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Abstract

Burr and Erdős conjectured that for each k, ` ∈ Z+ such that kZ + ` contains
even integers, there exists a least function ck(`) such that any graph of average
degree at least ck(`) contains a cycle of length ` mod k. This conjecture was proved
by Bollobás, and many successive improvements of upper bounds on ck(`) appear in
the literature. In this short note, for 1 6 ` 6 k, we show that ck(`) is proportional
to the largest average degree of a C`-free graph on k vertices, which determines ck(`)
up to an absolute constant. In particular, using known results on Turán numbers for
even cycles, we obtain ck(`) = O(`k2/`) for all even `, which is tight for ` ∈ {4, 6, 10}.
Since the complete bipartite graph K`−1,n−`+1 has no cycle of length 2` mod k, it
also shows ck(`) = Θ(`) for ` = Ω(log k).

1 Introduction

More than forty years ago, Burr and Erdős conjectured that for each k, ` ∈ Z+ such that
kZ + ` contains even integers, there exists ck(`) such that any graph of average degree
at least ck(`) contains a cycle of length ` mod k. Bollobás [1] was the first to show that
ck(`) exists, showing ck(`) 6 1

2k
[(k + 1)k − 1] for all `. This upper bound was reduced by

a number of authors [3, 6, 7, 8, 9, 10, 12, 16, 27]. The first linear bound ck(`) 6 8(k − 1)
was given by the second author [28]. Thomassen [27] conjectured that every graph of
minimum degree at least k + 1 contains cycles of all possible even lengths mod k. Since
every graph with average degree at least 2k contains a subgraph of minimum degree at
least k + 1, this conjecture implies that ck(`) 6 2k when ` is even. Recently, Liu and
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Ma [19] showed for k even that a graph of minimum degree at least k+1 contains cycles of
all possible even lengths mod k, answering the above-mentioned conjecture of Thomassen
for even values of k. Since any graph whose blocks are cliques of order k + 1 contains no
cycle of length 2 modulo k, this is best possible.

1.1 Main Theorem

The aim of this note is to determine ck(`) up to a constant factor. In particular we show
perhaps surprisingly that ck(`) is sublinear in k if ` is even and ` = o(k) and in fact linear
in ` if ` = Ω(log k) as k → ∞. A number of bounds on ck(`) have been given in the
literature [3, 7, 8, 9, 15] for specific values of k and `. Let dk(`) be the largest possible
average degree of any k-vertex C`-free graph. Our main theorem shows that ck(`) is
proportional to dk(`).

Theorem 1. For 3 6 ` < k, every C`-free graph of average degree at least 96 · dk(`)
contains cycles of k consecutive even lengths. In particular,

dk(`) 6 ck(`) 6 96 · dk(`).

Since a graph on k vertices with no cycle C` has no cycle of length ` mod k, ck(`) >
dk(`), providing the lower bound in Theorem 1. In fact one can do slightly better, by
considering a large graph whose blocks are all extremal C`-free graphs with k + ` − 1
vertices. This gives ck(`) > dk+`−1(`) + 2

k+`
. We did not attempt to optimize the upper

bound in the proof of this theorem, and the constant 96 can no doubt be improved.
However, we make the following conjecture which suggests the constant in front of dk(`)
should be 1 + ok(1).

Conjecture 2. For each even integer ` > 2, ck(`) ∼ dk(`) as k →∞.

1.2 Quantitative results

To state quantitative results, if ` is odd, then k2−1
2k
6 dk(`) 6 k/2 (the average degree

in the densest k-vertex complete bipartite graph) and so ck(`) = Θ(k). The bound
dk(`) = O(`k2/`) for ` even follows from known bounds on Turán numbers for even cycles,
the first of which were obtained by Bondy and Simonovits [2]. The current best upper
bound on dk(`) for fixed ` is due to Bukh and Jiang [4]. This gives the following corollary:

Corollary 3. For 1 6 ` 6 k, ck(`) = Θ(k) if ` is odd, and ck(`) = O(`k
2
` ) if ` is even.

