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Abstract

We show that an x-tight set of the Hermitian polar spaces H(4, q2) and H(6, q2)
respectively, is the union of x disjoint generators of the polar space provided that x
is small compared to q. For H(4, q2) we need the bound x < q + 1 and we can show
that this bound is sharp.
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1 Introduction

Let q be a prime power and let GF(q) be the finite field of order q. The vector space of
dimension d over GF(q) will be written as V (d, q), and PG(n, q) will denote the projec-
tive space with underlying vector space V (n+ 1, q). Let f be a non-degenerate (reflexive)
sesquilinear or non-singular quadratic form on V (n + 1, q). The elements of the finite
classical polar space P associated with f are the totally singular or totally isotropic sub-
spaces of PG(n, q) with relation to f , according to whether f is a quadratic or sesquilinear
form. The Witt index of the form f determines the dimension of the subspaces of max-
imal dimension contained in P ; the rank of P equals the Witt index of its form, and
the (projective) dimension of generators will be one less than the Witt index. Hence, a
finite classical polar space of rank r embedded in PG(n, q) has an underlying form of Witt
index r, and contains points, lines, . . . , (r − 1)-dimensional subspaces. The elements of
maximal dimension are called its generators. A finite polar space of rank 2 is a point-line
geometry, and is also called a finite generalized quadrangle.
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There exist the following finite classical polar spaces of rank r > 1, which are, up
to transformation of the coordinate system, described as follows inside their ambient
projective space PG(d, q) or PG(d, q2) with d ∈ {2r − 1, 2r, 2r + 1}.

1. The elliptic quadric Q−(2r+1, q) formed by all points of PG(2r+1, q) which satisfy
the standard equation x0x1 + · · · + x2r−2x2r−1 + f(x2r, x2r+1) = 0, where f is a
homogeneous irreducible polynomial of degree 2 over GF(q).

2. The parabolic quadric Q(2r, q) formed by all points of PG(2r, q) which satisfy the
standard equation x0x1 + · · ·+ x2r−2x2r−1 + x22r = 0.

3. The hyperbolic quadric Q+(2r − 1, q) formed by all points of PG(2r − 1, q) which
satisfy the standard equation x0x1 + · · ·+ x2r−2x2r−1 = 0.

4. The symplectic polar space W(2r−1, q), which consists of all points of PG(2n−1, q)
together with the totally isotropic subspaces with respect to the standard symplectic
form θ(x, y) = x0y1 − x1y0 + · · ·+ x2r−2y2r−1 − x2r−1y2r−2.

5. The Hermitian variety H(2r, q2) (also called a Hermitian polar space) formed by all
points of PG(2r, q2) which satisfy the standard equation xq+1

0 + · · ·+ xq+1
2r = 0.

6. The Hermitian variety H(2r−1, q2) (also called a Hermitian polar space) formed by
all points of PG(2r−1, q2) which satisfy the standard equation xq+1

0 +· · ·+xq+1
2r−1 = 0.

Remark. For q even, the polar spaces W(2r− 1, q) and Q(2r, q) are isomorphic, but there
are no other isomorphisms between the polar spaces in the above list.

Tight sets in generalized quadrangles were introduced by Payne [6] and his definition
has been generalized to polar spaces by Drudge [3]. Tight sets are extremal point sets
of a finite classical polar space in the sense that the number of pairs of collinear points
of such a set reaches a theoretical upper bound. Tight sets or, more generally, weighted
tight sets have the important property that they meet every ovoid of a polar space in
the same number of points, which depends only on the size of the tight set. Tight sets
of the hyperbolic quadric Q+(5, q) (a polar space of rank three) appeared in a different
setting in a paper by Cameron and Liebler [2]; in fact, in [2] Cameron-Liebler line classes
were introduced, and it was noticed by Drudge that these correspond to tight sets via the
Klein-correspondence. For this reason, tight sets of the hyperbolic quadrics of rank three
have been intensively studied for more than two decades.

