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Abstract

A natural digraph analogue of the graph-theoretic concept of an ‘independent
set’ is that of an ‘acyclic set’, namely a set of vertices not spanning a directed cycle.
Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into
acyclic sets and we say a digraph is uniquely n-colorable when this decomposition
is unique up to relabeling. It was shown probabilistically in [A. Harutyunyan et
al., Uniquely D-colorable digraphs with large girth, Canad. J. Math., 64(6): 1310–
1328, 2012] that there exist uniquely n-colorable digraphs with arbitrarily large
girth. Here we give a construction of such digraphs and prove that they have
circular chromatic number n. The graph-theoretic notion of ‘homomorphism’ also
gives rise to a digraph analogue. An acyclic homomorphism from a digraph D to
a digraph H is a mapping ϕ : V (D) → V (H) such that uv ∈ A(D) implies that
either ϕ(u)ϕ(v) ∈ A(H) or ϕ(u) = ϕ(v), and all the ‘fibers’ ϕ−1(v), for v ∈ V (H),
of ϕ are acyclic. In this language, a core is a digraph D for which there does not
exist an acyclic homomorphism from D to a proper subdigraph of itself. Here we
prove some basic results about digraph cores and construct highly chromatic cores
without short cycles.

Keywords: digraph; chromatic number; acyclic homomorphism; girth

1 Introduction

The author previously constructed digraphs with arbitrarily large digirth and chromatic
number in [13]. In fact, the construction strengthens the probabilistic result in [2] because
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it produces a digraph with digirth k and chromatic number n for each pair k, n of integers
exceeding one. It is also of interest that unlike the analogous graph constructions in [7],[8],
and [11], the construction is primitively recursive in n. The main result appearing here
constructs uniquely n-colorable digraphs with digirth k for every reasonable pair n, k of
integers. In Section 3 we show that the digraphs constructed in [13] are ‘cores’. Finally, we
give a simple construction of highly chromatic digraphs without two cycles in Section 4.

Although basic terminology can be found in [1], we include our main definitions for

completeness. The digirth of a digraph D, denoted
→
g (D), is the length of its shortest

directed cycle. Following [2] we define the chromatic number χ(D) ofD to be the minimum
number of parts in a partition of V (D) into acyclic sets, and we say that D is n-chromatic
if χ(D) = n. It should be noted that this chromatic number of a digraph was first defined
by Neumann-Lara in [12], where it was called the ‘dichromatic number’. We would now
like to relate digraph colorings to homomorphisms. An acyclic homomorphism from a
digraph D to a digraph H is a mapping ϕ : V (D)→ V (H) such that uv ∈ A(D), where
A(D) is the arc set of D, implies that either ϕ(u)ϕ(v) ∈ A(H) or ϕ(u) = ϕ(v), and all the
fibers of ϕ are acyclic. If ϕ is an acyclic homomorphism such that all uv ∈ A(D) satisfy
ϕ(u) 6= ϕ(v) then ϕ is a non-contracting homomorphism. As with graphs, if there exists an
acyclic homomorphism from a digraph D to a digraph H we say that D is homomorphic
to H, denoted by D → H, and D is H-colorable. Since we deal almost exclusively
with acyclic homomorphisms when considering digraphs, we often write ‘homomorphism’
when it is clear from the context that we mean ‘acyclic homomorphism’. As in the
case of the graph coloring analogue, an equivalent definition of the chromatic number is

χ(D) = min{n | D →
↔
Kn} (where

↔
Kn denotes the complete biorientation, see [1], of

Kn). One nice property of the chromatic number of a digraph is that it generalizes the

chromatic number of a graph because χ(G) = χ(
↔
G) for every finite simple graph G.

We define a digraph D to be uniquely n-colorable if D is n-chromatic and any two
n-colorings of D induce the same partition of V (D). A digraph D is uniquely H-colorable
if it is surjectively H-colorable, and for any two H-colorings φ, ψ of D, the functions
φ and ψ differ by an automorphism of H, and a digraph D is a core if it is uniquely
D-colorable. It is well known that a digraph D is uniquely n-colorable if and only if it is

uniquely
↔
Kn-colorable. In order to confirm the correctness of our theorems, we will also

need the fact that D → H implies that
→
g (D) >

→
g (H), which is a direct consequence of

Propositions 1.2 and 1.3 in [2]. It is worth noticing the subtle difference between the last
statement and its graph analogue which is true only for odd girth.

2 Uniquely n-colorable digraphs without short cycles

The proof of Theorem 8 constructs uniquely n-colorable digraphs with digirth k for any
pair n, k of suitable integers. This result is a constructive version of (an important case
of) the probabilistic proof appearing in [5] and is analogous to the undirected construction
appearing in [14]. For the proof of Theorem 8 we first need to prove a few lemmas and
to construct a few digraphs. The first of which, denoted Dn, was constructed in [13] in
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order to prove the following theorem.

Theorem 1. For any given integers k and n exceeding one, there exists an n-chromatic
digraph D with

→
g (D) = k.

We will provide the reader with the construction but we refer the reader to [13] for
the proof of Theorem 1. For n = 2, the directed k-cycle will suffice. For n > 2, we
proceed by induction on n and suppose that we have already constructed a digraph Dn

with chromatic number n, digirth k, and V (Dn) = {d1, d2, . . . , dm}. We now define Dn+1.
For each i ∈ [m], let Di

n be a digraph with vertex set

V (Di
n) = {(d1, i), (d2, i), . . . , (dm, i)}

which is isomorphic to Dn in the natural way. Next construct m directed paths Pdi , for
1 6 i 6 m, each of length k − 2, with vertex sets {(di, p1), (di, p2), . . . (di, pk−1)} and

arc sets A(Pdi) := {−−−−−−−−−−−→(di, pj)(di, pj+1) | j ∈ [k − 2]}. Now define m digraphs H(n, i), for
1 6 i 6 m, in the following manner. The vertex sets are V (H(n, i)) := V (Di

n) ∪ V (Pdi),
and the arc sets are

A(H(n, i)) := A(Di
n)∪A(Pdi)∪

{−−−−−−−−→
(d, i)(di, p1) | d ∈ V (Dn)

}
∪
{−−−−−−−−−→

(di, pk−1)(d, i) | d ∈ V (Dn)
}
.

Finally, we define Dn+1 to be the digraph with

V (Dn+1) :=
m⋃

i=1

V (H(n, i))

and

A(Dn+1) :=
m⋃

i=1

A(H(n, i)) ∪
{−−−−−−−−−→

(di, p`)(dj, ph) | didj ∈ A(Dn) and `, h ∈ [k − 1]
}
.

In order to illustrate this construction, we include in Figure 1 a diagram of D3 with k = 3.
All double-tailed arrows represent numerous arcs in the diagram. The double-tailed arrows
running horizontally indicate an arc from every vertex at the tail to every vertex at the
head. The double-tailed arrows running up and down indicate an arc from every vertex
at the tail to one vertex at the head and from one vertex at the tail to every vertex at the
head respectively. The three remaining diagrams in this section follow similar schematics.
It is also worth pointing out that the subdigraph Σ of Dn+1 induced by the vertices of the
Pdi ’s is isomorphic to the lexicographic product of Dn with the directed path of length
k− 2. The lexicographic product D ◦H of two digraphs D,H is defined to be the digraph
with V (D)× V (H) as its vertex set and with an arc from (d1, h1) to (d2, h2) if d1d2 is an
arc in D, or d1 = d2 and h1h2 is an arc in H.

