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Abstract

We give a new combinatorial proof of the well known result that the dinv of an
(m,n)-Dyck path is equal to the area of its sweep map image. The first proof of
this remarkable identity for co-prime (m,n) is due to Loehr and Warrington. There
is also a second proof (in the co-prime case) due to Gorsky and Mazin and a third
proof due to Mazin.
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1 Introduction

Our main goal in this paper is to obtain a simpler proof that, under the sweep map, the
dinv statistic of a rational Dyck path D becomes the area statistic of its image path D.
The first proof of this remarkable identity is due to Loehr and Warrington in [4]. There
is also a second proof due to Gorsky and Mazin in [3], and a third proof due to Mazin [5].
See Section 3 for further explanation.

Inspired by a recent work of [6], we have come to depict rational Dyck paths in a man-
ner which makes the ranks of the vertices of a path consistent with its visual representa-
tion. This very simple change turns out to be conducive to considerable simplifications in
proving many of the properties of rational Dyck paths. For instance, we give a geometric
proof of the invertibility of the rational Sweep Map in [2].

We shall always use (m,n) for a co-prime pair of positive integers, South end (by letter
S) for the starting point of a North step and West end (by letter W ) for the starting point
of an East step. This is convenient and causes no confusion because we usually talk about
the starting points of these steps.
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Figure 1: A (7, 5)-Dyck path and its sweep map image.

In Figure 7 we have depicted a path D in the 7×5 lattice rectangle and its sweep map
image D as they are traditionally depicted. The ranks of the vertices of an (m,n)-path
are constructed by assigning 0 to the origin (0, 0) and adding an m after a North step
and subtracting an n after an East step.

To obtain the Sweep image D of D, we let the main diagonal (with slope n/m) sweep
from right to left and successively draw the steps of D as follows: i) draw a South end
(and hence a North step) when we sweep a South end of D; ii) draw a West end (hence
an East step) when we sweep a West end of D. The steps of D can also be obtained by
rearranging the steps of D by increasing ranks of their starting vertices.

For (dm, dn)-rational Dyck paths, we compute the ranks of the starting points in the
same way, but we may have ties for the starting ranks. When this happens, we sweep the
right starting point first. Geometrically, we may simply sweep the starting points of the
steps of D from right to left using lines of slope n/m+ ε for sufficiently small ε > 0, which
will be written as 0 < ε� 1.

The area of a rational Dyck path is equal to the number of lattice cells between the
path and the main diagonal. The dinv statistic we are using is the same as the h−m/n

statistic in [1, Lemma 11]: A cell c above a (dm, dn)-Dyck path D contributes a unit
to its dinv statistic if and only if the starting rank a of the East step of D below c
and the starting rank b of the North step of D to the right of c satisfy the inequality
1 6 (b + m) − (a − n) 6 m + n, which is equivalent to 0 6 a − b < m + n. In Figure
7, the cells contributing to dinv(D) are distinguished by a green square1. A quick count
reveals that dinv(D) = 8 = area(D).

To proceed we need some notation. A (dm, dn) path diagram T consists of a list of
dn red arrows and dm blue arrows, placed on a (dm + dn) × dmn lattice rectangle. A
red arrow is the up vector (1,m) and a blue arrow is the down vector (1,−n)2. The rows
of lattice cells will be referred to as rows and the horizontal lattice lines will be simply
referred to as lines. On the left of each line we have placed its y coordinate which we
will refer to as its level. The level of the starting point of an arrow is called its starting
rank, and similarly its end rank is the level of its end point. It will be convenient to call

1We also add a ∗ inside for black-white print.
2For black-white print, red arrows are up arrows and blue arrows are down arrows.
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Figure 2: Illustration of the transformed D.

row i the row of lattice cells delimited by the lines at levels i and i + 1. Let Σ be a list
consisting of dn letters S and dm letters W , and let R = (r1, . . . , rdm+dn) be a sequence
of dn+ dm non-negative ranks. The path diagram T (Σ, R) (see Figure 2) is obtained by
placing the letters of Σ at the bottom of the lattice columns and if the ith letter of Σ is
an S (resp., W ) then we draw a red (resp., blue) arrow with starting rank ri in the ith

column. Figure 2 depicts our manner of drawing the path D. The ranks of D are now
the circled levels of the starting vertices.