A tight set of a finite classical polar space can be defined in several ways. Combinato-
rially, it behaves as if it was a disjoint union of generators of the polar space. A tight set
can be defined in an exclusively combinatorial way, as we will do formally below. Consid-
ering the point graph of the polar space, which is a strongly regular graph, it turns out
that the characteristic vector of a tight set is a vector orthogonal to one of the eigenspaces
of the adjacency matrix of the graph. This connection with algebraic graph theory has
been studied as well, and was important to derive further geometric properties of tight
sets and other substructures such as m-ovoids of finite classical polar spaces, see e.g. [1].
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polar space rank number of points

Q(2n, q), n > 1 n θ2n−1(q) = q2n−1
q−1

W(2n+ 1, q), n > 1 n+ 1 θ2n+1(q) = q2n+2−1
q−1

H(2n, q2), n > 1 n (q2n+1 + 1)θn−1(q
2) = (q2n+1 + 1) q

2n−1
q2−1

H(2n+ 1, q2), n > 1 n+ 1 (q2n+1 + 1)θn(q2) = (q2n+1 + 1) q
2n+2−1
q2−1

Table 1: Number of points in some polar spaces

As such, geometric characterizations of tight sets have applications when studying related
structures. In this paper, we derive a geometric characterization of small tight sets of the
Hermitian polar spaces of rank 2 and 3 in respectively projective dimension 4 and 6.

For integers s > −1, we use the notation

θs(q) =
qs+1 − 1

q − 1
.

Note that this is the number of points in an s-dimensional projective space over the field
GF(q). In particular, θ−1(q) = 0, θ0(q) = 1 and θ1(q) = q + 1.

Collinearity in polar spaces is described completely using the underlying form. For a
polar space defined by a quadratic form Q, one defines the associated bilinear form f as
f(u, v) := Q(u+ v)−Q(u)−Q(v). Two points U and V of the polar space are collinear
if and only if f(U, V ) = 0. We will denote the set of points collinear with a given point
P as P⊥, and similarly, for a set A of points, A⊥ := ∩P∈AP⊥. Note that P ∈ P⊥.

A fundamental property of polar spaces is the following. Let Pr be a polar space of
rank r, then the set P⊥ of points collinear with P is the intersection of a hyperplane of
the ambient space and Pr, and this intersection is a cone with vertex P and base a polar
space Pr−1 of the same type as Pr but of rank r − 1. By same type we mean that they
correspond to the same number in the above list of polar spaces.

We give a definition of tight sets that can also be found in the literature, e.g. in [1].

Definition 1.1. Let P be a polar space of rank r over the field GF(q). A tight set of P
is a subset T of the point set of P such that for some integer x > 0,

|P⊥ ∩ T | =
{
qr−1 + xθr−2(q) when P ∈ T ,
xθr−2(q) when P 6∈ T .

The integer x is called the parameter of the tight set; a tight set with parameter x is called
an x-tight set.

In the next section, we deal with tight sets with small parameter x. The notion “small”
is derived from the following example, which is based on the natural embedding of the
the polar space W(2n − 1, q) in H(2n − 1, q2). Clearly, H(2n − 1, q2) can be embedded
as a hyperplane intersection in H(2n, q2), which yields an embedding of W(2n − 1, q) in
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H(2n, q2). It is well known that W(2n − 1, q) is a (q + 1)-tight of H(2n, q2), see [1]. In
particular, W(3, q) can be embedded as a (q + 1)-tight set in H(4, q2). Of course, W(3, q)
does not contain a line of H(4, q2) and the main result of this paper is that there is no
smaller tight set with this property.

Theorem 1.2. Every tight set of H(4, q2) with parameter x < q + 1 is the union of x
lines.

We strongly believe that every (q + 1)-tight set of H(4, q2) is either the union of
q + 1 lines or consists of the points set of a generalized subquadrangle of H(4, q2), such
as W(3, q) as explained above. More generally, we conjecture that every x-tight set of
H(2n, q2), n > 2, with x < q+ 1 is the union of x generators of the polar space. However,
a possible proof for n > 2 will be technically more difficult than in the case n = 2. We
tried the case n = 3, where we can show the following.

Theorem 1.3. Every tight set of H(6, q2) with parameter x 6 q + 1 −
√

2q is the union
of x disjoint generators.

Remarks 1. 1. For odd q it is known that H(4, q2) has besides the subquadrangles that
are isomorphic to W(3, q) also subquadrangles of order (q, q) that are isomorphic
to the parabolic generalized quadrangle Q(4, q). More generally, Q(2n, q) can nat-
urally be embedded in H(2n, q2). We show in Section 4 that Q(2n, q) in its natural
embedding is an (x + 1)-tight set of H(2n, q2). Up to our knowledge, this was not
noticed in the literature.