The following lemma provides us with an important result about the arcs of Dn that
will be useful both in this section and Section 3.

Lemma 2. For k =
→
g (Dn), every arc of Dn is in a directed k-cycle.
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H(2, 1) H(2, 2) H(2, 3)

Figure 1: D3 with k = 3

Proof. We notice that the assertion is true for n = 2 because D2
∼=
→
Ck and proceed by

induction. Next assume its truth for Dn and let uv be an arc in Dn+1. If, for an i ∈ [m],
uv is an arc in Di

n, which is isomorphic to Dn, then we may use the inductive hypothesis
to see that uv is in a k-cycle. Another easy case is when uv is an arc of some Pdi since uv is
in a k-cycle for all i ∈ [m] by our construction. Similarly, for all i ∈ [m], our construction
implies that uv is in a k-cycle when either u ∈ V (Di

n) and v = (di, p1) or v ∈ V (Di
n) and

u = (di, pk−1). The last case to inspect is when u ∈ V (Pdi) and v ∈ V (Pdj) for i, j ∈ [m]
with i 6= j. In this case, by our construction, uv is an arc in Dn+1 if and only if didj is
an arc in Dn. Thus didj is in a k-cycle of Dn by the induction hypothesis. Finally this in
turn implies that uv is in a k-cycle of Dn+1 and the proof is complete.

Another of these digraphs, denoted Bn, is a spanning subdigraph of Dn. We will define
Bn inductively and start by setting B2 to be the path of length k−1. We now define Bn+1

from Bn. Suppose that V (Bn) = {d1, d2, . . . , dm} = V (Dn) and set V (Bn+1) = V (Dn+1).
For i ∈ [m] let Bi

n be Bn tagged with an i. Now define m digraphs F (n, i), for 1 6 i 6 m,
in the following manner. The vertex sets are V (F (n, i)) := V (Bi

n) ∪ V (Pdi), and the arc
sets are

A(F (n, i)) := A(Bi
n) ∪ A(Pdi) ∪

{−−−−−−−−→
(d, i)(di, p1) | d ∈ V (Dn) = V (Bn)

}
.

Finally, we define Bn+1 to be the digraph with

V (Bn+1) :=
m⋃

i=1

V (F (n, i))

and

A(Bn+1) :=
m⋃

i=1

A(F (n, i)) ∪
{−−−−−−−−−→

(di, p`)(dj, ph) | didj ∈ A(Bn) and `, h ∈ [k − 1]
}
.

It may be helpful for the reader to view Figure 2 for an example of this construction.

the electronic journal of combinatorics 24(2) (2017), #P2.1 4



B̂2
2

Pd1

F (2, 1) F (2, 2) F (2, 3)

Figure 2: B3 with k = 3

Lemma 3. Bn is acyclic for all n.

Proof. We proceed by induction and notice first that B2 is acyclic as it is just a directed
path. Now, assuming that Bn is acyclic, we see that each subdigraph Bi

n of Bn+1 is acyclic
by our induction hypothesis. Thus there does not exist a cycle in Bn+1 containing a vertex
from any Bi

n since there are no arcs from any vertex of the Pdi ’s to any vertex of the Bi
n’s.

Since the subdigraph Σ̂ of Bn+1 induced by the vertices of the Pdi ’s is homomorphic to

Bn via projection onto the first coordinate, we see that
→
g (Σ̂) >

→
g (Bn) = ∞. Therefore

Bn+1 is also acyclic.

.
Lemma 4. If

(
α0, α1, . . . , αk−1

)
is a shortest cycle in Dn, then there exists a unique

` ∈ {0, 1, . . . , k − 1} such that the arc α`α`+1 is in A(Dn) r A(Bn).

Proof. Proceeding by induction, again we see that the statement is true for B2. Thus
by our induction hypotheses the statement is true for any shortest cycle contained in
any Di

n. Since all shortest cycles containing a vertex (d, i) from a Di
n and a vertex from

a Pdj have the form
(
(d, i), (di, p1), .., (di, pk−1)

)
, the unique arc in A(Dn+1) r A(Bn+1)

for such cycles is (di, pk−1)(d, i). Thus it remains to show that the statement is true for
shortest cycles contained in Σ (defined on p. 3). So let us now suppose that the cycle(
α0, α1, . . . , αk−1

)
is contained in Σ; referencing the proof of Theorem 1, [13], we may

assume that αj = (dj, prj), where (d0, d1, . . . , dk−1) is a shortest cycle in Dn−1. Thus the
induction hypothesis yields that there exists a unique ` such that d`d`+1 is in A(Dn−1) r
A(Bn−1). Therefore α`α`+1 is the unique arc of

(
α0, α1, . . . , αk−1

)
in A(Dn)rA(Bn), and

the proof is complete.

Next we construct digraphs D′n with digirth k. For n = 2, the directed k-cycle will
suffice. For n > 2, we proceed by induction on n and suppose that we have already
constructed a digraph D′n with digirth k and V (D′n) = {d1, d2, . . . , dm}. We now define
D′n+1.
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D̂2
2

Pd1

H ′(2, 1) H ′(2, 2) H ′(2, 3)

Figure 3: D′3 with k = 3

For each i ∈ [m], let D̂i
n be a digraph with vertex set

V (D̂i
n) = {(d1, i), (d2, i), . . . , (dm, i)}

which is isomorphic to D′n in the natural way. Next construct m directed paths Pdi , for
1 6 i 6 m, each of length k − 2, with vertex sets {(di, p1), (di, p2), . . . (di, pk−1)} and

arc sets A(Pdi) = {−−−−−−−−−−−→(di, pj)(di, pj+1) | j ∈ [k − 2]}. Now define m digraphs H ′(n, i), for

1 6 i 6 m, in the following manner. The vertex sets are V (H ′(n, i)) := V (D̂i
n) ∪ V (Pdi),

and the arc sets are

A(H ′(n, i)) := A(D̂i
n) ∪A(Pdi) ∪

{−−−−−−−−→
(d, i)(di, p1) | d ∈ V (D′n)

}
∪
{−−−−−−−−−−→

(di, pk−1)(d, i) | d ∈ V (D′n)
}
.

Finally, we define D′n+1 to be the digraph with

V (D′n+1) :=
m⋃

i=1

V (H ′(n, i))

and

A(D′n+1) :=
m⋃

i=1

A(H ′(n, i)) ∪ {αβ |α ∈ V (H ′(n, i)), β ∈ V (H ′(n, j)) and didj ∈ A(D′n)} .

