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Abstract

A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix
F , we say that a (0,1)-matrix A has F as a Berge hypergraph if there is a submatrix B
of A and some row and column permutation of F , say G, with G 6 B. Letting ‖A‖
denote the number of columns in A, we define the extremal function Bh(m,F ) =
max{‖A‖ : A m-rowed simple matrix and no Berge hypergraph F}. We determine
the asymptotics of Bh(m,F ) for all 3- and 4-rowed F and most 5-rowed F . For
certain F , this becomes the problem of determining the maximum number of copies
of Kr in a m-vertex graph that has no Ks,t subgraph, a problem studied by Alon
and Shikhelman.

Keywords: extremal graphs, Berge hypergraph, forbidden configuration, trace,
products

1 Introduction

This paper explores forbidden Berge hypergraphs and their relation to forbidden config-
urations. Define a matrix to be simple if it is a (0,1)-matrix with no repeated columns.
Such a matrix can be viewed as an element-set incidence matrix. Given two (0,1)-matrices
F and A, we say A has F as a Berge hypergraph and write F Î A if there is a submatrix
B of A and a row and column permutation of F , say G, with G 6 B (entrywise inequality
of the matrices). If there is no such submatrix B of A, then we write F 6Î A. The paper of
Gerbner and Palmer [15] introduces this concept to generalize the notions of Berge cycles
and Berge paths in hypergraphs. Let F be k×`. A Berge hypergraph associated with the
object F is a hypergraph H of ` edges that ‘covers’ F . That means that for the ` edges
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forming F , denoted E1, E2, . . . , E`, that we may write the ` edges of H as E ′1, E
′
2, . . . , E

′
`

of H so that Ei ⊆ E ′i for i = 1, 2, . . . , `. Berge hypergraphs are related to the notion of a
pattern P in a (0,1)-matrix A which has been extensively studied and is quite challenging
[14]. We say A has pattern P if there is a submatrix B of A with P 6 B. The award
winning result of Marcus and Tardos [18] concerns avoiding a pattern corresponding to a
permutation matrix. Row and column order (or vertex and edge order if you are thinking
in terms of hypergraphs) matter to patterns.

We use heavily the concept of a configuration; see [7]. We say A has a configuration
F and write F ≺ A if there is a submatrix B of A and a row and column permutation of
F , say G, with B = G. If there is no such submatrix B, then we say A does not have F
as a configuration and write F 6≺ A. Configurations care about the 0’s as well as the 1’s
in F but do not care about row and column order. In set terminology the notation trace
has been used.

For a subset of rows S, define A|S as the submatrix of A consisting of rows S of A.
Define [n] = {1, 2, . . . , n} and let

(
[n]
k

)
consist of all k-subsets of [n]. If F has k rows and

A has m rows and F Î A then there is a k-subset S ⊆ [m] such that F Î A|S. For two
m-rowed matrices A,B, use [A |B] to denote the concatenation of A,B yielding a larger
m-rowed matrix. Define t · A = [AA · · ·A] as the matrix obtained from concatenating t
copies of A. Let Ac denote the (0,1)-complement of A. Let 1a0b denote the (a + b) × 1
vector of a 1’s on top of b 0’s. We use 1a instead of 1a00. Let K`

k denote the k ×
(
k
`

)
simple matrix of all columns of ` 1’s on k rows and let Kk = [K0

kK
1
kK

2
k · · ·Kk

k ].
Define ‖A‖ as the number of columns of A. Define our extremal problem as follows:

BAvoid(m,F) = {A : A is m-rowed, simple, F 6Î A for all F ∈ F},

Bh(m,F) = max
A
{‖A‖ : A ∈ BAvoid(m,F)}.

We are mainly interested in F consisting of a single forbidden Berge hypergraph F . When
|F| = 1 and F = {F}, we write BAvoid(m,F ) and Bh(m,F ).

The main goal of this paper is to explore the asymptotic growth rate of Bh(m,F ) for a
given k×` (0,1)-matrix F . Theorem 3.1 handles all cases with k = 3, Theorem 4.4 handles
all cases with k = 4 and Theorem 5.1 handles all cases with k = 5 but the asymptotics
are incomplete (the truth of Conjecture 7.1 would complete the classification). Section 2
contains many of the basic results for Berge hypergraphs. Some of the proof techniques
(and results) use ideas from forbidden configurations [7]. Section 6 considers cases where
F is the vertex-edge incidence matrix of a graph (columns sums 2). Recall the usual
extremal graph function ex(m,G) which is the maximum number of edges in a graph
on m vertices with no subgraph G. There are interesting connections of Bh(m,F ) with
ex(m,Ks,t) (the maximum number of edges in a graph on m vertices with no complete
bipartite graph Ks,t as a subgraph) and ex(m,Kn, Ks,t) [1] (the maximum number of
complete subgraphs Kn in a graph on m vertices with no complete bipartite graph Ks,t

as a subgraph). Section 6 has some applications of this extremal graph theory such as
Theorem 6.1 and Theorem 6.3. Note that Kk has two meanings in this paper that are
hopefully clear by context namely either the complete graph on k vertices or as the matrix
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[K0
kK

1
kK

2
k · · ·Kk

k ]. We also obtain in Theorem 6.5, that if F is the vertex-edge incidence
matrix of a tree T on k vertices, then Bh(m,F ) is Θ(m) analogous to ex(m,T ).

We first make some easy observations.

Remark 1.1 Let F, F ′ be two k× ` (0,1)-matrices satisfying F Î F ′. Then Bh(m,F ) 6
Bh(m,F ′).

The related extremal problem studied for forbidden configurations [7] is as follows:

Let Avoid(m,F) = {A : A is m-rowed, simple,F 6≺ A for all F ∈ F},

then forb(m,F) = max
A
{‖A‖ : A ∈ Avoid(m,F)}.

When |F| = 1 and F = {F}, we write Avoid(m,F ) and forb(m,F ).
There can be striking differences between Bh(m,F ) and forb(m,F ). There are exam-

ples of F where Bh(m,F ) is Θ(mα) for a non-integer α. Let C4 denote the vertex-edge
incidence matrix of the 4-cycle. Then Theorem 4.3 yields that Bh(m,C4) is Θ(m3/2)
whereas no such example is known for forb(m,F ). Another difference explored in this
paper is the case F is the vertex-edge incidence matrix of a tree T on k vertices. As
noted above Theorem 6.5 yields that Bh(m,F ) is Θ(m) while Theorem 6.9 for forbidden
configurations yields forb(m,F ) to be Θ(mk−1), Θ(mk−2) or Θ(mk−3) depending on F .
Note that the two notions of Berge hypergraphs and configurations coincide when F has
no 0’s.

Remark 1.2 Let F be a (0,1)-matrix. Then Bh(m,F ) 6 forb(m,F ). If F is a matrix of
1’s then Bh(m,F ) = forb(m,F ).

Note that any forbidden Berge hypergraph F can be given as a family B(F ) of forbid-
den configurations by replacing the 0’s of F by 1’s in all possible ways. Define

B(F ) = {B is a (0,1)-matrix : F 6 B}. (1)

Remark 1.3 Bh(m,F ) = forb(m,B(F )).

Isomorphism can reduce the required set of matrices to consider, for example B(I2) which
has 4 matrices satisfies:

BAvoid(m, I2) = Avoid(m,

{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 1
1 1

]}
).

A product construction is helpful. Let A, B be m1 × n1 and m2 × n2 simple matrices
respectively. We define A×B as the (m1+m2)×n1n2 matrix whose columns are obtained
by placing a column of A on top of a column of B in all n1n2 possible ways. This extends
readily to p-fold products. Let It = K1

t denote the t× t identity matrix. In what follows
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you may assume p divides m since we are only concerned with asymptotic growth with
respect to m.