Now the sweep order is from bottom to top and from right to left within each level.
Geometrically, the Sweep lines are of slope ε for 0 < ε� 1. Note that the co-prime case
(i.e., when d = 1) simplifies since no two starting points have the same rank, and thus
the sweep lines are just the level lines.

Notice that each lattice cell may contain a segment of a red arrow or a segment of a
blue arrow or no segment at all. The red segment count of row j will be denoted cr(j) and
the blue segment count is denoted cb(j). We will denote by c(j) = cr(j)− cb(j) and refer
to it the j-th row count. Observe that in every row of a path diagram, the red segments
and blue segments have to alternate. In particular, for Dyck paths as in Figure 2, every
row must start with a red segment and end with a blue segment, and hence c(j) = 0
holds for all j. This is called the zero-row-count property. It has the following immediate
consequence.

Proposition 1. The starting rank of any arrow A of D may be simply obtained by drawing
in green (thick) the line of slope 0 < ε � 1 at the starting point of its preimage A, then
counting the segments above the green line of any red arrow of D that starts below the
green line and adding to that count the number of segments below the green line of any
blue arrow of D that starts above the green line.

Proof. The desired rank is bm − an, when D has b red arrows and a blue arrows that
start below the green line. We interpret this number as the segment count of these arrows
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Figure 3: Here we see that the rank of the last red arrow of D is 18. We have altogether 4
red arrows and 2 blue arrows of D that start below the green line, giving 18 = 4×7−2×5.
We count a total of 9 red segments above the green line and 9 blue segments below the
green line. The zero-row-count property gives that these 9 blue segments are precisely the
needed 4× 7− 2× 5 minus 9.

and apply the zero-row-count property for rows below the green line. Indeed, the count
of red segments above the green line is certainly needed. All the remaining portion of
bm−an are segments below the green line. On the other hand, we need to add some blue
segments to have all segments below the green line to apply the zero-row-count property.
These blue segments are exactly as described in the proposition. See Figure 3 for an
example.

This proposition leads to the basic formula we will use to compute the area of the
image D by working on the preimage D.

Theorem 2. For any (dm, dn)-Dyck path D, with (m,n) co-prime, we have

area(D) =
1

n

( dn∑
j=1

r(Sj(D))
)
− dn− 1

2
, (1)

where “ r(Sj(D))” denotes the rank of the jth South end of D.

Proof. Notice that if we define the rank of the lattice cell whose South-West coordinates
are (i, j) by setting r(i, j) = mj − ni, then the least positive rank in the jth row is none
other than the remainder of mj mod n. Since the residues modulo n are 0, 1, . . . , n − 1
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and the least positive ranks are distinct for 0 6 j 6 n − 1, it follows that their sum is
n(n−1)/2. Summing over all j gives dn(n−1)/2. Calling lprj the least nonnegative rank
in row j, it is evident that (r(Sj(D))− lprj)/n is the contribution of row j to the area of
D. This given, we see that (1) is simply obtained by summing all these contributions.

2 Proof that dinv sweeps to area

Given a co-prime pair (m,n) and d, our argument is to show that as we decrease the area
of the preimage D by one unit, both dinv and area satisfy the same recursion.

We have depicted in Figure 4 the cell that we have subtracted from the preimage D
to obtain a preimage D

′
with one less unit of area. This operation may be viewed as

replacing a red arrow S of D
′

by a dashed red arrow S ′ and a blue arrow W by a dashed
blue arrow W ′. Calling D and D′ the sweep map images of D and D

′
, our task is to

determine the difference area(D) − area(D′). Our tool will be formula (1) and the fact
that the starting rank of any arrow A of D is bm − an where D has b red arrows and a
blue arrows that start below the preimage A of A in D. This difference will be calculated
in D and D

′
by means of our tool. It should be mentioned that the following argument

will be significantly simplified if we choose the starting rank of the displayed W to be the
largest in the sweep order. Then some of the cases can not happen. In particular, the
regions T1 and T2 can not have any segments.

Below we will talk about four lines of levels l+ n, l, k, k− n respectively. In the d 6= 1
case, we actually mean the lines of slope ε that passing through the corresponding four
vertices of middle parallelogram. This is due to the modification of the Sweep lines in the
non-coprime case.