Figure 3 is included in order to clarify the construction of D′n.
It is clear from the construction of D′n that Dn is a spanning subdigraph of D′n for all

n which implies that χ(D′n) > χ(Dn) = n and
→
g (D′n) 6

→
g (Dn).
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Lemma 5. For each integer n > 2, the digraph D′n has digirth
→
g (D′n) =

→
g (Dn) = k.

Proof. We observe that D′2 has digirth k and proceed by induction. Using the induction

hypothesis, we see that
→
g (D̂i

n) = k for all i ∈ [m], which combined with the construction

of D′n+1 implies that
→
g (H ′(n, i)) = k for all i ∈ [m]. Thus we need only consider cycles

which contain vertices α and β where α ∈ V (H ′(n, i)), β ∈ V (H ′(n, j)) and i 6= j. But
this implies, from the construction of D′n+1, that there exists a path in D′n from di to dj
and from dj to di. Thus the induction hypothesis also implies that the cycle containing

α and β has length at least k. Combining these observations, we see that
→
g (D′n+1) = k,

and induction gives the lemma.

Finally we define B′n inductively and start by letting B′2 be the path of length k − 1.
We now define B′n+1 from B′n. Suppose that V (B′n) = {d1, d2, . . . , dm} = V (D′n) and set

V (B′n+1) = V (D′n+1). For i ∈ [m] let B̂i
n be B′n tagged with an i. Now define m digraphs

F ′(n, i), for 1 6 i 6 m, in the following manner. The vertex sets are V (F ′(n, i)) :=

V (B̂i
n) ∪ V (Pdi), and the arc sets are

A(F ′(n, i)) := A(B̂i
n) ∪ A(Pdi) ∪

{−−−−−−−−→
(d, i)(di, p1) | d ∈ V (Dn) = V (B′n)

}
.

Finally, we define B′n+1 to be the digraph with

V (B′n+1) :=
m⋃

i=1

V (F ′(n, i))

and, for all s, t ∈ [m],
A(B′n+1) :=

⋃m
i=1 A(F ′(n, i))

⋃ {−−−−−−−−−→
(di, p`)(dj, ph) | didj ∈ A(B′n) and `, h ∈ [k − 1]

}

⋃{−−−−−−−→
(ds, i)(dt, j) | didj ∈ A(B′n)

} ⋃ {−−−−−−−−→
(ds, i)(dj, ph) | didj ∈ A(D′n) and h ∈ [k − 1]

}
.

It is clear from the construction that Bn is a spanning subdigraph of B′n. Figure 4 may
help bring to light some of the nuances of this construction.

Lemma 6. B′n is acyclic for all n.

Proof. It is easy to see that B′2 is acyclic and thus we continue by induction. Once again
the induction hypothesis and the construction of B′n+1 imply that F ′(n, i) is acyclic for

every i ∈ [m]. Since there is no arc from any vertex of a Pdi to any vertex of a B̂j
n, it

suffices to consider the subdigraph of B′n+1 induced by the vertices of the Pdi ’s and the

subdigraph induced by the B̂i
n’s. Both of these subdigraphs are homomorphic to B′n and

thus are acyclic by induction. Therefore B′n+1 is acyclic.
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B̂2
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Pd1

F ′(2, 1) F ′(2, 2) F ′(2, 3)

Figure 4: B′3 with k = 3

We may now define directed graphs D′m ∗
↔
Kn which will be shown to be uniquely

n-colorable with digirth equal to
→
g (D′m). The vertex set of D′m ∗

↔
Kn is V (D′m ∗

↔
Kn) =

V (D′m)× V (
↔
Kn) and there is an arc from (d1, h1) to (d2, h2) if d1d2 ∈ A(D′m) and h1h2 ∈

A(
↔
Kn), or d1d2 ∈ A(B′m) and h1 = h2. It is worth noting that the direct product D′m×

→
Kn

is a spanning subdigraph of D′m ∗
↔
Kn. The first two properties to notice about D′m ∗

↔
Kn

are that it has digirth at least
→
g (D′m) and is n-colorable because the projections are

homomorphisms. (The projection onto
↔
Kn being a homomorphism relies on the fact that

B′m is acyclic.) We now introduce some notation for future use. Let the vertices of
↔
Kn be

0, 1, . . . , n−1 and, for t ∈ V (
↔
Kn), letH t(m−1, i) be the set of vertices V (H ′(m−1, i))×{t}.

Similarly define P t
di

and Dt(m− 1, i) to be V (Pdi)×{t} and V (D̂i
m−1)×{t} respectively.

Lastly define Ωn(m−1, j) to be the subdigraph of D′m ∗
↔
Kn induced by

⋃n−1
i=0 D

i(m−1, j).

The next lemma provides the linchpin to proving that D′m ∗
↔
Kn is uniquely n-colorable

when m > n.

Lemma 7. If n 6 m − 1 and j ∈ {1, 2, . . . , |V (D′m−1)|}, then the chromatic number of
Ωn(m− 1, j) is n.

Proof. First we show that there exists an m-coloring φm of Dm such that αβ ∈ A(Dm) r
A(Bm) implies that φm(α) 6= φm(β). It is easy to see that φ2 exists and thus we may

proceed by induction. Define a mapping φm : V (Dm) → V (
↔
Km) as follows. For vertices

(dj, i) ∈ V (Di
m−1), let

φm((dj, i)) =

{
φm−1(dj) if φm−1(dj) 6= φm−1(di),
m− 1 if φm−1(dj) = φm−1(di).
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For vertices (di, p) ∈ V (Pdi), define φm((di, p)) = φm−1(di).
Now suppose that αβ ∈ A(Dm) r A(Bm) which implies that either α, β are vertices

of some Di
m−1, or α is a vertex of some Pdi and β is a vertex of Di

m−1, or α is a vertex of
some Pdi and β is a vertex of some Pdj . In the case where α, β are vertices of some Di

m−1,
we may assume that α = (dj, i) and β = (dh, i), where djdh is in A(Dm−1) r A(Bm−1).
Thus using the induction hypothesis we see that φm−1(dj) 6= φm−1(dh) which implies that
φm(α) 6= φm(β). In the second case, α is a vertex of some Pdi and β is a vertex of Di

m−1, i.e.
α = (di, pk−2) and β = (dj, i). It is clear from the definition of φmhh that φm(α) 6= φm(β).
In the last case, in which α is a vertex of some Pdi and β is a vertex of some Pdj , we
may assume that didj is in A(Dm−1) rA(Bm−1). Thus the inductive hypotheses and the
definition of φm imply that φm(α) 6= φm(β). Therefore φm is an m-coloring of Dm such
that αβ ∈ A(Dm) r A(Bm) implies that φm(α) 6= φm(β).

