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Abstract

Let H be a family of connected graphs. A graph G is said to be H-free if G does
not contain any members of H as an induced subgraph. Let F(H) be the family of
connected H-free graphs. In this context, the members of H are called forbidden
subgraphs.

In this paper, we focus on two pairs of forbidden subgraphs containing a com-
mon graph, and compare the classes of graphs satisfying each of the two forbidden
subgraph conditions. Our main result is the following: Let H1,H2,H3 be connected
graphs of order at least three, and suppose that H1 is twin-less. If the symmetric
difference of F({H1,H2}) and F({H1,H3}) is finite and the tuple (H1;H2,H3) is
non-trivial in a sense, then H2 and H3 are obtained from the same vertex-transitive
graph by successively replacing a vertex with a clique and joining the neighbors
of the original vertex and the clique. Furthermore, we refine a result in [Combin.
Probab. Comput. 22 (2013) 733–748] concerning forbidden pairs.
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1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph.
We let V (G) and E(G) denote the vertex set and the edge set of G, respectively. If there
is no fear of confusion, we often identify G with its vertex set V (G). For X,Y ⊆ V (G),
by joining X and Y we mean adding all the missing edges between vertices of X and
vertices of Y . For x ∈ V (G), we let NG(x) and NG[x] denote the open neighborhood and
the closed neighborhood of x, respectively; thus NG[x] = NG(x) ∪ {x}. For X ⊆ V (G),
we let NG[X] =

∪
x∈X NG[x]. For x ∈ V (G), we let dG(x) denote the degree of x; thus

dG(x) = |NG(x)|. We let δ(G) and ∆(G) denote the minimum degree and the maximum
degree of G, respectively. We let Kn denote the complete graph of order n, and let K1,n

denote the star of order n+ 1. The graph K3 is called the triangle, and the graph K1,3 is
called the claw.

For a connected graph H, G is said to be H-free if G does not contain H as an induced
subgraph. For a family H of connected graphs, G is said to be H-free if G is H-free for
every H ∈ H, and we let F(H) denote the family of all connected H-free graphs. When H
is finite and the members of H are specified, we use a sequence of members of H instead
of H for F(H); thus if H = {H1, . . . , Hm}, we write F(H1, . . . , Hm) instead of F(H). In
this context, members of H are often referred to as forbidden subgraphs. For a graph H,
we write H ≺ G if G contains H as an induced subgraph (i.e., G is not H-free). For terms
and symbols not defined here, we refer the reader to [2].

In graph theory, many researchers have studied forbidden subgraph conditions for
graphs to satisfy a given property. For example, there are complete characterizations of
perfect graphs, intersection graphs and line graphs using forbidden subgraphs. However,
in general, for many properties P , it seems difficult to characterize completely the for-
bidden subgraph conditions concerning P (in fact, if P is not hereditary, then there is no
forbidden subgraphs which yield P ). Thus we usually look for forbidden subgraph condi-
tions which imply P . Further we frequently restrict the number of forbidden subgraphs,
and in many cases, we focus on pairs of forbidden subgraphs. For example, Duffus, Gould
and Jacobson [3] proved that every 2-connected {K1,3, N}-free graph has a Hamiltonian
cycle, where N is the graph obtained from a triangle by adding a pendant edge to each ver-
tex, and Broersma and Veldman [1] proved that every 2-connected {K1,3, P6}-free graph
has a Hamiltonian cycle, where P6 is the path of order 6. Similar problems have widely
been studied (see [5]).

Here we assume that for a property P , there exist two families H1,H2 of forbidden
subgraphs such that every graph in F(Hi) of sufficiently large order satisfies P . If F(H1)
is essentially different from F(H2), then it might be important to study H1-freeness and
H2-freeness. On the other hand, if F(H1) relates to F(H2), then it seems redundant
to consider both H1-freeness and H2-freeness. Thus it is important to judge whether
F(H1) relates to F(H2) or not. For such a reason, Fujita, Furuya and Ozeki [7] studied
two families H1,H2 of forbidden subgraphs such that F(H1) △ F(H2) is finite, where
F(H1)△F(H2) is the symmetric difference of F(H1) and F(H2). (For detailed historical
background and related results, we refer the reader to [7]. For example, they proved that
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for two connected graphs H1 and H2, if |F(H1) △ F(H2)| < ∞, then H1 ≃ H2.) They
gave some results concerning the above problem and, in particular, proved a theorem on
forbidden pairs. Before we introduce their theorem, we give a fundamental definition. A
tuple (H1;H2, H3) of connected graphs of order at least three is trivial if either

(T1) H2 ≃ H3, or

(T2) H1 ≺ H2 and H1 ≺ H3.

