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kryba@amu.edu.pl

Submitted: Apr 14, 2015; Accepted: Mar 29, 2017; Published: Apr 13, 2017

Mathematics Subject Classifications: 05C80, 60C05

Abstract

We present new results concerning threshold functions for a wide family of ran-
dom intersection graphs. To this end we improve and generalize the coupling method
introduced for random intersection graphs so that it may be used for a wider range
of parameters. Using the new approach we are able to tighten the best known results
concerning random intersection graphs and establish threshold functions for some
monotone properties of inhomogeneous random intersection graphs. Considered
properties are: k-connectivity, matching containment and hamiltonicity.

1 Introduction

Since their introduction by Karoński, Scheinerman, and Singer–Cohen [14] random in-
tersection graphs have been attracting attention due to their interesting structure and
wide applications. The random intersection graph model appears in problems concerning
for example “gate matrix layout” for VLSI design (see e.g. [14]), cluster analysis and
classification (see e.g. [12]), analysis of complex networks (see e.g. [2, 9]), secure wire-
less networks (see e.g. [4]) or epidemics ([8]). Several generalizations of the model have
been proposed, mainly in order to adapt it to use for specific purposes. In this paper we
consider the G (n,m, p) model studied for example in [1, 3, 7, 15]. Alternative ways of
generalizing the model defined in [14] are given for example in [9] and [12].

In a random intersection graph G (n,m, p) there is a set of n vertices V = {v1, . . . , vn},
an auxiliary set of m = m(n) features W = {w1, . . . , wm(n)}, and a vector p = p(n) =
(p1, . . . , pm(n)) such that pi ∈ (0, 1), for each 1 6 i 6 m. To each vertex v ∈ V we
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attribute a set of its features W (v) ⊆ W such that for each i, 1 6 i 6 m, wi ∈ W (v) with
probability pi independently of all other features and vertices. If w ∈ W (v) then we say
that v has chosen w. Any two vertices v, v′ ∈ V are connected by an edge in G (n,m, p)
if W (v) and W (v′) intersect. If p(n) = (p, . . . , p) for some p ∈ (0, 1) then G (n,m, p) is a
random intersection graph defined in [14]. We denote it by G (n,m, p).

The random intersection graph model is very flexible and its properties change a lot if
we alter the parameters. For example G (n,m, p) for some ranges of parameters behaves
similarly to a random graph with independent edges (see [11, 17]) but in some cases it
exhibit large dependencies between edge appearance (see for example [14, 19]). It was
proved in [18] that in both cases G (n,m, p) may be coupled with a random graph with
independent edges so that with probability tending to 1 as n→∞, a graph with indepen-
dent edges is a subgraph of G (n,m, p). It is also explained how this coupling may be used
to obtain sharp results on threshold functions for G (n,m, p). Such properties as connec-
tivity, a Hamilton cycle containment or a matching containment are given as examples.
In general, the coupling technique provides a very elegant method to obtain bounds on
threshold functions for random intersection graphs for a large class of properties.

The result presented in [18] is not tight for some values of n, m and p. Therefore
it cannot be generalized in a straightforward manner to G (n,m, p) with arbitrary p(n).
In particular the method does not give sharp results for np tending to a constant. In
this article we modify and extend the techniques used in [18] in order to overcome these
constraints. First of all, to get the general result of this paper, we couple G (n,m, p) with
an auxiliary random graph which does not have fully independent edges. Therefore we
need to prove some additional facts about the auxiliary random graph model. Moreover
we need tight bounds on the minimum degree threshold function for G (n,m, p). Due to
edge dependencies, estimation of moments of the random variable counting vertices with
a given degree in G (n,m, p) is complicated. Therefore we suggest a different approach to
resolve the problem. We divide G (n,m, p) into subgraphs so that the solution of a coupon
collector problem combined with the method of moments provide the answer. The new
approach to the coupling method allows us to obtain better results on threshold functions
for G (n,m, p) and through those means resolve open problems unresolved in [18].

In conclusion, we provide a general method to establish bounds on threshold functions
for many properties for G (n,m, p). By means of the method we are able to obtain sharp
thresholds (for definition of a sharp threshold see Section 1.6 in [13]) for k–connectivity,
perfect matching containment and hamiltonicity for the general model. Last but not least
we considerably improve known results concerning G (n,m, p).

All limits in the paper are taken as n → ∞. Throughout this paper we use the
standard asymptotic notation o(·), O(·), Ω(·), Θ(·), ∼, �, and � defined as in [13].
By Bin (n, p) and Po (λ) we denote the binomial distribution with parameters n, p and
the Poisson distribution with expected value λ, respectively. We also use the phrase
“with high probability” to say with probability tending to one as n tends to infinity. All
inequalities hold for n large enough. If it does not influence the reasoning, for clarity we
omit b·c and d·e.
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2 Main Results

In the article we compare random intersection graph G (n,m, p) with a union of a random
graph with independent edges G2(n, p̂2) and a random graph G3(n, p̂3) constructed on the
basis of a random 3–uniform hypergraph with independent hyperedges. Generally, for any
p̂ = p̂(n) ∈ [0, 1] and i = 2, . . . , n, let Hi(n, p̂) be an i–uniform hypergraph with the vertex
set V in which each i–element subset of V is added to the hyperedge set independently
with probability p̂. Gi(n, p̂) is a graph with the vertex set V and {v, v′}, v, v′ ∈ V , is an
edge in Gi(n, p̂) if there exists a hyperedge in Hi(n, p̂) containing v and v′.

Before we present the main results of this paper, we introduce some additional no-
tations which will be used repeatedly. Then we will give an intuitive description of the
introduced quantities. This might help understand the main ideas behind the theorems.

Let p = (p1, . . . , pm) be such that pi ∈ (0, 1), for all 1 6 i 6 m. We will use the
following quantities

S1 =
m∑
i=1

npi
(
1− (1− pi)n−1

)
;

S2 =
m∑
i=1

npi

(
1− 1− (1− 2pi)

n

2npi

)
;

S3 =
m∑
i=1

npi

(
1− (1− 2pi)

n

2npi
− (1− pi)n−1

)
;

S1,t =
m∑
i=1

t

(
n

t

)
pti(1− pi)n−t, for t = 2, 3, . . . , n.

(2.1)

By definition, the edge set of G (n,m, p) is a union of edge sets of m cliques. The i–th
clique, 1 6 i 6 m, consists of all the vertices which have chosen feature wi. We will say
that these cliques are forming G (n,m, p). The size of the i–th clique forming G (n,m, p),
1 6 i 6 m, has binomial distribution Bin (n, pi). Moreover cliques (not only their sizes)
are independent. Replacing edge sets of cliques forming G (n,m, p) by sets of (to some
extent independent) edges will be the key idea used in the coupling constructed in the
proof of Theorem 2.1.

The quantity S1 is the expected value of the sum of sizes of these cliques forming
G (n,m, p) which contain at least two vertices. This value, among others, will be crucial
in determining the number of isolated vertices in G (n,m, p). This is because a vertex
in G (n,m, p) is isolated if and only if it is not contained in any of the cliques of size at
least 2. S2 is the expected value of the sum of sizes of all cliques forming G (n,m, p) minus
the number of cliques of odd size. S3 is the expected value of the number of cliques of
odd size with at least 3 vertices (i.e. the number of cliques of odd size, excluding cliques
of size 1). S1, S2 and S3 are, among others, present in the statement of Theorem 2.1.
In this theorem properties of G (n,m, p) are compared with properties of two other ran-
dom graphs whose edge probabilities depend on S1, S2 and S3. The first graph used in
Theorem 2.1 is a random graph with approximately S2/2 independent edges. The second
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one is G2 (n, p̂2) ∪ G3 (n, p̂3) where G2 (n, p̂2) has approximately (S1 − 3S3)/2 edges and
G3 (n, p̂3) has approximately 3S3 edges. The last quantity defined in (2.1) is S1,t. It is
the expected value of the sum of sizes of these cliques forming G (n,m, p) which contain
exactly t vertices. Moreover S1,t/t is the number of features which were chosen by ex-
actly t vertices. Values S1,t, t > 2, are mainly used in studying the minimum degree of
G (n,m, p). For a more formal description of the relations between S1, S2, S3, S1,t and
the sizes of cliques forming G (n,m, p), we refer the reader to (4.5).

In what follows we consider monotone graph properties of random graphs. For the
family G of all graphs with the vertex set V , we call A ⊆ G a property if it is closed under
isomorphism. Moreover A is increasing if G ∈ A implies G′ ∈ A for all G′ ∈ G such
that E(G) ⊆ E(G′). Examples of increasing properties are: k–connectivity, containing a
perfect matching and containing a Hamilton cycle. The following theorem is an extension
of the result obtained in [18].

Theorem 2.1. Let p = (p1, . . . , pm) be such that pi ∈ (0, 1), for all 1 6 i 6 m and S1,
S2, and S3 be given by (2.1). For a function ω tending to infinity let

p̂ =
S2 − ω

√
S2 − 2S2

2n
−2

2
(
n
2

) ;

p̂2 =


S1−3S3−ω

√
S1−2S2

1n
−2

2(n2)
, for S3 �

√
S1 and ω � S3/

√
S1;

S1−ω
√
S1−2S2

1n
−2

2(n2)
, for S3 = O(

√
S1);

p̂3 =


S3−ω

√
S1−6S2

3n
−3

(n3)
, for S3 �

√
S1 and ω � S3/

√
S1;

0, for S3 = O(
√
S1).

(2.2)

If S1 →∞ and S1 = o (n2) then for any increasing property A.

lim inf
n→∞

Pr {G2 (n, p̂) ∈ A} 6 lim sup
n→∞

Pr {G (n,m, p) ∈ A} , (2.3)

lim inf
n→∞

Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ A} 6 lim sup
n→∞

Pr {G (n,m, p) ∈ A} . (2.4)

Remark 2.1. Assumption S1 → ∞ is natural since for S1 = o(1) with high probability
G (n,m, p) is an empty graph.

Remark 2.2. The expected number of edges in G3 (n, p̂3) is asymptotically equal to 3 ·S3.
If S3 = O(

√
S1) then by Markov’s inequality with high probability the number of edges

in G3 (n, p̂3) is at most ω
√
S1 (for any ω → ∞). Thus S2 = S1 − S3 = S1 + O(ω

√
S1)

and the bound provided by (2.3) is as good as the one taking into consideration the edges
from G3 (n, p̂3).

Remark 2.3. The proof of Theorem 2.1 might be simply rewritten (see (4.12)) for S1 =
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Ω(n2) with

p̂ = 1− exp

(
−S2 − ω

√
S2

2
(
n
2

) )
;

p̂2 =


1− exp

(
−S1−3S3−ω

√
S1

2(n2)

)
, for S3 �

√
S1 and ω � S3/

√
S1;

1− exp

(
−S1−ω

√
S1

2(n2)

)
, for S3 = O(

√
S1);

p̂3 =

1− exp

(
−S3−ω

√
S1

(n3)

)
, for S3 �

√
S1 and ω � S3/

√
S1;

0, for S3 = O(
√
S1).

Denote by Ck, PM and HC the following graph properties: a graph is k–connected,
has a perfect matching and has a Hamilton cycle, respectively. We will use Theorem 2.1
to establish threshold functions for Ck, PM and HC in G (n,m, p). By Ck we denote the
vertex connectivity. From the proof it follows that the threshold function for the edge
connectivity is the same as this for Ck.

For any sequence cn attaining a limit (possibly ±∞) we write

f(cn) =


0 for cn → −∞;

e−e
−c

for cn → c ∈ (−∞,∞);

1 for cn →∞.
(2.5)

Theorem 2.2. Let max16i6m pi = o((lnn)−1) and S1 and S1,2 be given by (2.1).

(i) If S1 = n(lnn+ cn), where cn attains a limit (possibly ±∞), then

lim
n→∞

Pr {G (n,m, p) ∈ C1} = f(cn),

where f(cn) is given by (2.5).

(ii) Let k be a positive integer and an = S1,2

S1
. If

S1 = n(lnn+ (k − 1) ln lnn+ cn),

then

lim
n→∞

Pr {G (n,m, p) ∈ Ck} =

{
0 for cn → −∞ and lim infn→∞ an = a ∈ (0, 1];

1 for cn →∞.

Assumption max16i6m pi = o((lnn)−1) is necessary to avoid large cliques formed by
vertices which chose the same feature. In the case max16i6m pi = Ω((lnn)−1), the expected
value of the number of isolated vertices depends more on other properties of the sequence
p̄ = p̄(n). The problem is explained in more detail in Section 5. Moreover in the case
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lim infn→∞ an = 0 the value Pr {G (n,m, p) ∈ Ck} depends also on some properties of the
sequence p̄ = p̄(n). The problem is studied in more detail in the case p̄ = (p, . . . , p) (see
Theorems 2.5 and 2.6 and their proofs).

A straightforward corollary of Theorem 2.2(i) is that for S1 = n(lnn+ cn), cn → −∞
and any k = 1, 2, . . . , n

lim
n→∞

Pr {G (n,m, p) ∈ Ck} = 0 and lim
n→∞

Pr {G (n,m, p) ∈ HC} = 0.

Theorem 2.3. Let max16i6m pi = o((lnn)−1) and S1 be given by (2.1).
If S1 = n(lnn+ cn), where cn attains a limit (possibly ±∞), then

lim
n→∞

Pr {G(2n,m, p(2n)) ∈ PM} = f(c2n),

where f(·) is given by (2.5).

Theorem 2.4. Let max16i6m pi = o((lnn)−1), S1 and S1,2 be given by (2.1) and an = S1,2

S1
.