2. Theorems 1.2 and 1.3 significantly improve results of [5].

2 Small tight sets in the polar space H(4, q2)

In this section we show that a tight set of the Hermitian quadrangle H(4, q2) with param-
eter x < q+ 1 is trivial in the sense that it is the union of x disjoint lines. Recall from the
definition of tight sets that every point of T is collinear with q2 + x points of T , and that
every point of the polar space that is not in T is collinear with x points of T . We will
frequently use these properties. The first lemma is well-known, we provide a short proof.

Lemma 2.1. An x-tight set of H(4, q2) has x(q2 + 1) points.

Proof. Count ordered pairs of perpendicular points (P,Q) ∈ T × (H(4, q2) \ T ) in two
ways. This gives |T |(1 + q2(q3 + 1) − (q2 + x)) = (|H(4, q2)| − |T |)x, since each point of
T is perpendicular to 1 + q2(q3 + 1) points of H(4, q2) of which q2 + x lie in T , and since
each point of H(4, q2) \ T is perpendicular to x points of T .

The following crucial lemma uses a counting argument that also played a prominent
role in a result by Gavrilyuk and Mogilnykh [4].
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Lemma 2.2. Let T be a tight set of H(4, q2) with parameter x 6 q + 1. Suppose that
|P⊥ ∩R⊥ ∩ T | 6 x for any two different points P and R of T . Then x = q + 1, and T is
a subquadrangle of the generalized quadrangle H(4, q2) of order q.

Proof. We consider a point P ∈ T and count pairs of perpendicular points (Q,R) ∈
(T ∩P⊥)× (T \P⊥). From the definition of tight sets, we see that there are q2 +x choices
for Q ∈ P⊥ ∩ T . One of these points is P but P is not contained in any of the pairs we
are counting. For each of the remaining q2 + x− 1 points Q, the hypothesis of the lemma
requires that |P⊥ ∩ Q⊥ ∩ T | 6 x. As |Q⊥ ∩ T | = q2 + x, this implies that are at least
|Q⊥ ∩ T | − x = q2 choices for a point R that is perpendicular to Q and lies in T \ P⊥.
Therefore the number of pairs (Q,R) under consideration is at least (q2 + x− 1)q2.

There are |T |−|T ∩P⊥| = (x−1)q2 choices for R. The hypothesis of the lemma shows
that each is contained in at most x pairs (Q,R). Therefore the number of pairs (Q,R) is
at most (x− 1)q2x.

It follows that (q2 + x − 1)q2 6 (x − 1)q2x. Hence q2 6 (x − 1)2. As x 6 q + 1 by
hypothesis in the lemma, we find that x = q+1 and we have equality in all estimations used
above. This shows that every two different points P and Q of T satisfy |P⊥ ∩Q⊥ ∩ T | =
x = q + 1. We show that this implies that T is a subquadrangle of H(4, q2).

If P and Q are different perpendicular points of T , then |P⊥ ∩ Q⊥ ∩ T | = q + 1
implies that the line on P and Q meets T in exactly q + 1 points. Hence every line
of H(4, q2) meets T in at most one or in exactly q + 1 points. Consider the incidence
structure I consisting of the points of T and the lines of H(4, q2) that meet T in q + 1
points where incidence is the natural one. Then every line of I has q + 1 points of I.
For P ∈ T we have |P⊥ ∩ T | = q2 + x = q2 + q + 1 and hence P lies on exactly q + 1
lines of I. Our argument shows that two points of I are collinear in I if and only if they
are perpendicular in H(4, q2). In order to show that I satisfies the one-or-all axiom for
generalized quadrangles, consider a line ` of I and a point P of I that is not on `. As
` = h ∩ T for some line h of H(4, q2), then P is perpendicular to at most one point of
`. To see that P is perpendicular to exactly one point of `, consider a point Q of I on `
that is not perpendicular to P . Then Q lies on q + 1 lines of I and we have seen that P
is perpendicular to at most one point of each of these lines. As |P⊥ ∩ Q⊥ ∩ T | = q + 1,
it follows that P is perpendicular to exactly one point of each line of I on Q. Hence, P
is perpendicular to one point of `. This means that P is in I collinear to one point of `.
We have shown that I is a generalized quadrangle of order q.

Lemma 2.3. Consider H(4, q2) naturally embedded in PG(4, q2) and suppose that T is
an x-tight set of H(4, q2) with x 6 q + 1. Let h be a line of PG(4, q2) and suppose that
h ∩ H(4, q2) contains a point that is not in T . Then |h ∩ T | 6 x.