Figure 4: Contribution
for the area difference.

Now there are 4 distinct cases. Firstly, red arrows that
start above level l+n (see Figure 4) or below level k−n are
not affected by the replacements. Thus their contribution
to the difference is 0. Secondly in the case of any red arrow
starting strictly below level l + n and strictly above level
k, its contribution to the difference is n. The reason for
this is that both red arrows in the display will increase the
ranks of the arrows of D and D′, whose starting levels are
in this range by an equal amount, therefore they cancel
each other. By contrast the dashed blue arrow will affect
the ranks of the red arrows of D′ so that the contribution
of each to the difference is −(−n).
Thirdly, notice that each red arrow of D or D′ that starts
strictly below rank k and strictly above rank k − n, is not
affected by either of the blue arrows. But each of the red
arrows of D′ is affected by the dashed red arrow and thus
contributes a −m to the difference.

Finally we must include the contribution to the areas of D and D′ by the ranks of red
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arrows in the display itself. We claim that

rank(S)− rank(S ′)

= m×#{ red arrows that start (strictly) below level k and above level n− k }
− n×#{ blue arrows that start (strictly) below level k and above level n− k }. (2)

The reason is that the arrows that start below level k − n contribute equally to the
areas of S and S ′. Thus they cancel in computing the desired difference. On the other
hand all the arrows accounted for in (2) do contribute to the area of S but not to the
area of S ′.

Notice first that the contribution to the area difference in the third case is the negative
of the first part of the contribution obtained in (2). After cancellation, all the remaining
contributions are multiples of n. (A convenient fact since, according to (1), n has to be
divided out.)

Furthermore, in the second case this multiple counts the number of red arrows that
have a red segment in T1 or T2. Finally, we see in (2) that the factor of n that survives
the cancellation, counts exactly the arrows that have a blue segment in B1 or B2.

These observations imply the following result.

Proposition 3. Let D′ be obtained from D by removing an area cell and let D and D′

be their sweep map images. Let B1 and B2 be the blue regions and T1 and T2 be the red
regions 3 in Figure 4. Then

area(D)− area(D′) = cr(T1) + cr(T2)− cb(B1)− cb(B2), (3)

where cr(T1), c
r(T2) denote red segment counts and cb(B1), c

b(B2) denote blue segment
counts in the corresponding regions.

To obtain the recursion satisfied by dinv we will make use of the following remarkable
fact. By abuse of notation, we will use Wi (resp. Sj) for the i-th blue (j-th red) arrow.

Proposition 4. The dinv statistic of a rational Dyck path D (given in our stretched form)
may simply be obtained by counting the pairs (Wi → Sj) consisting of a blue arrow to the
left of a red arrow, such that Wi sweeps Sj, i.e., Wi intersects Sj when we move it along
a line of slope ε (with 0 < ε� 1) to the right past Sj.

Proof. Suppose that Wi has starting rank a and Sj has starting rank b. By the quoted
result of Loehr-Warrington, the pair (Wi, Sj) contribute a unit to dinv(D) if and only if
0 6 a − b < m + n. This is equivalent to requiring that a > b and a − n < b + m. But
these two inequalities are precisely what is needed to guarantee that Wi sweeps Sj.

This given, our dinv recursion can be stated as follows.

3For black-white print, we add “+ + +” to red regions and “−−−” to blue regions.
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Proposition 5. Let D
′
be obtained from D by removing an area cell. Let B1 and T1 be

the blue regions and B2 and T2 be the red regions in Figure 5. Then

dinv(D)− dinv(D′) = cb(T1) + cr(T2)− cb(B1)− cr(B2)− 1, (4)

where cb(T1), c
b(B1) denote blue segment counts and cr(T2), c

r(B2) denote red segment
counts in the corresponding regions.

Proof. We will use the visual fact dinv(D) = #{(Wi → Sj) : Wi sweeps Sj}.

Figure 5: Contribution
for the dinv difference.

Since D
′

is obtained from D by replacing the solid ar-
rows S,W by dashed arrows S ′,W ′ (see Figure 5), we can
divide the contribution of a pair (Wi → Sj) to the differ-
ence dinv(D)− dinv(D′) into four cases.