In particular this shows ck(`) = Θ(`) for ` = Ω(log k), since a complete bipartite
graph with one part of size less than `/2 contains no cycle of length ` mod k. Since
dk(`) = Θ(k2/`) when ` ∈ {4, 6, 10} (see [29] and Füredi and Simonovits [11]), we find

ck(4) = Θ(k1/2) ck(6) = Θ(k1/3) ck(10) = Θ(k1/5)

so the corollary is tight up to constants when ` ∈ {4, 6, 10} and for ` = Ω(log k). For
cycles of length 4 mod k this substantially improves a result of Diwan [9], stating that a
graph of minimum degree at least k + 1 contains a cycle of length four modulo k.
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1.3 Remarks on chromatic number and cycles mod k

One may attempt to extend Theorem 1 to obtain cycles of any length modulo k under
conditions on the chromatic number of the graph. Let χk(`) denote the maximum possible
chromatic number of a graph with no cycle of length ` mod k, and let nk(`) denote the
largest chromatic number in a C`-free graph on k vertices. Bounds on nk(`) come from
bounds on cycle-complete graph Ramsey numbers. In particular, the results of Caro, Li,
Rousseau and Schelp [5] and the results of the first author [25] show that if m = d`/2e,
then for ` > 3,

nk(`) = Ω
( k1/m

(log k)1/m

)
.

This is known to be tight up to a constant factor only for ` = 3, for in this case Kim [14]
constructed k-vertex triangle-free graphs with chromatic number O(

√
k/ log k). The ana-

log of Theorem 1 for chromatic number is stated in [17], and in particular, the following
result holds:

Theorem 4. [17] There exists c > 0 such that for k > ` > 1 and m = d`/2e,

nk(`) 6 χk(`) 6 c
( k1/m

(log k)1/m

)
.

This theorem is a special case of Theorem 4 in [17], which shows that a graph of
chromatic number d with no cycle of length ` contains cycles of Ω(dm log d) consecutive
lengths, and so in particular if χk(`) = d then dm log d = O(k).

Let δk(`) denote the largest minimum degree in a 2-connected non-bipartite graph
with no cycle of length ` mod k. For r = b`/2c, it follows from results of Ma [20] that for
each fixed ` > 3, δk(`) = O(k1/r), so when ` is odd, Theorem 4 offers a stronger conclusion
for graphs of large chromatic number. For instance in the case ` = 3, Theorem 4 gives

χk(3) = Θ
( k1/2

(log k)1/2

)
,

whereas Ma’s result gives δk(3) = Θ(k). Bondy and Vince [3] showed that there ex-
ist 2-connected non-bipartite graphs of arbitrarily large minimum degree with no cycles
of lengths differing by exactly 1. For 3-connected graphs, Fan [10] showed that every
non-bipartite 3-connected graph with minimum degree at least 3k contains 2k cycles of
consecutive lengths. We may conjecture the following analog of Conjecture 2:

Conjecture 5. For all ` > 3, χk(`) ∼ nk(`) as k →∞.

We remark that since there is a wide gap between upper and lower bounds on cycle-
complete graph Ramsey numbers in general, the actual asymptotic value of nk(`) is likely
to be very difficult to determine.
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2 Preliminaries

In this section we collect some results which we will use in our proofs.

Breadth first search trees: If v is a vertex of a connected graph G, then a breadth
first search tree rooted at v is a spanning tree T of G created as follows. Having found
a tree Ti ⊆ G with vertices v = v0, v1, v2, . . . , vi, we pick a vertex vi+1 ∈ V (G)\V (Ti)
such that the distance dG(v, vi+1) is a minimum, and then let V (Ti+1) = V (Ti) ∪ {vi+1}
and select a vertex vj ∈ V (Ti) such that {vj, vi+1} ∈ E(G) and j is a minimum, and set
E(Ti+1) = E(Ti) ∪ {vj, vi+1}. If T is a breadth first search tree in G, rooted at v, then
dG(v, w) = dT (v, w) for all w ∈ V (G) – in other words T preserves the distance from v in
G. In particular, the ith level of T is Li(T ) = {w ∈ V (G) : dG(v, w) = i}. The height of T
is max{dT (v, w) : w ∈ V (T )}. Note that the edges of G lie either between two consecutive
levels of T , or inside levels of T .