If S1 = n(lnn+ ln lnn+ cn), then

lim
n→∞

Pr {G (n,m, p) ∈ HC} =

{
0 for cn → −∞ and lim infn→∞ an = a ∈ (0, 1];

1 for cn →∞.

Simple corollaries of Theorems 2.2–2.4 give threshold functions for properties inG (n,m, p),
a special case of G (n,m, p).

Corollary 2.1. Let m� ln2 n and p(1− (1− p)n−1) = (lnn+ cn)/m, where cn attains a
limit (possibly ±∞). Then

lim
n→∞

Pr {G (n,m, p) ∈ C1} = f(cn)

and
lim
n→∞

Pr {G(2n,m, p) ∈ PM} = f(c2n),

where f(·) is given by (2.5).

In particular we may state the following extension of the result from [20].

Corollary 2.2. Let bn be a sequence, β and γ be constants such that
βγ(1− e−γ) = 1. If

m = βn lnn and p =
γ

n

(
1 +

bn
lnn

)
,

where bn attains a limit (possibly ±∞). Then

lim
n→∞

Pr {G (n,m, p) ∈ C1} = f

((
1 +

e−γγ

1− e−γ

)
bn

)
and

lim
n→∞

Pr {G(2n,m, p(2n)) ∈ PM} = f

((
1 +

e−γγ

1− e−γ

)
b2n

)
,

where f(·) is given by (2.5).
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With some additional effort one may show the following results for G (n,m, p).

Theorem 2.5. Let m� ln2 n and

p(1− (1− p)n−1) =
lnn+ ln

(
max

{
1,
(
np lnn
enp−1

)})
+ cn

m
. (2.6)

Then

lim
n→∞

Pr {G (n,m, p) ∈ HC} =

{
0 for cn → −∞;

1 for cn →∞.

Theorem 2.6. Let m� ln2 n, k be a positive integer, and

an = (np)k−1

((
lnn

enp − 1

)k−1
+

lnn

enp − 1

)
.

If

p(1− (1− p)n−1) =
lnn+ ln (max {1, an}) + cn

m
,

then

lim
n→∞

Pr {G (n,m, p) ∈ Ck} =

{
0 for cn → −∞;

1 for cn →∞.

One of the questions posed in [18] is concerned with the range of m = m(n) for which
the threshold function for Ck in G (n,m, p) is the same as the one for δ(G (n,m, p)) > 1
(where by δ(G) we denote the minimum degree of graphG). Another question is concerned
with the range of m = m(n) for which the threshold function for Ck in G (n,m, p) is the
same as the one for Ck in G2 (n, p̂) with p̂ = mp2. Theorem 2.6 gives a final answer to
these questions.

Corollary 2.3. Let k be a positive integer. If

p(1− (1− p)n−1) =

{
lnn+cn
m

, for ln2 n� m� n lnn
ln lnn

;
lnn+(k−1) ln lnn+cn

m
, for m = Ω(n lnn);

then

lim
n→∞

Pr {G (n,m, p) ∈ Ck} =

{
0 for cn → −∞;

1 for cn →∞.

3 Road map of the proofs

The remaining part of the article is organised as follows. Section 4 is devoted to a
construction of a coupling of G (n,m, p) and G2 (n, p̂2) ∪ G3 (n, p̂3). Later in this section
the coupling is used to prove Theorem 2.1. Moreover in the subsequent sections the
coupling is applied in the proofs of other theorems. In Section 5 we find a threshold
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function for the minimum degree at least k in G (n,m, p). To this end we construct a
coupling of a construction of G (n,m, p) and a coupon collector process. Section 6 is
devoted to presenting properties of G2 (n, p̂2) ∪G3 (n, p̂3). Results gathered in Sections 5
and 6 are the building blocks of the proofs of Theorems 2.2–2.6. In Section 7 we complete
the proofs of Theorems 2.2–2.6.

The article contains numerous lemmas and partial results which lead to the proofs
of the main results. We will now shortly explain which lemmas are crucial in proving
which theorems. The proofs of all Theorems 2.2–2.6 consist of two parts. The first
part establishes an upper bound on the value limn→∞ Pr {G (n,m, p) ∈ A}. The second
part gives a lower bound on limn→∞ Pr {G (n,m, p) ∈ A} (for A being Ck, PM, or HC –
depending on a theorem).

All upper bounds follow by the fact that each of the considered properties impose a
minimum degree condition. Namely, a graph in order to be k–connected has to have the
minimum degree at least k. Moreover, a perfect matching is only possible in a graph
with no isolated vertices (the minimum degree at least 1) and a Hamilton cycle requires
the minimum degree at least 2. Therefore the upper bounds follow by Lemmas 5.1, 5.2
and 5.3 obtained in Section 5.

Establishing lower bounds requires more work, as the minimum degree condition is
necessary but not sufficient. The first step towards proving this part of theorems is an
analysis of the structure of G2 (n, p̂2) ∪G3 (n, p̂3).

As we want to use Theorem 2.1 to show Theorems 2.2, 2.3, and 2.4, we need to find a
lower bond on the value limn→∞ Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ A} for A being Ck, PM, and
HC, respectively. A large part of Section 6 is devoted to establishing these lower bounds.
In particular, Lemma 6.1 gives some useful, basic properties of G2 (n, p̂2) ∪ G3 (n, p̂3)
which are applied in the proofs of almost all the remaining lemmas of this section, i.e.
also in the proofs of all Theorems 2.2–2.6. These properties, among others, are used
to show lower bounds on limn→∞ Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ A}. These lower bounds
are stated in Lemmas 6.4 and 6.6. They follow by Lemma 6.1, Lemma 6.2, and an
analysis of some couplings discussed in Lemmas 6.3 and 6.5. Lemmas 6.3 and 6.5 provide
properties of graph G(n) for which there exists a coupling such that with high probability
G2 (n, p̂2) ∪G3 (n, p̂3) ⊆ G(n).

Obtaining lower bounds needed in Theorems 2.5 and 2.6 is more complex. In this case
the proofs are based on Lemmas 6.3 and 6.5, some additional properties of G (n,m, p),
and properties of the coupling established in the proof of Theorem 2.1.

4 Coupling

In this section we present a proof of Theorem 2.1. In the proof we use auxiliary random
graph models G∗i (n,M), i = 2, 3, . . . , n, in which M is a random variable with non–
negative integer values. For i = 2, . . . , n, G∗i (n,M) is constructed on the basis of a
random hypergraph H∗i(n,M). H∗i(n,M) is a random hypergraph with the vertex set V
in which a hyperedge set is constructed by sampling M times with repetition elements
from the set of all i–element subsets of V (all sets which are chosen several times are added
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only once to the hyperedge set). G∗i (n,M) is a graph with the vertex set V in which
v, v′ ∈ V are connected by an edge if {v, v′} is contained in at least one of the hyperedges
of H∗i(n,M). For simplicity of notation, if M equals a constant t with probability one
or has Poisson distribution, we write G∗i (n, t) or G∗i (n,Po (·)), respectively. Recall that
similarly Gi(n, p̂) is constructed on the basis of Hi(n, p̂) – a hypergraph with independent
hyperedges (see definitions at the beginning of Section 2).

In this article we treat random graphs as random variables. By a coupling (G1,G2)
of two random variables G1 and G2 we mean a choice of a probability space in which we
define a random vector (G′1,G′2) such that G′1 and G′2 have the same distributions as G1

and G2, respectively. For simplicity of notation we will not differentiate between (G′1,G′2)
and (G1,G2). For two random graphs G1 and G2 we write

G1 � G2

if there exists a coupling (G1,G2), such that in the probability space of the coupling G1

is a subgraph of G2 with probability 1. Moreover, we write

G1 = G2,

if G1 and G2 have the same probability distribution (equivalently there exists a coupling
(G1,G2) such that G1 = G2 with probability one). For two sequences of random graphs
G1 = G1(n) and G2 = G2(n) we write

G1 �1−o(1) G2,

if there exists a sequence of couplings (G1(n),G2(n)), such that in the probability space
of the coupling G1(n) is a subgraph of G2(n) with probability 1− o(1), respectively.

Note that, for any λ, in H∗i(n,Po (λ)) each hyperedge appears independently with
probability 1− exp(−λ/

(
n
i

)
). Thus

G∗i (n,Po (λ)) = Gi

(
n, 1− exp

(
− λ(

n
i

))) . (4.1)

We gather here a few useful facts concerning couplings of random graphs. For proofs
see [17, 18].

Proposition 4.1. Let Mn be a sequence of random variables and let tn be a sequence of
positive integers.

(i) If Pr {Mn > tn} = o(1) then G∗i (n,Mn) �1−o(1) G∗i (n, tn) .
(ii) If Pr {Mn 6 tn} = o(1) then G∗i (n, tn) �1−o(1) G∗i (n,Mn) .

Proposition 4.2. Let (Gi)i=1,...,m and (G′i)i=1,...,m be sequences of independent random
graphs. If

Gi � G′i, for all i = 1, . . . ,m,

then
m⋃
i=1

Gi �
m⋃
i=1

G′i.
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Proposition 4.3. Let G1 = G1(n), G2 = G2(n), and G3 = G3(n) be random graphs.
If

G1 �1−o(1) G2 and G2 �1−o(1) G3

then
G1 �1−o(1) G3.

Proposition 4.4. Let G1 = G1(n) and G2 = G2(n) be two random graphs, such that

G1 �1−o(1) G2. (4.2)

Then for any increasing property A

lim inf
n→∞

Pr {G1(n) ∈ A} 6 lim sup
n→∞

Pr {G2(n) ∈ A} .

Proof. Define event E := {G1 ⊆ G2} on a probability space of a coupling (G1,G2) existing
by (4.2). Then for any increasing property A

Pr {G2 ∈ A} > Pr {G2 ∈ A|E}Pr{E}
> Pr {G1 ∈ A|E}Pr{E}
= Pr {{G1 ∈ A} ∩ E}
= Pr {G1 ∈ A}+ Pr {E} − Pr {{G1 ∈ A} ∪ E}
> Pr {G1 ∈ A}+ Pr {E} − 1

= Pr {G1 ∈ A}+ o(1).

The result follows by taking n→∞.

In the proof of Theorem 2.1 we will use notations introduced in (2.1). First, we give
a formal explanation of the relations between S1, S2, S3, and S1,t and the sizes of cliques
forming G (n,m, p). In addition we will give some useful simple relations between S1, S2,
S3, and S1,t.

Let wi ∈ W , 1 6 i 6 m. Denote by Vi the set of vertices which have chosen feature
wi (i.e. Vi = {v ∈ V : wi ∈ W (v)}). Let

V ′i =

{
Vi for |Vi| > 2;

∅ otherwise.
(4.3)

Moreover, for each i, 1 6 i 6 m, let

Xi = |Vi|;
Yi = |V ′i |; (4.4)

Zi = I{Yi is odd},
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where IA is an indicator random variable of the event A. Note that Xi, 1 6 i 6 m,
are independent random variables with the binomial distributions Bin (n, pi), 1 6 i 6 m.
Therefore by (2.1)

S1 = E
m∑
i=1

(Xi − I{Xi=1}) = E
m∑
i=1

Yi;

S2 = E
m∑
i=1

(Xi − I{Xi is odd}) = E
m∑
i=1

(Yi − I{Yi is odd}) = E
m∑
i=1

(Yi − Zi);

S3 = E
m∑
i=1

(I{Xi is odd} − I{Xi=1}) = E
m∑
i=1

I{Yi is odd} = E
m∑
i=1

Zi;

S1,t = E
m∑
i=1

XiI{Xi=t} = E
m∑
i=1

YiI{Yi=t} = E
m∑
i=1

t · I{Xi=t}, for t = 2, 3, . . . , n.

(4.5)

Therefore

S1 =
n∑
t=2

S1,t and S2 = S1 − S3. (4.6)

In addition a calculation shows that, for large n, EYi > 6EZi (see Appendix A). Therefore

6S3 6 S1 and
5

6
S1 6 S2 6 S1. (4.7)

Proof of Theorem 2.1. First we will show (2.4) in the case where S3 �
√
S1. Then we

will explain shortly how to adjust the proof to prove Theorem 2.1 in the remaining cases.
Recall that the definition of V ′i is given by (4.3). For each i, let G[V ′i ] be a graph with

the vertex set V and edge set containing these edges from G (n,m, p) which have both
ends in V ′i (i.e. its edges form a clique with the vertex set V ′i ). In the proof we will use
the fact that

⋃m
i=1 G[V ′i ] = G (n,m, p). First, for each i we will construct a coupling of

G[V ′i ] with an auxiliary random graph and then we will couple a union of the auxiliary
random graphs with G2 (n, p̂2) ∪G3 (n, p̂3).

For each i, 1 6 i 6 m, we construct independently a coupling of G∗2
(
n, Yi−3Zi

2

)
∪

G∗3 (n, Zi) and G[V ′i ]. Given Yi = yi and Zi = zi, for each i independently, we generate
instances of G∗2

(
n, yi−3zi

2

)
and G∗3 (n, zi). Let Y ′i = y′i be the number of non-isolated

vertices in the constructed instance of G∗2
(
n, yi−3zi

2

)
∪ G∗3 (n, zi). By definition y′i 6 yi.