The p-fold product

p︷ ︸︸ ︷
Im/p × Im/p × · · · × Im/p is an m×mp/pp simple matrix.

This corresponds to the vertex-edge incidence matrix of the complete p-partite hypergraph
with parts V1, V2, . . . , Vp each of size m/p so that {v1, v2, . . . , vp} is an edge if and only
if vi ∈ Vi for i = 1, 2, . . . , p. These products sometimes yield the asymptotically best (in
growth rate) constructions avoiding F as a Berge hypergraph.

Remark 1.4 Let F be a given k × ` (0,1)-matrix so that F 6Î Im/p × Im/p × · · · × Im/p
(a p-fold product). Then Bh(m,F ) is Ω(mp).

Sometimes such products of the identity may contain the best construction using the
following idea from [5], that when given two matrices F, P where P is m-rowed, then

f(F, P ) = max
A
{‖A‖ |A is m−rowed,A Î P and F 6Î A}.

Theorem 4.3 yields Bh(m, I2 × I2) is Θ(m3/2). We have that Θ(f(I2 × I2, Im/2 × Im/2))
is the maximum number of edges in a C4-free subgraph of the complete bipartite graph
Km/2,m/2 which is Θ(m3/2) [17]. But Lemma 6.2 indicates that things must be more
complicated for F = Is × It for general s, t in that the bounds are Ω(m2+ε).

A shifting process works nicely here. Let Ti(A) denote the matrix obtained from A by
attempting to replace 1’s in row i by 0’s. Do not replace a 1 by a 0 in row i and column
j if the resulting column is already present in A otherwise do replace the 1 by a 0. Then
‖Ti(A)‖ = ‖A‖ and, if A is simple, then Ti(A) is simple.

Lemma 1.5 Given A ∈ BAvoid(m,F ), there exists a matrix T (A) ∈ BAvoid(m,F ) with
‖A‖ = ‖T (A)‖ and Ti(T (A)) = T (A) for i = 1, 2, . . . ,m.

Proof: It is automatic that ‖A‖ = ‖Ti(A)‖. We note that F 6Î A implies F 6Î Ti(A).
Replace A by Ti(A) and repeat. Let T ∗(A) = Tm(Tm−1(· · ·T1(A) · · · )). Either T ∗(T ∗(A))
contains fewer 1’s than T ∗(a) or we have Ti(T

∗(A)) = T ∗(A) for i = 1, 2, . . . ,m. In the
former case replace A by T ∗(A) and repeat. In the latter case let T (A) = T ∗(A). Since
the number of 1’s in A is finite, then the process will terminate with our desired matrix
T (A).

Typically T (A) is referred to as a downset since when the columns of T (A) are in-
terpreted as a set system T then if B ∈ T and C ⊂ B then C ∈ T . Note that if T (A)
has a column of sum k with 1’s on rows S, then Kk Î T (A)|S and moreover the copy of
Kk on rows S can be chosen with 0’s on all other rows. An easy consequence is that for
A ∈ BAvoid(m,F ) where F is k-rowed and simple then we may assume A has no columns
of sum k.
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2 General results

This section provides a number of results about Berge hypergraphs that are used in the
paper. The following results from forbidden configurations were useful.

Theorem 2.1 [2] Let k, t be given with t > 2. Then forb(m, t · 1k) = forb(m, t ·Kk) and
is Θ(mk).

Theorem 2.2 [6] Let k, t be given. Then forb(m, [1k | t ·Kk−1
k ]) is Θ(mk−1).

Theorem 2.3 [3] Let F be a k-rowed simple matrix. Assume there is some pair of rows
i, j so than no column of F contains 0’s on rows i, j, there is some pair of rows i, j so
than no column of F contains 1’s on rows i, j and there is some pair of rows i, j so than
two columns of F contains I2 on rows i, j. Then forb(m,F ) is O(mk−2). Moreover if F
is a a k-rowed simple matrix with the property that for every pair of rows i, j there is a
column of F containing 0’s on rows i, j or for every pair of rows i, j there is a column
of F containing 1’s on rows i, j or for every pair of rows i, j there are two columns of F
containing I2 on rows i, j, then forb(m,F ) is Θ(mk−1).

Definition 2.4 Let F be a k-rowed (0,1)-matrix. Define G(F ) as the graph on k vertices
such that we join vertices i and j by an edge if and only if there is a column in F with
1’s in rows i and j. Let ω(G(F )) denote the size of the largest clique in G(F ) and let
χ(G(F )) denote the chromatic number of G(F ). Let α(G(F )) denote the size of the largest
independent set in G(F ).

Lemma 2.5 Let F be given. Then Bh(m,F ) is Ω(mχ(G(F ))−1) and hence Ω(mω(G(F ))−1).

Proof: Let p = m/(χ(G(F ))− 1). Let

A =

χ(G(F ))−1︷ ︸︸ ︷
Ip × Ip × · · · × Ip .

Assume F Î A and the rows of the χ(G(F ))−1 fold product containing F are S then we
obtain χ(G(F ))− 1 disjoint sets S1, S2, . . . , SX(F )−1 with Si = S ∩{(i− 1)p+ 1, (i− 1)p+
2, . . . , ip} and A|Si

Î I|Si|. This contradicts the definition of χ(G(F )) and so F 6Î A.
Thus Bh(m,F ) is Ω(mχ(G(F ))−1). Note that χ(G) > ω(G).

Lemma 2.6 If 2 · 1t Î F then Bh(m,F ) is Ω(mt)

Proof: F is not a Berge hypergraph of the t-fold product Im/t× Im/t× · · · × Im/t.

Theorem 2.7 Let k be given and assume m > k − 1. Then Bh(m, Ik) = 2k−1.
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Proof: The construction consisting of Kk−1 with m − k + 1 rows of 0’s added yields
Bh(m, Ik) > 2k−1.

We use induction on k. The largest m-rowed matrix which avoids I1 = [1] as a Berge
hypergraph is [0m]. This proves the base case k = 1 and the following is the inductive
step.

Let A ∈ BAvoid(m, Ik). Let B be obtained from A by removing any rows of 0’s so that
B is simple and every row of B contains a 1. If B has k− 1 rows then ‖A‖ = ‖B‖ 6 2k−1

which is our bound. Assume B has at least k rows. Either ‖B‖ 6 2k−1 in which case
we are done or ‖B‖ > 2k−1 > 2k−2 and so by induction, B must contain Ik−1 as a Berge
hypergraph. Permute B to form the block matrix

B =

[
C
E

D
G

]
where C is (k−1)×(k−1) with Ik−1 Î C. ThenGmust be the matrix of 0’s or else Ik Î B.
Thus D is simple. Since all rows of B contain a 1, then E must have a 1. If E contains a
1 then Ik−1 6Î D and so ‖D‖ 6 2k−2. This gives ‖B‖ = ‖C‖+‖D‖ = k−1+2k−2 6 2k−1.
Thus ‖A‖ = ‖B‖ 6 2k−1.

Theorem 2.7 establishes a constant bound for the Berge hypergraph Ik. The existence
of a constant bound would also follow from a result of Balogh and Bollobás [8] as we
describe below. Let Ick = Kk−1

k denote the k× k (0,1)-complement of Ik and let Tk denote
the k×k upper triangular (0,1)-matrix with a 1 in row i and column j if and only if i 6 j.

Theorem 2.8 [8] Let k be given. Then there is a constant ck so that

forb(m, {Ik, Ick, Tk}) = ck.

A corollary of Koch and the first author [4] gives one way to apply this result.

Theorem 2.9 [4] Let F = {F1, F2, . . . , Ft} be given. There are two possibilities. Either
forb(m,F) is Ω(m) or there exist `, i, j, k with Fi ≺ I`, with Fj ≺ Ic` and with Fk ≺ T` in
which case there is a constant c with forb(m,F) = c.