Theta graphs: A θ-graph consists of a cycle plus an additional edge joining two non-
consecutive vertices on the cycle. The following lemma due to Bondy and Simonovits [2]
is required for the proofs of Theorems 1 and 4.

Lemma 6. Let G be an n-vertex θ-graph and let A ∪ B be a partition of vertices of G
into two non-empty subsets. Then for every r < n, G contains a path of length r with
one end in A and one end in B, unless G is bipartite graph with parts A and B.

The proof of this lemma is given in [28] (see Lemma 2 in [28]). The purpose of the
additional edge e in a θ-graph is to preclude the possibility that the vertices of A occur
at every mth vertex along the cycle G− e for some m|n, for in that case, there is no path
of length zero mod m with one end in A and one end in B.

Long cycles in C`-free graphs: To find θ-graphs we use the following two lemmas.

Lemma 7. For 3 6 ` 6 k, if F is a bipartite graph of average degree at least 24dk(`)
containing no C`, then F contains a θ-graph with at least 2k + 2 vertices.

Proof. The proof of this lemma uses some ideas from [26]. Since the average degree of F
is at least 24dk(`), it contains a subgraph F ′ of minimum degree at least 12dk(`). Let X be
a subset of F ′ of size t 6 k. We claim that |∂X| > 2|X|, where ∂X is a set of all vertices
of F ′ \X which have at least one neighbor in X. Indeed, if this is not the case then the
subset Y = X ∪ ∂X has size at most 3t and contains all the edges of F ′ incident with X.
Thus the average degree of the induced subgraph F ′[Y ] is at least 12tdk(`)/(3t) = 4dk(`).
If 3t > k, by taking a random subset of Y of size k and using linearity of expectation we
obtain a subgraph with average degree at least k

3t
· 4dk(`) > 4

3
dk(`) > dk(`). Such graph

has an `-cycle, a contradiction. If 3t < k, we can take bk/(3t)c disjoint copies of graph
F ′[Y ] together with at most k/2 isolated vertices to get a C`-free k-vertex graph with
average degree at least 4dk(`)/2 > dk(`), contradicting the definition of dk(`).
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To complete the proof we use a variant of Pósa’s rotation lemma: Lemma 2.1 in [23]
states that if |∂X| > 2|X| for every subset X ⊂ V (F ′) of size at most k, then F ′ contains
a cycle of length 3k > 2k + 2. Moreover one vertex of this cycle has all its neighbors
on the cycle, so since the minimum degree of F ′ is at least 12dk(`) > 3, this gives us a
θ-graph with at least 2k + 2 vertices. �

3 Proof of Theorem 1

Let G be a C`-free graph of average degree at least 96dk(`). Consider a connected bipartite
subgraph G′ of G of average degree at least 48dk(`). Let T be a breadth first search tree
in G′. Since G′ is bipartite

e(G′) =
∑
i>1

e(Li−1(T ), Li(T )).

On the other hand

e(G′) = 24dk(`)|V (G′)| = 24dk(`)
∑
i>0

|Li(T )| > 12dk(`)
∑
i>i

(|Li−1(T )|+ |Li(T )|).

Therefore for some i, the edges of G′ between Li−1(T ) and Li(T ) form a bipartite graph
F of average degree at least 24dk(`). By Lemma 7, F contains a θ-graph F ′ with at least
2k+2 vertices. Let U = V (F ′)∩Li−1(T ) and W = V (F ′)∩Li(T ). Let T ′ be the minimum
subtree of T such that V (T ′) ∩ U = U . Then the vertex u of T ′ closest to the root of T
has degree at least two in T ′. This implies T ′ − {u} has at least two components. Let A
be the set of vertices of U in one of the components, and B = V (F ′)\A. Then V (F ′) has
a partition A∪B, but A and B do not form the bipartition of F ′. By Lemma 6, for each
r ∈ {1, 2, . . . , k}, there exists a path P of length 2r in F ′ with one end a ∈ A and one
end b ∈ B. Since P has even length, b ∈ V (T ′) ∩ Li−1(T ). Let h denote the height of T ′.
Then a, b ∈ V (T ′) are connected in T ′ to u by a unique path of length h. Since they are
in different branches of T ′ they are connected in T ′ by a path of length 2h. Together with
P , this path forms a cycle of length 2h + 2r in G. This works for any r ∈ {1, 2, . . . , k},
giving cycles C2h+2, C2h+2, . . . , C2h+2k and completing the proof.

