Forbidden pairs with a common graph generating almost the same sets

Shuya Chiba*

Applied Mathematics
Faculty of Advanced Science and Technology
Kumamoto University, Japan
schiba@kumamoto-u.ac.jp

Michitaka Furuya ${ }^{\ddagger}$
College of Liberal Arts and Science
Kitasato University, Japan
michitaka.furuya@gmail.com

Jun Fujisawa ${ }^{\dagger}$
Faculty of Business and Commerce Keio University, Japan
fujisawa@fbc.keio.ac.jp

Submitted: Jun 3, 2016; Accepted: Apr 4, 2017; Published: Apr 13, 2017
Mathematics Subject Classifications: 05C75

Abstract

Let \mathcal{H} be a family of connected graphs. A graph G is said to be \mathcal{H}-free if G does not contain any members of \mathcal{H} as an induced subgraph. Let $\mathcal{F}(\mathcal{H})$ be the family of connected \mathcal{H}-free graphs. In this context, the members of \mathcal{H} are called forbidden subgraphs.

In this paper, we focus on two pairs of forbidden subgraphs containing a common graph, and compare the classes of graphs satisfying each of the two forbidden subgraph conditions. Our main result is the following: Let H_{1}, H_{2}, H_{3} be connected graphs of order at least three, and suppose that H_{1} is twin-less. If the symmetric difference of $\mathcal{F}\left(\left\{H_{1}, H_{2}\right\}\right)$ and $\mathcal{F}\left(\left\{H_{1}, H_{3}\right\}\right)$ is finite and the tuple $\left(H_{1} ; H_{2}, H_{3}\right)$ is non-trivial in a sense, then H_{2} and H_{3} are obtained from the same vertex-transitive graph by successively replacing a vertex with a clique and joining the neighbors of the original vertex and the clique. Furthermore, we refine a result in [Combin. Probab. Comput. 22 (2013) 733-748] concerning forbidden pairs.

Keywords: forbidden subgraph; star-free graph; vertex-transitive graph.

[^0]
1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. We let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. If there is no fear of confusion, we often identify G with its vertex set $V(G)$. For $X, Y \subseteq V(G)$, by joining X and Y we mean adding all the missing edges between vertices of X and vertices of Y. For $x \in V(G)$, we let $N_{G}(x)$ and $N_{G}[x]$ denote the open neighborhood and the closed neighborhood of x, respectively; thus $N_{G}[x]=N_{G}(x) \cup\{x\}$. For $X \subseteq V(G)$, we let $N_{G}[X]=\bigcup_{x \in X} N_{G}[x]$. For $x \in V(G)$, we let $d_{G}(x)$ denote the degree of x; thus $d_{G}(x)=\left|N_{G}(x)\right|$. We let $\delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree of G, respectively. We let K_{n} denote the complete graph of order n, and let $K_{1, n}$ denote the star of order $n+1$. The graph K_{3} is called the triangle, and the graph $K_{1,3}$ is called the claw.

For a connected graph H, G is said to be H-free if G does not contain H as an induced subgraph. For a family \mathcal{H} of connected graphs, G is said to be \mathcal{H}-free if G is H-free for every $H \in \mathcal{H}$, and we let $\mathcal{F}(\mathcal{H})$ denote the family of all connected \mathcal{H}-free graphs. When \mathcal{H} is finite and the members of \mathcal{H} are specified, we use a sequence of members of \mathcal{H} instead of \mathcal{H} for $\mathcal{F}(\mathcal{H})$; thus if $\mathcal{H}=\left\{H_{1}, \ldots, H_{m}\right\}$, we write $\mathcal{F}\left(H_{1}, \ldots, H_{m}\right)$ instead of $\mathcal{F}(\mathcal{H})$. In this context, members of \mathcal{H} are often referred to as forbidden subgraphs. For a graph H, we write $H \prec G$ if G contains H as an induced subgraph (i.e., G is not H-free). For terms and symbols not defined here, we refer the reader to [2].

In graph theory, many researchers have studied forbidden subgraph conditions for graphs to satisfy a given property. For example, there are complete characterizations of perfect graphs, intersection graphs and line graphs using forbidden subgraphs. However, in general, for many properties P, it seems difficult to characterize completely the forbidden subgraph conditions concerning P (in fact, if P is not hereditary, then there is no forbidden subgraphs which yield P). Thus we usually look for forbidden subgraph conditions which imply P. Further we frequently restrict the number of forbidden subgraphs, and in many cases, we focus on pairs of forbidden subgraphs. For example, Duffus, Gould and Jacobson [3] proved that every 2-connected $\left\{K_{1,3}, N\right\}$-free graph has a Hamiltonian cycle, where N is the graph obtained from a triangle by adding a pendant edge to each vertex, and Broersma and Veldman [1] proved that every 2 -connected $\left\{K_{1,3}, P_{6}\right\}$-free graph has a Hamiltonian cycle, where P_{6} is the path of order 6 . Similar problems have widely been studied (see [5])

Here we assume that for a property P, there exist two families $\mathcal{H}_{1}, \mathcal{H}_{2}$ of forbidden subgraphs such that every graph in $\mathcal{F}\left(\mathcal{H}_{i}\right)$ of sufficiently large order satisfies P. If $\mathcal{F}\left(\mathcal{H}_{1}\right)$ is essentially different from $\mathcal{F}\left(\mathcal{H}_{2}\right)$, then it might be important to study \mathcal{H}_{1}-freeness and \mathcal{H}_{2}-freeness. On the other hand, if $\mathcal{F}\left(\mathcal{H}_{1}\right)$ relates to $\mathcal{F}\left(\mathcal{H}_{2}\right)$, then it seems redundant to consider both \mathcal{H}_{1}-freeness and \mathcal{H}_{2}-freeness. Thus it is important to judge whether $\mathcal{F}\left(\mathcal{H}_{1}\right)$ relates to $\mathcal{F}\left(\mathcal{H}_{2}\right)$ or not. For such a reason, Fujita, Furuya and Ozeki [7] studied two families $\mathcal{H}_{1}, \mathcal{H}_{2}$ of forbidden subgraphs such that $\mathcal{F}\left(\mathcal{H}_{1}\right) \triangle \mathcal{F}\left(\mathcal{H}_{2}\right)$ is finite, where $\mathcal{F}\left(\mathcal{H}_{1}\right) \triangle \mathcal{F}\left(\mathcal{H}_{2}\right)$ is the symmetric difference of $\mathcal{F}\left(\mathcal{H}_{1}\right)$ and $\mathcal{F}\left(\mathcal{H}_{2}\right)$. (For detailed historical background and related results, we refer the reader to [7]. For example, they proved that
for two connected graphs H_{1} and H_{2}, if $\left|\mathcal{F}\left(H_{1}\right) \triangle \mathcal{F}\left(H_{2}\right)\right|<\infty$, then $H_{1} \simeq H_{2}$.) They gave some results concerning the above problem and, in particular, proved a theorem on forbidden pairs. Before we introduce their theorem, we give a fundamental definition. A tuple $\left(H_{1} ; H_{2}, H_{3}\right)$ of connected graphs of order at least three is trivial if either
(T1) $H_{2} \simeq H_{3}$, or
(T2) $H_{1} \prec H_{2}$ and $H_{1} \prec H_{3}$.
If (T1) holds, then we clearly obtain $\mathcal{F}\left(H_{1}, H_{2}\right)=\mathcal{F}\left(H_{1}, H_{3}\right)$; while if (T2) holds, then $\mathcal{F}\left(H_{1}, H_{2}\right)=\mathcal{F}\left(H_{1}\right)=\mathcal{F}\left(H_{1}, H_{3}\right)$. Hence if $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple, then $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$.