We now define Γ to be the subdigraph of D′n+1 ∗
↔
Kn induced by the set{(

(α, 1), φn(α)
)
|(α, 1) ∈ V (D1

n)
}

and notice that Γ is a subdigraph of Ωn(n, 1) and the
digraph induced by Di(m − 1, 1) is isomorphic to the digraph induced by Di(m − 1, j)
for all j ∈ {1, 2, . . . , |V (D′m−1)|}. Consider the mapping ρ : V (Dn) → V (Γ) defined by

ρ(α) =
(
(α, 1), φn(α)

)
. Since φn is an n-coloring of Dn (i.e. a homomorphism to

↔
Kn) ρ

is well-defined and bijective. We now suppose that αβ ∈ A(Dn) in order to show that
ρ is in fact a homomorphism. The first case is when αβ is an arc in Bn which implies
that (α, 1)(β, 1) ∈ A(B′n+1) and thus

(
(α, 1), φn(α)

)(
(β, 1), φn(β)

)
∈ A(Γ) whether or not

φn(α) = φn(β) (because of the definition of our ∗-product). The second case is when αβ
is an arc in Dn but not Bn. From the preceding paragraph we know that this implies
that φn(α) 6= φn(β). Also the construction of D′n+1 implies that (α, 1)(β, 1) is an arc in
D′n+1. Hence

(
(α, 1), φn(α)

)(
(β, 1), φn(β)

)
is an arc in Γ and ρ is a homomorphism. This

now implies that χ(Γ) > n and in fact χ(Γ) = n since we saw above that D′n+1 ∗
↔
Kn is

n-colorable. Recall that Γ is a subdigraph of Ωn(n, 1). Since, for m > n, the digraph
induced by Di(n, 1) is isomorphic to a subdigraph of the digraph induced by Di(m− 1, 1)
for all i ∈ {0, 1, . . . , n− 1}, the digraph Γ is isomorphic to a subdigraph of Ωn(m− 1, 1).
Therefore the chromatic number of Ωn(m−1, j) is n for all j ∈ {1, 2, . . . , |V (D′m−1)|}.

Finally we have all the necessary tools to prove the deepest result of this paper.

Theorem 8. For every integer n > 2, the digraph D′m ∗
↔
Kn is uniquely n-colorable when-

ever n 6 m− 1.

Proof. We have seen that the canonical projection π : V (D′m ∗
↔
Kn) → V (

↔
Kn) is a sur-

jective homomorphism and thus D′m ∗
↔
Kn is n-colorable. Now suppose that there exists

another surjective homomorphism ψ : V (D′m ∗
↔
Kn) → V (

↔
Kn) and we will show that ψ

is a composition of π with an automorphism of
↔
Kn. Notice that since the target di-

graph is
↔
Kn this amounts to showing that ψ((α, i)) = ψ((β, i)) for all vertices α, β of

D′m and i ∈ V (
↔
Kn). In other words we need only show that the fibers of ψ are a rela-

beling of the fibers of π. The preceding lemma has the direct consequence that for all
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j ∈ {1, 2, . . . , |V (D′m−1)|} and s ∈ V (
↔
Kn) there exists an α ∈ V (Ωn(m− 1, j)) such that

ψ(α) = s because Ωn(m− 1, j) is n-chromatic. For each such j and s, let αsj be such that
αsj ∈ V (Ωn(m− 1, j)) and ψ(αsj) = s.

Consider two vertices d0 and d1 of Dm−1 such that there is an arc from d0 to d1 in Dm−1.
Lemmas 2 and 4 imply that there exists a cycle (d0, d1, . . . , dk−1) inDm−1 and there exists a

unique ` ∈ [k] such that d`d`+1 ∈ A(Dm−1)rA(Bm−1). Thus for all βh ∈ V (D̂h
m−1), where

D̂h
m−1 is the copy corresponding to dh, the sequence

(
(β0, i0), (β1, i1), . . . , (βk−1, ik−1)

)
is a

cycle in D′m ∗
↔
Kn whenever i` 6= i`+1. Hence for all s ∈ [n] and some i ∈ [n] (which depends

on s) the vertices αs` and αs`+1 lie in Di(m − 1, `) and Di(m − 1, ` + 1) respectively, for
otherwise (αs0, α

s
1, . . . , α

s
k−1) would be a monochromatic cycle with respect to ψ. Similarly,

supposing that αs` ∈ Di(m− 1, `),

there is no ν ∈ Dr(m− 1, `+ 1) with ψ(ν) = s

nor a vertex µ ∈ Hr(m− 1, `) with ψ(µ) = s when r 6= i, (1)

for otherwise (αs0, α
s
1, . . . , α

s
` , ν, α

s
`+2, . . . , α

s
k−1) and

(αs0, α
s
1, . . . , α

s
`−1, µ, α

s
`+1, α

s
`+2, . . . , α

s
k−1) would be monochromatic cycles with respect to

ψ. We claim that for all i ∈ [n] there exists an αs` ∈ Di(m − 1, `) for some s ∈ [n]. To
this end we consider the set {i ∈ [n]| there exists an s such that αs` ∈ Di(m− 1, `)} and
suppose that the size of this set is less than n in order to reach a contradiction. This
assumption implies that there exists a j ∈ [n] such that Dj(m − 1, `) does not contain
any αs` . This implies further that no αs`+1, for s ∈ [n], lies in Dj(m − 1, ` + 1) as we’ve
established that for each fixed s ∈ [n], the vertices αs` and αs`+1 lie in Di(m − 1, `) and
Di(m−1, `+1) respectively (i.e. share the same superscript i here). However there exists
some s1 ∈ [n] and β ∈ Dj(m − 1, `) such that ψ(β) = s1 because every vertex is sent to
some color, and we just concluded that αs1`+1 cannot be in Dj(m − 1, ` + 1). Hence we
reach a contradiction because this leads to the cycle (αs10 , α

s1
1 , . . . , α

s1
`−1, β, α

s1
`+1, . . . , α

s1
k−1)

being monochromatic with respect to ψ. Thus the claim is true and we may conclude
that for all i ∈ [n] there exists an αs` ∈ Di(m − 1, `) for some s ∈ [n]. Suppose that
α
sj
` ∈ Di(m− 1, `). Appealing to (1), we now see that for every i ∈ [n], when r 6= i, there

does not exist a vertex in Dr(m− 1, `+ 1) nor a vertex in Hr(m− 1, `) either of which is
colored sj. Therefore for each s ∈ [n] there exists a unique i ∈ [n] such that H i(m− 1, `)
and Di(m− 1, `+ 1) are both monochromatic of the same color with respect to ψ.