We apply this result to a k × ` forbidden Berge hypergraph F using the family B(F )
from (1) which contains the k× ` matrix of 1’s. Noting that Ick+`+1 contains a k× ` block
of 1’s and Tk+` contains a k × ` block of 1’s we obtain the following.

Corollary 2.10 Let F be a k×` (0,1)-matrix. Then either Bh(m,F ) is Ω(m) or F Î Ik+`
in which case Bh(m,F ) is O(1).

The following Lemma (using the so-called ‘standard induction’ given in [7]) was also
useful for forbidden configurations.
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Lemma 2.11 Let F be a k × ` (0,1)-matrix and let F ′ be a (k − 1)× ` submatrix of F .
Then Bh(m,F ) = O(m · Bh(m,F ′)).

Proof: Let A ∈ BAvoid(m,F ). If we delete row 1 of A, then the resulting matrix may
have columns that appear twice. We may permute the columns of A so that

A =

[
0 0 · · · 0 1 1 · · · 1
B C C D

]
,

where both [B C D] and C are simple (m − 1)-rowed matrices. We have [B C D] ∈
BAvoid(m− 1, F ) and C ∈ BAvoid(m− 1, F ′) (if F ′ Î C then F Î A). Then

‖A‖ = ‖[BCD]‖+ ‖C‖ 6 Bh(m− 1, F ) + Bh(m− 1, F ′),

which yields the desired bound, by induction on m.

Lemma 2.12 Let A be a k-rowed (0,1)-matrix, not necessarily simple, with all row sums
at least kt. Then t · Ik Î A.

Proof: We use induction on k where the case k = 1 and I1 = [1] is easy. Choose t
columns from A containing a 1 in row 1 and remove them and row 1 resulting in a matrix
A′. The row sums of A′ will be at least (k − 1)t and so we may apply induction. Thus
(t− 1) · Ik Î A′ and so we obtain t · Ik Î A.

An interesting corollary is that if we have an m-rowed matrix A with all rows sums at
least kt then t · Ik Î A|S for all S ∈

(
[m]
k

)
.

Lemma 2.13 Let A be a given m-rowed matrix and let S be a family of subsets of [m]
with the property that |S| 6 k for all S ∈ S. Let c be given. Then by deleting at most
c
((
m
k

)
+
(
m
k−1

)
+ · · ·+

(
m
1

))
columns from A we can obtain a matrix A′ so that for each

S ∈ S, A′|S either has more than c columns with 1’s on all the rows of S or has no
columns with 1’s on all the rows of S.

Proof: For each subset of S ∈ S, if the number of columns of A|S with 1’s on the rows
of S is at most c, then delete all such columns. Repeat. The number of deleted columns
is at most

∑
S∈S c 6 c

((
m
k

)
+
(
m
k−1

)
+ · · ·+

(
m
1

))
.

Lemma 2.14 (Reduction Lemma) Let F = [G | t · [HK]]. Assume H,K are simple and
have column sums at most k. Also assume for each column α of K, there is a column γ
of [GH] with α 6 γ. Then there is a constant c so that Bh(m,F ) 6 Bh(m, [GH]) + cmk.

Proof: We let A ∈ BAvoid(m, [G | t · [HK]]) and c = ‖G‖ + t‖H‖ + t‖K‖. Applying
Lemma 1.5, assume Ti(A) = A for all i and so, when columns are viewed as sets, the
columns form a downset. Form S as the union of all sets S ⊆ [m] so that [HK] has a
column with 1’s on the rows S. Then, applying Lemma 2.13, delete at most cmk columns
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to obtain a matrix A′. Now if [GH] Î A′ on rows S, then each column contributing to
H will appear c times in A′|S.

Moreover each column γ of G will appear at least c times in A′|S and so if α is a
column of K and γ is a column of G with α 6 γ, then we have t · α Î t · γ. Hence
[G | t · [HK]] Î A|S, a contradiction. The choice of c above is required, for example, when
the columns contributing to [GH] all have A|S = 1.

The following is a useful application. We use the notation Kp\1p to denote the matrix
obtained from Kp by deleting the column of p 1’s.

Theorem 2.15 Let H(p, k, t) = [1p × Ik−p | t · [ 1p × 0k−p | (Kp\1p)× [0k−p Ik−p]], i.e.

H(p, k, t) =



1 1 · · · 1
...

... · · · ...
1 1 · · · 1
1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

t ·



1
...
1
0
0
...
0

Kp\1p
×

0 1 0 0 0
0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1






. (2)

Then Bh(m,H(p, k, t)) is Θ(mp). Moreover if we add to H(p, k, t) any column not already
present t times in H(p, k, t) to obtain F ′, then Bh(m,F ′) is Ω(mp+1).

Proof: Let F = H(p, k, t). Given that F has a column of p+ 1 1’s then ω(G(F )) > p+ 1
and so Lemma 2.5 yields Bh(m,F ) is Ω(mp).

To apply Reduction Lemma 2.14, set F = [G | t · [HK]] with G to be the first k − p
columns of F and with K to be the remaining 1 + (2p − 1)× (k − p) columns of F when
t = 1 and with H absent. Now Bh(m,F ) 6 Bh(m,G) + cmp for c = ‖G‖ + t‖K‖.
Applying Lemma 2.11 repeatedly (in essence deleting the first p rows of G) we obtain
Bh(m,G) = O(mkBh(m, Ik−p)) and so with Lemma 2.7 this yields Bh(m,G) is O(mp).
Then Bh(m,H(p, k, t)) is Θ(mp).

The remaining remarks concerning adding a column to H(p, k, t) are covered in Lemma
2.17.

Note that Bh(m,H(k − 1, k, t)) follows from Theorem 2.2. There is a more general
form of H(p, k, t) as follows.

Definition 2.16 Let A be a given (0,1)-matrix. Let S(A) denote the matrix of all
columns α so that there exists a column γ of A with α 6 γ and α 6= γ.

Let H((a1, a2, . . . , as), t) = [Ia1 × Ia2 × · · · × Ias | t · S([Ia1 × Ia2 × · · · × Ias ])]. (3)

Then H(p, k, t) is H((a1, a2, . . . , as), t) where s = p + 1 and a1 = a2 = · · · = ap = 1 and
ap+1 = k − p. The upper bounds of Theorem 2.15 do not generalize but the second part
of the proof continues to hold.
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Lemma 2.17 Let H((a1, a2, . . . , as), t) be defined as in (3). Then

Bh(m,H((a1, a2, . . . , as), t))

is Ω(ms−1). Moreover if we add to H((a1, a2, . . . , as), t) any column α not already present
t times in H((a1, a2, . . . , as), t) then Bh(m, [H((a1, a2, . . . , as), t) |α]) is Ω(ms).

Proof: The lower bound for Bh(m,H((a1, a2, . . . , as), t)) follows from (s−1)-fold product
Im/(s−1) × Im/(s−1) × · · · × Im/(s−1) since H((a1, a2, . . . , as), t)) has columns of sum s.

There are two choices for α. First we can choose α to be a column in Ia1×Ia2×· · ·×Ias
and so α has s 1’s. Then 2 · 1s Î [αα] so that Bh(m, [αα]) is Θ(ms) by Theorem 2.1.

Second choose α to be a column not already present in H((a1, a2, . . . , as), t). Let
G = G(H((a1, a2, . . . , as), t)) be the graph defined in Definition 2.4 on a1 + a2 + · · · + ss
vertices corresponding to rows of H((a1, a2, . . . , as), t). Our choice of α has a pair of rows
h, ` so that α has 1’s in both rows h and ` and the edge h, ` is not in G. We deduce
that [H((a1, a2, . . . , as), t) |α] has s + 1 rows S such that for every pair i, j ∈ S, there is
a column with 1’s in both rows i and j, i.e. G has a clique of size s+ 1. Thus by Lemma
2.5, Bh(m, [H((a1, a2, . . . , as), t) |α]) is Ω(ms).