Fujita, Furuya and Ozeki [7] proved the following theorem.
Theorem A (Fujita, Furuya and Ozeki [7]). Let H_{1}, H_{2}, H_{3} be connected graphs of order at least three, and suppose that $\Delta\left(H_{1}\right) \leqslant\left|V\left(H_{1}\right)\right|-2$ and $\delta\left(H_{1}\right) \geqslant 2$. Then $\mid \mathcal{F}\left(H_{1}, H_{2}\right) \Delta$ $\mathcal{F}\left(H_{1}, H_{3}\right) \mid<\infty$ if and only if $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple.

Now we focus on claw-freeness, or star-freeness in general. It has been known that the claw or the stars are important forbidden subgraphs (see [4]). For example, Fujisawa, Fujita, Plummer, Saito and Schiermeyer [6] proved that stars appear in all of the forbidden pairs assuring us the existence of a perfect matching in highly-connected graphs of sufficiently large order. Furthermore, Faudree and Gould [5] proved that for each one of the following three properties, the claw appears in all of the forbidden pairs assuring us the property:

- The existence of a Hamiltonian path in connected graphs of sufficiently large order.
- The existence of a Hamiltonian cycle in 2-connected graphs of sufficiently large order.
- The Hamiltonian-connectedness in 3-connected graphs of sufficiently large order.

Thus it is worthwhile to compare two forbidden pairs having the same star. However, no star can be H_{1} in Theorem A. Our first purpose in this paper is to give a necessary condition for $\left|\mathcal{F}\left(K_{1, n}, H_{2}\right) \Delta \mathcal{F}\left(K_{1, n}, H_{3}\right)\right|<\infty$.

Let H be a graph. We define the relation \equiv_{H} on $V(H)$ by letting $u \equiv_{H} v$ if and only if $N_{H}[u]=N_{H}[v]$. Then we can verify that \equiv_{H} is an equivalence relation on $V(H)$. We let $\mathcal{C}(H)$ denote the quotient set with respect to \equiv_{H}. Then $\mathcal{C}(H)$ is a partition of $V(H)$ such that
(C1) every $C \in \mathcal{C}(H)$ is a clique of H, and
(C2) for two elements C, C^{\prime} of $\mathcal{C}(H)$ with $C \neq C^{\prime}$, either all vertices in C are joined to all vertices in C^{\prime} in H or there is no edge of H between C and C^{\prime}.

Let $B(H)$ be the graph on $\mathcal{C}(H)$ such that $C C^{\prime} \in E(B(H))$ if and only if all vertices in C are joined to all vertices in C^{\prime} in H. Note that $B(H)$ is isomorphic to the graph obtained from H by contracting each $C \in \mathcal{C}(H)$ to a vertex and replacing resulting parallel edges with a single edge. On the other hand, H is isomorphic to a graph obtained from $B(H)$ by successively replacing a vertex with a new clique (and joining the neighbors of the original vertex and the clique).

A twin is a pair u, v of vertices of a graph H such that $N_{H}[u]=N_{H}[v]$. A graph is twin-less if the graph has no twin. A graph H is vertex-transitive if for any $u, v \in V(H)$, there exists an automorphism ϕ of H such that $\phi(u)=v$.

We prove the following theorem. (Considering that stars of order at least 3 are twinless, the assumption on H_{1} in Theorem 1.1 is appropriate for our purpose.)
Theorem 1.1. Let H_{1}, H_{2}, H_{3} be connected graphs of order at least three, and suppose that H_{1} is twin-less. If $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$, then one of the following holds:
(i) $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple, or
(ii) (a) $\delta\left(H_{1}\right)=1$ or $\Delta\left(H_{1}\right)=\left|V\left(H_{1}\right)\right|-1$, and
(b) for some $i \in\{2,3\}, H_{5-i}$ is obtained from H_{i} by replacing a vertex with a clique and $B\left(H_{i}\right)$ is vertex-transitive.

Our second purpose is to show that the condition $\Delta\left(H_{1}\right) \leqslant\left|V\left(H_{1}\right)\right|-2$ in Theorem A can be dropped as follows.

Theorem 1.2. Let H_{1}, H_{2}, H_{3} be connected graphs of order at least three, and suppose that $\delta\left(H_{1}\right) \geqslant 2$. Then $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$ if and only if $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple.

In Section 2, we prove Theorem 1.1 and show that the conclusion (ii) of Theorem 1.1 cannot be dropped. In Section 3, we prove Theorem 1.2.

The following lemma will be used in our proof.
Lemma 1.3 (Fujita, Furuya and Ozeki [7]). Let H_{1}, H_{2} be connected graphs of order at least three. If $\left|\mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{2}\right)\right|<\infty$ and $H_{1} \nprec H_{2}$, then $\delta\left(H_{1}\right)=1$ and H_{1} has a twin.