We now aim to prove that the sets Di(m−1, `+1) and Di(m−1, `+2) are monochro-
matic of the same color with respect to ψ for all i ∈ [n]. In order to reach a con-
tradiction suppose that for some color s1 there exists a vertex µ ∈ Dt1(m − 1, ` + 2)
with ψ(µ) = s1, where Dt2(m − 1, ` + 1) is colored s1 and t1 6= t2. This implies that
there does not exist a vertex β ∈ V (P t2

`+1) such that ψ(β) = s1, for otherwise the cycle
(αs10 , α

s1
1 , . . . , α

s1
` , β, µ, α

s1
`+3 . . . , α

s1
k−1) would be monochromatic with respect to ψ. Con-

sider if P`+1 is monochromatic of the color s, s 6= s1. We have established the there
exists an i ∈ [n] with i 6= t2 such that Di(m − 1, ` + 1) is monochromatic of color s.
However, every vertex in Di(m − 1, ` + 1) is in a cycle with the vertices of P t2

`+1 ac-

cording to the construction of D′m ∗
↔
Kn. Thus we would have a monochromatic cycle
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with respect to ψ. Hence there exist vertices β2, β3 ∈ V (P t2
`+1) such that ψ(β2) = s2,

ψ(β3) = s3, and s1, s2 and s3 are distinct. This implies that there does not exist a vertex
ν ∈ V (Ωn(m − 1, ` + 2)) rDt2(m − 1, ` + 2) such that ψ(ν) = si, for i = 2 or i = 3, for
otherwise the cycle (αsi0 , α

si
1 , . . . , α

si
` , βi, ν, α

si
`+3, . . . , α

si
k−1) would be monochromatic with

respect to ψ. However this implies that Ωn(m − 1, ` + 2) r Dt2(m − 1, ` + 2), which is
isomorphic to Ωn−1(m− 1, `+ 2), is (n− 2)-colored, contradicting Lemma 7. Thus for all
i ∈ [n], the sets Di(m− 1, `+ 1) and Di(m− 1, `+ 2) are monochromatic with respect to
ψ.

Assume now that there exists a vertex γ ∈ P i
`+1 such that ψ(γ) = s4 and the vertices

in Di(m − 1, ` + 1) and Di(m − 1, ` + 2) are colored s5 where s4 6= s5. We again reach
a contradiction since (αs40 , α

s4
1 , . . . , α

s4
` , γ, α

s4
`+2, α

s4
`+3 . . . , α

s4
k−1) would be a monochromatic

cycle with respect to ψ. Thus P i
`+1 and Di(m− 1, `+ 1) are monochromatic for all i ∈ n.

This fact along with the previous two paragraphs we see that H i(m−1, `), H i(m−1, `+1),
and Di(m − 1, ` + 2) are monochromatic with respect to ψ for all i ∈ [n]. Therefore we
may inductively argue that all H i(m − 1, j), for j ∈ [k], are monochromatically colored
the same. As Dm is strongly connected, this implies that ψ((α, i)) = ψ((β, i)) for all

vertices α, β of D′m and i ∈ V (
↔
Kn), and as we noted in the first paragraph of this proof,

this is enough to show that D′m ∗
↔
Kn is uniquely n-colorable.

Recall from p. 8 and Lemma 5 that
→
g (D′m ∗

↔
Kn) >

→
g (D′m) = k. In the preceding proof

we encountered a number of directed k-cycles in D′m ∗
↔
Kn implying that

→
g (D′m ∗

↔
Kn) =

→
g (D′m). We also note that we were able to construct D′m with

→
g (D′m) = k for any pair

m, k of integers exceeding one. Therefore our proof of Theorem 8 constructs a uniquely
n-colorable digraph with digirth k for every pair n, k of integers both exceeding one. Thus
we now have a constructive and more precise version of (an important case of) the main
theorem appearing in [5].

We remark here on the number of vertices in the Dn’s (and consequently the number of

vertices in D′m ∗
↔
Kn). We see from the construction that we have the recurrence relation:

|V (Dn)| = |V (Dn−1)|2 + (k − 1) · |V (Dn−1)| with |V (D2)| = k.

It is easy to confirm that |V (Dn)| = 22n−1 − 1 for k = 3. For a general k we do not

have a closed form. However we may inductively argue that |V (Dn)| is O
(

22n−3 · k2n−2
)

after observing that |V (D2)| = k and |V (D3)| = 2k2 − k. Therefore |V (D′m ∗
↔
Kn)| is

O
(
n · 22m−3 · k2m−2

)
since Dm is a spanning subdigraph of D′m. In order to put the

size of these digraphs into context we point to a construction of uniquely 3-colorable
graphs with girth 4 by Nešetřil [10] in which the smallest example has over 500 million
vertices. The digraph constructed in the proof of Theorem 8 with the least vertices

while still being uniquely 3-colorable with digirth 4 is D′4 ∗
↔
K3 (where

→
g (D′4) = 4) and

|V (D′4 ∗
↔
K3)| = 2604.
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In [2] the authors define the circular chromatic number χc of a digraph This digraph
invariant can be seen to generalize the graph version of this invariant. For p > q, we define

the directed complete rational graph
→
Kp/q to be the digraph with vertex set {0, 1, . . . , p−1}

and an arc from i to j if j − i ∈ {q, q + 1, . . . , p − 1} (with arithmetic modulo p). It is

easy to check that
→
Kp/1

∼=
↔
Kp for every positive integer p. It was shown in [2] that we

may define

χc(D) = min{p/q | D →
→
Kp/q}.

Next we would like to show that χc(D
′
m ∗

↔
Kn) = n in order to construct digraphs with

digirth k, chromatic number n, and circular chromatic number n for every pair k, n of
integers exceeding one. To this end we will prove the following proposition.

Proposition 9. If a digraph D is uniquely n-colorable, then χc(D) = χ(D) = n.

Proof. By way of contradiction we assume D is uniquely n-colorable, χc(D) = p/q < n,

and ζ : V (D) →
→
V (Kp/q) is an acyclic homomorphism. It has been proved that every

digraph D satisfies χ(D) − 1 < χc(D) 6 χ(D), see e.g. [2], allowing us to assume that

n − 1 < p/q. Now consider the mapping ϕ : V (
→
Kp/q) → V (

↔
Kn) defined by ϕ(i) = bi/qc

(taking V (
↔
Kn) = {0, 1, . . . , n− 1}). In order to show that ϕ is an acyclic homomorphism

it suffices to show that the fibers of ϕ are acyclic because the target digraph is complete.
It is easy to check that for j ∈ {0, 1, . . . , n − 2} ϕ−1(j) = {jq, jq + 1, . . . , (j + 1)q − 1}
and ϕ−1(n− 1) = {(n− 1)q, (n− 1)q + 1, . . . , p− 1}. Thus for every j ∈ V (Kn) and pair
of vertices s, t ∈ ϕ−1(j) we have 0 < t − s < q whenever s < t implying that st is not
an arc in Kp/q. Therefore the fibers of ϕ are acyclic and ϕ is an acyclic homomorphism.

Next consider the mapping σ : V (
→
Kp/q) → V (

↔
Kn) defined by σ(i) = b(i + 1)/qc for

i = 0, 1, . . . , p− 2 and σ(p− 1) = 0. A similar argument to that for ϕ yields that σ is an
acyclic homomorphism. Thus we see that ϕ ◦ ζ and σ ◦ ζ are two homomorphisms from
D to Kn that induce different partitions of V (D) contradicting the assumption that D is
uniquely n-colorable.

Because any subdigraph H of D satisfies χc(H) 6 χc(D) we have the following imme-
diate corollary to Proposition 9.

Corollary 10. If a digraph D is n-chromatic and contains a subdigraph that is uniquely
n-colorable, then χc(D) = χ(D) = n.

Thus we see that Proposition 9 implies that χc(D
′
m ∗

↔
Kn) = n and hence we have

a construction of digraphs with digirth k, chromatic number n, and circular chromatic
number n for every pair k, n of integers exceeding one.

