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Abstract

We show that every set P of n non-collinear points in the plane contains a point
incident to at least dn3 e+ 1 of the lines determined by P.
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In this note we denote by P a set of non-collinear points in the plane, and by L(P)
the set of lines determined by P , where a line that passes through at least two points of
P is said to be determined by P . For a point P ∈ P , we denote by d(P ) the number of
lines of L(P) that are incident to P , called the incident-line-number or multiplicity of P ;
see [4] and [14]. Finally, we denote by lr the number of lines that pass through precisely
r points of P .

Dirac’s conjecture is a well-known problem in combinatorial geometry. In 1951, Dirac
[5] showed that:

Theorem 1. Every set P of n non-collinear points in the plane contains a point incident
to at least d

√
n + 1e lines of L(P).

Dirac [5] made (and verified for n 6 14) the following conjecture.

Conjecture 2 (Dirac Conjecture). Every set P of n non-collinear points in the plane
contains a point incident to at least bn

2
c lines of L(P).

The conjectured bound is tight, for instance, Dirac [5] constructed a set P of n non-
collinear points with (l2, l3, ln

2
) = (n

2

4
− 3n

2
+ 3, n

2
− 1, 2) for every even-integer n > 6. In

2011, Akiyama, Ito, Kobayashi, and Nakamura [1] proved there exists a set P of n non-
collinear points for every integer n > 8 except n = 12k+11(k > 4), satisfying d(P ) 6 bn

2
c

for every point P ∈ P . However, Dirac’s conjecture is false, some counter-examples were
found in [1, 7–11].

The following natural conjecture arises [4].
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Conjecture 3 (Strong Dirac Conjecture). Every set P of n non-collinear points in
the plane contains a point incident to at least bn

2
c − c0 lines of L(P) with c0 > 0.

In 1961, Erdős [6] proposed the following weakened conjecture.

Conjecture 4 (Weak Dirac Conjecture). Every set P of n non-collinear points in the
plane contains a point incident to at least d n

c1
e lines of L(P) with c1 > 0.

In 1983, the Weak Dirac Conjecture was proved independently by Beck [2] and Sze-
merédi and Trotter [20] with c1 unspecified or very large.

In 2012, based on Crossing Lemma, Szemerédi-Trotter Theorem, and Hirzebruch’s
inequality, Payne and Wood [17] proved the following theorem,

Theorem 5. Every set P of n non-collinear points in the plane contains a point incident
to at least d n

37
e lines of L(P).

In 2016, Pham and Phi [18] refined the result of Payne and Wood to give:

Theorem 6. Every set P of n non-collinear points in the plane contains a point incident
to at least d n

26
e+ 2 lines of L(P).

There are some results in algebraic geometry providing constraints on line arrange-
ments in the projective plane. In [12, 13], Hirzebruch studied algebraic surfaces con-
structed as abelian covers of the projective plane branched along line arrangements in the
context of the so-called ball-quotients. It turned out that he obtained, as a by-product,
the following result which is known as Hirzebruch’s inequality.

Theorem 7 (Hirzebruch’s Inequality). Let P be a set of n points in the plane with
at most n− 3 collinear. Then

l2 +
3

4
l3 > n +

∑
r>5

(2r − 9)lr.

In 2003, Langer [15] provided a variation on the classical Bogomolov-Miyaoka-Yau
inequality [16] using the so-called orbifold Euler numbers.

Theorem 8 (Orbifold Langer-Miyaoka-Yau Inequality). Let (X,D) be a normal
projective surface with a Q-divisor D =

∑
i aiDi with 0 6 ai 6 1. Assume that the pair

(X,D) is log canonical and KX + D is Q-effective. Then

(KX + D)2 6 3eorb(X,D),

where eorb(X,D) denotes the global orbifold number for (X,
∑

i aiDi). Moreover, if equality
holds, then KX + D is nef.

Bojanowski in [3] provided the following Hirzebruch-type inequality for line arrange-
ments in the projective plane, which is also a special case of a much stronger result
from the same thesis [3, Theorem 2.3]. It is worth pointing out that following Langer’s
ideas, Pokora [19] provided some Hirzebruch-type inequalities for curve configurations in
the projective plane with transversal intersection points where Bojanowski’s result is a
special case.
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Theorem 9 (Bojanowski-Pokora Inequality). Let P be a set of n points in the plane
with at most b2n

3
c collinear. Then

l2 +
3

4
l3 > n +

1

4

∑
r>5

r(r − 4)lr.

Based on the Bojanowski-Pokora inequality, we show the following result.

Theorem 10. Every set P of n non-collinear points in the plane contains a point incident
to at least dn

3
e+ 1 lines of L(P).

Proof. Suppose some line L passes through dn
3
e + 1 or more points of P . Since P is

non-collinear, there exists a point P ∈ P such that P /∈ L. Consider the (distinct) lines
determined by P and P ∩ L. Then P is incident to at least dn

3
e + 1 lines of L(P), and

the theorem holds. Now assume that P does not contain dn
3
e+ 1 collinear points.

According to Theorem 9,

l2 +
3

4
l3 > n +

1

4

∑
r>5

r(r − 4)lr = n +
1

2

∑
r>5

(
r

2

)
lr −

3

4

∑
r>5

rlr.

Since
∑

r>2

(
r
2

)
lr =

(
n
2

)
,

l2 +
3

4
l3 > n +

1

2

((
n

2

)
−

4∑
r=2

(
r

2

)
lr

)
− 3

4

∑
r>5

rlr.

That is, ∑
r>2

rlr >
n(n + 3)

3
.

Since
∑

P∈P d(P ) =
∑

r>2 rlr, ∑
P∈P

d(P ) >
n(n + 3)

3
.

By the pigeonhole principle, P contains a point incident to at least dn
3
e + 1 lines of

L(P).
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