Proof. Put y := |h ∩ T | and u := |h⊥ ∩ T | and count pairs of perpendicular points
(P,Q) ∈ (h ∩ T ) × T . The definition of tight set implies that each P ∈ h ∩ T occurs in
q2 + x pairs (P,Q). The points Q of h⊥ ∩ T occur in y pairs (P,Q), but the points Q
of T \ h⊥ occur in at most one pair (P,Q). Hence y(q2 + x) 6 u · y + (|T | − u) · 1 and
therefore y(q2 + x) 6 |T |+ u · (y − 1).
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If h∩H(4, q2) contains a point R that is not in T , then |R⊥∩T | = x, since T is a tight
set. Since h⊥ ⊆ R⊥, then u 6 x and hence x(q2 + 1) + (y − 1)x > y(q2 + x). It follows
that x > y.

Remark. If the x-tight set T contains a line ` of H(4, q2), then T \ ` is again a tight set of
H(4, q2) but with parameter x− 1. This is well-known and follows immediately from the
definition of tight sets.

Lemma 2.4. Let T be a tight set of H(4, q2) with parameter x 6 q + 1. Suppose that
|P⊥ ∩ R⊥ ∩ T | 6 x for any two non-collinear points P and R of T . Then either T is
a union of x lines or x = q + 1 and T is a subquadrangle of order q of the generalized
quadrangle H(4, q2).

Proof. We proceed by induction on x, the case x = 0 being trivial. Suppose now that
0 < x 6 q + 1. If T contains a line ` of H(4, q2), then T \ ` is an (x − 1)-tight set of
H(4, q2). In this case the induction hypothesis implies that T is a union of x lines. If T
contains no line, then Lemma 2.3 shows that every line of H(4, q2) meets T in at most x
points. Hence |P⊥ ∩ R⊥ ∩ T | 6 x for any two different collinear points P and Q of T .
Together with the hypothesis of the present lemma, we see that |P⊥ ∩ R⊥ ∩ T | 6 x for
any two different points of T . Now Lemma 2.2 can be applied.

Theorem 2.5. Every tight set of H(4, q2) with parameter x < q + 1 is the union of x
lines.

Proof. Let T be a tight set of H(4, q2) with parameter x < q + 1. We have to show that
T is the union of x lines. This follows from Lemma 2.4 provided that we can show that
|P⊥ ∩Q⊥ ∩ T | 6 x for any two non-perpendicular points P and Q of T .

Assume on the contrary that T contains non-perpendicular points P and Q with
|P⊥ ∩Q⊥ ∩ T | > x. Let PG(4, q2) be the ambient space, and consider the line s = PQ of
PG(4, q2). Since P and Q are not perpendicular, then s is a secant line of H(4, q2). We
have s⊥ = P⊥ ∩ Q⊥. Therefore |s⊥ ∩ T | > x. It follows that |R⊥ ∩ T | > x for all points
R of s ∩ H(4, q2). As T is a tight set with parameter x, this implies that all q + 1 points
of s ∩ H(4, q2) belong to T . The plane s⊥ meets H(4, q2) in a Hermitian curve H(2, q2).
Each point of the Hermitian curve is perpendicular to all points of s and hence to the
q + 1 points of s ∩ T . Since T is a tight set with parameter x < q + 1, it follows that all
q3 + 1 points of the Hermitian curve belong to T .

Then |P⊥ ∩ T | > |H(2, q2)| = q3 + 1. But T is a tight set containing P , so |P⊥ ∩ T | =
q2 + x, which is the desired contradiction.

Based on Lemma 2.4 and Theorem 1.2, we formulate the following conjecture. Note
that the only subquadrangles of order q of H(4, q2) are precisely the generalized quadran-
gles W(3, q) and Q(4, q) embedded in H(4, q2), which are exactly the embedded subquad-
rangles yielding the examples of tight sets with parameter x = q + 1.

Conjecture 2.6. Every (q + 1)-tight set of H(4, q2) that is not the union of q + 1 lines
is the set of points of an embedded W(3, q), or, when q is odd, the set of points of an
embedded W(3, q) or Q(4, q).
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3 Small tight sets in the polar space H(6, q2)

In this section we prove Theorem 1.3, which is comparable to Theorem 1.2, however we
need a stronger bound on x. Recall that a tight set T with parameter x of H(6, q2) has by
definition the property that |P⊥∩T | = q4+x(q2+1) when P ∈ T and |P⊥∩T | = x(q2+1)
when P ∈ H(6, q2)\T . As in the case of tights sets in H(4, q2), a double counting argument
shows that T has precisely xθ2(q

2) = x(q4 + q2 + 1) points.
For the next series of lemmas, we consider H(6, q2) naturally embedded in PG(6, q2),

and denote by T a tight set of H(6, q2) with parameter x.