If (T1) holds, then we clearly obtain F(H1, H2) = F(H1, H3); while if (T2) holds,
then F(H1, H2) = F(H1) = F(H1, H3). Hence if (H1;H2, H3) is a trivial tuple, then
|F(H1, H2)△F(H1, H3)| < ∞.

Fujita, Furuya and Ozeki [7] proved the following theorem.

Theorem A (Fujita, Furuya and Ozeki [7]). Let H1, H2, H3 be connected graphs of order
at least three, and suppose that ∆(H1) ⩽ |V (H1)| − 2 and δ(H1) ⩾ 2. Then |F(H1, H2)△
F(H1, H3)| < ∞ if and only if (H1;H2, H3) is a trivial tuple.

Now we focus on claw-freeness, or star-freeness in general. It has been known that
the claw or the stars are important forbidden subgraphs (see [4]). For example, Fujisawa,
Fujita, Plummer, Saito and Schiermeyer [6] proved that stars appear in all of the forbid-
den pairs assuring us the existence of a perfect matching in highly-connected graphs of
sufficiently large order. Furthermore, Faudree and Gould [5] proved that for each one of
the following three properties, the claw appears in all of the forbidden pairs assuring us
the property:

• The existence of a Hamiltonian path in connected graphs of sufficiently large order.

• The existence of a Hamiltonian cycle in 2-connected graphs of sufficiently large
order.

• The Hamiltonian-connectedness in 3-connected graphs of sufficiently large order.

Thus it is worthwhile to compare two forbidden pairs having the same star. However,
no star can be H1 in Theorem A. Our first purpose in this paper is to give a necessary
condition for |F(K1,n, H2)△F(K1,n, H3)| < ∞.

Let H be a graph. We define the relation ≡H on V (H) by letting u ≡H v if and only
if NH [u] = NH [v]. Then we can verify that ≡H is an equivalence relation on V (H). We
let C(H) denote the quotient set with respect to ≡H . Then C(H) is a partition of V (H)
such that

(C1) every C ∈ C(H) is a clique of H, and

(C2) for two elements C,C ′ of C(H) with C ̸= C ′, either all vertices in C are joined to
all vertices in C ′ in H or there is no edge of H between C and C ′.
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Let B(H) be the graph on C(H) such that CC ′ ∈ E(B(H)) if and only if all vertices in C
are joined to all vertices in C ′ in H. Note that B(H) is isomorphic to the graph obtained
from H by contracting each C ∈ C(H) to a vertex and replacing resulting parallel edges
with a single edge. On the other hand, H is isomorphic to a graph obtained from B(H)
by successively replacing a vertex with a new clique (and joining the neighbors of the
original vertex and the clique).

A twin is a pair u, v of vertices of a graph H such that NH [u] = NH [v]. A graph is
twin-less if the graph has no twin. A graph H is vertex-transitive if for any u, v ∈ V (H),
there exists an automorphism ϕ of H such that ϕ(u) = v.

We prove the following theorem. (Considering that stars of order at least 3 are twin-
less, the assumption on H1 in Theorem 1.1 is appropriate for our purpose.)

Theorem 1.1. Let H1, H2, H3 be connected graphs of order at least three, and suppose
that H1 is twin-less. If |F(H1, H2)△F(H1, H3)| < ∞, then one of the following holds:

(i) (H1;H2, H3) is a trivial tuple, or

(ii) (a) δ(H1) = 1 or ∆(H1) = |V (H1)| − 1, and

(b) for some i ∈ {2, 3}, H5−i is obtained from Hi by replacing a vertex with a clique
and B(Hi) is vertex-transitive.

Our second purpose is to show that the condition ∆(H1) ⩽ |V (H1)|− 2 in Theorem A
can be dropped as follows.

Theorem 1.2. Let H1, H2, H3 be connected graphs of order at least three, and suppose
that δ(H1) ⩾ 2. Then |F(H1, H2) △ F(H1, H3)| < ∞ if and only if (H1;H2, H3) is a
trivial tuple.

In Section 2, we prove Theorem 1.1 and show that the conclusion (ii) of Theorem 1.1
cannot be dropped. In Section 3, we prove Theorem 1.2.