Thus all but the upper bounds for Theorem 2.15 follow from Lemma 2.17. We are
particularly interested in H((1, 2, 2), t) which contains 11×I2×I2 = 11×C4 as the columns
of sum 3. We note that Bh(m,11×C4) is Ω(m2) by Lemma 2.5 since χ(G(11×C4)) = 3.
In addition using Lemma 2.11 and Theorem 4.3 (which proves Bh(m,C4) is Θ(m3/2)), we
deduce that Bh(m,11 × C4) is O(m5/2).

Theorem 2.18 Bh(m,H((1, 2, 2), t)) is Θ(Bh(m,11 × C4)). Moreover if we add to
H((1, 2, 2), t) any column α not already present t times in H((1, 2, 2), t) to obtain
[H((1, 2, 2), t) |α], then Bh(m, [H((1, 2, 2), t) |α]) is Ω(m3).

Proof: Take G = 11× I2× I2 = 11×C4 and take K to be the remainder of the columns
of H((1, 2, 2), 1) and then apply Reduction Lemma 2.14 to obtain the upper bound.

The rest follows from Lemma 2.17.

Conjecture 7.1 asserts that Bh(m,11×C4) is Θ(m2) which would be helpful here. The
following monotonicty result seems obvious but note that monotonicity is only conjectured
to be true for forbidden configurations.

Lemma 2.19 Assume F is a k×` matrix and assume m > k, Then Bh(m,F ) > Bh(m−
1, F ).

Proof: Let F ′ be the matrix obtained from F by deleting rows of 0’s, if any. Then
for m > k, A ∈ BAvoid(m,F ) if and only if A ∈ BAvoid(m,F ′). Now assume A ∈
BAvoid(m−1, F ′) with m > k. Then form A′ from A by adding a single row or 0’s. Then
A′ ∈ BAvoid(m,F ′) with ‖A‖ = ‖A′‖.

The following allows F to have rows of 0’s contrasting with Reduction Lemma 2.14.
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Lemma 2.20 Let F be a k × ` matrix. Then Bh(m, [F | t · Ik]) 6 Bh(m,F ) + (tk + `)m.

Proof: Let A ∈ BAvoid(m, [F | t ·Ik]. For any row in A of row sum r we may remove that
row and the r columns containing a 1 on that row and the remaining (m−1)-rowed matrix
is simple. In this way remove all rows with row sum at most tk+ l and call the remaining
simple matrix B and assume it has m′ rows. Then ‖A‖ 6 ‖B‖+(tk+`)(m−m′). Suppose
B contains F on some k-rows S ⊆

(
[m′]
k

)
. Remove the columns containing F from B to

obtain B′ and now the rows of B′ have row sum > tk. By Lemma 2.12, t · Ik is contained
in B′|S. Consequently [F | t · Ik] is contained in B. This is a contradiction so we conclude
that B ∈ BAvoid(m′, F ). Hence ‖B‖ 6 Bh(m′, F ) 6 Bh(m,F ) (by Lemma 2.19). We
also know that ‖B‖ > ‖A‖−(tk+`)m and so ‖A‖ 6 Bh(m,F )+(tk+`)m for all A.

Lemma 2.21 Let F be a given k-rowed (0,1)-matrix. Let F ′ denote the matrix ob-
tained from F by adding a row of 0’s. Then Bh(m,F ′) = Bh(m,F ) for m > k. Also
Bh(m, [0k | F ]) = max{‖F‖,Bh(m,F ))}.

Proof: Let A be a simple m-rowed matrix with ‖A‖ > Bh(m,F ). Then F Î A. Now as
long as m > k+1 we have that F ′ Î A. Similarly if ‖A‖ > ‖F‖, then [0k | F ] Î A.

A more general result would be the following.

Theorem 2.22 Let F1, F2 be given. For

F =

[
F1

0
0
F2

]
,

Bh(m,F ) is O(‖F1‖+ ‖F2‖+ max{Bh(m,F1),Bh(m,F2)}).

Proof: Assume F1 is k-rowed. Let A ∈ BAvoid(m,F ). If ‖A‖ > Bh(m,F1), then
F1 Î A. Assume F1 appears in the first k rows so that

A =

[
F1

∗
∗
B

]
.

If F2 Î B then F Î A and so we may assume F2 6Î B. Now the multiplicity of any column
of B is at most 2k. Thus ‖B‖ 6 2kBh(m,F2) and so ‖A‖ 6 ‖F1‖ + 2kBh(m − k, F2) 6
‖F1‖+ 2kBh(m,F2) by Lemma 2.19. Interchanging F1, F2 yields the result.

3 3 × ` Berge hypergraphs

This section provides an explicit classification of the asymptotic bounds Bh(m,F ). Let

G1 =

 1 1
1 0
0 1

 , G2 =

 1 1 0
1 0 1
0 1 1

 .
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Theorem 3.1 Let F be a 3× ` (0,1)-matrix. Then F is in one of the following cases.
(Constant Cases) If F Î [I3 | t · 03], then Bh(m,F ) is Θ(1).
(Linear Cases) If F has a Berge hypergraph 2 · 11 or 12 and if F Î [G1 | t · [0 | I3]] =
H(1, 3, t) then Bh(m,F ) = Θ(m).
(Quadratic Cases) If F has a Berge hypergraph 2 ·12 or G2, or 13 and if F Î [13 | t ·G2] =
H(2, 3, t) for some t, then Bh(m,F ) = Θ(m2).
(Cubic Cases) If F has a Berge hypergraph 2 · 13 then Bh(m,F ) = Θ(m3).

Proof: The lower bounds follow from Lemma 2.5 and Lemma 2.6.
The constant upper bound for [I3 | t·03] is given by Theorem 2.7 combined with Lemma

2.21 to add columns of 0’s. An exact linear bound for G1 is in Theorem 3.2. The linear
bound for [G1 t · [0 | I3]] = H(1, 3, t) and the quadratic upper bound for [13 | t · G2] =
H(2, 3, t) follow from Theorem 2.15. The cubic upper bound for t · K3 follows from
Theorem 2.1.

To verify that all 3-rowed matrices are handled we first note that Bh(m, 2 · 13) is
Θ(m3). Consider matrices F with 2 · 13 6Î F . Then F Î H(2, 3, t) and so Bh(m,F )
is O(m2). If 2 · 12, 13 or G2 Î F then Bh(m,F ) is Ω(m2). Now assume 2 · 12, 13 and
G2 6Î F . Then G(F ) (from Definition 2.4) has no 3-cycle nor a repeated edge and so
F Î H(1, 3, t). Then Bh(m,F ) is O(m). If 2 · 11 or 12 Î F then Bh(m,F ) is Ω(m). The
only 3-rowed F with 2 · 11 6Î F and 12 6Î F satisfies F Î [I3 | t · 03].

The following theorem is an example of the difference between Berge hypergraphs and
configurations. Note that forb(m,G1) = 2m [7].

Theorem 3.2 Bh(m,G1) = b3
2
mc+ 1

Proof: Let A ∈ BAvoid(m,F ). Then A has at most m + 1 columns of sum 0 or 1.
Consider two columns of A of column sum at least 2. If there is a row that has 1’s in both
column i and column j then we find a Berge hypergraph G1. Thus columns of column
sum at least 2 must occupy disjoint sets of rows and so there are at most bm

2
c columns of

column sum at least 2. This yields the bound. Then we can form an A ∈ BAvoid(m,F )
with ‖A‖ = b3

2
mc+ 1.