Set now V ′i to be the union of the set of non–isolated vertices of the constructed instance
of G∗2

(
n, yi−3zi

2

)
∪ G∗3 (n, zi) and yi − y′i vertices chosen uniformly at random from the

remaining vertices. This coupling implies

G∗2
(
n,
Yi − 3Zi

2

)
∪G∗3 (n, Zi) � G[V ′i ]. (4.8)

Now let

M2 =
∑

16i6m

Yi − 3Zi
2

and M3 =
∑

16i6m

Zi.
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Graphs G∗2
(
n, Yi−3Zi

2

)
∪ G∗3 (n, Zi), 1 6 i 6 m, are independent and G[V ′i ], 1 6 i 6 m,

are independent. Therefore by Proposition 4.2, the definition of G (n,m, p), and the
definitions of G∗2 (n, ·) and G∗3 (n, ·) we have

G∗2 (n,M2) ∪G∗3 (n,M3) =
⋃

16i6m

(
G∗2

(
n, Yi−3Zi

2

)
∪G∗3 (n, Zi)

)
�

⋃
16i6m

G[V ′i ]

= G (n,m, p) .

(4.9)

By (4.5)

EM2 =
S1 − 3S3

2
and EM3 = S3.

We will prove that M2 and M3 with high probability are concentrated around their ex-
pected values. Since for each i, 1 6 i 6 m, Xi is a random variable with the binomial
distribution Bin (n, pi) and E(XiI{Xi=1}) = EI{Xi=1} we have

Var
m∑
i=1

Yi =
m∑
i=1

Var
(
Xi − I{Xi=1}

)
=

m∑
i=1

(
VarXi + VarI{Xi=1} − 2(E(XiI{Xi=1})− EXiEI{Xi=1})

)
6

m∑
i=1

(
EXi + EI{Xi=1} − 2EI{Xi=1} + 2EXiEI{Xi=1}

)
=

m∑
i=1

(
EXi − EI{Xi=1} + 2EXiEI{Xi=1}

)
=

m∑
i=1

(
EYi + 2(npi)

2(1− pi)n−1
)

6
m∑
i=1

(
EYi + 3(npi − npi(1− pi)n−1)

)
= 4S1.

In the penultimate line we use the fact that, for large n, function (2nx + 3)(1− x)n−1 is
decreasing for x ∈ [0, 1). Similarly

Var
m∑
i=1

Zi =
m∑
i=1

Var
(
I{Xiodd} − I{Xi=1}

)
=

m∑
i=1

(
VarI{Xi odd} + VarI{Xi=1} − 2(E(I{Xi odd}I{Xi=1})− EI{Xi odd}EI{Xi=1})

)
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6
m∑
i=1

(
EI{Xi odd} + EI{Xi=1} − 2EI{Xi=1} + 2EI{Xi odd}EI{Xi=1}

)
=

m∑
i=1

(
EI{Xi odd} − EI{Xi=1} + 2EI{Xi odd}EI{Xi=1}

)
6

m∑
i=1

(
EXi − EI{Xi=1} + 2EXiEI{Xi=1}

)
6 4S1.

Therefore by Chebyshev’s inequality, for any function ω′ = ω′(n) tending to infinity

Pr

{∣∣∣∣∣
m∑
i=1

Yi − S1

∣∣∣∣∣ > ω′
√
S1

}
6

4

(ω′)2
= o(1), (4.10)

Pr

{∣∣∣∣∣
m∑
i=1

Zi − S3

∣∣∣∣∣ > ω′
√
S1

}
6

4

(ω′)2
= o(1).

Thus with high probability for 1� ω′ � S3/
√
S1

M2 >
S1 − 3S3 − 4ω′

√
S1

2
,

M3 > S3 − ω′
√
S1.

Note that (4.7) and ω′ � S3/
√
S1 imply that r.h.s. is positive for large n.

Therefore by Proposition 4.1 and (4.9)

G∗2
(
n,
S1 − 3S3 − 4ω′

√
S1

2

)
∪G∗3

(
n, S3 − ω′

√
S1

)
�(∗)

1−o(1) G∗2 (n,M2) ∪G∗3 (n,M3) � G (n,m, p) . (4.11)

We may assume that in the above coupling G∗2
(
n, S1−3S3−4ω′

√
S1

2

)
and G∗3

(
n, S3 − ω′

√
S1

)
are independent. The main reason for this is the fact that even though M2 and M3 are
dependent (i.e. also G∗2 (n,M2) and G∗3 (n,M3) are dependent), the choices of hyper-
edges of H∗i(n, ·) (related to G∗i (n, ·)) in distinct draws are independent. We describe
the coupling (∗) below.

Set m−2 = S1−3S3−4ω′
√
S1

2
and m−3 = S3 − ω′

√
S1. We construct the coupling (*) from

(4.11) in the following way. Assume we have independent instances of H∗2(n,m−2 ) and
H∗3(n,m−3 ) (i.e. G∗2

(
n,m−2

)
and G∗3

(
n,m−3

)
). Moreover let M2 = m2 and M3 = m3.

– If m2 > m−2 (or m3 > m−3 resp.) then we perform m2 − m−2 (or m3 − m−3 ) addi-
tional draws and add hyperedges to H∗2(n,m−2 ) (H∗3(n,m−3 ) resp.) to get an instance of
G∗2 (n,M2) (G∗3 (n,M3) resp.) with M2 = m2 (M3 = m3 resp.).
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– If m2 6 m−2 (m3 6 m−3 resp.) then we delete from H∗2(n,m−2 ) (H∗3(n,m−3 ) resp.)
hyperedges created by the last draws to get exactly mi, i = 2, 3, draws.

Let M ′
2 and M ′

3 be independent random variables with the Poisson distributions

Po

(
S1 − 3S3 − 5ω′

√
S1

2

)
and Po

(
S3 − 2ω′

√
S1

)
, respectively.

Then by a sharp concentration of the Poisson distribution

Pr

{
M ′

2 6
S1 − 3S3 − 4ω′

√
S1

2

}
= 1− o(1) and

Pr
{
M ′

3 6 S3 − ω′
√
S1

}
= 1− o(1).

Therefore by Proposition 4.1 and (4.1)

G2

n, 1− e
(
−S1−3S3−5ω′

√
S1

2(n2)

) ∪G3

n, 1− e
(
−S3−2ω′

√
S1

(n3)

)
= G∗2 (n,M ′

2) ∪G∗3 (n,M ′
3)

�1−o(1) G∗2
(
n,
S1 − 3S3 − 4ω′

√
S1

2

)
∪G∗3

(
n, S3 − ω′

√
S1

)
�1−o(1) G (n,m, p) .

(4.12)

For x > 0 we have 1− e−x > x− x2

2
, therefore

p̂2 =
S1 − 3S3 − 5ω′

√
S1 − 2S2

1

n2

2
(
n
2

) 6 1− e

(
−S1−3S3−5ω′

√
S1

2(n2)

)
;

p̂3 6
S3 − 2ω′

√
S1 − 6S2

3

n3(
n
3

) 6 1− e

(
−S3−2ω′

√
S1

(n3)

)
.

Therefore using standard couplings of G2 (n, ·) and H3(n, ·) finally we get

G2 (n, p̂2) ∪G3 (n, p̂3)

� G2

n, 1− e
(
−S1−3S3−5ω′

√
S1

2(n2)

) ∪G3

n, 1− e
(
−S3−2ω′

√
S1

(n3)

)
= G∗2

(
n,Po

(
S1 − 3S3 − 5ω′

√
S1

2

))
∪G∗3

(
n,Po

(
S3 − 2ω′

√
S1

))
�1−o(1) G (n,m, p) .

(4.13)

The result follows by Propositions 4.3 and 4.4.
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An analogous reasoning gives (2.3) and (2.4) in the case S3 = O(
√
S1). One need to

replace (4.8) by

G∗2
(
n,
Yi − Zi

2

)
� G[V ′i ] and G∗2

(
n,
Yi − 3Zi

2

)
� G[V ′i ],

respectively, and modify the proof accordingly.

5 Vertex degrees in G (n,m, p)

For any graph G denote by δ(G) the minimum vertex degree in G.

Lemma 5.1. Let cn be a sequence of real numbers such that cn attains a limit (possibly
±∞), p̄ = (p1, . . . , pm) such that max16i6m pi = o((lnn)−1), and S1 be given by (2.1).
If

S1 = n(lnn+ cn)

then
lim
n→∞

Pr {δ(G (n,m, p)) > 1} = f(cn),

where f(·) is given by (2.5).

Note that the condition max16i6m pi = o((lnn)−1) is necessary. Otherwise the number of
vertices of a given degree depends more on the fluctuations of the values of vector p. For
example let m = n2 and p = (p1, p2, . . . , pm) equal( bn

lnn
, . . . ,

bn
lnn︸ ︷︷ ︸

lnn(lnn+cn)/bn

,
1

nm
, . . . ,

1

nm

)
or

(
1√
lnn

,

√
lnn+ cn
nm

, . . . ,

√
lnn+ cn
nm

)
,

for some bn, cn = Θ(1). In both cases

S1 =
m∑
i=1

npi
(
1− (1− pi)n−1

)
= n(lnn+ cn + o(1)).

On the other hand the expected number of vertices of degree 0 in G (n,m, p) is

n

m∏
i=1

((1− pi) + pi(1− pi)n−1) = n

m∏
i=1

((1− pi(1− (1− pi)n−1)),

since a vertex v is isolated if for each i, 1 6 i 6 m, v does not choose wi or v chooses wi
but no other vertex does. Therefore this expected value equals

(1 + o(1)) exp

(
−cn −

bn
2

)
or (1 + o(1)) exp(−cn),

respectively.
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Lemma 5.2. Let cn be a sequence of real numbers, k be a positive integer, and p̄ =
(p1, . . . , pm) such that max16i6m pi = o((lnn)−1). Moreover let S1 and S1,t, t = 2 . . . , k,
be given by (2.1).

(i) If

S1 = n

(
lnn+ (k − 1) ln

(
max

{
1,

(
S1,2

S1

lnn

)})
+ cn

)
then

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 0 for cn → −∞.

(ii) If

S1 −
k∑
t=3

S1,t = n

(
lnn+ (k − 1) ln

(
max

{
1,

(
S1,2

S1

lnn

)})
+ cn

)
then

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 1 for cn →∞.

Here and in the proof we assume that
∑2

t=3 S1,t = 0.
If we assume that pi = p = p(n), for all 1 6 i 6 m, then with a little more work the

result of Lemma 5.2 may be improved.

Lemma 5.3. Let p = p(n) ∈ (0, 1), k be a positive integer, m = m(n) be such that
m� ln2 n, and

an = (np)k−1

((
e−np lnn

1− e−np

)k−1
+
e−np lnn

1− e−np

)
.

If

p(1− (1− p)n−1) =
lnn+ ln (max {1, an}) + cn

m
,

then

lim
n→∞

Pr {δ(G (n,m, p)) > k} =

{
0 for cn → −∞;

1 for cn →∞.

Proof of Lemma 5.1. Assume first that cn = Ω(lnn) and cn > 0, for large n. Then
for any c′n = o(lnn) there exists p′ = (p′1, . . . , p

′
m) such that p′i 6 pi, for all 1 6 i 6

m, and
∑m

i=1 np
′
i(1 − (1 − p′i)

n−1) = n(lnn + c′n) (as f(x) = x(1 − (1 − x)n−1) is a
continuous, increasing function for x ∈ (0, 1)). Therefore G (n,m, p′) � G (n,m, p) and
Pr {δ(G (n,m, p′)) > 1} 6 Pr {δ(G (n,m, p)) > 1}.

Now assume that cn = Ω(lnn) and cn 6 0, for large n. Then for any c′n = o(lnn)
we may find p = o((lnn)−1) and m′ such that m′np(1 − (1 − p)n−1) = n(c′n − cn). Let
p′ = (p′1, . . . , p

′
m+m′) be such that p′i = pi, for 1 6 i 6 m and p′i = p, for m + 1 6 i 6

m + m′. Then
∑m

i=1 np
′
i(1 − (1 − p′i)n−1) = n(lnn + c′n), G (n,m, p) � G(n,m + m′, p′),

and Pr {δ(G (n,m, p)) > 1} 6 Pr {δ(G(n,m+m′, p′)) > 1}.
Therefore we may restrict ourselves to the case cn = o(lnn).
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Imagine an experiment consisting of an infinite sequence of draws. In each draw we
pick independently and uniformly at random one element from the vertex set V . If a
vertex is picked in the i-th draw we call it collected in the i-th draw. The outcome of the
experiment is an infinite sequence with elements from the vertex set V . We will call this
experiment the vertex collector process.

Moreover assume that independently we pick a vector

(Y1, Y2, . . . , Ym)

chosen so that Yi are independent random variables with the distribution of the random
variables defined in (4.4).

Now we will construct an instance of G (n,m, p) basing on those two random inde-
pendent incomes. In fact we will construct a random family of sets {V ′i : i = 1, . . . ,m}
with |V ′i | = Yi, for all i = 1, . . . ,m, which is equivalent to constructing an instance of
G (n,m, p).

Set a vector
(Y1, Y2, . . . , Ym) = (y1, y2, . . . , ym).

Now, independently, we create an infinite sequence of draws described above. We divide
this sequence of draws into subsequences. We will call them phases. In the first phase we
perform as many draws as necessary to collect y1 distinct vertices form V . We set V ′1 to
be the set consisting of the vertices collected in the first phase and T1 to be the number
of draws made in the first phase. Then we continue and in the second phase we perform
as many draws as needed to collect y2 distinct vertices from V . Note that the number
of draws and vertices collected in the second phase are independent of the first phase.
As before V ′2 is the set of collected vertices and T2 is the number of draws in the second
phase. We continue in the same manner till the m-th phase. After constructing V ′m we
proceed with draws without constructing any other sets.