4 Concluding remarks

• The case of cycles of length zero mod k has received considerable attention. Using his
subdivided grid theorem for graphs of large tree-width, Thomassen [27] gave a polynomial-
time algorithm for finding a cycle of length 0 mod k in a graph or a certificate that no
such cycle exists. It is an open question as to whether such an algorithm exists for finding
a cycle of length ` mod k when ` 6= 0.

• Thomassen [27] conjectured that every graph of minimum degree at least k + 1
contains cycles of all possible even lengths mod k. This conjecture was proved when k is
even by Liu and Ma [19], and they showed further that there are cycles of k/2 consecutive
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even lengths in this case. Liu and Ma also showed that if k is odd and G is a graph of
minimum degree at least k + 5, then G contains cycles of all even lengths mod k. It is
natural to conjecture the following strengthening of Thomassen’s conjecture:

Conjecture 8. If t > 1, and G is a graph with a maximum number of edges that does
not contain cycles of t consecutive even lengths, then every block of G is a complete graph
of order at most 2t+ 1.

It is an exercise to see that the conjecture is true for t = 1, and in fact the blocks
in every extremal graph with an odd number of vertices are triangles. In particular,
the conjecture (with t = k/2) implies ck(`) 6 k + 1 whenever k and ` are even, and
ck(2) = k + 1. The result of Liu and Ma [19] shows ck(`) 6 2k when both k and ` are
even, since every graph of average degree at least 2k contains a subgraph of minimum
degree at least k+ 1. We refer the reader to [29] for a survey of this and related extremal
problems for cycles in graphs.

• In this paper we showed ck(`) = O(dk(`)) = O(`k2/`) when ` is even. We conjectured
for each fixed ` that ck(`) ∼ dk(`) as k → ∞ (see Conjecture 2). It may even be true
that for infinitely many n, the extremal n-vertex graph with no cycle of length 4 mod k
is a connected graph whose blocks are all extremal C4-free graphs with k+ 3 vertices. We
propose the more tractable problem of determine the asymptotic value of ck(4). In this
case our conjecture states ck(4) ∼ k1/2, since dk(4) ∼ k1/2 (see [29]).

• Concerning chromatic number and consecutive cycle lengths, it is an open question
to determine for k > 2 the largest chromatic number χk of a graph which does not contain
cycles of k consecutive lengths. Lemma 9 in [17] shows that a graph of chromatic number
at least 4k contains cycles of k consecutive lengths, so we deduce χk 6 4k − 1. With
some additional effort, one can show χk 6 2k + 2 for k > 2. Liu and Ma (see Theorem
1.13 in [19] and the discussion therein) gave an almost optimal bound, showing that
χk 6 k+ 3; a graph G∗k whose blocks are all cliques of order k+ 1 does not contain cycles
of k consecutive lengths. It follows that k + 1 6 χk 6 k + 3 for k > 2. It seems plausible
that G∗k is the extremal construction for k > 3, and perhaps χk = k + 1 for all k > 2:

Conjecture 9. For all k > 2, χk = k + 1.

Gyárfás [13] proved that for k > 2, if a graph G does not contain cycles of k distinct
odd lengths, then it has chromatic number at most 2k − 1 with equality for k > 3 if
and only if G = G∗2k−1, verifying a conjecture of Bollobás and Erdős. Perhaps the same
example is extremal for cycles of k consecutive odd lengths. Generalizing an earlier result
of Mihók and Schiermeyer [21], Liu and Ma (see Theorem 1.12 in [19]) show that a graph
of chromatic number at least 2k + 2 contains cycles of k consecutive odd lengths as well
as k consecutive even lengths, which is tight due to G∗2k+1 – the k− 1 lengths of the even
cycles in this graph are the elements of {4, 6, . . . , 2k}.
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