4 4 × ` Berge hypergraphs

Given a (0,1)-matrix F , we denote by r(F ) (the reduction of F ) the submatrix obtained
by deleting all columns of column sum 0 or 1. In view of Lemma 2.20, we have that
Bh(m,F ) is O(Bh(m, r(F ))). On 4 rows, there is an interesting and perhaps unexpected
result.

Theorem 4.1 [5] forb(m, {I2 × I2, T2 × T2}) is Θ(m3/2) where

I2 × I2 = C4 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , T2 × T2 =


1 1 1 1
0 0 1 1
1 1 1 1
0 1 0 1

 .
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The above result uses the lower bound construction (projective planes) from the much
cited paper of Kővari, Sós and Turán [17].

Theorem 4.2 [17] f(C4, Im/2 × Im/2) is Θ(m3/2).

We conclude a Berge hypergraph result much in the spirit of Gerbner and Palmer [15].
They maximized a different extremal function: essentially the number of 1’s in a matrix
in BAvoid(m,C4).

Theorem 4.3 Bh(m,C4) is Θ(m3/2)

Proof: The lower bound follows from [17]. It is straightforward to see that C4 Î T2×T2
and then we apply Theorem 4.1 for the upper bound.

We give an alternative argument in Section 6 that handles F = I2 × Is for s > 2.
Other 4-rowed Berge hypergraph cases are more straightforward. Let

H1 =


1 0 0
1 1 0
0 1 1
0 0 1

 , H2 =


1 1 1
1 0 0
0 1 0
0 0 1

 , H3 =


1 1
1 1
1 0
0 1

 , H4 =


1 1 1 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 ,

H5 =


1 1 0
1 1 1
1 0 1
0 1 1

 , H6 =


1 1 0
1 1 0
1 0 1
0 1 1

 , H7 =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1

 .
Theorem 4.4 Let F be a 4× ` (0,1)-matrix. Then F is in one of the following cases.
(Constant Cases) If F Î [I4 | t · 04], then Bh(m,F ) is Θ(1).
(Linear Cases) If F has a Berge hypergraph 2 · 11 or 12 and if r(F ) is a configuration in
H1 or H2 then Bh(m,F ) = Θ(m).
(Subquadratic Cases) If r(F ) is C4, then Bh(m,F ) is Θ(m3/2).
(Quadratic Cases) If F has a Berge hypergraph 2 · 12 or G2, or 13 and if F Î H(2, 4, t)
for some t, then Bh(m,F ) = Θ(m2).
(Cubic Cases) If F has a Berge hypergraph 2 · 13 or 14 or K2

4 or H6 or H7 and if F Î

H(3, 4, t) then Bh(m,F ) = Θ(m3).
(Quartic Cases) If F has a Berge hypergraph 2 · 14 then Bh(m,F ) = Θ(m4).

Proof: The lower bounds follow from Lemma 2.5, Lemma 2.6 and Theorem 4.2.
The constant upper bound for [I4 | t·04] is given by Theorem 2.7 combined with Lemma

2.21 to add columns of 0’s. The linear upper bound for F where G(F ) is a tree (or forest)
follows from Theorem 6.5. There are only two trees on 4 vertices namely H1 and H2. Note
[H2 | t · [04 | I4]] = H(1, 4, t). Thus Bh(m, [H2 | t · [04 | I4]]) is O(m) by Theorem 2.15. Also
Bh(m, [H1 | t · [04 | I4]]) is O(m) by Reduction Lemma 2.14. Now Theorem 4.3 establishes
Bh(m,C4). The quadratic upper bound for H(2, 4, t) and the cubic upper bound for
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H(3, 4, t) follow from Theorem 2.15. The quartic upper bound for t · K4 follows from
Theorem 2.1.

To verify that all 4-rowed matrices are handled we first note that Bh(m, 2 · 14) is
Θ(m4). Consider matrices F with 2 · 14 6Î F . Then F Î H(3, 4, t) and so Bh(m,F ) is
O(m3). If 2 · 13 Î F , then Bh(m,F ) is Ω(m3) by Lemma 2.6. If 14, K

2
4 , H6 or H7 Î F

then ω(G(F )) = 4 and so Bh(m,F ) is Ω(m3) by Lemma 2.5.
The column minimal simple (0,1)-matrices F with ω(G(F )) = 4 and with column

sums at least 2 are 14, K
2
4 , H5, H6 and H7. Since H6 Î H5 it suffices to drop H5 from the

list. Now assume ω(G(F )) 6 3 and so 14, K
2
4 , H6 or H7 6Î F . Also assume 2 · 13 6Î F .

Let 3, 4 be the rows of F so that no column has 1’s in both rows 3, 4. Then there are
only two possible different columns of sum 3 in F and since 2 · 13 6Î F , F has at most 2
(different) columns of sum 3. Hence F Î H(2, 4, t) and Bh(m,F ) is O(m2).

If 2 ·12 Î F , then Bh(m,F ) is Ω(m2) by Lemma 2.6. If 13 or G2 Î F , then Bh(m,F )
is Ω(m2) by Lemma 2.5. Now assume F Î H(2, 4, t) but 2 · 12, 13 and G2 6Î F . Then
G(F ) (from Definition 2.4) has no 3-cycle nor a repeated edge and so G(F ) is a subgraph
of K2,2 or K1,3. In the latter case, F Î H(1, 4, t). Then Bh(m,F ) is O(m). In the former
case, F Î H((2, 2), t) and so Theorem 4.3 applies to show that Bh(m,F ) is O(m3/2).

If 2 · 11 or 12 Î F then Bh(m,F ) is Ω(m). If C4 Î F , then Bh(m,F ) is Ω(m3/2) by
Theorem 4.3. The only subgraph of K2,2 that contains C4 and has no 3-cycle is C4. The
only 4-rowed F with 2 · 11 6Î F , 12 6Î F and C4 6Î F satisfies F Î [I4 | t · 04].

We give some exact linear bounds.

Let H8 =


1 0
1 0
0 1
0 1


For the following you may note that forb(m,H8) is

(
m
2

)
+2m−1 and forb(m,H2) is Θ(m2)

[7].

Theorem 4.5 Assume m > 5. Then Bh(m,H8) = 2m.

Proof: Let A ∈ BAvoid(m,H8). Assume that A is a downset by Lemma 1.5. Let
A′ = r(A). Since H8 has column sums 2 then Bh(m,H8) 6 ‖A′‖ + m + 1. If A′ has a
column of column sum 4 (or more), then H8 Î A′ since H8 has only 4 rows and is simple.
If A′ has a column of sum 3 say with 1’s on rows 1,2,3, then we find [K3

3K
2
3 ] in those 3

rows. Assume A′ has a column of column sum 3, say with 1’s in rows 1,2,3. Then if A′

has either a column of sum 3 with at least one 1 in rows 1,2,3 and one 1 not in rows 1,2,3
or a column with at least 2 1’s not in rows 1,2,3 then H8 Î A′ (using the fact that A
is a downset). Thus if A′ has a column of sum 3 with 1’s in rows 1,2,3 then it has no
columns with 1’s not in rows 1,2,3 and so ‖A′‖ = 4. Thus for m > 5, ‖A′‖ 6 m− 1 and
so Bh(m,H8) 6 2m.

If A′ has only columns of sum 2 then we deduce that ‖A′‖ 6 m−1 and so Bh(m,H8) 6
2m.
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The construction to achieve the bound is to take the m−1 columns of sum 2 that have
a 1 in row 1 as well as all columns of sum 0 or 1. We conclude that Bh(m,H8) = 2m.

Theorem 4.6 Bh(m,H2) = 4bm/3c+m+ 1.