Note that sets V ′1 , . . . , V
′
m constructed in this manner are independent, their sizes are

independent random variables Y1, . . . , Ym, and each V ′i , 1 6 i 6 m, is chosen uniformly at
random from all subsets of V of size Yi. In the coupling of the vertex collector process and
the construction of G (n,m, p) described above, the construction of G (n,m, p) is finished
in
∑m

i=1 Ti draws. Now we will prove that for some T− = T−(n) and T+ = T+(n) with
high probability

T− 6
m∑
i=1

Ti 6 T+.

The values T− and T+ will be specified later on. Recall that by (4.10), for any 1� ω �√
S1/ lnn,

Pr

{
S1 − ω

√
S1 6

m∑
i=1

Yi 6 S1 + ω
√
S1

}
= 1− o(1)

Therefore we are left with studying the random variable

m∑
i=1

Ti −
m∑
i=1

Yi =
m∑
i=1

(Ti − Yi).
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If Yi = yi = 0 then Ti = 0 and Ti − Yi = 0. Assume now that Yi = yi > 2. If, in the i–th
phase, we have already collected j < yi vertices then the number of draws to collect the
j + 1–st vertex has geometric distribution with parameter n−j

n
. Therefore

ETi =

(
yi−1∑
j=0

n

n− j

)
.

and

E(Ti − Yi|Yi = yi) =

(
yi−1∑
j=0

n

n− j

)
− yi

=

yi−1∑
j=0

j

n− j

6

{∑yi−1
j=0

2j
n

= yi(yi−1)
n

for 2 6 yi < n/2;

n lnn for yi > n/2.

Moreover, for large n,

Pr
{
Yi >

n

2

}
6

(
n
n
2

)
p
n
2
i 6

(
enpi
n
2

)n
2

6
p2i

lnn
.

Thus

E(Ti − Yi) 6
n/2∑
yi=2

yi(yi − 1)

n

(
n

yi

)
pyii (1− pi)n−yi + n lnnPr

{
Yi >

n

2

}
6 2np2i .

Therefore

E

(
m∑
i=1

(Ti − Yi)

)
6

m∑
i=1

2np2i

=
m∑
i=1

2 max

{
pi,

1

n

}
min{npi, n2p2i }

6 4 max

{
p1, . . . , pm,

1

n

} m∑
i=1

1

2
min{npi, n2p2i }

= o

(
1

lnn

) m∑
i=1

npi
(
1− (1− pi)n−1

)
= o

(
S1

lnn

)
,

where S1 is defined by (2.1). In order to get the penultimate line consider two cases
p(n− 1) 6 1/2 and p(n− 1) > 1/2.
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Moreover by Markov’s inequality for any ω

Pr

{
m∑
i=1

(Ti − Yi) >
S1

ω lnn

}
6 E

(
m∑
i=1

(Ti − Yi)

)
ω lnn

S1

.

Therefore with high probability

m∑
i=1

(Ti − Yi) 6
S1

ω lnn
, for any 1� ω � S1

(lnn E(
∑m

i=1(Ti − Yi)))
. (5.1)

This combined with (4.10) gives that with high probability

T− 6
m∑
i=1

Ti 6 T+, (5.2)

where

T− = S1 − ω
√
S1 and T+ = S1 + ω

√
S1 +

S1

ω lnn

for some 1 � ω � min{S1/(lnn E(
∑m

i=1(Ti − Yi))),
√
S1/ lnn}. Therefore with high

probability the number of draws needed to construct G (n,m, p) is between T− and T+.
Now we will describe a relation between the minimum degree of G (n,m, p) and the

number of collected vertices in the first T− and T+ draws. If the construction of G (n,m, p)
is finished between T− and T+ draws and each vertex has been collected at least once in
the first T− draws then there is no isolated vertex in G (n,m, p). Moreover the number of
isolated vertices in G (n,m, p) is at least the number of non collected vertices at time T+.

In the probability space of the coupling of the vertex collector process with the con-
struction of G (n,m, p) define events:

A− – all vertices are collected in at most T− draws;
A+ – all vertices are collected in at most T+ draws;
A – δ(G (n,m, p)) > 1;
B – the construction of G (n,m, p) is finished between T−-th and T+-th draw.

Recall that δ(G (n,m, p)) > 1 if and only if all vertices are collected before the construction
of G (n,m, p) is finished. Therefore

A+ ∩ B ⊆ A ∩ B ⊆ A− ∩ B.

This implies
Pr {A+} − Pr {Bc} 6 Pr {A} 6 Pr {A−}+ Pr {Bc} , (5.3)

where for any event C we denote by Cc its complement.
Let S1 = n(lnn+ cn), then

T± = n(lnn+ cn + o(1)).
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By the classical results on the coupon collector problem [10], if T = Tn = n(lnn + dn),
dn → d ∈ [−∞,+∞], then the probability of the event that all vertices are collected in
at most T draws tends to f(dn) as n→∞. Therefore

Pr {A−} ∼ Pr {A+} ∼ f(cn).

Moreover by (5.2)
Pr {Bc} = o(1).

Thus the lemma follows by substituting the above values to (5.3).

The proofs of Lemmas 5.2 and 5.3 rely on couplings with the vertex collector process
similar to the one used in the proof of Lemma 5.1 and a technique of dividing G (n,m, p)
into auxiliary subgraphs. We will give here the idea of the proofs of Lemmas 5.2 and 5.3
and present technical details in Appendix B.

First we gather some simple facts concerning the division of G (n,m, p). Let k > 2 be
an integer. For each 2 6 t 6 k, let Gt (n,m, p) be a random graph with the vertex set V
and edge set consisting of these edges from G (n,m, p), which are contained in at least one
of the sets {Vi : |Vi| = t}, where Vi is defined as in the proof of Theorem 2.1. Moreover
let G>k+1 (n,m, p) be the subgraph of G (n,m, p) containing only these edges which are
subsets of at least one of the sets {Vi : |Vi| > k + 1}. We also define G6=t (n,m, p) to be
the subgraph of G (n,m, p) containing only these edges which are subsets of at least one
of the sets {Vi : |Vi| 6= t}. Then, for any k and 2 6 t 6 k

G (n,m, p) =
k⋃
t=2

Gt (n,m, p) ∪ G>k+1 (n,m, p) = G6=t (n,m, p) ∪ Gt (n,m, p) .

Let

Qt =
m∑
i=1

IYi=t, for all t = 2, . . . , k;

Q>k+1 =
m∑
i=1

YiIYi>k+1 =
m∑
i=1

Yi −
k∑
t=2

tQt;

Q 6=t =
m∑
i=1

YiIYi 6=t =
m∑
i=1

Yi − tQt.

(5.4)

By definition Qt, 2 6 t 6 k, is the number of features which have been chosen by
exactly t vertices, i.e. the number of cliques forming G (n,m, p), which have exactly t
vertices. Thus Qt, 2 6 t 6 k, is also the number of cliques forming Gt (n,m, p) i.e.
Gt (n,m, p) = G∗t (n,Qt) (where G∗t (n, ·) is defined at the beginning of Section 4). More-
over by (4.5)

EQt =
S1,t

t
for all t = 2, . . . , k.
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Moreover Q>k+1 is the sum of sizes of the cliques forming G (n,m, p) which have at least
k + 1 vertices, i.e. the sum of sizes of the cliques forming G>k+1 (n,m, p). Therefore by
(4.5) and (4.6)

EQ>k+1 = S1 −
k∑
t=2

S1,t.

Last but not least, the expected value of the sum of sizes of the cliques forming G6=t (n,m, p)
is

EQ 6=t = S1 − S1,t.

For all 1 6 t 6 k, Qt is a sum of independent Bernoulli random variables and S1,t 6 S1

(see (4.6)). Therefore by Chebyshev’s inequality and by (4.10) for any ω →∞ with high
probability

max

{
0,
S1,t − ω

√
S1

t

}
6 Qt 6

S1,t + ω
√
S1

t
, for all t = 2, 3, . . . , k (5.5)

Q>k+1 > S1 −
k∑
t=2

S1,t − kω
√
S1, (5.6)

S1 − S1,t − 2ω
√
S1 6 Q6=t 6 S1 − S1,t + 2ω

√
S1, for all t = 2, 3, . . . , k. (5.7)

Moreover, for any t = 2, 3, . . . , k, if S1,t →∞ then with high probability

S1,t − ω
√
S1,t

t
6 Qt 6

S1,t + ω
√
S1,t

t
. (5.8)

Now we are ready to give sketches of the proofs of Lemmas 5.2 and 5.3. Technical details
of the proofs are presented in Appendix B.

Sketch of the proof of Lemma 5.2 (i). We prove the lemma in the case cn = o(lnn) and
an = S1,2/S1 � 1/ lnn, i.e. S1,2 →∞. In the latter cases the result follows by Lemma 5.1.
We use the division G (n,m, p) = G2 (n,m, p)∪G 6=2 (n,m, p). If there exists a vertex which
is isolated in G6=2 (n,m, p) and has degree at most k−1 in G2 (n,m, p) then δ(G (n,m, p)) 6
k − 1. In order to bound the number of vertices which are isolated in G6=2 (n,m, p) and
have degree at most k − 1 in G2 (n,m, p) we will use a coupling.

First of all, note that using (5.8) and the same technique as in the proof of Theorem 2.1
we may show that

G2 (n,m, p) �1−o(1) G2(n, p̂2+) with p̂2+ =
S1,2 + 2ω

√
S1,2

2
(
n
2

) .

Moreover we may construct a coupling of the vertex collector process described in the
proof of Lemma 5.1 and a construction G6=2 (n,m, p). This coupling is analogous to the
one described in the proof of Lemma 5.1. The only change is that during the construction
of G (n,m, p) we omit phases related to the cliques of size 2. By (5.1) and (5.7) with high
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probability the construction of G6=2 (n,m, p) takes at most T+ = S1−S1,2 + 2ω
√
S1 + S1

ω lnn

draws in the vertex collector process.
The only problem might be caused by the dependency between graphs G2 (n,m, p) and

G6=2 (n,m, p). This dependency is due to the fact that Q2 and Q6=2 are dependent. On the
other hand the choices of cliques forming G2 (n,m, p) and G6=2 (n,m, p) are independent.
Therefore ideas used in proving (4.11) might also be used here to show that we may couple
G2 (n,m, p)∪G 6=2 (n,m, p) with G2(n, p̂2+) and an independent vertex collector process in
such a manner that with high probability G2 (n,m, p) ⊆ G2(n, p̂2+) and the construction
of G6=2 (n,m, p) is finished in at most T+ draws.

With the second moment method we may show that if

S1 = n

(
lnn+ (k − 1) ln

(
max

{
1,

(
S1,2

S1

lnn

)})
+ cn

)
, cn → −∞,

then with high probability there exists a vertex of degree at most k − 1 in G2(n, p̂2+)
which has not been collected in T+ draws of the vertex collector process. Therefore, by
the constructed coupling, with high probability there exists a vertex which has degree at
most k − 1 in G2 (n,m, p) and is isolated in G6=2 (n,m, p). Hence

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 0.

Sketch of the proof of Lemma 5.2 (ii). We use a similar reasoning as in the proof of (i).
We may concentrate on the case cn = O(lnn) and S1,2/S1 � 1/ lnn. Let k > 2, then

G2 (n,m, p) ∪ G>k+1 (n,m, p) ⊆ G (n,m, p)

As before, we may construct a coupling of G2 (n,m, p) ∪ G>k+1 (n,m, p) with G2(n, p̂2−)
and an independent vertex collector process with at least T− draws where

p̂2− =
S1,2 − 2ω

√
S1,2 − 2S2

1,2n
−2

2
(
n
2

) , T− = max

{
0, S1 −

k∑
t=2

S1,t − kω
√
S1,

}
.

In this coupling with high probability G2(n, p̂2−) ⊆ G2 (n,m, p) and the construction of
G>k+1 (n,m, p) takes at least T− draws.

By the first moment method we may show that if

S1 −
k∑
t=3

S1,t = n

(
lnn+ (k − 1) ln

(
max

{
1,

(
S1,2

S1

lnn

)})
+ cn

)
, cn →∞,

then with high probability each vertex has degree at least k in G2(n, p̂2−) or is collected in
T− draws in the vertex collector process. Therefore, by the coupling, with high probability
each vertex has degree at least k in G2 (n,m, p) or is not isolated in G>k+1 (n,m, p). This
implies that with high probability each vertex has degree at least k in G2 (n,m, p) ∪
G>k+1 (n,m, p) and

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 1 for cn →∞.
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Sketch of the proof of Lemma 5.3. The main ideas behind the proof of Lemma 5.3 are
the same as in the proof of Lemma 5.2. As before, we may restrict ourselves to the case
S1 ∼ n lnn (recall that p(1 − (1 − p)n−1) = S1/nm). We divide the proof into cases,
depending on the value np (recall that the expected size of Vi is EXi = np, 1 6 i 6 m).
For convenience in the case p = (p, . . . , p) we replace p by p in notations Gt (n,m, p),
G>k+1 (n,m, p), G6=t (n,m, p).

If S1,2 = O(S1/ lnn) and S1,t = O(S1/ lnn) then the result follows by Lemma 5.2.
Otherwise S1,2 � S1/ lnn or S1,k � S1/ lnn (i.e. np 6 ln lnn + (k − 1) ln ln lnn − ω

for some ω = ω(n) → ∞). For cn → −∞ we use either the division G6=k (n,m, p) ∪
Gk (n,m, p) or the division G6=2 (n,m, p) ∪ G2 (n,m, p). For cn → ∞ we use the division⋃k
t=2 G2 (n,m, p) ∪ G>k+1 (n,m, p).