2 Proof of Theorem 1.1

Let H be a graph. For an integer $n \geqslant 0$ and an element C of $\mathcal{C}(H)$, let $G_{1}^{n}(H ; C)$ be the graph obtained from H by adding a clique of size n and joining the clique and $N_{H}[C]$. By the definition of $\mathcal{C}(H)$ and $G_{1}^{n}(H ; C)$, we have $B\left(G_{1}^{n}(H ; C)\right) \simeq B(H)$. Set $c(H)=\max \{|C|: C \in \mathcal{C}(H)\}$. Note that $c\left(G_{1}^{n}(H ; C)\right)>c(H)$ if $|C|=c(H)$ and $n \geqslant 1$.
Proof of Theorem 1.1. Let $H_{i}(1 \leqslant i \leqslant 3)$ be as in Theorem 1.1. We first suppose that $H_{1} \prec H_{i}$ for some $i \in\{2,3\}$. Then $\mathcal{F}\left(H_{1}, H_{i}\right) \triangle \mathcal{F}\left(H_{1}, H_{5-i}\right)=\mathcal{F}\left(H_{1}\right) \triangle \mathcal{F}\left(H_{1}, H_{5-i}\right)=$ $\mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{5-i}\right)$, and hence $\left|\mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{5-i}\right)\right|<\infty$. Since H_{1} is twin-less, it follows from Lemma 1.3 that $H_{1} \prec H_{5-i}$, which implies that ($H_{1} ; H_{2}, H_{3}$) satisfies (T2). In particular, the tuple $\left(H_{1} ; H_{2}, H_{3}\right)$ is trivial, as desired. Thus we may assume that $H_{1} \nprec H_{i}$ for each $i \in\{2,3\}$.

Claim 2.1. Let $i \in\{2,3\}$, and suppose that $H_{i} \nprec H_{5-i}$. Let $C \in \mathcal{C}\left(H_{5-i}\right)$. Then the following hold.
(a) There exists an integer $n_{C} \geqslant 1$ such that $G_{1}^{n_{C}}\left(H_{5-i} ; C\right)$ contains H_{i} as an induced subgraph.
(b) $c\left(H_{i}\right)>c\left(H_{5-i}\right)$.
(c) $H_{5-i} \prec H_{i}$.
(d) If $|C|=c\left(H_{5-i}\right)$, then there exists an integer $n_{0} \geqslant 1$ such that $H_{i} \simeq G_{1}^{n_{0}}\left(H_{5-i} ; C\right)$.

Proof. We first show that $H_{1} \nprec G_{1}^{n}\left(H_{5-i} ; C\right)$ for any $n \geqslant 0$. Suppose that $H_{1} \prec$ $G_{1}^{n}\left(H_{5-i} ; C\right)$ for some $n \geqslant 0$, and let H_{1}^{0} be an induced subgraph of $G_{1}^{n}\left(H_{5-i} ; C\right)$ isomorphic to H_{1}. Note that for any $x \in C$ and any $y \in V\left(G_{1}^{n}\left(H_{5-i} ; C\right)\right)-V\left(H_{5-i}\right)$, the subgraph of $G_{1}^{n}\left(H_{5-i} ; C\right)$ induced by $\left(V\left(H_{5-i}\right)-\{x\}\right) \cup\{y\}$ is isomorphic to H_{5-i}. Since $H_{1} \nprec H_{5-i}$, it follows that H_{1}^{0} contains at least $|C|+1(\geqslant 2)$ vertices of $C \cup\left(V\left(G_{1}^{n}\left(H_{5-i} ; C\right)\right)-V\left(H_{5-i}\right)\right)$. Then H_{1}^{0} contains a twin, which is a contradiction. Thus $H_{1} \nprec G_{1}^{n}\left(H_{5-i} ; C\right)$ for any $n \geqslant 0$. In particular, $\left\{G_{1}^{n}\left(H_{5-i} ; C\right): n \geqslant 0\right\} \subseteq \mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{5-i}\right)$. Since $\left|\mathcal{F}\left(H_{1}, H_{i}\right)-\mathcal{F}\left(H_{5-i}\right)\right|<$ ∞, it follows that there exists an integer $n_{C} \geqslant 0$ such that $G_{1}^{n_{C}}\left(H_{5-i} ; C\right)$ contains H_{i} as an induced subgraph. Since $H_{i} \nprec H_{5-i}, n_{C} \geqslant 1$, and hence we obtain (a).

In the rest of the proof of the claim, we let C be a member of $\mathcal{C}\left(H_{5-i}\right)$ such that $|C|=c\left(H_{5-i}\right)$, and take n_{C} as small as possible. Recall that $B\left(G_{1}^{n_{C}}\left(H_{5-i} ; C\right)\right) \simeq B\left(H_{5-i}\right)$. Let C_{0} be the element of $\mathcal{C}\left(G_{1}^{n_{C}}\left(H_{5-i} ; C\right)\right)$ such that $C \subseteq C_{0}$. Then $\left|C_{0}\right|=|C|+n_{C}=$ $c\left(H_{5-i}\right)+n_{C}$. Let H_{i}^{0} be an induced subgraph of $G_{1}^{n_{C}}\left(H_{5-i} ; C\right)$ isomorphic to H_{i}. If $C_{0} \nsubseteq V\left(H_{i}^{0}\right)$, then $G_{1}^{n_{C}-1}\left(H_{5-i} ; C\right)$ contains H_{i}^{0} as an induced subgraph, which contradicts the choice of n_{C}. Thus $C_{0} \subseteq V\left(H_{i}^{0}\right)$. In particular, an element of $\mathcal{C}\left(H_{i}^{0}\right)$ contains C_{0}, and hence $c\left(H_{i}\right) \geqslant\left|C_{0}\right|=c\left(H_{5-i}\right)+n_{C}>c\left(H_{5-i}\right)$. Consequently we obtain (b).

If $H_{5-i} \nprec H_{i}$, then applying (b) with roles of H_{i} and H_{5-i} interchanged, we get $c\left(H_{5-i}\right)>c\left(H_{i}\right)$, which contradicts (b). Thus we obtain (c).

Finally we show (d). By (c), there exists a set $X \subseteq V\left(H_{i}\right)$ such that $H_{i}-X \simeq H_{5-i}$. Since $c\left(H_{i}\right) \geqslant c\left(H_{5-i}\right)+n_{C}$, there exists a subset of X which is a clique with size at least n_{C}. This together with the fact that $H_{i} \prec G_{1}^{n_{C}}\left(H_{5-i} ; C\right)$ leads to

$$
\left|V\left(H_{5-i}\right)\right|=\left|V\left(H_{i}\right)\right|-|X| \leqslant\left|V\left(H_{i}\right)\right|-n_{C} \leqslant\left|V\left(G_{1}^{n_{C}}\left(H_{5-i} ; C\right)\right)\right|-n_{C}=\left|V\left(H_{5-i}\right)\right| .
$$

This forces $H_{i} \simeq G_{1}^{n_{C}}\left(H_{5-i} ; C\right)$. In particular, we obtain (d).
If $H_{2} \simeq H_{3}$, then $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple, as desired. Thus we may assume that $H_{2} \nsucceq H_{3}$. Then either $H_{2} \nprec H_{3}$ or $H_{3} \nprec H_{2}$. We may assume that $H_{2} \nprec H_{3}$. Then by Claim 2.1(c), we have $\mathrm{H}_{3} \prec \mathrm{H}_{2}$.