Lemma 3.1. Let ` be a line of PG(6, q2).

(a) If |`⊥ ∩ T | > x(q2 + 1), then ` ∩ H(6, q2) ⊆ T .

(b) If ` is a line of H(6, q2) with ` ⊆ T , then

|`⊥ ∩ T | = q4 + q2 + x.

(c) If ` is a secant line of H(6, q2) with ` ∩ H(6, q2) ⊆ T , then

|`⊥ ∩ T | > (q + 1− x)q3 + x(q2 + 1).

Proof. (a) For every point P of ` ∩H(6, q2) we have |P⊥ ∩ T | > |`⊥ ∩ T | > x(q2 + 1). As
T is a tight set with parameter x, it follows that all points of ` ∩ H(6, q2) belong to T .

(b) Let P0, . . . , Pq2 be the points of `. Each point of T is either perpendicular to all
points Pi or to exactly one. Therefore a double counting argument shows that

|`⊥ ∩ T |(q2 + 1) + (|T | − |`⊥ ∩ T |) · 1 =

q2∑
i=0

|P⊥i ∩ T |.

As Pi ∈ T , then |P⊥i ∩T | = q4 + x(q2 + 1). Using also that |T | = x(q4 + q2 + 1), it follows
that |`⊥ ∩ T | = q4 + q2 + x.

(c) By the hypothesis the q+ 1 points P0, . . . , Pq of `∩H(6, q2) lie in T . Each point of
T is either perpendicular to all points Pi or to at most one. Therefore a double counting
argument shows that

|`⊥ ∩ T |(q + 1) + (|T | − |`⊥ ∩ T |) · 1 >
q∑

i=0

|P⊥i ∩ T |.

Using |P⊥i ∩ T | = q4 + x(q2 + 1) and |T | = x(q4 + q2 + 1) as in (b), it follows that
|`⊥ ∩ T | > (q + 1− x)q3 + x(q2 + 1).

Lemma 3.2. Let x 6 q. If T contains two intersecting lines, then T contains a plane.
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Proof. Suppose that h1 and h2 are lines that are contained in T and meet in a point P .
These two lines span a plane π of PG(6, q2). As π contains two lines of H(6, q2), then
either π is contained in H(6, q2) or π meets H(6, q2) in the union of q + 1 lines on P .
Lemma 3.1 implies that

q4 + x(q2 + 1) = |P⊥ ∩ T |
> |h⊥1 ∩ T |+ |h⊥2 ∩ T | − |π⊥ ∩ T |
= 2(q4 + q2 + x)− |π⊥ ∩ T | .

Thus |π⊥ ∩ T | > q4 + 2q2 + x − xq2. Since x 6 q, it follows that |π⊥ ∩ T | > x(q2 + 1).
Since T is a tight set, this implies that all points of π ∩ H(6, q2) are contained in T . It
remains to show that π is a plane of H(6, q2).

Assume on the contrary that π ∩ H(6, q2) is the union of q + 1 lines on P . Thus π
has 1 + (q + 1)q2 points in H(6, q2) and we have already shown that all these belong to
T . Since 1 + (q + 1)q2 > x(q2 + 1) and since T is a tight set, it follows that all points of
π⊥ ∩ H(6, q2) lie in T . Since π meets H(6, q2) in the union of q + 1 lines on P , then π⊥

meets H(6, q2) in a cone with vertex P over a Hermitian curve H(2, q2). Hence π⊥ has
1 + q2(q3 + 1) points in H(6, q2) and all these belong T . Since π ∩ π⊥ = {P}, it follows
that

|T | > |π⊥ ∩ H(2n, q2)|+ |π ∩ H(6, q2)| − 1

= 1 + (q3 + 1)q2 + (q + 1)q2.

But |T | = x(q4 + q2 + 1) and x 6 q, a contradiction.

Lemma 3.3. If 1 6 x 6 q and if T does not contain a plane, then there exists a point of
T that does not lie on a line that is completely contained in T .

Proof. Since x 6 q and T contains no plane, the preceding lemma shows that every point
of T lies on at most one line that is contained in T . Thus, the number of points of T on
such a line is divisible by the number q2 + 1 of points on a line. Since |T | = x(q4 + q2 + 1)
with 1 6 x 6 q, then |T | is not divisible by q2 + 1. Hence, not all points of T can be on
a line completely contained in H(6, q2).