The following lemma will be used in our proof.

Lemma 1.3 (Fujita, Furuya and Ozeki [7]). Let H1, H2 be connected graphs of order at
least three. If |F(H1)−F(H2)| < ∞ and H1 ̸≺ H2, then δ(H1) = 1 and H1 has a twin.

2 Proof of Theorem 1.1

Let H be a graph. For an integer n ⩾ 0 and an element C of C(H), let Gn
1 (H;C)

be the graph obtained from H by adding a clique of size n and joining the clique and
NH [C]. By the definition of C(H) and Gn

1 (H;C), we have B(Gn
1 (H;C)) ≃ B(H). Set

c(H) = max{|C| : C ∈ C(H)}. Note that c(Gn
1 (H;C)) > c(H) if |C| = c(H) and n ⩾ 1.

Proof of Theorem 1.1. Let Hi (1 ⩽ i ⩽ 3) be as in Theorem 1.1. We first suppose that
H1 ≺ Hi for some i ∈ {2, 3}. Then F(H1, Hi)△F(H1, H5−i) = F(H1)△F(H1, H5−i) =
F(H1)−F(H5−i), and hence |F(H1)−F(H5−i)| < ∞. SinceH1 is twin-less, it follows from
Lemma 1.3 that H1 ≺ H5−i, which implies that (H1;H2, H3) satisfies (T2). In particular,
the tuple (H1;H2, H3) is trivial, as desired. Thus we may assume that H1 ̸≺ Hi for each
i ∈ {2, 3}.
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Claim 2.1. Let i ∈ {2, 3}, and suppose that Hi ̸≺ H5−i. Let C ∈ C(H5−i). Then the
following hold.

(a) There exists an integer nC ⩾ 1 such that GnC
1 (H5−i;C) contains Hi as an induced

subgraph.

(b) c(Hi) > c(H5−i).

(c) H5−i ≺ Hi.

(d) If |C| = c(H5−i), then there exists an integer n0 ⩾ 1 such that Hi ≃ Gn0
1 (H5−i;C).

Proof. We first show that H1 ̸≺ Gn
1 (H5−i;C) for any n ⩾ 0. Suppose that H1 ≺

Gn
1 (H5−i;C) for some n ⩾ 0, and letH0

1 be an induced subgraph ofGn
1 (H5−i;C) isomorphic

to H1. Note that for any x ∈ C and any y ∈ V (Gn
1 (H5−i;C))− V (H5−i), the subgraph of

Gn
1 (H5−i;C) induced by (V (H5−i)−{x})∪{y} is isomorphic to H5−i. Since H1 ̸≺ H5−i, it

follows that H0
1 contains at least |C|+1 (⩾ 2) vertices of C∪(V (Gn

1 (H5−i;C))−V (H5−i)).
Then H0

1 contains a twin, which is a contradiction. Thus H1 ̸≺ Gn
1 (H5−i;C) for any n ⩾ 0.

In particular, {Gn
1 (H5−i;C) : n ⩾ 0} ⊆ F(H1)−F(H5−i). Since |F(H1, Hi)−F(H5−i)| <

∞, it follows that there exists an integer nC ⩾ 0 such that GnC
1 (H5−i;C) contains Hi as

an induced subgraph. Since Hi ̸≺ H5−i, nC ⩾ 1, and hence we obtain (a).
In the rest of the proof of the claim, we let C be a member of C(H5−i) such that

|C| = c(H5−i), and take nC as small as possible. Recall that B(GnC
1 (H5−i;C)) ≃ B(H5−i).

Let C0 be the element of C(GnC
1 (H5−i;C)) such that C ⊆ C0. Then |C0| = |C| + nC =

c(H5−i) + nC . Let H0
i be an induced subgraph of GnC

1 (H5−i;C) isomorphic to Hi. If
C0 ̸⊆ V (H0

i ), then GnC−1
1 (H5−i;C) containsH0

i as an induced subgraph, which contradicts
the choice of nC . Thus C0 ⊆ V (H0

i ). In particular, an element of C(H0
i ) contains C0, and

hence c(Hi) ⩾ |C0| = c(H5−i) + nC > c(H5−i). Consequently we obtain (b).
If H5−i ̸≺ Hi, then applying (b) with roles of Hi and H5−i interchanged, we get

c(H5−i) > c(Hi), which contradicts (b). Thus we obtain (c).
Finally we show (d). By (c), there exists a set X ⊆ V (Hi) such that Hi −X ≃ H5−i.