Fix an element C_{3}^{*} of $\mathcal{C}\left(H_{3}\right)$ such that $\left|C_{3}^{*}\right|=c\left(H_{3}\right)$. By Claim 2.1(d), there exists an integer $n_{0} \geqslant 1$ such that $H_{2} \simeq G_{1}^{n_{0}}\left(H_{3} ; C_{3}^{*}\right)$ (i.e., H_{2} is obtained from H_{3} by replacing a vertex with a clique). Hence $B\left(H_{2}\right) \simeq B\left(H_{3}\right)$ and $\mathcal{C}\left(H_{2}\right)$ has exactly one element C_{2}^{*} such that $\left|C_{2}^{*}\right|=c\left(H_{2}\right)\left(=c\left(H_{3}\right)+n_{0}\right)$.

Figure 1: Icosahedron A

Claim 2.2. For $C \in \mathcal{C}\left(H_{3}\right)$, there exists an isomorphic mapping ϕ_{C} from $B\left(H_{3}\right)$ to $B\left(H_{2}\right)$ such that $\phi_{C}(C)=C_{2}^{*}$.

Proof. Set $D=C \cup\left(V\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)-V\left(H_{3}\right)\right)$, where n_{C} is an integer assured in Claim 2.1(a). By the definition of $G_{1}^{n_{C}}\left(H_{3} ; C\right)$, we have $D \in \mathcal{C}\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$ and every $C^{\prime} \in$ $\mathcal{C}\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)-\{D\}$ satisfies $\left|C^{\prime}\right| \leqslant c\left(H_{3}\right)$. Since $H_{2} \prec G_{1}^{n_{C}}\left(H_{3} ; C\right)$ and $c\left(H_{2}\right)>c\left(H_{3}\right)$ by Claim 2.1, we have $|D|=c\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right) \geqslant c\left(H_{2}\right)>c\left(H_{3}\right)$. Furthermore, there exists an isomorphic mapping ϕ_{1} from $B\left(H_{3}\right)$ to $B\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$ such that $\phi_{1}(C)=D$.

Let H_{2}^{1} be an induced subgraph of $G_{1}^{n_{C}}\left(H_{3} ; C\right)$ isomorphic to H_{2}. Since $B\left(H_{2}^{1}\right) \simeq$ $B\left(H_{2}\right) \simeq B\left(H_{3}\right) \simeq B\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$, it follows that for each $\tilde{C} \in \mathcal{C}\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$, there exists exactly one element $D_{\tilde{C}}$ of $\mathcal{C}\left(H_{2}^{1}\right)$ such that $D_{\tilde{C}} \subseteq \tilde{C}$. Let $\phi_{2}: \mathcal{C}\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right) \rightarrow$ $\mathcal{C}\left(H_{2}^{1}\right)$ be the mapping such that $\phi_{2}(C)=D_{\tilde{C}}$ for $C \in \mathcal{C}\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$. Then we can verify that ϕ_{2} is an isomorphic mapping from $B\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$ to $B\left(H_{2}^{1}\right)$. Recall that $\mathcal{C}\left(H_{2}\right)$ has exactly one element of size $c\left(H_{2}\right)$. Let $C_{2}^{* *}$ be the unique element of $\mathcal{C}\left(H_{2}^{1}\right)$ such that $\left|C_{2}^{* *}\right|=c\left(H_{2}^{1}\right)$. Since $\left|C_{2}^{* *}\right|=c\left(H_{2}^{1}\right)>c\left(H_{3}\right)$ and D is the unique element of $\mathcal{C}\left(G_{1}^{n_{C}}\left(H_{3} ; C\right)\right)$ such that $|D|>c\left(H_{3}\right)$, we have $\phi_{2}(D)=C_{2}^{* *}$. Furthermore, there clearly exists an isomorphic mapping ϕ_{3} from $B\left(H_{2}^{1}\right)$ to $B\left(H_{2}\right)$ such that $\phi_{3}\left(C_{2}^{* *}\right)=C_{2}^{*}$. Therefore the mapping $\phi_{C}=\phi_{3} \circ \phi_{2} \circ \phi_{1}$ is an isomorphic mapping from $B\left(H_{3}\right)$ to $B\left(H_{2}\right)$ such that $\phi_{C}(C)=C_{2}^{*}$.

Let $C, C^{\prime} \in \mathcal{C}\left(H_{3}\right)$. Then $\phi=\phi_{C^{\prime}}^{-1} \circ \phi_{C}$ is an automorphism of $B\left(H_{3}\right)$ such that $\phi(C)=C^{\prime}$. Consequently $B\left(H_{3}\right)$ is vertex-transitive.

This completes the proof of Theorem 1.1.
In the rest of this section, we show that the conclusion (ii) of Theorem 1.1 cannot be dropped. We first prove the following proposition.

Proposition 2.1. Let H_{2} be the icosahedron, and let $H_{3}=G_{1}^{1}\left(H_{2} ;\{v\}\right)$, where v is a vertex of H_{2}. Let G be a connected $K_{1,3}$-free graph of order at least 13. If $H_{2} \prec G$, then $H_{3} \prec G$.

Proof. Let A be an induced subgraph of G isomorphic to H_{2}, and label each vertex of A as in Figure 1. Since $|V(G)|>|V(A)|$ and G is connected, there exists a vertex $x \in V(G)-V(A)$ such that $N_{G}(x) \cap V(A) \neq \emptyset$. Note that for each $v \in V(A), N_{A}(v)$ induces a cycle of order 5 .
Claim 2.3. Let $v \in V(A)$ be a vertex with $v x \in E(G)$, and let C be the cycle of A induced by $N_{A}(v)$. Then there exist three consecutive vertices of C adjacent to x.

Proof. If no three consecutive vertices of C are adjacent to x, then there exist two nonadjacent vertices $w, w^{\prime} \in V(C)$ such that $x w, x w^{\prime} \notin E(G)$, and hence $\left\{v, x, w, w^{\prime}\right\}$ induces $K_{1,3}$ in G, which is a contradiction.

Let $v \in V(A)$ be a vertex such that
(I1) $v x \in E(G)$, and
(I2) subject to (I1), $\left|N_{A}(v) \cap N_{G}(x)\right|$ is as large as possible.
We may assume that $v=v_{1}$. Applying Claim 2.3, we may further assume that $v_{2} x, v_{5} x, v_{4} x \in$ $E(G)$.