6 Structural properties of G2 (n, p̂2) ∪ G3 (n, p̂3)

In this section we give several structural results concerning G2 (n, p̂2) ∪ G3 (n, p̂3). Some
of the presented facts are analogous to those known for G2 (n, p̂2). Then we will combine
obtained results with the coupling constructed in the proof of Theorem 2.1 in order to
obtain the lower bounds on limn→∞ Pr {G (n,m, p) ∈ A}, for A being Ck, PM or HC.

For any graph G and any set S ⊆ V (G) denote by NG(S) the set of neighbours of
vertices from S contained in V (G) \ S. For simplicity we write N2(·) = NG2(n,p̂2)(·) and
N3(·) = NG2(n,p̂2)∪G3(n,p̂3)(·). Note that given an instance of G2 (n, p̂2)∪G3 (n, p̂3) we have
|N2(S)| 6 |N3(S)|.

Lemma 6.1. Let k and C be positive integers and

p̂2 +
n

2
p̂3 =

θn lnn

n
, where lim inf

n→∞
θn = θ >

1

2
and θn = O(1),

p̂2 =
θ′n lnn

n
, where lim inf

n→∞
θ′n = θ′ >

1

2
and θ′n = O(1).

(6.1)

Let moreover γ be a positive real number such that 1 − θ′ < γ < 1. Then with high
probability G2 (n, p̂2) ∪G3 (n, p̂3) has the following properties:

(i) B1 – for all S ⊆ V such that nγ 6 |S| 6 1
4
n

|N3(S)| > 2|S|.

(ii) B2 – for all S ⊆ V such that nγ 6 |S| 6 2
3
n

|N3(S)| > min{|S|, 4n ln lnn/ lnn}
> min{|S|, α(G2 (n, p̂2) ∪G3 (n, p̂3))},

where α(G2 (n, p̂2) ∪G3 (n, p̂3)) is the stability number of G2 (n, p̂2) ∪G3 (n, p̂3).
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(iii) B3,k – for all S ⊆ V, if 1 6 |S| 6 nγ and all vertices in S have degree at least 4k+14
in G2 (n, p̂2) ∪G3 (n, p̂3) we have

|N3(S)| > 2k|S|.

(iv) B4,C – any two vertices of degree at most C are at distance at least 5.

(v) B5 – contains a path of length at least(
1− 9 ln 2

lnn

)
n.

Proof. (i) and (ii) By Chernoff’s inequality (for the proof see for example Theorem 2.1 in
[13]) for any δ = δ(n) = o(1) and any binomial random variable X = Xn we have

Pr {X 6 δEX} 6 exp(−EX(δ ln δ + 1− δ)) = exp(−(1 + o(1))EX).

First consider the case nγ 6 |S| 6 4n ln lnn/ lnn. Let s = |S|. Then |N2(S)| has
binomial distribution Bin (n− s, 1− (1− p̂2)s) with the expected value E|N2(S)| � 2|S|.
Denote by X the number of sets S of cardinality nγ 6 |S| 6 4n ln lnn/ lnn such that
|N2(S)| 6 2|S|. Using Chernoff’s inequality we get

EX 6
4n ln lnn/ lnn∑

s=nγ

(
n

s

)
exp (−(1 + o(1))(n− s)(1− (1− p̂2)s))

6
n/(lnn ln lnn)∑

s=nγ

exp
(
s
(

1 + ln
n

s

)
− (1 + o(1))snp̂2

)
+

4n ln lnn/ lnn∑
s=n/(lnn ln lnn)

exp

(
s
(

1 + ln
n

s

)
− n θ′

2 ln lnn

)

6
n/(lnn ln lnn)∑

s=nγ

exp (s (1 + (1− γ) lnn− (1 + o(1))θ′ lnn))

+

4n ln lnn/ lnn∑
s=n/(lnn ln lnn)

exp

(
s

(
(1 + o(1)) ln lnn− θ′ lnn

8(ln lnn)2

))
= o(1).

Therefore with high probability for all sets S ⊆ V , nγ 6 |S| 6 4n ln lnn/ lnn, we have

|N2(S)| > 2|S|.

Now consider the case |S| > 4n ln lnn/ lnn. Let r = 4n ln lnn/ lnn. Let moreover Kr

and Kr,r be the complement of the complete graph on r vertices and the complement of
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the complete bipartite graph with each set of bipartition of cardinality r. Denote by Xr

and Xr,r the number of Kr and Kr,r in G2 (n, p̂2) ∪G3 (n, p̂3), respectively. Then

EXr =

(
n

r

)
(1− p̂2)(

r
2)(1− p̂3)(

r
3)+(r2)(n−r)

6
(en
r

exp
(
−r

2
(p̂2 + (n− r)p̂3) + o(1)

))r
6

(
e lnn

4 ln lnn
exp (−2θn ln lnn)

)r
= o(1)

and

EXr,r 6

(
n

r

)2

(1− p̂2)r
2

(1− p̂3)2(
r
2)r+r2(n−2r)

6
(en
r

exp
(
−r

2
(p̂2 + (n− 2r)p̂3) + o(1)

))2r
= o(1).

Therefore with high probability Xr = 0 which implies that with high probability

α(G2 (n, p̂2) ∪G3 (n, p̂3)) 6 r.

Moreover with high probability Xr,r = 0 thus with high probability for any S ⊆ V such
that r 6 |S| we have

N3(S) > n− |S| − r.

(Otherwise G2 (n, p̂2) ∪G3 (n, p̂3) would contain Kr,r.)
Therefore with high probability for any S ⊆ V such that r 6 |S| 6 2n/3

N3(S) > min{|S|, r} > min{|S|, α(G2 (n, p̂2) ∪G3 (n, p̂3))}.

Moreover with high probability for any S ⊆ V such that r 6 |S| 6 n/4 we have

N3(S) > n− |S| − r > 2|S|.

This finishes the proof of (i) and (ii).
(iii) For any two disjoint sets S ⊆ V and S ′ ⊆ V we denote by e(S, S ′) the number of edges
in G2 (n, p̂2) ∪ G3 (n, p̂3) with one end in S and one end in S ′ and by e(S) the number
of edges in G2 (n, p̂2) ∪ G3 (n, p̂3) with both ends in S. We will bound the numbers e(S)
and e(S, S ′) for S ⊆ V and S ′ ⊆ V \ S such that 1 6 |S| 6 nγ and |S ′| = O(|S|). Let
k be a positive integer, S ⊆ V , S ′ ⊆ V \ S, |S| = s, 1 6 s 6 nγ and |S ′| = 2ks. A pair
{v, v′} (v ∈ S and v′ ∈ S ′) is an edge in G2 (n, p̂2) ∪G3 (n, p̂3) if at least one of the three
following events occurs:

• {v, v′} is an edge in G2 (n, p̂2),

• there is a hyperedge {v, v′, v′′} with v′′ ∈ V \ (S ∪ S ′) in H3(n, p̂3) associated with
G3 (n, p̂3),
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• there is a hyperedge {v, v′, v′′} with v′′ ∈ S ∪ S ′ in H3(n, p̂3) associated with
G3 (n, p̂3).

The union of the two first events occurs with probability at most p̂2 + (n− (2k+ 1)s)p̂3 =
O(lnn/n) independently for all v ∈ S and v′ ∈ S ′. Moreover each hyperedge of H3(n, p̂3)
with all vertices in S ∪ S ′ appears independently with probability p̂3 = O(lnn/n2) and
generates two edges between S and S ′ in G3 (n, p̂3). Therefore

Pr

∃S,S′⊆V,|S′|=2k|S|
16|S|6nγ

e(S, S ′) > 4(k + 1)|S|


6

nγ∑
s=1

(
n

s

)(
n− s
2ks

)[(
2ks2

(2k + 2)s

)
(p̂2 + (n− (2k + 1)s)p̂3)

(2k+2)s

+

((s
2

)
2ks+

(
2ks
2

)
s

(k + 1)s

)
p̂
(k+1)s
3

]

6
nγ∑
s=1

[(
O(1)

(n
s

)2k+1
(
s lnn

n

)2k+2
)s

+

(
O(1)

(n
s

)2k+1

sk+1

(
lnn

n2

)k+1
)s ]

6
nγ∑
s=1

[(
O(1)

ln2k+2 n

n1−γ

)s
+

(
O(1)

lnk+1 n

n

)s ]
= o(1).

Similarly

Pr

{
∃S⊆V
16|S|6nγ

e(S) > 5|S|
}

6
nγ∑
s=1

(
n

s

)[((s
2

)
2s

)
(p̂2 + (n− s)p̂3)2s +

((s
3

)
s

)
p̂s3

]

6
nγ∑
s=1

(
O(1)

ln2 n

n1−γ

)s
+

(
O(1)

lnn

n1−γ

)s
= o(1).

Therefore with high probability for any set S (1 6 |S| 6 nγ) of vertices of degree at least
4k + 14 in G2 (n, p̂2) ∪G3 (n, p̂3) we have

|N3(S)| > 2k|S|.

Otherwise for S ′ = N3(S) there would be |S ′| = |N3(S)| 6 2k|S| and e(S,N3(S))+2e(S) >
(4k + 14)|S|, i.e. e(S,N3(S)) > 4(k + 1)|S| or e(S) > 5|S|.
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(iv) The probability that in G2 (n, p̂2)∪G3 (n, p̂3) there are two vertices of degree at most
C at distance at most 4 is at most

n2

3∑
l=0

nl(p̂2 + np̂3)
l+1

·

(
C∑
i=0

bi/2c∑
j=0

((n−1−l
2

)
j

)
p̂j3

(
n− 1− l
i− 2j

)
p̂i−2j2

· (1− p̂2)n−1−i−l(1− p̂3)(
n−1−l

2 )−(i+l2 )

)2

= O(1)n(lnn)2C+4e−2n(p̂2+
n
2
p̂3) = o(1).

(v) Follows by Theorem 8.1 in [6].

Lemma 6.2. Let k be a positive integer and p̂2 = p̂2(n) ∈ (0, 1), p̂3 = p̂3(n) ∈ (0, 1) be
such that

p̂2 +
n

2
p̂3 =

lnn+ (k − 1) ln lnn+ cn
n

,

(i) If k = 1 and cn attains a limit (possibly ±∞) then

Pr {δ(G2 (n, p̂2) ∪G3 (n, p̂3)) > 1} → f(cn),

where f(·) is defined by (2.5).

(ii) If cn →∞ then
Pr {δ(G2 (n, p̂2) ∪G3 (n, p̂3)) > k} → 1.

Proof. (i) Follows by Theorem 3.10 in [16].
(ii) Let Xt be the number of vertices of degree 0 6 t 6 k − 1 in G2 (n, p̂2) ∪ G3 (n, p̂3).
Then

EXt 6 n

(
n− 1

t

) t∑
i=0

((t
2

)
i

)
p̂i3p̂

max{t−2i,0}
2 (1− p̂2)n−t−1(1− p̂3)(

n−1
2 )−(t2)

= O(1)n(lnn)t exp(− lnn+ (k − 1) ln lnn+ cn) = o(1).

Thus with high probability Xt = 0 for all t 6 k − 1.

Lemma 6.3. Let k be a positive integer and p̂2 and p̂3 be as in (6.1). Let G(n) be a
random graph such that

G2 (n, p̂2) ∪G3 (n, p̂3) �1−o(1) G(n) (6.2)

and in the probability space of the coupling with high probability all vertices of degree at
most 4k+13 in G2 (n, p̂2)∪G3 (n, p̂3) are at distance at least 5 in G(n). If Pr {δ(G(n)) > k}
is bounded away from zero by a constant then

Pr {G(n) ∈ Ck|δ(G(n)) > k} → 1, (6.3)

Pr {G(2n) ∈ PM|δ(G(2n)) > 1} → 1. (6.4)

the electronic journal of combinatorics 24(2) (2017), #P2.10 27



In particular, if we substitute G(n) = G2 (n, p̂2)∪G3 (n, p̂3) then by Lemmas 6.1(iv), 6.2,
and 6.3 we obtain the following result.

Lemma 6.4. Let p̂2 and p̂3 fulfil (6.1).

(i) If p̂2 + n
2
p̂3 = (lnn+ cn)/n for cn attaining a limit (possibly ±∞) then

Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ C1} → f(cn);

Pr {G2(2n, p̂2(2n)) ∪G3(2n, p̂3(2n)) ∈ PM} → f(c2n),

where f(·) is defined by (2.5).

(ii) If p̂2 + n
2
p̂3 = (lnn+ (k − 1) ln lnn+ cn)/n and cn →∞ then

Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ Ck} → 1.

Proof of Lemma 6.3. Denote by G(n)δ>k a graph G(n) under condition δ(G(n)) > k. Let
A be a graph property. In what follows we will use the fact that if Pr {δ(G(n) > k)} is
bounded away from zero and G(n) has A with high probability, then also G(n)δ>k has
property A with high probability.

From now on we assume that G2 (n, p̂2) ∪ G3 (n, p̂3) and G(n) are defined on the
same probability space existing by (6.2). We call a vertex v ∈ V small if its degree in
G2 (n, p̂2)∪G3 (n, p̂3) is at most 4k+13. Otherwise we call v a large vertex. Let S ⊆ V and
|S| 6 nγ. Denote by S+ and S− the subset of large and small vertices in S, respectively.
Then by Lemma 6.1(iii) with high probability

|NG(n)δ>k(S
+)| > |N3(S

+)| > 2k|S+|.