Since c(Hi) ⩾ c(H5−i) + nC , there exists a subset of X which is a clique with size at least
nC . This together with the fact that Hi ≺ GnC

1 (H5−i;C) leads to

|V (H5−i)| = |V (Hi)| − |X| ⩽ |V (Hi)| − nC ⩽ |V (GnC
1 (H5−i;C))| − nC = |V (H5−i)|.

This forces Hi ≃ GnC
1 (H5−i;C). In particular, we obtain (d).

If H2 ≃ H3, then (H1;H2, H3) is a trivial tuple, as desired. Thus we may assume that
H2 ̸≃ H3. Then either H2 ̸≺ H3 or H3 ̸≺ H2. We may assume that H2 ̸≺ H3. Then by
Claim 2.1(c), we have H3 ≺ H2.

Fix an element C∗
3 of C(H3) such that |C∗

3 | = c(H3). By Claim 2.1(d), there exists an
integer n0 ⩾ 1 such that H2 ≃ Gn0

1 (H3;C
∗
3) (i.e., H2 is obtained from H3 by replacing a

vertex with a clique). Hence B(H2) ≃ B(H3) and C(H2) has exactly one element C∗
2 such

that |C∗
2 | = c(H2) (= c(H3) + n0).
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Figure 1: Icosahedron A

Claim 2.2. For C ∈ C(H3), there exists an isomorphic mapping ϕC from B(H3) to B(H2)
such that ϕC(C) = C∗

2 .

Proof. Set D = C ∪ (V (GnC
1 (H3;C))− V (H3)), where nC is an integer assured in Claim

2.1(a). By the definition of GnC
1 (H3;C), we have D ∈ C(GnC

1 (H3;C)) and every C ′ ∈
C(GnC

1 (H3;C))− {D} satisfies |C ′| ⩽ c(H3). Since H2 ≺ GnC
1 (H3;C) and c(H2) > c(H3)

by Claim 2.1, we have |D| = c(GnC
1 (H3;C)) ⩾ c(H2) > c(H3). Furthermore, there exists

an isomorphic mapping ϕ1 from B(H3) to B(GnC
1 (H3;C)) such that ϕ1(C) = D.

Let H1
2 be an induced subgraph of GnC

1 (H3;C) isomorphic to H2. Since B(H1
2 ) ≃

B(H2) ≃ B(H3) ≃ B(GnC
1 (H3;C)), it follows that for each C̃ ∈ C(GnC

1 (H3;C)), there
exists exactly one element DC̃ of C(H1

2 ) such that DC̃ ⊆ C̃. Let ϕ2 : C(GnC
1 (H3;C)) →

C(H1
2 ) be the mapping such that ϕ2(C̃) = DC̃ for C̃ ∈ C(GnC

1 (H3;C)). Then we can
verify that ϕ2 is an isomorphic mapping from B(GnC

1 (H3;C)) to B(H1
2 ). Recall that

C(H2) has exactly one element of size c(H2). Let C∗∗
2 be the unique element of C(H1

2 )
such that |C∗∗

2 | = c(H1
2 ). Since |C∗∗

2 | = c(H1
2 ) > c(H3) and D is the unique element

of C(GnC
1 (H3;C)) such that |D| > c(H3), we have ϕ2(D) = C∗∗

2 . Furthermore, there
clearly exists an isomorphic mapping ϕ3 from B(H1

2 ) to B(H2) such that ϕ3(C
∗∗
2 ) = C∗

2 .
Therefore the mapping ϕC = ϕ3 ◦ϕ2 ◦ϕ1 is an isomorphic mapping from B(H3) to B(H2)
such that ϕC(C) = C∗

2 .
Let C,C ′ ∈ C(H3). Then ϕ = ϕ−1

C′ ◦ ϕC is an automorphism of B(H3) such that
ϕ(C) = C ′. Consequently B(H3) is vertex-transitive.

This completes the proof of Theorem 1.1.
In the rest of this section, we show that the conclusion (ii) of Theorem 1.1 cannot be

dropped. We first prove the following proposition.