Proof: Proceed as above. Let A ∈ BAvoid(m,H2). Assume that A is a downset by
Lemma 1.5. Let A′=r(A) then Bh(m,H2) 6 ‖A′‖ + m + 1 since H2 has column sums
all 2. If A′ has a column of column sum 4 (or more), then H2 Î A′ since H2 has only
4 rows and is simple. If A′ has a column of sum 3, say with 1’s on rows 1,2,3, then we
find [K3

3K
2
3 ] in those 3 rows. If A′ has such a column of column sum 3, then A′ cannot

have a column with a 1 in row 1 and a 1 in row 4 else F Î A′ using the fact that A is
a downset (using the columns with 1’s in rows 1,2 and the column with 1’s in rows 1,3
and the column with 1’s in rows 1,4). Thus the number of columns of sum 3 is at most
bm/3c.

Let t be the number of columns of sum 3. If m = 3t, then we can include all columns
of sum 2 that are in the downset of the columns of sum 3. All other columns of sum 2
have their 1’s in the m− 3t rows disjoint from those of the 1’s in the columns of sum 3.
The columns of sum 2, when interpreted as a graph, cannot have a vertex of degree 3 else
H2 Î A. So the number of columns of sum 2 is at most m − 3t for m − 3t > 3 and 0
otherwise. This yields an upper bound.

A construction to achieve our bound is to simply take bm/3c columns of sum 3 each
having their 1’s on disjoint sets of rows and then, for each column of sum 3, add 3 columns
of sum 2 whose 1’s lie in the rows occupied by the 1’s of the column of sum 3.

5 5 × ` Berge hypergraphs

The following classification for 5-rowed F is not as complete as Theorem 3.1 and Theo-
rem 4.4 in that the Quadratic and subcubic cases for some F have undetermined asymp-
totics for Bh(m,F ).

Theorem 5.1 Let F be a 5× ` (0,1)-matrix. Then F is in one of the following cases.
(Constant Cases) If F Î [I5 | t · 05], then Bh(m,F ) is Θ(1).
(Linear Cases) If F has a Berge hypergraph 12 or [1 1] and if r(F ) is a vertex-edge inci-
dence matrix of a tree then Bh(m,F ) = Θ(m).
(Subquadratic Cases) If r(F ) is is a vertex-edge incidence matrix of a bipartite graph G
with a cycle then Bh(m,F ) is Θ(ex(m,G)) i.e. Θ(m3/2).
(Quadratic and subcubic Cases) If F has a Berge hypergraph 2 ·12 or χ(G(F )) > 3, and if
r(F ) is a configuration in H(2, 5, t) from (2) for some t then Bh(m,F ) = Θ(m2). If F has
a Berge hypergraph 2 · 12 or χ(G(F )) > 3, and if r(F ) is a configuration in H((1, 2, 2), t)
from (3) for some t then Bh(m,F ) = O(Bh(m,11 × C4).
(Cubic Cases) If F has a Berge hypergraph 2 · 13 or 14 or K2

4 or H6 or H7 and if F Î

H(3, 5, t) from (2) for some t then Bh(m,F ) = Θ(m3).
(Quartic Cases) If F has a Berge hypergraph 2 · 14 or if ω(G(F )) = 5 and F Î H(4, 5, t)
then Bh(m,F ) = Θ(m4).
(Quintic Cases) If F has a Berge hypergraph 2 · 15 then Bh(m,F ) = Θ(m5).
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Proof: The lower bounds follow from Lemma 2.5, Lemma 2.6 and also Theorem 4.2. Note
that a bipartite graph on 5 vertices with a cycle must have a 4-cycle. In the quadratic
cases, we could have listed three minimal examples of Berge hypergraphs with χ(G(F )) >
3, namely 13, G2 or the 5× 5 vertex-edge incidence matrix of the 5-cycle.

The constant upper bound for [I5 | t·05] is given by Theorem 2.7 combined with Lemma
2.21 to add columns of 0’s. The linear upper bound for F where G(F ) is a tree (or forest)
follows from Theorem 6.5. There are a number of trees on 5 vertices. Let F be the vertex-
edge incidence matrix of a bipartite graph on 5 vertices that contains a cycle and hence
contains C4. Thus F Î I2× I3 and so Theorem 6.1 establishes that Bh(m,F ) is O(m3/2).
The quadratic upper bound for H(2, 5, t) and the cubic upper bound for H(3, 5, t) and the
quartic upper bound for H(4, 5, t) follow from Theorem 2.15. The quintic upper bound for
t ·K5 follows from Theorem 2.1. The upper bound for H((1, 2, 2), t) is Θ(Bh(m,1×C4))
for which we do not know the answer (see Conjecture 7.1) but as previously noted we
have that Bh(m,1× C4) is O(m5/2) and so Bh(m,H((1, 2, 2), t)) is subcubic.

To verify that all 5-rowed matrices are handled we first note that Bh(m, 2 · 15) is
Θ(m5). Consider matrices F with 2 · 15 6Î F . Then F Î H(4, 5, t) and so Bh(m,F ) is
O(m4).

If 2 · 14 Î F , then Bh(m,F ) is Ω(m4) by Lemma 2.6. If ω(G(F )) = 5 then Bh(m,F )
is Ω(m4) by Lemma 2.5.

Now assume ω(G(F )) 6 4 and 2 · 14 6Î F . Let 4, 5 be the rows so that no column
has 1’s in both rows 4, 5. Three columns of sum 4 in F either force ω(G(F )) = 5 or we
have a column of sum 4 repeated. So F has at most 2 (different) columns of sum 4 and
so F Î H(3, 5, t) for some t which yields that Bh(m,F ) is O(m3).

If 2 · 13 Î F , then Bh(m,F ) is Ω(m3) by Lemma 2.6. If 14 or K2
4 or H6 or H7 Î F ,

then ω(G(F )) > 4 and then Bh(m,F ) is Ω(m3) by Lemma 2.5.
Now assume ω(G(F )) 6 3 and 2 · 13 6Î F . If α(G(F )) > 3, then by taking rows 3,4,5

to be the rows of an independent set of size 3, we have F Î H(2, 5, t) and so Bh(m,F ) is
O(m2). The maximal graph on 5 vertices with ω(G(F )) 6 3 and α(G(F )) 6 2 is in fact
G(11 × C4). Thus F Î H((1, 2, 2), t) for some t.

Now if 2 · 12 Î F , then Bh(m,F ) is Ω(m2) by Lemma 2.6. If 13 or K2
3 Î F then

ω(G(F )) > 3 and then Bh(m,F ) is Ω(m2) by Lemma 2.5. Now assume ω(G(F )) 6 2 and
2 · 12 6Î F . Thus the columns of F of sum at least 2 must have column sum 2 and there
are no repeats of columns of sum 2. The graph G(F ) has no triangle. If it is not bipartite
then χ(G(F )) > 3 and then Bh(m,F ) is Ω(m2).

Now assume 2 · 12 6Î F and χ(G(F )) 6 2 and so the columns of sum 2 of F form a
bipartite graph G(F ) and there are no columns of larger sum. The graph G(F ) is either
a tree in which case Bh(m,F ) is O(m) by Theorem 6.5 or if there is a cycle it must be
C4 and so Bh(m,F ) is Ω(m3/2). But G(F ) is a subgraph of K2,3 and so we may apply
Theorem 6.1 (and Theorem 2.20) to obtain Bh(m,F ) is Ω(m3/2).

If 2 · 1 or 12 Î F then Bh(m,F ) is Ω(m). The only F with 2 · 11 6Î F and 12 6Î F
satisfies F Î [I5 | t · 05] for some t.