Lemma 3.4. Suppose that 1 6 x 6 q and that T does not contain a plane. Then there
exists a point P ∈ T that lies on at least 2q lines h being secant to H(6, q2) and satisfying
|h⊥ ∩ T | > x(q2 + 1).

Proof. The previous lemma proves the existence of a point P such that no line of H(6, q2)
on P is completely contained in T . We count the number n of pairs of perpendicular
points (Q,R) ∈ (T ∩ P⊥)× (T \ P⊥) in two ways.

There are q4 + x(q2 + 1) − 1 choices for Q ∈ T ∩ P⊥ with Q 6= P . For such a point
Q, Lemma 3.1 (a) implies that |P⊥ ∩Q⊥ ∩ T | 6 x(q2 + 1). Hence |(Q⊥ \ P⊥) ∩ T | > q4.
This implies that Q occurs in at least q4 pairs (Q,R). Therefore

(q4 + x(q2 + 1)− 1)q4 6 n. (1)
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Now we count n in a second way by first choosing R from the set T \ P⊥. For each point
R ∈ T \ P⊥, the line PR is a secant line and thus has q + 1 points in H(6, q2). Let s be
the number of secant lines h on P that satisfy |h⊥ ∩ T | > x(q2 + 1). Since T is a tight
set, all q + 1 points of such a secant line belong to T . Hence these s secant lines contain
P and sq further points of T . For each of these sq points R we use

|P⊥ ∩R⊥ ∩ T | 6 |R⊥ ∩ T | − 1 = q4 − 1 + x(q2 + 1).

Since |T \ P⊥| = |T | − q4 − x(q2 + 1) = (x − 1)q4, there are (x − 1)q4 − sq points R
in T \ P⊥ that are not in one of the s secant lines. Consider such a point R. Then
the secant line PR contains a point U of H(6, q2) that does not belong to T . Hence
|P⊥ ∩R⊥ ∩ T | 6 |U⊥ ∩ T | = x(q2 + 1). It follows that

n 6 sq
(
q4 − 1 + x(q2 + 1)

)
+
(
(x− 1)q4 − sq

)
· x(q2 + 1)

= (x− 1)q4x(q2 + 1) + sq(q4 − 1).

Combining this with the lower bound for n in (1), we obtain

q4(q2 + 1)(q + 1− x)(q − 1 + x) 6 sq(q4 − 1).

As x 6 q, then (q+1−x)(q+1−x) = q2−(x−1)2 > 2q−1. Hence s > q3(2q−1)/(q2−1)
and thus s > 2q − 1.

Lemma 3.5. Suppose that π is a plane of PG(6, q2) that meets H(6, q2) either in a Her-
mitian curve H(2, q2) or in q + 1 concurrent lines. Then x > q or |π⊥ ∩ T | 6 x(q2 + 1).

Proof. Assume on the contrary that x 6 q − 1 and |π⊥ ∩ T | > x(q2 + 1). We shall derive
a contradiction.

As T is an x-tight set and |π⊥ ∩ T | > x(q2 + 1), all points of π ∩H(6, q2) belong to T .
There are the following two possibilities for the structure of π∩H(6, q2) and π⊥∩H(6, q2).

- π ∩ H(6, q2) is the union of q + 1 concurrent lines and π⊥ ∩ H(6, q2) is a cone with
point vertex over a Hermitian curve. In this case |π ∩ H(6, q2)| = q3 + q2 + 1 and
|π⊥ ∩ H(6, q2)| = 1 + q2(q3 + 1).

- π ∩ H(6, q2) is a Hermitian curve H(2, q2) and π⊥ ∩ H(6, q2) is a H(3, q2). Then
|π ∩ H(6, q2)| = q3 + 1 and |π⊥ ∩ H(6, q2)| = (q2 + 1)(q3 + 1).

Thus π has at least q3 + 1 points in H(6, q2) and these belong to T . Since x 6 q− 1, then
all points Q ∈ π⊥ ∩ H(6, q2) satisfy

|Q⊥ ∩ T | > |π ∩ H(6, q2)| > q3 + 1 > x(q2 + 1).

As T is an x-tight set, it follows that all points of π⊥ ∩ H(6, q2) belong to T . Hence

|T ∩ π⊥| = |π⊥ ∩ H(6, q2)|.
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In the first case above for the structure of π we have π ∩ π⊥ = {P} and since all points
of π ∩ H(6, q2) and of π⊥ ∩ H(6, q2) belong to T , it follows that

|T | > q3 + q2 + 1 + q2(q3 + 1).