We first show that $N_{A}\left(v_{1}\right) \subseteq N_{G}(x)$. Suppose $N_{A}\left(v_{1}\right) \nsubseteq N_{G}(x)$. We may assume that $v_{9} x \notin E(G)$. Applying Claim 2.3 to $v=v_{4}$, we have $v_{10} x \in E(G)$. Then $\mid N_{A}\left(v_{5}\right) \cap$ $N_{G}(x) \mid \geqslant 4$. It follows from (I2) that $\left|N_{A}\left(v_{1}\right) \cap N_{G}(x)\right| \geqslant 4$, and hence $v_{3} x \in E(G)$. Applying Claim 2.3 to $v=v_{3}$, we have $v_{7} x \in E(G)$. Then $\left\{x, v_{1}, v_{7}, v_{10}\right\}$ induces $K_{1,3}$ in G, which is a contradiction. Consequently $N_{A}\left(v_{1}\right) \subseteq N_{G}(x)$.

Suppose that $N_{G}(x) \cap V(A) \neq N_{A}\left[v_{1}\right]$, and let $v^{\prime} \in\left(N_{G}(x) \cap V(A)\right)-N_{A}\left[v_{1}\right]$. Then v^{\prime} is adjacent to at most two vertices in $N_{A}\left(v_{1}\right)$. Hence there exist two non-adjacent vertices $w, w^{\prime} \in N_{A}\left(v_{1}\right)-N_{G}\left(v^{\prime}\right)$. Then $\left\{x, v^{\prime}, w, w^{\prime}\right\}$ induces $K_{1,3}$ in G, which is a contradiction. Thus $N_{G}(x) \cap V(A)=N_{A}\left[v_{1}\right]$. Therefore $V(A) \cup\{x\}$ induces H_{3} in G.

Here we consider the conclusion (ii) of Theorem 1.1. Let $H_{1}=K_{1,3}$, and let H_{2} and H_{3} be as in Proposition 2.1. Then H_{1} is twin-less and $H_{2} \prec H_{3}$. In particular, $\mathcal{F}\left(H_{1}, H_{2}\right)-\mathcal{F}\left(H_{3}\right)=\emptyset$. Furthermore, it follows from Proposition 2.1 that $\mathcal{F}\left(H_{1}, H_{3}\right)-$ $\mathcal{F}\left(H_{2}\right)=\left\{H_{2}\right\}$. Consequently $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$. On the other hand, it is clear that $\left(H_{1} ; H_{2}, H_{3}\right)$ is not a trivial tuple. This shows that there exists an example requiring the conclusion (ii) of Theorem 1.1. In fact, we can construct infinitely many such examples. Let $H_{1}=K_{1,3}$. Let H_{2} be the graph obtained from the icosahedron by replacing each vertex with a clique of size m, and let $H_{3}=G_{1}^{1}\left(H_{2} ; C\right)$, where C is an element of $\mathcal{C}\left(H_{2}\right)$. Then by arguments similar to the ones used in the proof of Proposition 2.1, we can verify that the tuple $\left(H_{1} ; H_{2}, H_{3}\right)$ is not trivial and satisfies $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$.

3 Proof of Theorem 1.2

Let H be a graph. For an integer $n \geqslant 0$ and a subset X of $V(H)$,

- let $G_{2}^{n}(H ; X)$ be the graph obtained from H by adding an independent set of size n and joining the independent set and X, and
- let $G_{3}^{n}(H ; X)$ be the graph obtained from H by adding a path of order n and joining an end-vertex of the path and X.

If X consists of a vertex, say x, we write $G_{2}^{n}(H ; x)$ and $G_{3}^{n}(H ; x)$ instead of $G_{2}^{n}(H ; X)$ and $G_{3}^{n}(H ; X)$, respectively.

A leaf of a graph is a vertex of degree 1 . For $x \in V(H)$, let $L_{H}(x)$ be the set of leaves of H adjacent to x. Set $l_{H}(x)=\left|L_{H}(x)\right|$ for $x \in V(G)$ and $l(H)=\max \left\{l_{H}(x): x \in V(H)\right\}$. For $x \in V(H)$, a path $P=x_{1} x_{2} \cdots x_{t}$ of H is x-good if
(P1) $x_{1}=x$, and
(P2) either $t=1$, or $t \geqslant 2, d_{H}\left(x_{t}\right)=1$ and $d_{H}\left(x_{i}\right)=2$ for all $2 \leqslant i \leqslant t-1$.
Set $p_{H}(x)=\max \{|V(P)|: P$ is an x-good path $\}$ for $x \in V(H)$ and $p(H)=\max \left\{p_{H}(x)\right.$: $x \in V(H)\}$.
Proof of Theorem 1.2. Let $H_{i}(1 \leqslant i \leqslant 3)$ be as in Theorem 1.2. It suffices to show that if $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$, then $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple. If $\Delta\left(H_{1}\right) \leqslant\left|V\left(H_{1}\right)\right|-2$, then Theorem A leads to the desired conclusion. Thus we may assume that

$$
\begin{equation*}
\Delta\left(H_{1}\right)=\left|V\left(H_{1}\right)\right|-1 \tag{3.1}
\end{equation*}
$$

Since $\delta\left(H_{1}\right) \geqslant 2$, it follows from (3.1) that

$$
\begin{equation*}
H_{1} \text { contains a triangle. } \tag{3.2}
\end{equation*}
$$

We first suppose that $H_{1} \prec H_{i}$ for some $i \in\{2,3\}$. Then $\mathcal{F}\left(H_{1}, H_{i}\right) \triangle \mathcal{F}\left(H_{1}, H_{5-i}\right)=$ $\mathcal{F}\left(H_{1}\right) \triangle \mathcal{F}\left(H_{1}, H_{5-i}\right)=\mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{5-i}\right)$, and hence $\left|\mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{5-i}\right)\right|<\infty$. Since $\delta\left(H_{1}\right) \geqslant 2$, it follows from Lemma 1.3 that $H_{1} \prec H_{5-i}$, which implies that $\left(H_{1} ; H_{2}, H_{3}\right)$ satisfies (T2). In particular, $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple, as desired. Thus we may assume that $H_{1} \nprec H_{i}$ for each $i \in\{2,3\}$.
Claim 3.1. Let $i \in\{2,3\}$, and suppose that $H_{i} \nprec H_{5-i}$. Then the following hold.
(a) $l\left(H_{i}\right)>l\left(H_{5-i}\right)$.
(b) $H_{5-i} \prec H_{i}$.
(c) There exists an integer $n_{1} \geqslant 1$ such that $H_{i} \simeq G_{2}^{n_{1}}\left(H_{5-i} ; v\right)$ for any vertex $v \in$ $V\left(H_{5-i}\right)$ with $l_{H_{5-i}}(v)=l\left(H_{5-i}\right)$.