Moreover in G(n)δ>k all vertices in S− have degree at least k and with high probability
are at distance at least 5. Therefore with high probability in G(n)δ>k no two vertices
in S− are connected by an edge. Moreover they have no common neighbour. Therefore
with high probability |NG(n)δ>k(S

−)| > k|S−|. We are left with the question how much
NG(n)δ>k(S

−) overlaps with NG(n)δ>k(S
+)∪S+. This will give us the bound on the size of

NG(n)δ>k(S
+∪S−). If there was a vertex v in S+ and two vertices v′ and v′′ in S− such that

v′ is a neighbour of v or its neighbour and v′ is a neighbour of v or its neighbour then v′

and v′′ would be connected by a path of length at most 4. Therefore with high probability
there are no such three vertices, i.e. for each v ∈ S+ there is at most one vertex v′ ∈ S−
such that v′ is a neighbour of v or of its neighbour. This implies that with high probability
at most |S+| vertices from S− have neighbours in NG(n)δ>k(S

+) ∪ S+. Recall that each
of the remaining vertices from S− has k neighbours outside NG(n)δ>k(S

+)∪S+ and their
neighbour sets are disjoint. Thus with high probability

∀S⊆V,16|S|6nγ |NG(n)δ>k(S)| > |NG(n)δ>k(S
+)|+ kmax{|S−| − |S+|, 0} > k|S|.

If we combine this with Lemma 6.1(i) and (ii) we get that with high probability

|NG(n)δ>k(S)| > k, for all S ⊆ V , 1 6 |S| 6 n

2
; (6.5)
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|NG(n)δ>1
(S)| > min{|S|, 4n ln lnn/ lnn} > min{|S|, α(G(n)δ>k)}, (6.6)

for all S ⊆ V , 1 6 |S| 6 2n

3
;

|NG(n)δ>2
(S)| > 2|S|, for all S ⊆ V , 1 6 |S| 6 n

4
. (6.7)

Finally (6.3) follows immediately by (6.5). Moreover if (6.6) is fulfilled then G(n)δ>1 has
a perfect matching (for the proof see for example Lemma 1 in [5]). Therefore (6.4) follows.
(6.7) will be used later to establish a threshold function for a Hamilton cycle.

Lemma 6.5. Let k be a positive integer, θn and θ′n be sequences such that lim infn→∞ θn =
θ > 1

2
, lim infn→∞ θ

′
n = θ′ > 1

2
, θ, θ′ = O(1), and

p̂2 +
n

2
p̂3 =

θn lnn

n
, p̂2 =

θ′n lnn

n
and p̂4 =

576

n
.

Let moreover G(n) be a random graph such that:

(i) G2 (n, p̂2) ∪G3 (n, p̂3) �1−o(1) G(n);

(ii) with high probability δ(G(n)) > 2;

(iii) in a probability space existing by (i) all vertices of degree at most 21 in G2 (n, p̂2) ∪
G3 (n, p̂3) are at distance at least 5 in G(n).

Then
Pr {G(n) ∪G2 (n, p̂4) ∈ HC} → 1.

In particular, by Lemmas 6.1(iv) and 6.2 we get the following simple corollary of
Lemma 6.5.

Lemma 6.6. Let p̂2 and p̂3 be as in Lemma 6.5. If moreover

p̂2 +
n

2
p̂3 = (lnn+ ln lnn+ cn)/n where cn →∞

then

Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ HC} → 1.

Proof of Lemma 6.5. We will use the ideas from the proof of Theorem 8.9 [6]. Let t =
9n/ lnn and p̂4,0 = 64 lnn/n2. Then tp̂4,0 = p̂4. For any graph G let l(G) be the length
of the longest path in G and l(G) = n if G has a Hamilton cycle. We say that G has
property Q if

G is connected and |NG(S)| > 2|S|, for all S ⊆ V , |S| 6 n/4.

In the proof we assume that G2 (n, p̂2)∪G3 (n, p̂3) and G(n) are defined on the probability
space of the coupling existing by (i). Let G0 = G(n) and

Gi = Gi−1 ∪G2 (n, p̂4,0) , for 1 6 i 6 t.
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By Lemma 6.3, assumptions (i)–(iii), and (6.7) with high probability G(n) has property
Q. Moreover by Lemma 6.1(v) and the coupling from assumption (i) with high probability

l(G0) >

(
1− 9 ln 2

lnn

)
n.

It may be shown (see (8.7) in [6]) that

Pr {l(Gi) = n− t+ i− 1|l(Gi−1) = n− t+ i− 1 and Gi−1 has Q}
6 (1− p̂4,0)n

2/32 6 n−2.

Thus

Pr {l(Gt) = n} > 1− t

n2
− o(1) = 1− o(1).

Since
Gt � G(n) ∪G2 (n, tp̂4,0) ,

this finishes the proof.

7 Threshold functions

Proof of Theorems 2.2–2.4. First let S1 = n(lnn + cn) and p̂2 and p̂3 be given by (2.2).
Then by Lemma 5.1

lim
n→∞

Pr {G (n,m, p) ∈ C1} 6 lim
n→∞

Pr {δ(G (n,m, p)) > 1} = f(cn).

Moreover for cn = o(lnn) by (2.2) and (4.7) we have

p̂2 +
n

2
p̂3 =

θn lnn

n
and p̂2 =

θ′n lnn

n
with θn → 1 and θ′n → 1/2.

Therefore by Theorem 2.1 and Lemma 6.4(i)

lim
n→∞

Pr {G (n,m, p) ∈ C1} > lim
n→∞

Pr {G2 (n, p̂2) ∪G3 (n, p̂3) ∈ C1} = f(cn)

In the case cn = Ω(lnn) we may use the couplings described at the beginning of the
proof of Lemma 5.1. This implies Theorem 2.2(i). Similarly Theorem 2.2(ii) follows by
Theorem 2.1, Lemma 6.4(ii), and Lemma 5.2; Theorem 2.3 by Theorem 2.1, Lemma 6.4(i),
and Lemma 5.1; Theorem 2.4 by Theorem 2.1, Lemma 6.6 and Lemma 5.2.

In the following proofs we will assume that cn = O(lnn). In the other cases the theo-
rems follow by Lemma 5.1 or Theorem 2.1 (2.3) combined with known results concerning
G2 (n, p̂).
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Proof of Theorem 2.5. Let cn → −∞, then by Lemma 5.3

Pr {G (n,m, p) ∈ HC} 6 Pr {δ(G (n,m, p)) > 2} → 0.

Let now cn →∞. We will consider two cases:
CASE 1: m = Ω(n/ lnn).
Let

m′ = m

(
1 +

700

lnn

)−1
and m′′ =

700

lnn
m′.

Then for p given by (2.6)

m′p(1− (1− p)n−1) = lnn+ ln max

{
1,
np lnn

enp − 1

}
− 700 + o(1) + cn

and

nm′p2 =

{
O(lnn) for np = O(1),
n
m′

(m′p)2 = O(ln3 n) for np→∞.
(7.1)

Let ω →∞ slowly enough. Define

p̂2 =


m′p(1−(1−p)n−1)−3m′p

(
1−(1−2p)n

2np
−(1−p)n−1

)
−ω
√

lnn
n

n
,

for nm′p
(

1−(1−2p)n
2np

− (1− p)n−1
)
�
√
n lnn;

m′p(1−(1−p)n−1)−ω
√

lnn
n

n
, otherwise ;

p̂3 =


m′p

(
1−(1−2p)n

2np
−(1−p)n−1

)
−ω
√

lnn
n

n2

6

,

for nm′p
(

1−(1−2p)n
2np

− (1− p)n−1
)
�
√
n lnn;

0, otherwise ;

p̂4 =
m′′p

(
1− 1−(1−2p)n

2np

)
−ω
√

1
n

n
.

Moreover by (2.1) and (4.7), for large n,

p̂4 =
m′′p

(
1− 1−(1−2p)n

2np

)
−ω
√

1
n

n
=

700
lnn(1+ 700

lnn)
−1
S2−ω

√
n

n2 =
(1+o(1))700· 5

6
·S1

n2 lnn
> 576

n
.

Let now G(n) = G (n,m′, p). Then by Theorem 2.1

G2 (n, p̂2) ∪G3 (n, p̂3) �1−o(1) G (n,m′, p) = G(n); (7.2)

G2 (n, p̂4) �1−o(1) G (n,m′′, p) .

Moreover by Lemma 5.3 with high probability δ(G(n)) > 2. Therefore assumptions (i)
and (ii) of Lemma 6.5 are satisfied.

We are left with proving that assumption (iii) is satisfied. Let C be a positive integer.
We will show that in the probability space of the coupling (7.2) with high probability
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any two vertices of degree at most C in G2 (n, p̂2) ∪ G3 (n, p̂3) are at distance at least 5
in G (n,m′, p) = G(n). Therefore we need to study the couplings described in the proof
of Theorem 2.1. If in the definitions of S1, S3, M2 and M3 we replace m by m′ then
proceeding as in the proof of Theorem 2.1, we may show that

G2 (n, p̂2) ∪G3 (n, p̂3)

= G∗2
(
n,Po

((
n

2

)
ln(1− p̂2)−1

))
∪G∗3

(
n,Po

((
n

3

)
ln(1− p̂3)−1

))
�(i) G∗2

(
n,Po

(
S1 − 3S3 − 5ω′

√
S1

2

))
∪G∗3

(
n,Po

(
S3 − 2ω′

√
S1

))
�(ii)

1−o(1) G∗2
(
n,
S1 − 3S3 − 4ω′

√
S1

2

)
∪G∗3

(
n, S3 − ω′

√
S1

)
�(iii)

1−o(1) G∗2 (n,M2) ∪G∗3 (n,M3) =
⋃

16i6m′

(
G∗2

(
n, Yi−3Zi

2

)
∪G∗3 (n, Zi)

)
�(iv) G (n,m′, p)

for some ω′ = Θ(ω).
In the probability space of the above couplings, we will find a relation between the

degree of a vertex v ∈ V in G2 (n, p̂2) ∪ G3 (n, p̂3) and the number of these features
wi ∈ W (v) that are chosen by at least two vertices (i.e. the number of these features that
contribute to at least one edge in G (n,m′, p)). For any v ∈ V in G (n,m′, p) let

W ′(v) = {wi ∈ W (v) : |V ′i | > 2},

where V ′i is defined in (4.3). We will find a relation between the degree of a vertex v in
G2 (n, p̂2) ∪G3 (n, p̂3) and |W ′(v)| in G (n,m′, p).

To this end we will need an insight into the construction of the intermediary couplings
(i)–(iv). Recall that in the coupling (iv), the construction of G∗2 (n,M2) ∪ G∗3 (n,M3)
proceeds in m′ rounds. In the i-th round G∗2 (n, (Yi − 3Zi)/2)∪G∗3 (n, Zi) is constructed
in Yi−3Zi

2
+Zi draws. In each draw a hyperedge of size 2 or 3 in H∗2((Yi−3Zi)/2)∪H∗3(Zi)

is chosen. Then V ′i (in G (n,m′, p)) is formed from non isolated vertices of H∗2((Yi −
3Zi)/2) ∪H∗3(Zi) and possibly some extra vertices. The number of extra vertices equals
Yi minus the number of non isolated vertices in H∗2((Yi − 3Zi)/2) ∪ H∗3(Zi) (i.e. also in
G∗2 (n, (Yi − 3Zi)/2)∪G∗3 (n, Zi)). We will show that with high probability for each v ∈ V
there is at most one wi ∈ W ′(v) such that v is isolated in H∗2((Yi − 3Zi)/2) ∪ H∗3(Zi).
This will prove that with high probability for each v ∈ V the number of draws in which
a hyperedge containing v is chosen is at least |W ′(v)| − 1.

Given v ∈ V and 1 6 i 6 m′, denote by Av,i,1 the event that v is an isolated vertex in
G∗2 (n, (Yi − 3Zi)/2) ∪G∗3 (n, Zi) and by Av,i,2 the event that v ∈ V ′i . We will use these
events to compare the number of hyperedges in

⋃
iH∗2((Yi− 3Zi)/2)∪H∗3(Zi) containing

v with the number of features wi such that v ∈ V ′i (i.e. with the number |W ′(v)|). Denote
by Av the event that while constructing G∗2 (n,M2) ∪ G∗3 (n,M3) there are less than
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|W ′(v)| − 1 draws in which a hyperedge containing v is chosen. Then

Av ⊆
⋃
i 6=j

(Av,i,1 ∩ Av,i,2) ∩ (Av,j,1 ∩ Av,j,2).

For i 6= j, (Av,i,1 ∩ Av,i,2) and (Av,j,1 ∩ Av,j,2) are independent and

Pr {Av,i,1 ∪ Av,i,2} = 1,

thus

Pr {Av} 6
(
m′

2

)
(Pr {Av,1,1 ∩ Av,1,2})2

=

(
m′

2

)
(Pr {Av,1,1}+ Pr {Av,1,2} − 1)2

6

(
m′

2

)(
(1− p)n + np(1− p)n−1

+
n−1∑
y=2

(
n

y

)
py(1− p)n−y

(
1− 1

n

)y
+ pn · 0

+
n∑
y=2

(
n

y

)
py(1− p)n−y y

n
− 1

)2

=

(
m′

2

)( n∑
y=0

(
n

y

)
py(1− p)n−y

(
1− 1

n

)y
− pn

+
n∑
y=1

(
n

y

)
py(1− p)n−y y

n
− 1

)2

6

(
m′

2

)((
1− p

n

)n
+ p− 1

)2
6 (m′)2p4.