(1) Both Wi and Sj are not the displayed arrows. The
contribution in this case is always 0.

(2) Both Wi and Sj are in the displayed arrows. This can
only happen in two ways: (W,S) in D (no dinv) or (W ′, S ′)

in D
′
(1 dinv). Therefore the contribution to the difference

in this case is −1.

(3) Only Wi is one of the displayed arrows. Then we need

to consider the pairs (W,Sj) in D and (W ′, Sj) in D
′
. Their

contribution to the difference is 1 if Sj has a red segment
in T2, −1 if Sj has a red segment in B2 and 0 if Sj does
not have a segment in neither T2 or B2.

(4) Only Sj is in the displayed arrows. Then we need to

consider the pairs (Wi, S) in D and (Wi, S
′) in D

′
. Their

contribution to the difference is 1 if Wi has a blue segment in T1, −1 if Wi has a blue
segment in B1 and 0 if Wi does not have a segment in neither T1 or B1.
This proves the identity in (4).

Proof that dinv sweeps to area. We first show that the recursions in (3) and (4) are iden-
tical. To do this it is sufficient to observe that cr(T1) = cb(T1) and cr(B2) + 1 = cb(B2).
The reason for this is the alternating colors of segments in each row that always begin
with a red segment and end with a blue segment.

Thus it is sufficient to verify the base case where area(D) = 0. The only (dm, dn)-
Dyck path with area 0 is the path D that remains as close as possible to the main diagonal.
Thus the ranks of the South ends of such a path are a rearrangement of 0, 1, 2, . . . , n− 1,
with each appearing d times. This forces the image D of D to start with dn North steps
and end with dm East steps. This is the path of maximum area. It remains to prove
that D has maximum dinv, or equivalently every cell above D contributes to its dinv. By
contradiction, suppose that for a pair (Wi → Sj), the i-th blue arrow Wi does not sweep
the j-th red arrow Sj. We have the following two cases. See Figure 6.
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(1) Sj starts at a level above Wi. Assume we have SjSj+1 · · ·Sj+rW for some r > 0.
Then consider the path obtained from D by changing this to SjSj+1 · · ·WSj+r. This is a
new Dyck path with area one less than that of D. A contradiction!

(2) Sj ends below the level of Wi, then assume we have SWi−r · · ·Wi−1Wi for some
r > 0. Then consider the path obtained from D by changing this to Wi−rS · · ·Wi−1Wi.
This is a new Dyck path with area one less than that of D. A contradiction!

This completes our proof that dinv sweeps to area.

Figure 6: Two examples of our proof that the dinv of the area zero (m,n)-Dyck path is
(dm−1)(dn−1)+d−1

2 , where the blue arrow Wi and red arrow Sj are thickened.

3 Remarks

We terminate our presentation by a few comments. To begin we should note that our
argument does not use Proposition 1. We have nevertheless included it in this writing for
two reasons. Firstly because it is too surprising a result to leave out, but more importantly,
because it gives a simple proof of the nontrivial result that the sweep image of a Dyck
path is also a Dyck path. The reason for this is that it is implicit in the conclusion of the
Proposition that the starting ranks of all the arrows of the image are non-negative. The
latter is the only property needed to guarantee that the image of a (dm, dn)-Dyck path
is a (dm, dn)-Dyck path.

There are three proof of the “dinv sweeps to area” result as we said in Section 1.
The first two proof only deal with the co-prime case. This case simplifies a lot since all
starting ranks of the steps are distinct. Gregory Warrington told us their proof in [1] can
be extended for the non-coprime case. Our first draft of this paper also deal with the
co-prime case, but explained how to (naturally) extend our approach to the non-coprime
case. After we put this draft on the arXiv, Mazin told us immediately that the non-
coprime case is [5, Corollary 1] after some translation of terminology. This write up is
modified (suggested by the referee) to fit the non-coprime case.
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Corrigendum – added 9th June 2017

1. Page 2 Figure 1: it should be replaced by the following figure, where the right
picture was not correctly drawn in the published version.

Figure 7: A (7, 5)-Dyck path and its sweep map image.

2. Page 6 equation (2): the n− k (appear twice) should be replaced by k − n.
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