Similarly, in the second case π ∩ π⊥ = ∅ and

|T | > q3 + 1 + (q2 + 1)(q3 + 1).

As |T | = x(q4 + q2 + 1) and x 6 q − 1, this is a contradiction.

Lemma 3.6. Suppose that T contains a point P that lies on more than
√

2q secant lines
h of H(6, q2) that satisfy |h⊥ ∩ T | > x(q2 + 1). Then x > q −

√
2q + 2.

Proof. We choose s := b
√

2q + 1c secant lines h1, . . . , hs on P with |h⊥i ∩ T | > x(q2 + 1).
We have |h⊥i ∩ T | > (q + 1− x)q3 + x(q2 + 1) from Lemma 3.1 (a) and (c). For different
indices i and j, the plane generated by hi and hj meets H(6, q2) either in a Hermitian
curve or in q + 1 concurrent lines. If for some indices i 6= j, the plane πij generated by
hi and hj satisfies |π⊥ij ∩ T | > x(q2 + 1), then Lemma 3.5 gives x > q. In this case we
are done. We may therefore assume that |π⊥ij ∩ T | 6 x(q2 + 1) for all indices i 6= j. This
means that |h⊥i ∩ h⊥j ∩ T | 6 x(q2 + 1) for all i 6= j. As h⊥i ∩ T ⊆ (P⊥ \ {P})∩ T for all i,
the Inclusion-Exclusion Principle implies that

q4 + x(q2 + 1)− 1 = |P⊥ ∩ T | − 1

>
∑
i

|h⊥i ∩ T | −
∑
i<j

|h⊥i ∩ h⊥j ∩ T |

> s(q + 1− x)q3 + sx(q2 + 1)−
(
s

2

)
x(q2 + 1).

Since s 6
√

2q + 1, it follows that

q4 + x(q2 + 1) > s(q + 1− x)q3 + sx(q2 + 1)− 1

2
s
√

2qx(q2 + 1).

Since s >
√

2q, this remains true, if we replace s in the inequality by
√

2q (whether the
coefficient of s on the right hand side is positive or not is irrelevant for this). Hence

q4 + x(q2 + 1) >
√

2q(q + 1− x)q3 +
√

2qx(q2 + 1)− qx(q2 + 1).

Solving for x, this implies that x > q −
√

2q + 2.

Theorem 3.7. Every tight set of H(6, q2) with parameter x 6 q + 1 −
√

2q is the union
of x disjoint generators.

Proof. Let T be a tight set of H(6, q2) with parameter x 6 q + 1 −
√

2q. We have to
show that T is the union of x disjoint generators, that is of x planes that are contained
in H(6, q2).
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We use induction on x. If x = 0, then T = ∅ and there is nothing to show. Now
suppose that x > 1. It suffices to show that T contains a plane. In fact, if T contains the
plane π, then π ⊆ H(6, q2) and the definition of a tight set implies that T \π is a tight set
with parameter x− 1. The induction hypothesis implies then that T is the disjoint union
of x− 1 planes, so T is the union of x planes. It remains to show that T contains a plane.

Assume on the contrary that T does not contain a plane. Then by Lemma 3.4, there
exists a point P ∈ T that lies on more than

√
2q lines h being secant to H(6, q2) and

satisfying |h⊥ ∩ T | > x(q2 + 1). Therefore Lemma 3.6 shows that x > q −
√

2q + 2, a
contradiction to the assumed upper bound on x.

4 A new tight set

In this section, we show that Q(2n, q), q odd, in its natural embedding in H(2n, q2)
provides a (q + 1)-tight set of H(2n, q2). We mention that the embedding of Q(2n, q) in
H(2n, q2) is seen by restricting the canonical Hermitian form f(x, y) = x0y

q
0 + · · ·+x2ny

q
2n

to the subfield of order q. Thus Q(2n, q) is represented by the quadratic form x20+· · ·+x22n
over the field GF(q). Notice that the bilinear form b associated to this quadratic form is
given by b(x, y) := 2(x0y0 + · · · + x2ny2n). Hence b is proportional to f restricted to the
subfield. Therefore two points of the embedded polar space Q(2n, q) are perpendicular
in Q(2n, q) if they are in H(2n, q2), and two different points of Q(2n, q) therefore lie on a
line of Q(2n, q) if and only if they lie on a line of H(2n, q2). This is the crucial tool in the
following proof.