Therefore by (7.1)

Pr

{⋃
v∈V

Av

}
6 n(m′)2p4 = O

(
ln6 n

n

)
= o(1). (7.3)

Thus in the probability space of the couplings, with high probability for all v ∈ V in
the construction of G∗2 (n,M2) ∪G∗3 (n,M3) the number of draws in which a hyperedge
containing v is chosen is at least |W ′(v)| − 1.

Now we will find a relation between the number of draws in the construction of
G∗2 (n,M2) ∪G∗3 (n,M3) and the number of draws in the construction of

G2 (n, p̂2) ∪G3 (n, p̂3)
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= G∗2
(
n,Po

((
n

2

)
ln(1− p̂2)−1

))
∪G∗3

(
n,Po

((
n

3

)
ln(1− p̂3)−1

))
.

Note that in the couplings (i)–(iii) in order to construct a graph G∗2 (n,M2)∪G∗3 (n,M3)
from G2 (n, p̂2)∪G3 (n, p̂3) one performs some additional draws of hyperedges in auxiliary
hypergraphs H∗2(n, ·) ∪H∗3(n, ·). By the sharp concentration of the Poisson distribution
and (4.10) with high probability the number of additional draws is at most Kω

√
n lnn

for some constant K. Under the condition that the number of additional draws is at
most Kω

√
n lnn, probability that a hyperedge containing v is chosen in at least 3 of the

additional draws is at most (
Kω
√
n lnn

3

)(
2

n

)3

= o(n−1).

Therefore, by the union bound, with high probability in additional draws for each vertex
v ∈ V a hyperedge containing v is chosen at most 2 times. Combining this with (7.3) we
obtain that with high probability for all v ∈ V in the construction of G2 (n, p̂2)∪G3 (n, p̂3)
the number of draws in which a hyperedge containing v is chosen is at least |W ′(v)| − 3.

Now we will show the relation between the number of draws of hyperegdes and the
number of edges incident to v inG2 (n, p̂2)∪G3 (n, p̂3). The difference between the numbers
is due to the fact that hyperedges containing given pair of vertices (edge) might be drawn
several times in the hypergraph H∗2(n, ·)∪H∗3(n, ·) but there is only one edge inG2 (n, p̂2)∪
G3 (n, p̂3). Therefore the number of draws might exceed the number of edges. Note that
the number of draws made in the construction of G2 (n, p̂2)∪G3 (n, p̂3) is a random variable
with the expected value at most S1 = O(n lnn). Therefore by Markov’s inequality with
high probability the number of draws made in the construction of G2 (n, p̂2)∪G3 (n, p̂3) is
at most n ln2 n. In addition the probability that a pair {v, v′} is contained in a hyperedge
chosen in a given draw is at most 6/n(n− 1). Therefore the probability that there exists
an edge in G2 (n, p̂2)∪G3 (n, p̂3) drawn at least 3 times during the construction is at most(

n

2

)(
n ln2 n

3

)(
6

n(n− 1)

)3

+ o(1) = o(1).

In conclusion, with high probability for all v ∈ V the number of edges incident to v in
G2 (n, p̂2) ∪ G3 (n, p̂3) is at least half of the number of drawn hyperedges containing v,
which is with high probability at least (|W ′(v)|−3)/2. Thus in the probability space of the
couplings with high probability for all v ∈ V of degree at most C in G2 (n, p̂2)∪G3 (n, p̂3)
we have |W ′(v)| 6 2C + 3.

Finally, the probability that there are two vertices v, v′ such that |W ′(v)| 6 2C + 3
and |W ′(v′)| 6 2C + 3 connected by a path of length at most 4 in G (n,m′, p) is at most

n2

4∑
t=1

(m′)tnt−1p2t ·

(
2C+3∑
l=0

(
m′ − t
l

)
(p− p(1− p)n−1)l

[
(1− p) + p(1− p)n−1

]m′−O(1)

)2

= O(1)n(lnn)O(1) exp
(
−2m′p(1− (1− p)n−1)

)
= o(1).
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This shows that assumption (iii) of Lemma 6.5 is fulfilled.
Therefore by Lemma 6.5 with high probability

G(n) ∪G2

(
n,

576

n

)
∈ HC.

Thus in the case m = Ω(n/ lnn) the theorem follows by (7.2) and a straightforward
coupling of random intersection graphs.

G(n) ∪G2

(
n,

576

n

)
�1−o(1) G (n,m′, p) ∪ G (n,m′′, p) � G (n,m, p) .

CASE 2: m = o(n/ lnn).
Note that in this case (2.6) and cn = O(lnn) imply that

p =
lnn+ c′n

m

for some c′n →∞. Let m′ be such that m divides m′ and m′ ∼ n/ lnn. Take an instance
of G(n,m′, p′) with the set of features W ′ of size m′ and

p′ =
lnn+ c′n

m′
.

Divide W ′ into m groups of m′/m features. Denote by Ai the set of vertices which
have chosen features from the i–th, 1 6 i 6 m, group in G(n,m′, p′). |Ai| has binomial
distribution Bin (n, p′′) for some p′′ 6 m′

m
p′ = p. Now take an instance of G(n,m′, p′) and

construct the sets Vi, 1 6 i 6 m, in G (n,m, p) by taking Ai and additionally adding to Vi
each vertex from V \ Ai independently with probability (p− p′′)/(1− p′′). This coupling
implies

G(n,m′, p′) � G (n,m, p) .

From the considerations concerning the first case we have that with high probability
G(n,m′, p′) ∈ HC. Therefore also G (n,m, p) ∈ HC with high probability.

Proof of Theorem 2.6. The technique of the proof is analogous to the technique of the
proof of Theorem 2.5. We consider two cases m = Ω(n/ lnn) and m = o(n/ lnn). In
the first case the proof relies on Lemma 5.3 and Lemma 6.3. Moreover we have to use
the fact shown in the proof of Theorem 2.5, that in the coupling constructed in the proof
of Theorem 2.1 with high probability the vertices of degree bounded by a constant in
G2 (n, p̂2) ∪ G3 (n, p̂3) are at distance at least 5 in G (n,m, p). The proof of the case
m = o(n/ lnn) is the same as in the proof of Theorem 2.5.

Appendix

A Proof of (4.7)

For 0 < pi < 1/2, using the fact that I{Xiodd} = (1− (−1)Xi)/2 and the properties of the
binomial distribution Bin (n, pi) we get

EYi = EYiI{Yiodd} + EYiI{Yieven}
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= (EXiI{Xiodd} − EI{Xi=1}) + EXiI{Xieven}
=
np

2

(
1 + (1− 2p)n−1 − 2(1− p)n−1

)
+
np

2

(
1− (1− 2p)n−1

)
> 2 · np

2

(
1 + (1− 2p)n−1 − 2(1− p)n−1

)
> 2EYiI{Yiodd} > 2 · 3EI{Yiodd} = 6EZi.

Moreover for 1/2 6 pi < 1 and n > 14

EYi = np(1− (1− p)n−1) > 6 > 6EZi.

B Detailed proofs of Lemmas 5.2 and 5.3

Proof of Lemma 5.2 (i). Let

S1 = n (lnn+ (k − 1) ln (max {1, an lnn}) + cn) ,where an =
S1,2

S1

and cn → −∞.

If an = O(1/ lnn) then S1 = n(lnn+O(1) + cn). On the other hand, if cn = Ω(lnn) then
S1 = n(lnn+ (1 + o(1))cn) (because an 6 1). In both cases by Lemma 5.1

Pr {δ(G (n,m, p)) > k} 6 Pr {δ(G (n,m, p)) > 1} → 0 as n→∞.

Therefore we are left with the case an = S1,2/S1 � 1/ lnn and cn = o(lnn). Then
S1,2 →∞. We use the division

G (n,m, p) = G2 (n,m, p) ∪ G 6=2 (n,m, p) .

Using ideas similar to those used in the proof of Theorem 2.1 (see (4.11) and the discussion
below it) we may show that

G2 (n,m, p) ∪ G 6=2 (n,m, p) �(∗)
1−o(1) G∗2

(
n,
S1,2 + ω

√
S1,2

2

)
∪ G 6=2 (n,m, p)

�(∗∗)
1−o(1) G2 (n, p̂2+) ∪ G 6=2 (n,m, p) , (B.1)

where p̂2+ = (S1,2 + 2ω
√
S1,2)/2

(
n
2

)
, G∗2

(
n, (S1,2 + ω

√
S1,2)/t

)
and G6=2 (n,m, p) are in-

dependent, and also G2 (n, p̂+2) and G6=2 (n,m, p) are independent.
We will first present a construction of coupling (∗). Let Q2 be defined by (5.4). Then

G2 (n,m, p) = G∗2 (n,Q2). Set (S1,2 +ω
√
S1,2)/2 = q+. Let Q2 = q. If q 6 q+ then, in the

coupling, first we choose independently with repetition q edges uniformly at random from
all 2 element subsets of V and add them to the edge sets of G∗2 (n,Q2) and G∗2 (n, q+) (if
edges repeat we add only one of them). Then we choose independently with repetition
q+ − q additional edges uniformly at random from all 2 element subsets of V . These
additional edges are added only to the edge set of G∗2 (n, q+). If q > q+, similarly, we first
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choose with repetition q+ edges and add them to the both graphs. Then we choose q− q+
additional edges and add them only to G∗2 (n,Q2). By (5.5) with high probability Q2 6 q+
thus the coupling described above implies G2 (n,m, p) = G∗2 (n,Q2) �1−o(1) G∗2 (n, q+).
Moreover q+ is a number (not a random variable) and choices of edges in G∗2 (n, q+) are
independent of choices of edges in G6=2 (n,m, p). Therefore G∗2 (n, q+) and G6=2 (n,m, p) are
independent. The coupling (∗∗) is analogous to the one constructed in (4.13). Namely, we
use the coupling G∗2 (n, q+) �1−o(1) G∗2

(
n,Po

(
(S1,2 + 2ω

√
S1,2)/2

))
� G2 (n, p̂2+) (the

last coupling follows by (4.1) and inequality 1− e−x 6 x).
Now we will study properties of G2 (n, p̂+2) ∪ G6=2 (n,m, p). We will show that with

high probability there exists a vertex which is isolated in G6=2 (n,m, p) and has degree
at most k − 1 in G2 (n, p̂+2). The construction of G6=2 (n,m, p) may be coupled with the
vertex collector process described in the proof of Lemma 5.1. This coupling proceeds in
the same way as the coupling of the construction of G (n,m, p) and the vertex collector
process, with one change: one omits the phases with Yi = 2. By (5.1) and (5.7), in the
coupling with high probability the construction of G6=2 (n,m, p) is finished before

T2+ = S1 − S1,2 + 2ω
√
S1 +

S1

ω lnn

draws, for ω →∞. Moreover, in the coupling, every vertex which has not been collected
by the end of the process, is isolated in G6=2 (n,m, p). Therefore we need to show that with
high probability there exists a vertex of degree k− 1 in G2 (n, p̂+2) and is not collected in
T+ draws of the vertex collector process independent of G2 (n, p̂+2).

Take any probability space on which we define the vertex collector process on V and
G2 (n, p̂2+), in such a manner that they are independent. Let X+ be a random variable
counting vertices which have not been collected during the vertex collector process in T2+
draws and have degree k − 1 in G2 (n, p̂2+). If

S1 = n(lnn+ (k − 1) ln(an lnn) + cn)

then for ω tending to infinity slowly enough

1

n
T2+ + (n− k)p̂2+ =

1

n

(
S1 +O

(
ω
√
S1 +

S1

ω lnn

))
= lnn+ (k − 1) ln(an lnn) + cn + o(1)

and

p̂2+ ∼
S1,2

n2
= an

S1

n2
∼ an lnn

n
.

Therefore

EX+ =n

(
1− 1

n

)T2+ (n− 1

k − 1

)
p̂k−12+ (1− p̂2+)n−k

∼n 1

(k − 1)!
(an lnn)k−1 exp(− lnn− (k − 1) ln(an lnn)− cn)
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∼ e−cn

(k − 1)!

and (as np̂2+ ∼ an lnn→∞)

EX+(X+ − 1) ∼n2

(
1− 2

n

)T2+
(1− p̂2+)

((
n− 2

k − 1

)
p̂k−12+ (1− p̂2+)n−k−1

)2

+ n2

(
1− 2

n

)T2+
p̂2+

((
n− 2

k − 2

)
p̂k−22+ (1− p̂2+)n−k

)2

∼
(

e−cn

(k − 1)!

)2

.

Thus by the second moment method with high probability X+ > 0 as cn → −∞. By
(5.1), (5.7), and the coupling of G6=2 (n,m, p) with the vertex collector process we have
that with high probability there is a vertex which is isolated in G6=2 (n,m, p) and has
degree at most k − 1 in G2 (n, p̂2+). Thus by coupling (B.1) with high probability there
is a vertex of degree at most k − 1 in G (n,m, p), i.e.

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 0.

Proof of Lemma 5.2 (ii). Let

S1 −
k∑
t=3

S1,t = n

(
lnn+ (k − 1) ln

(
max

{
1,

(
S1,2

S1

lnn

)})
+ cn

)
with cn →∞.

If S1 � n lnn then by Theorem 2.1 and the classical results concerning G2 (n, p̂) with
p̂� lnn/n we have

1 = lim
n→∞

Pr {δ(G2 (n, p̂)) > k} 6 lim
n→∞

Pr {δ(G (n,m, p)) > k} .