Proposition 2.1. Let H2 be the icosahedron, and let H3 = G1
1(H2; {v}), where v is a

vertex of H2. Let G be a connected K1,3-free graph of order at least 13. If H2 ≺ G, then
H3 ≺ G.
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Proof. Let A be an induced subgraph of G isomorphic to H2, and label each vertex of
A as in Figure 1. Since |V (G)| > |V (A)| and G is connected, there exists a vertex
x ∈ V (G) − V (A) such that NG(x) ∩ V (A) ̸= ∅. Note that for each v ∈ V (A), NA(v)
induces a cycle of order 5.

Claim 2.3. Let v ∈ V (A) be a vertex with vx ∈ E(G), and let C be the cycle of A induced
by NA(v). Then there exist three consecutive vertices of C adjacent to x.

Proof. If no three consecutive vertices of C are adjacent to x, then there exist two non-
adjacent vertices w,w′ ∈ V (C) such that xw, xw′ ̸∈ E(G), and hence {v, x, w, w′} induces
K1,3 in G, which is a contradiction.

Let v ∈ V (A) be a vertex such that

(I1) vx ∈ E(G), and

(I2) subject to (I1), |NA(v) ∩NG(x)| is as large as possible.

We may assume that v = v1. Applying Claim 2.3, we may further assume that v2x, v5x, v4x ∈
E(G).

We first show that NA(v1) ⊆ NG(x). Suppose NA(v1) ̸⊆ NG(x). We may assume
that v9x ̸∈ E(G). Applying Claim 2.3 to v = v4, we have v10x ∈ E(G). Then |NA(v5) ∩
NG(x)| ⩾ 4. It follows from (I2) that |NA(v1) ∩ NG(x)| ⩾ 4, and hence v3x ∈ E(G).
Applying Claim 2.3 to v = v3, we have v7x ∈ E(G). Then {x, v1, v7, v10} induces K1,3 in
G, which is a contradiction. Consequently NA(v1) ⊆ NG(x).

Suppose that NG(x)∩ V (A) ̸= NA[v1], and let v′ ∈ (NG(x)∩ V (A))−NA[v1]. Then v′

is adjacent to at most two vertices in NA(v1). Hence there exist two non-adjacent vertices
w,w′ ∈ NA(v1)−NG(v

′). Then {x, v′, w, w′} induces K1,3 in G, which is a contradiction.
Thus NG(x) ∩ V (A) = NA[v1]. Therefore V (A) ∪ {x} induces H3 in G.

Here we consider the conclusion (ii) of Theorem 1.1. Let H1 = K1,3, and let H2

and H3 be as in Proposition 2.1. Then H1 is twin-less and H2 ≺ H3. In particular,
F(H1, H2)− F(H3) = ∅. Furthermore, it follows from Proposition 2.1 that F(H1, H3)−
F(H2) = {H2}. Consequently |F(H1, H2) △ F(H1, H3)| < ∞. On the other hand, it
is clear that (H1;H2, H3) is not a trivial tuple. This shows that there exists an example
requiring the conclusion (ii) of Theorem 1.1. In fact, we can construct infinitely many such
examples. LetH1 = K1,3. LetH2 be the graph obtained from the icosahedron by replacing
each vertex with a clique of size m, and let H3 = G1

1(H2;C), where C is an element of
C(H2). Then by arguments similar to the ones used in the proof of Proposition 2.1, we can
verify that the tuple (H1;H2, H3) is not trivial and satisfies |F(H1, H2)△F(H1, H3)| < ∞.

3 Proof of Theorem 1.2

Let H be a graph. For an integer n ⩾ 0 and a subset X of V (H),

• let Gn
2 (H;X) be the graph obtained from H by adding an independent set of size n

and joining the independent set and X, and
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• let Gn
3 (H;X) be the graph obtained from H by adding a path of order n and joining

an end-vertex of the path and X.

If X consists of a vertex, say x, we write Gn
2 (H;x) and Gn

3 (H;x) instead of Gn
2 (H;X) and

Gn
3 (H;X), respectively.
A leaf of a graph is a vertex of degree 1. For x ∈ V (H), let LH(x) be the set of leaves of

H adjacent to x. Set lH(x) = |LH(x)| for x ∈ V (G) and l(H) = max{lH(x) : x ∈ V (H)}.
For x ∈ V (H), a path P = x1x2 · · · xt of H is x-good if

(P1) x1 = x, and

(P2) either t = 1, or t ⩾ 2, dH(xt) = 1 and dH(xi) = 2 for all 2 ⩽ i ⩽ t− 1.