Theorem 4.1. Let q be odd and n > 2. The set of points of the polar space Q(2n, q), q
odd, embedded in H(2n, q2), is a (q + 1)-tight set of H(2n, q2).

Proof. For a point P in Q(2n, q) the hyperplane P⊥ of PG(2n, q2) intersects PG(2n, q) in
the tangent hyperplane of Q(2n, q) at P . Therefore P⊥∩Q(2n, q) is a cone with vertex P
over a quadric Q(2n−2, q) (for n = 2, this is just a line on P ), and hence |P⊥∩Q(2n, q)| =
1 + q|Q(2n − 2, q)| = qθ2n−3(q) + 1. Since qθ2n−3(q) + 1 = (q2)n−1 + (q + 1)θn−2(q

2), the
first condition for the set of points of Q(2n, q) to be a (q + 1)-tight set is satisfied. For
the second condition, we have to show that |P⊥ ∩ Q(2n, q)| = (q + 1)θn−2(q

2) for points
P of H(2n, q2) that are not contained in Q(2n, q).

Our argument to show this uses the polarity P 7→ P⊥, which maps points P of
PG(2n, q2) to hyperplanes of PG(2n, q2). This polarity induces the polarity of PG(2n, q)
related to the embedded Q(2n, q) in the following sense. For points X of PG(2n, q), the
hyperplane X⊥ of PG(2n, q2) meets PG(2n, q) in a hyperplane. Moreover every hyper-
plane of PG(2n, q) is equal to X⊥ for exactly one point X of PG(2n, q). For points X of
PG(2n, q2) that are not in PG(2n, q), it follows that X⊥ does not contain a hyperplane
of PG(2n, q). Therefore the Grassmann formula for vector space dimensions implies for
points X that are not in PG(2n, q) that X⊥ ∩ PG(2n, q) is a subspace of PG(2n, q) of
dimension 2n− 2.

Now consider a point P of H(2n, q2) that is not in Q(2n, q). Then S := P⊥∩PG(2n, q)
is a subspace of PG(2n, q) of dimension 2n−2. It follows that P⊥∩Q(2n, q) = S∩Q(2n, q)
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is either a parabolic quadric Q(2n − 2, q), a cone with a line vertex over a parabolic
quadric Q(2n− 4, q), or a cone with a point vertex R over a hyperbolic or elliptic quadric
Q+(2n− 3, q) or Q−(2n− 3, q).

Assume S∩Q(2n, q) is a cone with point vertex R over Q+(2n−3, q) or Q−(2n−3, q).
Then the polarity of PG(2n, q) related to Q(2n, q) maps S to a line ` of PG(2n, q) that
meets Q(2n, q) only in R. As a set of point of PG(2n, q2), the line ` spans a line ¯̀ of
PG(2n, q2), and the subspace S spans a subspace S̄ of PG(2n, q2) of dimension 2n − 2.
Furthermore ¯̀ = S̄⊥. As S ⊆ P⊥, it follows that P ∈ ¯̀. Thus ` contains the points
P and R of H(2n, q2), and since these are perpendicular, it follows that ` ⊆ H(2n, q2).
As ¯̀∩ PG(2n, q) = `, it follows that ` ⊆ Q(2n, q). But we have also seen that ` meets
Q(2n, q) only in R.

This contradiction shows that P⊥ meets Q(2n, q) either in a quadric Q(2n − 2, q) or
in a a cone with a line vertex over a quadric Q(2n − 4, q). In both cases it follows that
|P⊥ ∩Q(2n, q)| = θ2n−3(q) = (q + 1)θn−2(q

2).

5 Open problems

Based on these small examples of (q + 1)-tight sets in general dimension, and the results
in dimensions 4 and 6, we formulate the following conjecture already mentioned in the
introduction.

Conjecture 5.1. The smallest parameter x for which there exists an x-tight set of
H(2n, q2) that is not the union of x generators is x = q + 1, in which case the tight
set is the set of points of an embedded W(2n − 1, q), or, when q is odd, the set of points
of an embedded W(2n− 1, q) or an embedded Q(2n, q).

However, expectedly in ascending order of difficulty, we formulate the following open
problems.

1. Classify the tight sets with parameter x = q + 1 in H(4, q2).

2. Improve the bound on x of Theorem 1.3 to x < q + 1.

3. Prove Conjecture 5.1.
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