To conclude this section, we leave the reader with a conjecture. Noting that
↔
Kn is

a core, and with an eye to the nonconstructive results of [5], we would like to construct
digraphs with arbitrarily large girth which are uniquely H-colorable for any core H. In
fact we feel confident that the construction is done, but the proof still eludes us. Consider

the electronic journal of combinatorics 24(2) (2017), #P2.1 12



the following conjecture concerning the digraphs D′m constructed for Theorem 8, and

notice that
→
g (D′m ∗H) >

→
g (D′m).

Conjecture 11. For all cores H and some constant c, the digraph D′m ∗H is uniquely
H-colorable for m > c · χ(H).

3 Dn are cores

We now turn our attention to saying something substantially stronger about the digraphs
constructed in the proof of Theorem 1: they are cores. This suggests that there is some
sort of minimality to this construction. In order to proceed we need a few lemmas about
cores. For the sake of completeness we have also decided to include a few basic lemmas
about cores of digraphs that confirm that they behave similarly to their graph analogues.
Recall that a digraph D is a core if it is uniquely D-colorable. The following useful lemma
was proved in [5].

Lemma 12. A digraph D is a core if and only if every acyclic homomorphism V (D) →
V (D) is a bijection.

The condition that every acyclic homomorphism V (D)→ V (D) is a bijection is equiv-
alent to saying that D is not homomorphic to a proper subdigraph of itself. An (acyclic)
retraction of a digraph D is an acyclic homomorphism φ from D to a subdigraph H of D
such that the restriction φ|H is the identity map on H. Now we can state an equivalent
definition of a core that will be used to prove Theorem 20.

Lemma 13. A digraph D is a core if and only if it does not retract to a proper subdigraph
of itself.

Proof. The necessity is clear since an acyclic retraction is an acyclic homomorphism. Now
suppose that D is not a core, and let H be a proper subdigraph of D such that φ is an
acyclic homomorphism from D to H and D is not homomorphic to any proper subdigraph
of H. The existence of such an H is ensured by Lemma 12. We claim that H is a core, for
suppose it is not and let f be an acyclic homomorphism from H to a proper subdigraph
of H. Then f ◦ φ is an acyclic homomorphism from D to a proper subdigraph of H,
contradicting our choice of H. Because of the claim, any homomorphism from H to itself
is an automorphism of H. Let ϕ : V (D) → V (H) be an acyclic homomorphism. Since
the restriction of a homomorphism is a homomorphism, ψ := ϕ|H is an automorphism of
H. Hence ψ−1 exists and ψ−1 ◦ ϕ : V (D) → V (H) is an acyclic retraction to a proper
subdigraph of D.

We now define a subdigraph H of a digraph D to be a core in D if there exists an
acyclic retraction from D to H and H is a core.

Lemma 14. An acyclic retract of a digraph D is an induced subdigraph of D.
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Proof. Let φ be an acyclic retraction from D to a subdigraph H of D. Suppose that
x, y ∈ V (H) and xy ∈ A(D). Since H is a retract, both φ(x) = x and φ(y) = y and, as φ
is a homomorphism, xy is an arc in H.

We say that two digraphs D and H are homomorphically equivalent if H is homomor-
phic to D and D is homomorphic to H.

Lemma 15. If H and K are cores then they are homomorphically equivalent if and only
if they are isomorphic.

Proof. Let φ : H → K and ψ : K → H be acyclic homomorphisms. This implies that
ψ ◦ φ and φ ◦ ψ are bijections since H and K are cores. Thus φ and ψ are both bijective
and hence H ∼= K since, e.g., φ is a bijective homomorphism.

Lemma 16. Every finite digraph D has a core, which is an induced subdigraph and is
unique up to isomorphism.

Proof. Since D is finite and the identity mapping is an acyclic retraction, the family of
subdigraphs of D to which D has an acyclic retraction is finite and nonempty and thus
has a minimal element D• with respect to inclusion. From the definition of ‘core in D’
and Lemma 13, we see that D• is a core in D. Since D• is an acyclic retract, it is an
induced subdigraph by Lemma 14. Now let H1 and H2 be cores of D, and, for i = 1, 2, let
φi be an acyclic retraction from D to Hi. Then φ1|H2 is an acyclic homomorphism from
H2 to H1 and similarly there exists an acyclic homomorphism from H1 to H2. Therefore,
by the preceding lemma, H1

∼= H2.

In the remainder of this paper we will always use D• for ‘core of D’ as is done for the
graph-theoretic analogue in [4].

Lemma 17. Cores of connected digraphs are connected.

Proof. LetD be a connected digraph and ϕ a retraction toD•. Suppose that x, y ∈ V (D•).
Then x, y are vertices of D because ϕ is a retraction. Since D is connected there exists
a sequence of vertices x = u1, u2, . . . , un = y in D such that for all i ∈ [n − 1] we have
uiui+1 ∈ A(D) or ui+1ui ∈ A(D) (possibly both). For i ∈ [n], define vi := ϕ(ui). The
fact that ϕ is a retraction implies that v1 = x, vn = y, and the sequence of vertices
v1, v2, . . . , vn has the property that all i ∈ [n − 1] satisfy vivi+1 ∈ A(D), vi+1vi ∈ A(D),
or vi = vi+1. Therefore D• is connected.

The following result displays one use of cores for testing homomorphic equivalence.

Lemma 18. Two digraphs are homomorphically equivalent if and only if their cores are
isomorphic.

Proof. Clearly, a digraph and its core are homomorphically equivalent. The sufficiency
of the condition follows. For necessity, let D• and H• be cores of the digraphs D and
H respectively. Assuming D and H are homomorphically equivalent, we have that D• is
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homomorphic to D, D is homomorphic to H, and H is homomorphic to H•. Thus D•

is homorphic to H• using the fact that the composition of acyclic homomorphisms is an
acyclic homomorphism. Similarly H• is homomorphic to D•. Hence by Lemma 15, H•

and D• are isomorphic.

Earlier we defined a digraph H to be a core if it is uniquely H-colorable. In fact we
will see that there is a looser condition governing whether H is a core. The next result
shows that if we find any digraph which is uniquely H-colorable, then H is a core.

Lemma 19. If there exists a uniquely H-colorable digraph, then H must be a core.

Proof. Let D be uniquely H-colorable and φ : V (D) → V (H) a surjective acyclic ho-
momorphism. Now suppose that ψ : V (H) → V (H•) is an acyclic retraction and
hence ψ ◦ φ : V (D) → V (H) is an acyclic homomorphism. Thus ψ ◦ φ = π ◦ φ
for some π ∈ Aut(H), since D is uniquely H-colorable. Now since φ is surjective,
Im(π ◦ φ) = V (H). This implies that Im(ψ ◦ φ) = V (H). But Im(ψ) = V (H•), so we’ve
shown that V (H) ⊆ V (H•). Since the reverse containment is always true V (H) = V (H•)
and thus we conclude that H is a core.

In the proof of the following theorem we use the notion of directed distance in a
digraph. For a digraph D and u, v ∈ V the directed distance from u to v, denoted−−−−−−→
dist(u, v), is the length of the shortest directed path from u to v in D.