We could have a cleaner classification if Conjecture 7.1 were true, namely that
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Bh(m,11×C4) is Θ(m2). In which case we have the quadratic and subcubic cases replaced
by the following.

(Quadratic Cases) If F has a Berge hypergraph 2 · 12 or χ(G(F )) > 3, and if r(F ) is a
configuration in H(2, 5, t) from (2) for some t or if r(F ) is a configuration in H((1, 2, 2), t)
(3) for some t then Bh(m,F ) = Θ(m2).

Attempting the classification for 6-rowed F would require bounds such as Bh(m, I1 ×
I2 × I3) and Bh(m, I2 × I2 × I2) mentioned in Section 7.

6 Berge hypergraphs from graphs

Let G be a graph and let F be the vertex-edge incidence graph so that G(F ) = G. This
section explores some connections of Berge hypergraphs F with extremal graph theory
results. The first results provides a strong connection with ex(m,Ks,t) and the related
problem ex(m,T,H) (the maximum number of subgraphs T in an H-free graph on m
vertices). Then we consider the case G is a tree (or forest).

Theorem 6.1 Let F = I2×It be the vertex-edge incidence matrix of the complete bipartite
graph K2,t. Then Bh(m,F ) is Θ(ex(m,K2,t)) which is Θ(m3/2).

Proof: It is immediate that Bh(m,F ) is Ω(ex(m,K2,t)) since the vertex-edge incidence
matrix A of a graph on m vertices with no subgraph K2,t has A ∈ BAvoid(m,F ).

Now consider A ∈ BAvoid(m,F ). Applying Lemma 1.5, assume Ti(A) = A for all i
and so, when columns are viewed as sets, the columns form a downset. Thus for every
column γ of A of column sum r, we have that there are all 2r columns α in A with α 6 γ.
Assume for some column α of A of sum 2 that there are 2t−1 columns γ of A with α 6 γ.
But the resulting set of columns have the Berge hypergraph 12 × It by Theorem 2.7 and
then, using the downset idea, will contain the Berge hypergraph F . Thus for a given
column α of sum 2, there will be at most 2t−1 − 1 columns γ of A with α < γ. Thus
‖A‖ 6 (2t−1)p where p is the number of columns of sum 2 in A. We have p 6 ex(m,K2,t)
which proves the upper bound for Bh(m,F ).

Results of Alon and Shikhelman [1] are surprisingly helpful here. They prove very
accurate bounds. For fixed graphs T and H, let ex(m,T,H) denote the maximum number
of subgraphs T in an H-free graph on m vertices. Thus ex(m,K2, H) = ex(m,H). The
following is their Lemma 4.4. The lower bound for s = 3 can actually be obtained from
the construction of Brown [9]. The lower bounds for larger s have also been obtained by
Kostochka, Mubayi and Verstraëtte [16].

Lemma 6.2 [1] For any fixed s > 2 and t > (s− 1)! + 1, ex(m,K3, Ks,t) is Θ(m3−(3/s)).

We can use this directly in analogy to Theorem 6.1.

Theorem 6.3 Bh(m, I3 × It) is Θ(m2).
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Proof: Let A ∈ BAvoid(m, I3 × It). Applying Lemma 1.5, assume Ti(A) = A for all i
and so, when columns are viewed as sets, the columns form a downset. Thus for every
column γ of A of column sum r, we have that there are all 2r columns α in A with α 6 γ.
Let G be the graph associated with the columns of sum 2 and so a column of sum r
corresponds to Kr in G. In particular the number of columns of sum 3 is bounded by
ex(m,K3, K3,t) since each column of sum 3 yields a triangle K3. Assume for some column
α of A of sum 3 that there are 2t−1 columns γ of A with α 6 γ. But the resulting set of
columns have the Berge hypergraph 13 × It by Theorem 2.7 and then, using the downset
idea, will contain the Berge hypergraph I3×It. Thus for a given column α of sum 3, there
will be at most 2t−1 − 1 columns γ of A with α < γ. Thus ‖A‖ 6 (2t−1)p+ |E(G)| where
p is the number of columns of sum 3 in A. We have p 6 ex(m,K3, K3,t). This yields
‖A‖ 6 2t−1ex(m,K3, K3,t) + ex(m,K3,t). Now the standard inequalities yield ex(m,K3,t)
is O(m5/3) and combined with Lemma 6.2 we obtain the upper bound. The lower bound
would follow from taking construction of Θ(m3−(3/t)) columns of sum 3 from the triangles
K3 in Lemma 6.2.

We could follow the above proof technique and verify, for example, that

Bh(m, I4 × I7) is Θ(ex(m,K4,7) + ex(m,K3, K4,7) + ex(m,K4, K4,7))

using the idea that we can restrict our attention, for an asymptotic bound, to columns of
sum 2,3,4. Note that Lemma 6.2 yields ex(m,K3, K4,7) is Θ(m2+(1/4)) and so Bh(m, I4×I7)
is Ω(m2+(1/4)). Thus Im/2 × Im/2 won’t be the source of the construction. The paper [1]
has some lower bounds (Lemma 4.3 in [1]) for ex(m,Kr, Ks,t):

Lemma 6.4 [1] For any fixed r, s > 2r − 2 and t > (s− 1)! + 1. Then

ex(m,Kr, Ks,t) >

(
1

r!
+ o(1)

)
mr− r(r−1)

2s .

Thus for some choices r, s, t, ex(m,Kr, Ks,t) grows something like Ω(mr−ε) which shows
we can take many columns of sum r and still avoid Ks,t, i.e. Bh(m,Ks,t) grows very large.

Theorem 6.5 Let F be the vertex-edge incidence k× (k− 1) matrix of a tree (or forest)
T on k vertices. Then Bh(m,F ) is Θ(m).

Proof: We generalize the result for trees/forests in graphs. It is known that if a graph
G has all vertices of degree k − 1, then G contains any tree/forest on k vertices as a
subgraph. We follow that argument but need to adapt the ideas to Berge hypergraphs.
Let A ∈ BAvoid(m,F ) with A being a downset. We will show that ‖A‖ 6 2k−1m.

If A has all rows sums at least 2k−1 + 1 then we can establish the result as follows. If
we consider the submatrix Ar formed by those columns with a 1 in row r, then Ik−1 is a
Berge hypergraph contained in the rows [m]\r of Ar (by Theorem 2.7). Thus the vertex
corresponding to row r in G(A) has degree at least k − 1. Then G(A) has a copy of the
tree/forest T and since A is a downset, F Î A, a contradiction.
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If A has some rows of sum at most 2k−1, then we use induction on m. Assume row
r of A has row sum t 6 2k−1. Then we may delete that row and the t columns with 1’s
in row r and the resulting (m − 1)-rowed matrix A′ is simple with ‖A‖ = ‖A′‖ + t. By
induction ‖A′‖ 6 2k−1(m− 1) and this yields ‖A‖ 6 2k−1m.

The following results shows a large gap between Berge hypergraph results and forbid-
den configurations results.

The following matrices will be used in our arguments.

F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

 , H9 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , H10 =


1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

 . (4)

Lemma 6.6 For k > 5, forb(m,H1 × 0k−4) is Θ(mk−3).

Proof: The survey [7] has the result forb(m,F7) is Θ(m2) listed in the results on 5-
rowed configurations F . We have H1 × 01 ≺ F7. Thus forb(m,H1 × 01) is O(m2). The
upper bound for k > 6 follows by ‘standard induction’ in analogy to Lemma 2.11. We
note that H1 × 0k−4 has a submatrix 0k−2 and so forb(m,H1 × 0k−4) is Ω(mk−3) by
Theorem 2.3.

Lemma 6.7 forb(m,H2 × 0k−4) is Θ(mk−2).