Proof. Let v be a vertex of H_{5-i} such that $l_{H_{5-i}}(v)=l\left(H_{5-i}\right)$. We first show that $H_{1} \nprec$ $G_{2}^{n}\left(H_{5-i} ; v\right)$ for any $n \geqslant 0$. Suppose that $H_{1} \prec G_{2}^{n}\left(H_{5-i} ; v\right)$ for some $n \geqslant 0$, and let H_{1}^{0} be an induced subgraph of $G_{2}^{n}\left(H_{5-i} ; v\right)$ isomorphic to H_{1}. Note that for any $x \in$ $L_{H_{5-i}}(v)$ and any $y \in V\left(G_{2}^{n}\left(H_{5-i} ; v\right)\right)-V\left(H_{5-i}\right)$, the subgraph of $G_{2}^{n}\left(H_{5-i} ; v\right)$ induced by $\left(V\left(H_{5-i}\right)-\{x\}\right) \cup\{y\}$ is isomorphic to H_{5-i}. Since $H_{1} \nprec H_{5-i}$, it follows that H_{1}^{0} contains at least $l\left(H_{5-i}\right)+1$ vertices in $L_{H_{5-i}}(v) \cup\left(V\left(G_{2}^{n}\left(H_{5-i} ; v\right)\right)-V\left(H_{5-i}\right)\right)$. Then H_{1}^{0} has a leaf, which is a contradiction. Thus $H_{1} \nprec G_{2}^{n}\left(H_{5-i} ; v\right)$ for any $n \geqslant 0$. In particular,
$\left\{G_{2}^{n}\left(H_{5-i} ; v\right): n \geqslant 0\right\} \subseteq \mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{5-i}\right)$. Since $\left|\mathcal{F}\left(H_{1}, H_{i}\right)-\mathcal{F}\left(H_{5-i}\right)\right|<\infty$, it follows that there exists an integer $n_{1} \geqslant 0$ such that $G_{2}^{n_{1}}\left(H_{5-i} ; v\right)$ contains H_{i} as an induced subgraph. Since $H_{i} \nprec H_{5-i}$, we have $n_{1} \geqslant 1$. We take n_{1} as small as possible. Let H_{i}^{0} be an induced subgraph of $G_{2}^{n_{1}}\left(H_{5-i} ; v\right)$ isomorphic to H_{i}. If $L_{G_{2}^{n_{1}}\left(H_{5-i} ; v\right)}(v) \nsubseteq V\left(H_{i}^{0}\right)$, then $G_{2}^{n_{1}-1}\left(H_{5-i} ; v\right)$ contains H_{i}^{0} as an induced subgraph, which contradicts the choice of n_{1}. Thus $L_{G_{2}^{n_{1}}\left(H_{5-i} ; v\right)}(v) \subseteq V\left(H_{i}^{0}\right)$. This implies that $l\left(H_{i}\right) \geqslant\left|L_{G_{2}^{n_{1}\left(H_{5-i} ; v\right)}}(v)\right|=$ $l\left(H_{5-i}\right)+n_{1}>l\left(H_{5-i}\right)$. Consequently we obtain (a).

If $H_{5-i} \nprec H_{i}$, then applying (a) with roles of H_{i} and H_{5-i} interchanged, we get $l\left(H_{5-i}\right)>l\left(H_{i}\right)$, which contradicts (a). Thus we obtain (b).

Next we show (c). By (b), there exists a set $X \subseteq V\left(H_{i}\right)$ such that $H_{i}-X \simeq H_{5-i}$. Since $l\left(H_{i}\right) \geqslant l\left(H_{5-i}\right)+n_{1}$, there exists a subset of X consisting of n_{1} leaves of H_{i}. This together with the fact that $H_{i} \prec G_{2}^{n_{1}}\left(H_{5-i} ; v\right)$ leads to

$$
\left|V\left(H_{5-i}\right)\right|=\left|V\left(H_{i}\right)\right|-|X| \leqslant\left|V\left(H_{i}\right)\right|-n_{1} \leqslant\left|V\left(G_{2}^{n_{1}}\left(H_{5-i} ; v\right)\right)\right|-n_{1}=\left|V\left(H_{5-i}\right)\right| .
$$

This forces $H_{i} \simeq G_{2}^{n_{1}}\left(H_{5-i} ; v\right)$. We also get $n_{1}=\left|V\left(H_{i}\right)\right|-\left|V\left(H_{5-i}\right)\right|$, which shows that n_{1} does not depend on the choice of v such that $l_{H_{5-i}}(v)=l\left(H_{5-i}\right)$. In particular, we obtain (c).

Suppose that $H_{i} \nprec H_{5-i}$ for some $i \in\{2,3\}$. We may assume that $H_{2} \nprec H_{3}$. By Claim 3.1(b), we have $H_{3} \prec H_{2}$. By Claim 3.1(c), $H_{2} \simeq G_{2}^{n_{1}}\left(H_{3} ; v\right)$ for any vertex $v \in V\left(H_{3}\right)$ with $l_{H_{3}}(v)=l\left(H_{3}\right)$.
Claim 3.2. (a) We have $p\left(H_{2}\right)>p\left(H_{3}\right)$.
(b) There exists an integer $n_{2} \geqslant 1$ such that $H_{2} \simeq G_{3}^{n_{2}}\left(H_{3} ; v\right)$ for any vertex $v \in V\left(H_{3}\right)$ for which there exists $x \in V\left(H_{3}\right)$ such that there is an x-good path of order $p\left(H_{3}\right)$ ending at v.