Theorem 20. For any given integers n > 1 and k > 2 the digraph Dn constructed in
Theorem 1 is a core with

→
g (Dn) = k.

Proof. It is clear that D2 is a core since D2
∼=
→
Ck so that we may proceed by induction.

Assume that Dn is a core with n > 2 and let ϕ : V (Dn+1) → V (Dn+1) be a retraction.
Define Γ to be the image of ϕ and thus our goal is to show that Γ = V (Dn+1). Since ϕ is
a retraction and Γ induces a subdigraph of Dn+1, the function ϕ must map k-cycles (i.e.
shortest cycles) to k-cycles. Thus

if two vertices u, v are in the same k-cycle then ϕ(u) 6= ϕ(v). (2)

Thus Lemma 2 implies that all arcs uv of Dn+1 satisfy ϕ(u) 6= ϕ(v). In other words ϕ is
a non-contracting homomorphism (defined on p. 2).

We first proceed to show that for the subdigraph Σ = Dn+1

[
m⋃

i=1

V (Pdi)

]
of Dn+1, the

image of ϕ restricted to V (Σ) is contained in V (Σ). Let u ∈ V (Pdi) and v ∈ V (Dj
n),

for some i, j, and we will show that ϕ(u) 6= v. This and the fact that Dn is strongly
connected will suffice to show that ϕ(V (Σ)) ⊆ V (Σ), for we can repeat our argument
below as necessary to force every such ϕ(u) into V (Σ). If i = j, then the construction of
Dn+1 puts u and v together in a k-cycle and hence they cannot be in the same fiber of
ϕ. This proves that ϕ(u) 6= v for otherwise, with ϕ being the identity on Γ, we’d have
ϕ(u) = ϕ ◦ ϕ(u) = ϕ(v), contradicting (2). Notice that there exists a directed path from
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di to dj for all i, j ∈ [m] because Dn is strongly connected. For the case i 6= j, we proceed
by induction on the distance, s, from di to dj in Dn. Assume that this distance is s + 1

and that for every r ∈ [m] with 0 6
−−−−−−−→
dist(di, dr) 6 s we have ϕ(u) 6= z for all z ∈ V (Dr

n).
By assumption there is a path P = (di, di+1, . . . , di+s, dj) in Dn which by our construction
implies that u(di+1, p`) is an arc in Dn+1 for all ` ∈ [k − 1]. Hence ϕ(u) 6= ϕ((di+1, p`))
for all ` ∈ [k − 1] because ϕ is a non-contracting homomorphism. Similarly if ϕ(u) = v
then vϕ(di+1, p`) ∈ A(Dn+1) for all ` ∈ [k− 1]. However the induction hypothesis implies
that ϕ((di+1, p`)) /∈ V (Dj

n) which forces ϕ((di+1, p`)) to be (dj, p1) for every ` ∈ [k − 1].
This cannot happen because k > 2 and (di+1, p`) and (di+1, pt) are in a k-cycle together
for all `, t ∈ [k− 1] with ` 6= t. Therefore the restriction of ϕ to V (Σ) is indeed contained
in V (Σ).

The next step is to show that Dn+1[Γ] cannot be a subdigraph of Dn+1 −H(n, i) for
any i ∈ [m]. By way of contradiction we assume that there is an i such that Dn+1[Γ] is a
subdigraph of Dn+1 −H(n, i). Choose exactly one vertex vj from each Pdj and define Λ
to be the subdigraph of Dn+1 induced by the vj’s which by our construction is isomorphic
to Dn. Define ψ : V (Σ) → V (Λ) by ψ((d`, ps)) = v` for all ` ∈ [m] and s ∈ [k − 1].
It is easy to check that ψ is an acyclic homomorphism. Consider the homomorphism
ψ|ζ ◦ϕ|V (Λ) : V (Λ)→ V (Λ) where ζ := Im(ϕ|V (Λ)). (Note that these restrictions compose
because ψ is defined on ζ ⊂ Im(ϕ|V (Σ)) ⊆ V (Σ).) Since we’re under the assumption that
the image of ϕ is contained in V (Dn+1 − H(n, i)), there exists an α ∈ [m] such that
ϕ(vα) 6= vα. Thus vα is not in the image of ψ|ζ ◦ ϕ|V (Λ) which implies that ψ|ζ ◦ ϕ|V (Λ)

is not a bijection. Thus by Lemma 12 the digraph Λ is not a core. This contradicts the
induction hypothesis that Dn is a core because Λ is isomorphic to Dn. Therefore Dn+1[Γ]
cannot be a subdigraph of Dn+1 −H(n, i) for any i ∈ [m].

We now show that

for all i ∈ [m] there exists a j ∈ [k − 1] such that ϕ((di, pj)) = (di, pj) ∈ Γ. (3)

By way of contradiction assume that Γ is contained in V (Dn+1 − Pdi). This follows from
the negation of (3) because Im(ϕ|V (Σ)) ⊆ V (Σ) and the definition of retraction implies
that

for any vertices u, v ∈ V (Dn+1), if ϕ(u) = v then ϕ(v) = v.

Notice that for all α ∈ V (Di
n) the arc ϕ(α)ϕ((di, p1)), (di, p1) ∈ V (Dn+1), is in Dn+1[Γ]

because α(di, p1) is an arc in Dn+1. However, in the construction of Dn+1, the only arcs
from Di

n to Σ are those from Di
n to (di, p1). Thus ϕ(α) ∈ V (Dn+1 − H(n, i)) for every

α ∈ V (Di
n). However this and the fact that ϕ is a retraction imply that Γ is contained

in V (Dn+1−H(n, i)) which contradicts the preceding paragraph. Thus we’ve established
(3). This fact will now allow us to show that for every i ∈ [m] the vertices (di, p1) and
(di, pk−1) are sent to the same Pd by ϕ. We again proceed by way of contradiction and
assume that for two distinct vertices u1, uk−1 of Dn, we have ϕ((di, p1)) ∈ V (Pu1) and
ϕ((di, pk−1)) ∈ V (Puk−1

). Considering an α ∈ V (Di
n) we see that both ϕ((di, pk−1))ϕ(α)

and ϕ(α)ϕ((di, p1)) must be in the arc set of Dn+1[Γ] since ϕ is a non-contracting ho-
momorphism. The preceding sentence and our construction of Dn+1 thus imply that
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ϕ(α) ∈ V (Σ), say ϕ(α) ∈ V (Pu0), for some u0 ∈ V (Dn), because u1 6= uk−1. Similarly(
ϕ(α), ϕ((di, p1)), ϕ((di, p2)), . . . , ϕ((di, pk−1))

)
is a k−cycle in Dn+1[Γ]. This implies that(

u0, u1, . . . , uk−1

)
, where ϕ((di, pj)) ∈ V (Puj), is a cycle in Dn. We may thus assume

that the uj’s are distinct for otherwise
(
u0, u1, . . . , uk−1

)
would contain a cycle of length

less than k. Now (3) shows that there exists j ∈ [k − 1] such that uj = di. If we let
` = j − 1 (mod k), then the preceding sentence implies that u`di ∈ A(Dn). Thus for all
r, s ∈ [k − 1] the arc (u`, pr)(di, ps) is in Dn+1 and (3) implies that ϕ((di, p`)) = (u`, pt)
for some t ∈ [k− 1]. Hence (u`, pt) is in the image of ϕ implying that ϕ((u`, pt)) = (u`, pt)
because ϕ is a retraction (ϕ is the identity on its image). This contradicts the fact that
ϕ is a non-contracting homomorphism. Thus for every i ∈ [m] the vertices (di, p1) and
(di, pk−1) are indeed sent to the same Pd by ϕ.