Set pH(x) = max{|V (P )| : P is an x-good path} for x ∈ V (H) and p(H) = max{pH(x) :
x ∈ V (H)}.
Proof of Theorem 1.2. Let Hi (1 ⩽ i ⩽ 3) be as in Theorem 1.2. It suffices to show that if
|F(H1, H2)△F(H1, H3)| < ∞, then (H1;H2, H3) is a trivial tuple. If ∆(H1) ⩽ |V (H1)|−2,
then Theorem A leads to the desired conclusion. Thus we may assume that

∆(H1) = |V (H1)| − 1. (3.1)

Since δ(H1) ⩾ 2, it follows from (3.1) that

H1 contains a triangle. (3.2)

We first suppose that H1 ≺ Hi for some i ∈ {2, 3}. Then F(H1, Hi)△F(H1, H5−i) =
F(H1) △ F(H1, H5−i) = F(H1) − F(H5−i), and hence |F(H1) − F(H5−i)| < ∞. Since
δ(H1) ⩾ 2, it follows from Lemma 1.3 that H1 ≺ H5−i, which implies that (H1;H2, H3)
satisfies (T2). In particular, (H1;H2, H3) is a trivial tuple, as desired. Thus we may
assume that H1 ̸≺ Hi for each i ∈ {2, 3}.

Claim 3.1. Let i ∈ {2, 3}, and suppose that Hi ̸≺ H5−i. Then the following hold.

(a) l(Hi) > l(H5−i).

(b) H5−i ≺ Hi.

(c) There exists an integer n1 ⩾ 1 such that Hi ≃ Gn1
2 (H5−i; v) for any vertex v ∈

V (H5−i) with lH5−i
(v) = l(H5−i).

Proof. Let v be a vertex of H5−i such that lH5−i
(v) = l(H5−i). We first show that H1 ̸≺

Gn
2 (H5−i; v) for any n ⩾ 0. Suppose that H1 ≺ Gn

2 (H5−i; v) for some n ⩾ 0, and let
H0

1 be an induced subgraph of Gn
2 (H5−i; v) isomorphic to H1. Note that for any x ∈

LH5−i
(v) and any y ∈ V (Gn

2 (H5−i; v)) − V (H5−i), the subgraph of Gn
2 (H5−i; v) induced

by (V (H5−i) − {x}) ∪ {y} is isomorphic to H5−i. Since H1 ̸≺ H5−i, it follows that H0
1

contains at least l(H5−i) + 1 vertices in LH5−i
(v)∪ (V (Gn

2 (H5−i; v))− V (H5−i)). Then H0
1

has a leaf, which is a contradiction. Thus H1 ̸≺ Gn
2 (H5−i; v) for any n ⩾ 0. In particular,
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{Gn
2 (H5−i; v) : n ⩾ 0} ⊆ F(H1)− F(H5−i). Since |F(H1, Hi)− F(H5−i)| < ∞, it follows

that there exists an integer n1 ⩾ 0 such that Gn1
2 (H5−i; v) contains Hi as an induced

subgraph. Since Hi ̸≺ H5−i, we have n1 ⩾ 1. We take n1 as small as possible. Let H0
i

be an induced subgraph of Gn1
2 (H5−i; v) isomorphic to Hi. If LG

n1
2 (H5−i;v)

(v) ̸⊆ V (H0
i ),

then Gn1−1
2 (H5−i; v) contains H0

i as an induced subgraph, which contradicts the choice
of n1. Thus LG

n1
2 (H5−i;v)

(v) ⊆ V (H0
i ). This implies that l(Hi) ⩾ |LG

n1
2 (H5−i;v)

(v)| =

l(H5−i) + n1 > l(H5−i). Consequently we obtain (a).
If H5−i ̸≺ Hi, then applying (a) with roles of Hi and H5−i interchanged, we get

l(H5−i) > l(Hi), which contradicts (a). Thus we obtain (b).
Next we show (c). By (b), there exists a set X ⊆ V (Hi) such that Hi − X ≃ H5−i.

Since l(Hi) ⩾ l(H5−i) + n1, there exists a subset of X consisting of n1 leaves of Hi. This
together with the fact that Hi ≺ Gn1

2 (H5−i; v) leads to

|V (H5−i)| = |V (Hi)| − |X| ⩽ |V (Hi)| − n1 ⩽ |V (Gn1
2 (H5−i; v))| − n1 = |V (H5−i)|.