Now let S1 = O(n lnn). If S1,2/S1 = O(1/ lnn) and S1 = O(n lnn) then S1 −∑k
t=3 S1,t = n(lnn+O(1) + cn). In this case we use the same reasoning as in the proof of

Lemma 5.1. We construct a coupling of the vertex collector process and the construction
of G>k+1 (n,m, p). By (5.1) and (5.6) the construction of G>k+1 (n,m, p) does not finish
before

T− = S1 −
k∑
t=3

S1,t − k
√
S1 = n(lnn+O(1) + cn)

draws (recall that
√
S1 = O(

√
n lnn)). Therefore by the coupling and the classical results

on the vertex collector process [10] with high probability there is no isolated vertex in
G>k+1 (n,m, p). Thus

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 1.
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We are left with the case S1 = O(n lnn) (which implies cn = O(lnn)) and an =
S1,2/S1 � 1/ lnn (which implies S1,2 → ∞ and an lnn → ∞). The proof uses the same
techniques as the proof of Lemma 5.2(i). As in (B.1) we may construct couplings

G2 (n, p̂2−) ∪ G>k+1 (n,m, p) �1−o(1) G2 (n,m, p) ∪ G>k+1 (n,m, p) � G (n,m, p) , (B.2)

where p̂2− = (S1,2−2ω
√
S1,2)/2

(
n
2

)
and graphs G2 (n, p̂2−) and G>k+1 (n,m, p) are indepen-

dent. Moreover we may couple a construction of G>k+1 (n,m, p) with the vertex collector
process in such a manner that with high probability G>k+1 (n,m, p) is constructed in at
least

T− = S1 −
k∑
t=3

S1,t − k
√
S1 = n(lnn+ ln (max{1, an lnn}) + cn + o(1))

draws.
Consider any probability space on which we define the vertex collector process on

V and G2 (n, p̂2−), in such a manner that they are independent. Let X− be a random
variable defined on this probability space equal to the number of vertices which have not
been collected during the vertex collector process with T− draws and have degree at most
k−1 in G2 (n, p̂2−). If S1−

∑k
t=3 S1,t = n(lnn+(k−1) ln(an lnn)+cn) then for ω tending

to infinity slowly enough

1

n
T− + (n− k)p̂2− >

1

n

(
S1 −

k−1∑
t=3

S1,t +O
(
ω
√
S1 + S2

1n
−2
))

= lnn+ (k − 1) ln(an lnn) + cn + o(1).

Moreover

p̂2− ∼
S1,2

n2
= an

S1

n2
= Θ

(
an lnn

n

)
and np̂2− = Θ(an lnn) tends to infinity. Thus

EX− = n

(
1− 1

n

)T− (k−1∑
i=0

(
n− 1

i

)
p̂i2−(1− p̂2−)k−1−i

)
(1− p̂2−)n−k

= O(1)n
1

(k − 1)!
(an lnn)k−1 exp(− lnn− (k − 1) ln(an lnn)− cn)

= O(1)
e−cn

(k − 1)!

Therefore with high probability X− = 0, i.e. with high probability each vertex is collected
in T− draws or has degree at least k in G2 (n, p̂2−). Note that if each vertex is non-isolated
in Gk+1 (n,m, p) or has degree at least k in G2 (n,m, p), then δ(G (n,m, p)) > k. Therefore
coupling (B.2) implies that with high probability δ(G (n,m, p)) > k.

the electronic journal of combinatorics 24(2) (2017), #P2.10 39



Before we proceed with the proof of Lemma 5.3 we start with discussion on the
structure of G (n,m, p). From now on for p = (p, . . . , p) we replace p by p in notations
Gt (n,m, p), G>k+1 (n,m, p), G6=t (n,m, p).

Note that if np� lnm then with high probability
⋃k
t=2 Gt (n,m, p) is empty. Therefore

the number of vertices of degree at most k − 1 is the number of isolated vertices in
G>k+1 (n,m, p) (i.e. it might be approximated by the number of non–collected vertices
in the vertex collector process). On the other hand if np = o(m−1/3)) then with high
probability G (n,m, p) = G2 (n,m, p) and the number of vertices of degree at most k − 1
may be counted in the same manner as in a graph with independent edges. The proof of
Lemma 5.3 provides the discussion about what happens for np in between.

Proof of Lemma 5.3. Let

an = an(p) = (np)k−1

((
lnn

enp − 1

)k−1
+

lnn

enp − 1

)
.

First we will prove that we may restrict our attention to the case S1 ∼ n lnn (i.e. cn =
o(lnn)). Recall that p(1−(1−p)n−1) = S1/nm. Moreover, note that 0 6 ln max{1, an} 6
(k − 1) ln lnn + O(1) = o(lnn). Therefore, by monotonicity and continuity of f(x) =
x(1 − (1 − x)n−1), for any p with cn = Ω(lnn), cn → −∞, there exists p′, p 6 p′, with
c′n = o(lnn), c′n → −∞, such that

p(1− (1− p)n−1) =
lnn+ ln max{1, an(p)}+ cn

m
6

lnn+ ln max{1, an(p′)}+ c′n
m

= p′(1− (1− p′)n−1).

Thus
Pr {G (n,m, p) ∈ Ck} 6 Pr {G (n,m, p′) ∈ Ck} .

An analogous statement is true for p with cn → ∞ and p′ 6 p with c′n = o(lnn) and
c′n → ∞. From now on we assume that cn = o(lnn). Note that if m � ln2 n then p =
O (p(1− (1− p)n−1)) = O (lnn/m) = o (1/ lnn). This will allow us to use Lemmas 5.1
and 5.2.

We will also use some relations between an and values S1,t, t = 2, k. By (2.1)

S1,t ∼ m
(np)t

(t− 1)!
(1− p)n−t = ((t− 1)!)−1

(np)t−1(1− p)n−t

1− (1− p)n−1
S1, for t = 2, . . . , k,

where S1 and S1,t are defined by (2.1). Therefore for p = o(1)

S1,t ∼ ((t− 1)!)−1
(np)t−1

(1− p)−n − 1
S1, for t = 2, . . . , k. (B.3)

Moreover if np2 = o(1) then(
S1,2

S1

lnn

)k−1
+ (k − 1)!

S1,k

S1

lnn ∼ an. (B.4)
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We will divide the proof into cases depending on the value an (or equivalently np).

CASE 1. an = O(1) (i.e. np > ln lnn+ (k − 1) ln ln lnn+ d, for some d ∈ R).

In this case S1,t/S1 = O(1/ lnn) for 2 6 t 6 k. Moreover ln(max{1, an}) = O(1).

Therefore S1 = n(lnn + O(1) + cn) and S1 −
∑k

t=3 S1,t = n(lnn + O(1) + cn). Thus the
result follows by Lemma 5.2.

CASE 2. an →∞ (i.e. np 6 ln lnn+ (k − 1) ln ln lnn− ω, for some ω →∞).

First let cn → −∞.

Here we distinguish between an ∼ ((k − 1)!S1,k lnn)/S1 (i.e. ln lnn + ω 6 np 6
ln lnn + (k − 1) ln ln lnn − ω, for some ω → ∞) and an = Θ((S1,2 lnn/S1)

k−1) (i.e.
np 6 ln lnn+ d for some d ∈ R).

For an ∼ (k− 1)!S1,k lnn/S1 and an →∞ we use the following division and couplings.

G (n,m, p) = Gk (n,m, p) ∪ G 6=k (n,m, p) �1−o(1)

G∗k

(
n,
S1,k + ω

√
S1,k

k

)
∪ G 6=k (n,m, p) �1−o(1) Gk(n, p̂k+) ∪ G 6=k (n,m, p) , (B.5)

where p̂k+ = (S1,k + 2
√
S1,k)/k

(
n
k

)
(for more details on the construction of the couplings

see (B.1)). As in the proof of Lemma 5.2 the construction of G6=k (n,m, p) in Gk(n, p̂+k)∪
G6=k (n,m, p) may be coupled with the vertex collector process on V . Moreover by (5.7)
and (5.1) with high probability the construction of G6=k (n,m, p) is finished in at most

Tk+ = S1 − S1,k + 2ω
√
S1 +

S1

ω lnn

draws, for ω → ∞. Take any probability space on which we define independent: the
vertex collector process on V and Gk(n, p̂k+). Let X+ be a random variable equal to the
number of vertices which have not been collected during the vertex collector process in
Tk+ draws and have degree k − 1 in Gk(n, p̂k+). For ω tending to infinity slowly enough

1

n
Tk+ +

(
n− 1

k − 1

)
p̂k+ =

1

n

(
S1 +O

(
ω
√
S1 +

S1

ω lnn

))
= lnn+ ln an + cn + o(1).

and by (B.4)

pk+ ∼
S1,k

k
(
n
k

) ∼ anS1

(k−1)! lnn

n
(
n−1
k−1

) ∼ an

(k − 1)!
(
n−1
k−1

)
Thus

EX+ =n

(
1− 1

n

)Tk+ (n− 1

k − 1

)
p̂k+(1− p̂k+)(

n−1
k−1)−1
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∼n ·
(
n− 1

k − 1

)
· an

(k − 1)!
(
n−1
k−1

) · exp

(
−Tk+

n
−
(
n− 1

k − 1

)
pk+

)
∼n 1

(k − 1)!
an exp(− lnn− ln an − cn)

∼ e−cn

(k − 1)!

and similarly

EX+(X+ − 1) ∼n2

(
1− 2

n

)Tk+
·
[((n− 2

k − 1

)
p̂k+

)2

(1− p̂k+)2(
n−1
k−1)−(n−2

k−2)−2

+

(
n− 2

k − 2

)
p̂k+(1− p̂k+)2(

n−1
k−1)−(n−2

k−2)−1
]

∼
(

e−cn

(k − 1)!

)2

.

Thus by the second moment method with high probability X+ > 0 as cn → −∞ (i.e.
with high probability there exists a vertex, which has degree at most k − 1 in Gk(n, p̂k+)
or has not been collected in Tk+ draws). Thus by (5.1), (5.7), (B.5), and the coupling of
G6=k (n,m, p) with the vertex collector process with high probability

lim
n→∞

Pr {δ(G (n,m, p)) > k} = 0.

We are left with an = Θ((S1,2 lnn/S1)
k−1). Then

S1 = n(lnn+ (k − 1) ln

(
max

{
1,
S1,2 lnn

S1

})
+O(1) + cn).

Therefore the result follows by Lemma 5.2(i)

Now assume that cn →∞.

Here we use the couplings

k⋃
t=2

Gt(n, q̂t) ∪ G>k+1 (n,m, p)

�1−o(1)

k⋃
t=2

G∗t

(
n,max

{
0,
S1,t − ω

√
S1,t

t

})
∪ G>k+1 (n,m, p)

�1−o(1)

k⋃
t=2

Gt (n,m, p) ∪ G>k+1 (n,m, p)

= G (n,m, p)

(B.6)
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where

q̂t =

0, for S1,t = O(ω
√
S1);

S1,t−2ω
√
S1−t!S2

1,tn
−2

t(nt)
, otherwise.

Therefore (
n− 1

t− 1

)
q̂t > S1,t −O(ω

√
S1) (B.7)

and by (2.1)

q̂t 6
S1,t

t
(
n
t

) = O
(
mpte−np

)
.

Take any probability space on which we may define independent: the vertex collector
process and

⋃k
t=2Gt(n, q̂t). Let X− be a random variable equal to the number of vertices

which have not been collected during the vertex collector process in

T− = S1 −
k∑
t=3

S1,t − k
√
S1 (B.8)

draws and have degree at most k − 1 in
⋃k
t=2Gt(n, q̂t). Note that if v has degree at most

k − 1 in
⋃k
t=2Gt(n, q̂t), then for some 0 6 k0 6 k − 1 and some sequence of integers

r2, . . . , rt such that
∑k

t=2(t− 1)rt = k0

(i) there is a set V ′ ⊆ V \{v} of k0 vertices such that for each t there are rt hyperedges
in Ht(n, q̂t) (generating Gt(n, q̂t)) containing v and contained in V ′ ∪ {v}.

(ii) and all hyperedges in
⋃k
t=2Ht(n, q̂t) containing v are subsets of V ′ ∪ {v}.

Let r =
∑k

t=2 rt. Given a sequence r2, . . . , rt such that
∑k

t=2(t− 1)rt = k0, if cn = O(lnn)
then event (i) occurs with probability at most(

n− 1

k0

) k∏
t=2

(
k0 − 1

t− 1

)rt (
O(1)(mpt)e−np

)rt
= O(1)nk0mrpk0+r

(
e−np

)r
= O(1)(np)k0(mpe−np)r

= O(1)(np)k0
(

lnn

(1− e−np)
e−np

)r
= O(an).

In the penultimate equality we have used the fact that mp(1 − e−np) ∼ lnn. There are
O(1) sequences of integers r2, . . . , rt such that

∑k
t=2(t− 1)rt 6 k− 1, thus the probability

that there exists such sequence r2, . . . , rt that (i) and (ii) occur is at most

O(an)
k∏
t=2

(1− q̂t)(
n−1
t−1)−(k−1

t−1).
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Moreover by (B.7) and (B.8)

1

n
T− +

k∑
t=2

(
n− 1

t− 1

)
q̂t >

1

n

(
S1 −O

(
ω
√
S1 + S2

1n
−2
))

= lnn+ ln an + cn + o(1).

Therefore finally

EX− = n

(
1− 1

n

)T−
O(an)

k∏
t=2

(1− q̂t)(
n−1
t−1)−(k−1

t−1) = o(1).

Hence with high probability X− = 0. Thus by (5.5), (B.6) and the coupling of the
construction of G>k+1 (n,m, p) with the vertex collector process with high probability
δ(G (n,m, p)) > k.
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