Proof. Let v and x be as in (b). Then $p_{H_{3}}(x)=p\left(H_{3}\right)$, and there exists an x-good path $P=x_{1} x_{2} \cdots x_{t}$ with $x_{1}=x$ and $x_{t}=v$ such that $|V(P)|=p\left(H_{3}\right)$. We first show that $H_{1} \nprec G_{3}^{n}\left(H_{3} ; v\right)$ for any $n \geqslant 0$. Suppose that $H_{1} \prec G_{3}^{n}\left(H_{3} ; v\right)$ for some $n \geqslant 0$, and let H_{1}^{0} be an induced subgraph of $G_{3}^{n}\left(H_{3} ; v\right)$ isomorphic to H_{1}. Since $H_{1} \nprec H_{3}, H_{1}^{0}$ contains a vertex in $V\left(G_{3}^{n}\left(H_{3} ; v\right)\right)-V\left(H_{3}\right)$. Then H_{1}^{0} has a leaf, which is a contradiction. Thus $H_{1} \nprec G_{3}^{n}\left(H_{3} ; v\right)$ for any $n \geqslant 0$. In particular, $\left\{G_{3}^{n}\left(H_{3} ; v\right): n \geqslant 0\right\} \subseteq \mathcal{F}\left(H_{1}\right)-\mathcal{F}\left(H_{3}\right)$. Since $\left|\mathcal{F}\left(H_{1}, H_{2}\right)-\mathcal{F}\left(H_{3}\right)\right|<\infty$, it follows that there exists an integer $n_{2} \geqslant 0$ such that $G_{3}^{n_{2}}\left(H_{3} ; v\right)$ contains H_{2} as an induced subgraph. Since $H_{2} \nprec H_{3}$, we have $n_{2} \geqslant 1$. We take n_{2} as small as possible. Let H_{2}^{0} be an induced subgraph of $G_{3}^{n_{2}}\left(H_{3} ; v\right)$ isomorphic to H_{2}. Set $S=V(P) \cup\left(V\left(G_{3}^{n_{2}}\left(H_{3} ; v\right)\right)-V\left(H_{3}\right)\right)$. If $S \nsubseteq V\left(H_{2}^{0}\right)$, then we can verify that $G_{3}^{n_{2}-1}\left(H_{3} ; v\right)$ contains H_{2}^{0} as an induced subgraph, which contradicts the choice of n_{2}. Thus $S \subseteq V\left(H_{2}^{0}\right)$. This implies that $p\left(H_{2}\right) \geqslant p_{H_{2}^{0}}(x) \geqslant|S|=p\left(H_{3}\right)+n_{2}>p\left(H_{3}\right)$, and hence we obtain (a).

Since $H_{3} \prec H_{2}$, there exists a set $X \subseteq V\left(H_{2}\right)$ such that $H_{2}-X \simeq H_{3}$. Since $p\left(H_{2}\right) \geqslant p\left(H_{3}\right)+n_{2}$, there exists a subset of X inducing a path of order n_{2} in H_{2}. This together with the fact that $H_{2} \prec G_{3}^{n_{2}}\left(H_{3} ; v\right)$ leads to

$$
\left|V\left(H_{3}\right)\right|=\left|V\left(H_{2}\right)\right|-|X| \leqslant\left|V\left(H_{2}\right)\right|-n_{2} \leqslant\left|V\left(G_{3}^{n_{2}}\left(H_{3} ; v\right)\right)\right|-n_{2}=\left|V\left(H_{3}\right)\right| .
$$

This forces $H_{2} \simeq G_{3}^{n_{2}}\left(H_{3} ; v\right)$. We also get $n_{2}=\left|V\left(H_{2}\right)\right|-\left|V\left(H_{3}\right)\right|$, which shows that n_{2} does not depend on the choice of a vertex v satisfying the condition stated in (b). In particular, we obtain (b).

Suppose that $\delta\left(H_{3}\right)=1$, and let v be a vertex of H_{3} with $l_{H_{3}}(v)=l\left(H_{3}\right)$. Then by Claim 3.1(c), we have $H_{2} \simeq G_{2}^{n_{1}}\left(H_{3} ; v\right)$. Since $l_{H_{3}}(v)=l\left(H_{3}\right), v$ is not a leaf of H_{3}, and hence $p\left(H_{3}\right)=p\left(G_{2}^{n_{1}}\left(H_{3} ; v\right)\right)=p\left(H_{2}\right)$, which contradicts Claim 3.2(a). Thus $\delta\left(H_{3}\right) \geqslant 2$. In particular, $l\left(H_{3}\right)=0$ and $p\left(H_{3}\right)=1$, and every $v \in V\left(H_{3}\right)$ satisfies the condition in Claim 3.1(c) as well as that in Claim 3.2(b). Take $v \in V\left(H_{3}\right)$. By Claim 3.1(c) and Claim 3.2(b), $H_{2} \simeq G_{2}^{n_{1}}\left(H_{3} ; v\right)$ for some $n_{1} \geqslant 1$, and $H_{2} \simeq G_{3}^{n_{2}}\left(H_{3} ; v\right)$ for some $n_{2} \geqslant 1$. Hence H_{2} is isomorphic to the graph obtained from H_{3} by adding one pendant edge to v. Since $v \in V\left(H_{3}\right)$ is arbitrary, this implies that

- for any $v \in V\left(H_{3}\right), H_{2}$ is isomorphic to the graph obtained from H_{3} by adding one pendant edge to v, and
- H_{3} is vertex-transitive.

In particular, H_{3} is an r-regular graph for some $r \geqslant 2$.
Case 1: $r=\left|V\left(H_{3}\right)\right|-1$ (i.e., H_{3} is complete).
Note that if H_{1} is complete, then $\left|V\left(H_{1}\right)\right|>\left|V\left(H_{3}\right)\right| \geqslant 3$ because $H_{1} \nprec H_{3}$. If H_{1} is complete, then for two vertices $x, y \in V\left(H_{3}\right)$ with $x \neq y$ and an integer $n \geqslant 1$, we can verify that $H_{1} \nprec G_{2}^{n}\left(H_{3} ;\{x, y\}\right), H_{2} \nprec G_{2}^{n}\left(H_{3} ;\{x, y\}\right)$ and $H_{3} \prec G_{2}^{n}\left(H_{3} ;\{x, y\}\right)$; if H_{1} is not complete, then for an integer $n \geqslant\left|V\left(H_{3}\right)\right|$, we have $H_{1} \nprec K_{n}, H_{2} \nprec K_{n}$ and $H_{3} \prec K_{n}$. In either case, it follows that $\mathcal{F}\left(H_{1}, H_{2}\right)-\mathcal{F}\left(H_{3}\right)$ is an infinite family, which contradicts the assumption $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$.

Case 2: $3 \leqslant r \leqslant\left|V\left(H_{3}\right)\right|-2$.
Since H_{3} is not complete, H_{3} has non-adjacent vertices x and y. Let $n \geqslant 1$ be an integer. We show that $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ contains neither H_{1} nor H_{2} as an induced subgraph. Set $U=V\left(G_{3}^{n}\left(H_{3} ;\{x, y\}\right)\right)-V\left(H_{3}\right)$, and let z be the unique vertex in U adjacent to x and y.

