1ha on U T

are in one-to-one correspondence with the connected compo—
nents of BY) 5.0, and since there is at least one such walk per connected component of ’7;

it comes that k(BO Q) > k(Tem) We therefore get the bound

(U2 TE) = D (col(v Zk BY) (83)

xt )

vEBH,Q
To conclude, we use the fact that Bg)ﬂ consists of disjoint cycles, so that: 37 5 (col(v)—
1) = E(Bog) — V(Bog), and (BY) = k(BY),). O

Lemma 21 (Optimality). The number of faces of the covering B of B a bubble with V
white vertices is related to the optimality of the pairing as follows,

F(BY =14 (D —1)V — optg(9Q). (84)

Recall from Definition 7 that an optimal pairing is one which maximizes F(B%). It is
thus equivalent to minimizing the optimality.
Proof. This relies on the fact that the faces of color i of B of length two (an edge of

color i and an edge of color 0) are the isolated vertices of Bg)g while the the faces of length

greater than two are in one-to-one correspondence with the cycles of B,(;)Q. Each vertex
of B¢ is an isolated vertex in (D — col(v)) monochromatic submaps. Thus,

D D
=Y FBY = > (D-col(v) +Zz BYy) =DV — E(Bsa) + Y _1BY,).
=1 vEBy 0 =1
Therefore
~F(BY)+(D=1)V =1-V+E(Bsa) =Y UBY,) =1(Bsa) =Y 1(BY) = opt(Q),
=1 =1
using the definition of the optimality (76). O
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Theorem 22. Let M, € M, be an edge-colored map, with boundary graph B = OM,, p
cilia (number of white vertices of B). Then its power is bounded as follows,

6(Mp) < —=(D —1)(p + optp(2) — 1). (85)
Moreover the equality holds if and only if
° ./\/l](f) is a forest for each i € [D], and

e denoting 7;(;2 the restriction of ./\/ll(f) to its trees which have at least two cilia, those
trees can meet on ciliated vertices only, and

o M,\ Uie[D] 7;52 is a forest whose trees each meet UiE[D] 7;(;2 at a single vertex.

Proof. We start with Lemma 19, 6(M,) = §(M,) — F(B?) and apply Proposition 17
to 6(My) and Lemma 21 to F(B®). That gives

§(My) = (D = 1)(1 = p) = DI(Mo) +2 Y UMY) — g(M) + optg().  (86)

1€[D]
Rewrite
— DI(Mo)+2 3 (M) = — ( ZMA”) 2) 3" 1M (87)
ie[D] i€[D] i€[D]

Since (D — 2)I(M)) = 0 as well as g(./\/léZ ) = 0 we get the bound
=~ DIM) +2 3 UME) = g(ME) < =D (1(Mo) = 3 UME)) < ~Dopts(Q), (88)
i€[D] i€[D]

where the last inequality is due to Lemma 20. This proves (85).
One gets the equality in (85) if and only if M,, verifies for all i € [D)]

(M) = g(M) =0, (89)
ie. /\/l,(f) is a forest, and
D
(M) = D UML) = opty(€2). (90)
i=1

Using the notations and results of the proof of Lemma 20, we have the sequence of bounds

Zuw (UTD) 2 1UT) = 3 (col(v Zk (Tih) +

vEU; 7

ext

D

> Z (col(v) — 1) — Z k:(Bf;)Q) + 1 = optz(2),

v ciliated i=1
in U; T< 2

so that (90) is satisfied if and only if every inequality in (91) is an equality. This is
equivalent to
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e the connected components of 7;xt are in one-to-one correspondence with those of
(i)
B O,

e the unciliated vertices of U; 7;” are reached by a single color,

o UTW \U 7;,3 is a forest whose connected components each share a single vertex
with U; 7;

Equation (89) makes the first condition trivial, and reduces the other two to the statements
listed in the theorem. O

This result leads to the notion of optimal maps, i.e. maps satisfying 6(M,) = —(D —
1)(p 4 optg(§2) — 1) where €2 is an optimal pairing of B, i.e. optz(2) = ming, optz(£2a).

B Recovering the Hubbard-Stratonovich transformation for the
quartic melonic model

We want to show the equality between the matrix model of Theorem 12 and the matrix
model [3] obtained by the Hubbard-Stratonovich transformation in the case of quartic
melonic bubbles. Restricting to the melonic bubble B;, Theorem 12 gives

ZBi(/\i, N) _ /e_T\r[NDl)\ig%—ln(]l@D-‘r&i)} dﬂo(ai, 5i)- (92)

Its perturbative expansion can be performed by seeing the Gaussian measure as a differ-
ential operator,

1 &< 9 9 [0 bi3)]
Z5. )‘z N) = . —Tr|N _1)\7;0‘1-271n(]l® +&4)
5% ) {GXP{ND_l Z 00ijap 3Ui|a7b}e

p,q=0

O'Z'ZO
e (S (3 e )
—Trin(19P +&;)
Uzcdazcd .
p q' Z aaz\ab 80'z|ab Z | | ;=0

c,d=1
(93)
Denoting F(6;) = e~ Trin(1%7481) and ({p b}) = #!pb!, the expression under brackets

rewrites

= 5 (o) () [ﬁ(%%)(”'“')”“)}

{Pab}2- Pab=p
{900 }13° gav=4

Now noticing that for any set of quantities { Ay},

H(AabAba)Qab - H(Aab)Qab+qba’ (94)

a,b a,b
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this becomes, replacing A, with 0y and evaluating the derivatives over o,

Sm= 2 ({p];}) <{qab}> [H Pl % :Zﬂba(%m)pabﬂai)]a-o

{pab}lz Pab=P i
{qab}3" gab=0

SN (e R T

{gab 12 qab=1
N
0 0 a }
- 5 = F(o; p! 624
[(G;I 80—i|a7b ao'ib@) ( ) 5:=0 p

where we used that > (Do} IS puy=p P! Ha b1 Gflab e = pl 55‘1, and again relation (94) applied
to a&? i
We have thus completely gotten rid of the matrix o; and are left with ;. Inserting

this back into (93), the partition function finally writes

Zp,(\i, N) = N S F(o
5. N) = | Py~ oy 2 0m 00a ],
a,b=1 ’ ’ 0=

_ [ otwper “&’?F(é-i) d5i2
\/—N

™

(96)

and therefore

NP-INZ [, NP=INZ \ do;
Zp,(Ni, N) =1 2Ty ) 2P
) Z( 2\ ) /e 2 (Z( 2\ ) m) N 0

as expected from the Hubbard-Stratonovich transformation [3].
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