We next show that in fact for every i ∈ [m] all the vertices of Pdi are sent to the same
Pd by ϕ for some d ∈ V (Dn). By way of contradiction assume that some s ∈ [k − 1] and
` ∈ {2, 3, . . . , k − 2} satisfy ϕ((di, p`)) = (v, ps) while ϕ((di, p1)) ∈ V (Pu), where u and v
are distinct vertices of Dn. The preceding paragraph implies that (di, pk−1) is sent to Pu
as well. As Pdi is a directed path of length k − 2, the image under ϕ of V (Pdi) induces
a directed path of length not exceeding k − 2. However since ϕ((di, p1)), ϕ((di, pk−1)) ∈
V (Pu) and u 6= v, the preceding sentence implies that there is a cycle in Dn containing
u and v which has length less than k. This contradiction lets us deduce that for every
i ∈ [m] all the vertices of Pdi are sent to Pd by ϕ for some d ∈ V (Dn). This implies that
the restriction of ϕ to V (Σ) is the identity because of (3). For u ∈ V (Di

n), the image
ϕ(u) lies in neither Dj

n, for j 6= i, nor Pdi because we already know that ϕ fixes Pdi . Also,
ϕ(u) ∈ Pdj with dj 6= di implies that djdi and didj are arcs in Dn because u(di, p1) and
(di, pk−1)u are arcs in Dn+1. Hence we see that for all u ∈ V (Di

n) the image ϕ(u) lies in
Di
n. This implies that the restriction of ϕ to each V (Di

n) is a retraction of Di
n to itself.

Since each Di
n is isomorphic to Dn, a core by induction, each Di

n is also a core. Thus,
the restriction of ϕ to each V (Di

n), for i ∈ [m], is the identity. Therefore, we’ve finally
established that Γ = V (Dn+1) and hence by induction reached the conclusion that the
Dn’s are cores.

Hence we have in fact constructed highly chromatic cores without short cycles. It
would be of interest to construct graphs with the same properties. In the next section
we give a nod to the elegant construction of highly chromatic triangle-free graphs by
Mycielski, see e.g. [9], by constructing analogous digraphs in a similar manner. We note
that the Mycielski Graph with chromatic number 4, M4, is an example of a graph core
without triangles. The truth of this fact comes to light via the minimality of M4 proved
in [3].

4 Highly chromatic digraphs with digirth three

We conclude this paper with a construction of digraphs with arbitrarily large chromatic
number and digirth at least three (i.e. without bi-cycles). Although it is not as general
(it does not work for larger digirth) as the construction appearing in [13], we decided
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to include it for it’s simplicity and the fact that it is a directed analogue of Mycielski’s
construction. We also ask the question: does there exist a construction of digraphs
retaining the desired properties with less vertices or arcs? It should be noted that in the
case where the chromatic number is 3, non-isomorphic examples with the same number
of vertices and arcs as the construction which follows appear in [6].

The construction will be inductive and similar to the construction appearing in [13].
We will again start with the directed three cycle and call it A2. We now suppose An has
chromatic number n and digirth 3 and construct An+1 from An. We will let P1 be the path

of length one with V (P1) = {p1, p2} and A(P1) = {p1p2}. Let V (An+1) = V (An ◦
→
P 1)

⋃
v

and

A(An+1) = A(An ◦
→
P 1)

⋃
{v(a, p1) | a ∈ V (An)}

⋃
{(a, p2)v | a ∈ V (An)}.

We first show that the digirth of An+1 is three. The following lemma will be useful in
attaining that goal.

Lemma 21. If M2 is an acyclic digraph then the projection πM1 : V (H) → V (M1) is a
homomorphism for every subdigraph H of M1 ◦M2.

Proof. Let (u, v)(x, y) be an arc of H. If u 6= x then ux = πM1((u, v))πM1((x, y)) is
an arc of M1. Thus we assume that u = x which implies that vy is an arc of M2 and
πM1((u, v)) = πM1((x, y)) = u. Since the subdigraph of M1 ◦M2 induced by the vertex
set Fu = {(u,w)|w ∈ V (M2)} is isomorphic to M2, the set π−1

M1
(u) is acyclic in H for all

u ∈ V (M1). Therefore the projection πM1 is a homomorphism.

We will show that χ(An+1) = n+1 and An+1 has no digons. We proceed by induction.
We see from the construction that the vertex v is not a part of any bi-cycles. Thus
it suffices to show that

→
g (An ◦ P1) = 3. Indeed Lemma 21 gives the homomorphism

πAn : V (An ◦ P1) → V (An) and thus
→
g (An ◦ P1) > 3. Therefore

→
g (An ◦ P1) = 3 as it is

easy to see from the construction that An ◦P1 contains a number of directed three cycles
because, by induction,

→
g (An) = 3.

It is clear that χ(Hn+1) > χ(An) = n since An is isomorphic to a subdigraph of An+1.

If An+1 is n-chromatic, then there exists an acyclic homomorphism σ : V (An+1)→ V (
↔
Kn).

To set up the contradiction we are about to derive, fix a σ ‘color’ α ∈ V (
↔
Kn) and suppose

σ(v) = α. Notice that v is in a cycle with the vertices of the subdigraph induced by
{a}× V (P1) ∀a ∈ V (An), which implies that there exists a vertex ua ∈ {a}× V (P1) such
that σ(ua) 6= α. The subdigraph Λ of An+1 induced by {ua | a ∈ V (An)} is isomorphic to
An. This contradicts the fact that An has chromatic number n since σ, now seen to avoid

α on V (Λ), effectively maps V (Λ) to V (
↔
Kn−1) acyclically. Thus χ(An+1) > n+1. We now

show that χ(An+1) = n+1 by giving an acyclic homomorphism from An+1 to
↔
Kn+1. Let ζ

be an acyclic homomorphism from An to
↔
Kn. Define a mapping φ : V (An+1)→ V (

↔
Kn+1)

by φ((a, p)) = ζ(a) and φ(v) = n+ 1.
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As the target digraph of φ is complete, to show that φ is an acyclic homomorphism,
it will suffice to show that each fiber of φ is acyclic. Since φ−1(n + 1) = {v} it suffices
to show that the restriction of φ to An ◦ P1 is an acyclic homomorphism. Notice that
φ|An◦P1 = ζ ◦ πAn . As ζ and πAn are acyclic homomorphisms, so too is their composition
φ|An◦P1 . Therefore φ is an acyclic homomorphism which finally implies that χ(An+1) =
n+ 1.
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