Suppose that $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ contains H_{1} as an induced subgraph, and let H_{1}^{1} be an induced subgraph of $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ isomorphic to H_{1}. Since $H_{1} \nprec H_{3}$ and $\delta\left(H_{1}\right) \geqslant 2$, we have $V\left(H_{1}^{1}\right) \cap U=\{z\}$ and $x, y \in V\left(H_{1}\right)$. Since $x y \notin E(G)$, it follows from (3.1) that H_{1} is a path of order three, which contradicts the assumption that $\delta\left(H_{1}\right) \geqslant 2$. Thus $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ does not contain H_{1} as an induced subgraph.

Suppose that $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ contains H_{2} as an induced subgraph, and let H_{2}^{1} be an induced subgraph of $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ isomorphic to H_{2}. Recall that

- H_{2} has exactly one vertex of degree 1 and exactly one vertex of degree $r+1$,
- such two vertices are adjacent in H_{2}, and
- other vertices of H_{2} have degree r.

Since $r \geqslant 3$, only x and y can have degree $r+1$ in H_{2}^{1}. Thus we may assume that $x \in V\left(H_{2}^{1}\right)$ and all neighbors of x in $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ belong to $V\left(H_{2}^{1}\right)$. In particular, $z \in V\left(H_{2}^{1}\right)$. If $V\left(H_{2}^{1}\right) \cap(U-\{z\}) \neq \emptyset$, then H_{2}^{1} has a vertex of degree 1 which is not adjacent to x, which is a contradiction. Thus $V\left(H_{2}\right) \cap(U-\{z\})=\emptyset$. Then $d_{H_{2}^{1}}(z) \leqslant 2<r$, and hence $d_{H_{2}^{1}}(z)=1$. In particular, $y \notin V\left(H_{2}^{1}\right)$. This implies that $\left|V\left(H_{2}\right)\right| \leqslant\left|V\left(H_{3}\right)\right|$, which is a contradiction. Thus $G_{3}^{n}\left(H_{3} ;\{x, y\}\right)$ does not contain H_{2} as an induced subgraph.

Since n is arbitrary, $\mathcal{F}\left(H_{1}, H_{2}\right)-\mathcal{F}\left(H_{3}\right)$ is an infinite family, which is a contradiction.
Case 3: $2=r \leqslant\left|V\left(H_{3}\right)\right|-2$.
Since H_{3} is a cycle of order at least 4 , we can write $H_{3}=u_{1} u_{2} \cdots u_{m} u_{1}$ with $m \geqslant 4$. Note that $u_{1} u_{3} \notin E\left(H_{3}\right)$. By (3.2), H_{1} contains a triangle. Recall that H_{2} is obtained from H_{3} by adding a pendant edge. Hence for an integer $n \geqslant 1$, we can verify that $H_{1} \nprec G_{2}^{n}\left(H_{3} ;\left\{u_{1}, u_{3}\right\}\right), H_{2} \nprec G_{2}^{n}\left(H_{3} ;\left\{u_{1}, u_{3}\right\}\right)$ and $H_{3} \prec G_{2}^{n}\left(H_{3} ;\left\{u_{1}, u_{3}\right\}\right)$. Thus we see that $\mathcal{F}\left(H_{1}, H_{2}\right)-\mathcal{F}\left(H_{3}\right)$ is an infinite family, which is a contradiction.

The contradictions in Cases $1-3$ imply that $H_{i} \prec H_{5-i}$ for each $i \in\{2,3\}$. In particular, $H_{2} \simeq H_{3}$, and hence $\left(H_{1} ; H_{2}, H_{3}\right)$ is a trivial tuple. This completes the proof of Theorem 1.2.

4 Concluding Remarks

In this paper, we studied the difference between forbidden pairs having a common graph, and we gave necessary conditions for $\left|\mathcal{F}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}\left(H_{1}, H_{3}\right)\right|<\infty$. Since vertextransitive graphs rarely appear as forbidden subgraphs, it follows from Theorems 1.1 and 1.2 that in most cases, $\mathcal{F}\left(H_{1}, H_{2}\right)$ will be different from $\mathcal{F}\left(H_{1}, H_{3}\right)$ if $\left(H_{1} ; H_{2}, H_{3}\right)$ is not trivial and either H_{1} is twin-less or $\delta\left(H_{1}\right) \geqslant 2$. However, since the twin-less seems to be a technical condition, we expect that same situation occurs without the twin-less condition. On the other hand, we cannot judge from Theorems 1.1 and 1.2 whether $\mathcal{F}_{k}\left(H_{1}, H_{2}\right)$ and $\mathcal{F}_{k}\left(H_{1}, H_{3}\right)$ are essentially different or not, where $\mathcal{F}_{k}(\mathcal{H})$ denotes the family of k-connected \mathcal{H}-free graphs. Fujita, Furuya and Ozeki [7] proved that $\left|\mathcal{F}_{k}\left(H_{1}\right) \triangle \mathcal{F}_{k}\left(H_{2}\right)\right|<\infty$ if and only if $H_{1} \simeq H_{2}$. Thus we expect that almost all tuples $\left(H_{1} ; H_{2}, H_{3}\right)$ satisfying $\left|\mathcal{F}_{k}\left(H_{1}, H_{2}\right) \triangle \mathcal{F}_{k}\left(H_{1}, H_{3}\right)\right|<\infty$ are trivial. We leave such a problem for the readers.

Acknowledgment

The authors would like to thank Professor Yoshimi Egawa for his assistance in correction of this paper.

References

[1] H. Broersma and H.J. Veldman, Restrictions on induced subgraphs ensuring Hamiltonicity or pancyclicity of $K_{1,3}$-free graphs, Contemporary methods in graph theory, pp.181-194, Bibliographisches Inst., Mannheim, 1990.
[2] R. Diestel, "Graph Theory" (4th edition), Graduate Texts in Mathematics 173, Springer (2010).
[3] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, The theory and applications of graphs, pp.297-316, Wiley, New York, 1981.
[4] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs-a survey, Discrete Math. 164 (1997) 87-147.
[5] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997) 45-60.
[6] J. Fujisawa, S. Fujita, M.D. Plummer, A. Saito and I. Schiermeyer, A pair of forbidden subgraphs and perfect matchings in graphs of high connectivity, Combinatorica 31 (2011) 703-723.
[7] S. Fujita, M. Furuya and K. Ozeki, Forbidden subgraphs generating almost the same sets, Combin. Probab. Comput. 22 (2013) 733-748.

[^0]: *Partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B) 26800083
 ${ }^{\dagger}$ Partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B) 24340021 and Grant-in-Aid for Young Scientists (B) 26800085
 ${ }^{\ddagger}$ Partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B) 26800086