Proof: Theorem 6.1 of [7] yields forb(m,H2) is Θ(m2) and so by ‘standard induction’
in analogy to Lemma 2.11 we have forb(m,H2 × 0k−4) is O(mk−2). Now H2 × 0k−4 has
a (k − 1) × 3 submatrix with K0

2 on every pair of rows and so H2 × 0k−4 is Ω(mk−2) by
Theorem 2.3.

Lemma 6.8 forb(m,H9 × 0k−6) is Θ(mk−1).

Proof: H9 × 0k−6 has K0
2 on every pair of rows and so H9 × 0k−6 is Θ(mk−1) by Theo-

rem 2.3.

Theorem 6.9 Assume k > 5 and let F be the k × l vertex-edge incidence matrix of a
forest T . There are 3 cases covering all possible F :

i. forb(m,F ) is Θ(mk−3) if and only if F ≺ H1 × 0k−4.

ii. forb(m,F ) is Θ(mk−2) if and only if F ⊀ H1 × 0k−4 and H9 ⊀ F .

iii. forb(m,F ) is Θ(mk−1) if and only if H9 ≺ F .

the electronic journal of combinatorics 24(1) (2017), #P1.59 18



Proof: Assume k > 5. The three cases cover all possible F . Note that forb(m,F ) is
Ω(mk−3) by [3] since a single edge in T produces a column which has k − 2 rows with 02

on every pair of rows. Also, because F is simple, then forb(m,F ) is O(mk−1) [7].
We note that H1 corresponds to a path of three edges and H2 corresponds to a vertex

of degree 3 (three edges incident with the same vertex) and H9 corresponds to three vertex
disjoint edges and H10 corresponds to a path of two edges and an additional edge vertex
disjoint from the path.
Case i): forb(m,F ) is Θ(mk−3) if and only if F ≺ H1 × 0k−4.

Assume forb(m,F ) is Θ(mk−3). If T has at most 2 edges (F has only two columns)
then F ≺ H1× 0k−4. Using Lemma 6.7, we deduce H2×0k−4 ⊀ F . Thus if T has 3 edges
while it does not have a path of three edges (H1 × 0k−4 ⊀ F ) and no vertex of degree 3
(H2×0k−4 ⊀ F ) then by a simple graph argument, T either consists of a path of two edges
(x, y), (y, z) and a vertex disjoint edge (u, v) and so F = H10×0k−5 (up to isomorphism) or
three vertex disjoint edges so H9×0k−6 ≺ F . In the case F = H10×0k−5, 12 ⊀ F |{2,3} and
02 ⊀ F |{1,4} and I2 ⊀ F |{1,2}. Now Theorem 2.3 yields Bh(m,F ) is O(mk−2). Considering
that 02 ≺ F |{i,j} for all pairs 2 6 i < j 6 k we deduce that F is not a configuration
of the k − 2 fold product Icm/k−2 × Icm/k−2 × · · · × Icm/k−2 and so Bh(m,F ) is Ω(mk−2), a

contradiction. In the case H9×0k−6 ≺ F , then Lemma 6.8, yields forb(m,F ) is Θ(mk−1),
a contradiction. There is no forest T with 4 or more edges which does not have a path
of three edges, has no vertex of degree 3, no three edges with two incident and the other
edge vertex disjoint from the first two (H10 × 0k−5 ⊀ F ), and no three vertex disjoint
edges (H9 ⊀ F ). We conclude that F ≺ H1 × 0k−4.

If F ≺ H1 × 0k−4 then forb(m,F ) is O(mk−3) by Lemma 6.6 and so Θ(mk−3) by our
observation for any tree T . This concludes Case i).

Case ii): forb(m,F ) is Θ(mk−2) if and only if F ⊀ H1 × 0k−4 and H9 ⊀ F .
Assume forb(m,F ) is Θ(mk−2). Using Case i), we deduce that F ⊀ H1 × 0k−4. We

deduce that H9 ⊀ F by Lemma 6.8. We now consider a forest T that is not contained
in a path of three edges (F ⊀ H1 × 0k−4) and does not have three vertex disjoint edges
( H9 ⊀ F ). Using the properties of the forest we will show that there is a pair of rows
r1, r2 with 12 ⊀ F |{r1,r2} and there is a pair of rows s1, s2 with 02 ⊀ F |{s1,s2} and a pair
of rows t1, t2 with I2 ⊀ F |{t1,t2}. Then Theorem 2.3 yields that forb(m,F ) is O(mk−2).

If a tree does not have two vertex disjoint edges then the tree is a star say with a root
u and edges (u, v1), (u, v2), . . . (u, vt). If T has three non-trivial components, then H9 ≺ F
so we may assume T has at most two non-trivial components. If T has two non-trivial
components then no (non trivial) component has two vertex disjoint edges (else T has
three vertex disjoint edges) and so each component is a star. Let the roots of the two
stars be u1, u2 and let v1 be joined to u1. Then 12 ⊀ F |{u1,u2} and 02 ⊀ F |{u1,u2} and
I2 ⊀ F |{u1,v1}.

Assume the forest T has only one non-trivial component. If T is a star with root u and
edges to v1, v2, . . . , vt with t > 3, then 12 ⊀ F |{v1,v2} and 02 ⊀ F |{u,v1} and I2 ⊀ F |{u,v1}.
If T is not a star, then T has a path of at least 3 edges. T cannot have a path of 5 edges
since then T has three vertex disjoint edges. Assume the longest path in T is x, u1, u2, y.
Then every other edge is incident with either u1 or U1 and moreover, since F ⊀ H1×0k−4,
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there is one such edge say (u1, z). Then 12 ⊀ F |{x,z} and 02 ⊀ F |{u1,u2} and I2 ⊀ F |{u1,x}.
Assume the longest path in T is x, u1, y, u2, z. To avoid creating 3 vertex disjoint

edges then the only edges incident with y are (u1, y) and (y, u2). All other edges of T are
incident with either u1 or u2. Then 12 ⊀ F |{x,z} and 02 ⊀ F |{u1,u2} and I2 ⊀ F |{u1,x}.
Thus in all possibilities Theorem 2.3 yields forb(m,F ) is Θ(mk−2)

If F ⊀ H1 × 0k−4 and H9 ⊀ F then by Case i), forb(m,F ) is Ω(mk−2). Now in all
the forests above we have forb(m,F ) is O(mk−2). Hence forb(m,F ) is Θ(mk−2) and this
concludes Case ii).

Case iii): forb(m,F ) is Θ(mk−1) if and only if H9 ≺ F .
Assume forb(m,F ) is Θ(mk−1). Then by our observations in Case ii), we deduce

H9 ≺ F .
If H9 ≺ F , then because F has column sums 2, H9 × 0k−6 ≺ F and so forb(m,F ) is

Ω(mk−1) by Lemma 6.8. By our general observations above, forb(m,F ) is O(mk−1) and
so forb(m,F ) is Θ(mk−1). This concludes Case iii).

7 Conjecture and Problems

We have used the following conjecture in Theorem 5.1.

Conjecture 7.1 Bh(m,11 × C4) is Θ(m2).

What are the equivalent difficult cases for larger number of rows? The above would
yield Bh(m,12×C4) is Θ(m3) by Lemma 2.11 but we do not predict Bh(m,11× I2× I3).
For k = 6, we believe that F = I2 × I2 × I2 will be quite challenging given an old result
of Erdős [10].

Theorem 7.2 [10] f(I2 × I2 × I2, Im/3 × Im/3 × Im/3) is O(m11/4) and Ω(m5/2).

We might predict that Bh(m, I2 × I2 × I2) = Θ(f(I2 × I2 × I2, Im/3 × Im/3 × Im/3)).
and so Bh(m, I2 × I2 × I2) is between quadratic and cubic. Unfortunately we offer no
improvement to the bounds of Erdős.
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