This forces Hi ≃ Gn1
2 (H5−i; v). We also get n1 = |V (Hi)| − |V (H5−i)|, which shows that

n1 does not depend on the choice of v such that lH5−i
(v) = l(H5−i). In particular, we

obtain (c).

Suppose that Hi ̸≺ H5−i for some i ∈ {2, 3}. We may assume that H2 ̸≺ H3. By
Claim 3.1(b), we have H3 ≺ H2. By Claim 3.1(c), H2 ≃ Gn1

2 (H3; v) for any vertex
v ∈ V (H3) with lH3(v) = l(H3).

Claim 3.2. (a) We have p(H2) > p(H3).

(b) There exists an integer n2 ⩾ 1 such that H2 ≃ Gn2
3 (H3; v) for any vertex v ∈ V (H3)

for which there exists x ∈ V (H3) such that there is an x-good path of order p(H3)
ending at v.

Proof. Let v and x be as in (b). Then pH3(x) = p(H3), and there exists an x-good path
P = x1x2 · · · xt with x1 = x and xt = v such that |V (P )| = p(H3). We first show that
H1 ̸≺ Gn

3 (H3; v) for any n ⩾ 0. Suppose that H1 ≺ Gn
3 (H3; v) for some n ⩾ 0, and let

H0
1 be an induced subgraph of Gn

3 (H3; v) isomorphic to H1. Since H1 ̸≺ H3, H
0
1 contains

a vertex in V (Gn
3 (H3; v)) − V (H3). Then H0

1 has a leaf, which is a contradiction. Thus
H1 ̸≺ Gn

3 (H3; v) for any n ⩾ 0. In particular, {Gn
3 (H3; v) : n ⩾ 0} ⊆ F(H1) − F(H3).

Since |F(H1, H2)− F(H3)| < ∞, it follows that there exists an integer n2 ⩾ 0 such that
Gn2

3 (H3; v) contains H2 as an induced subgraph. Since H2 ̸≺ H3, we have n2 ⩾ 1. We
take n2 as small as possible. Let H0

2 be an induced subgraph of Gn2
3 (H3; v) isomorphic

to H2. Set S = V (P ) ∪ (V (Gn2
3 (H3; v)) − V (H3)). If S ̸⊆ V (H0

2 ), then we can verify
that Gn2−1

3 (H3; v) contains H0
2 as an induced subgraph, which contradicts the choice of

n2. Thus S ⊆ V (H0
2 ). This implies that p(H2) ⩾ pH0

2
(x) ⩾ |S| = p(H3) + n2 > p(H3),

and hence we obtain (a).
Since H3 ≺ H2, there exists a set X ⊆ V (H2) such that H2 − X ≃ H3. Since

p(H2) ⩾ p(H3) + n2, there exists a subset of X inducing a path of order n2 in H2. This
together with the fact that H2 ≺ Gn2

3 (H3; v) leads to

|V (H3)| = |V (H2)| − |X| ⩽ |V (H2)| − n2 ⩽ |V (Gn2
3 (H3; v))| − n2 = |V (H3)|.
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This forces H2 ≃ Gn2
3 (H3; v). We also get n2 = |V (H2)| − |V (H3)|, which shows that n2

does not depend on the choice of a vertex v satisfying the condition stated in (b). In
particular, we obtain (b).

Suppose that δ(H3) = 1, and let v be a vertex of H3 with lH3(v) = l(H3). Then by
Claim 3.1(c), we have H2 ≃ Gn1

2 (H3; v). Since lH3(v) = l(H3), v is not a leaf of H3, and
hence p(H3) = p(Gn1

2 (H3; v)) = p(H2), which contradicts Claim 3.2(a). Thus δ(H3) ⩾ 2.
In particular, l(H3) = 0 and p(H3) = 1, and every v ∈ V (H3) satisfies the condition in
Claim 3.1(c) as well as that in Claim 3.2(b). Take v ∈ V (H3). By Claim 3.1(c) and
Claim 3.2(b), H2 ≃ Gn1

2 (H3; v) for some n1 ⩾ 1, and H2 ≃ Gn2
3 (H3; v) for some n2 ⩾ 1.

Hence H2 is isomorphic to the graph obtained from H3 by adding one pendant edge to v.
Since v ∈ V (H3) is arbitrary, this implies that

• for any v ∈ V (H3), H2 is isomorphic to the graph obtained from H3 by adding one
pendant edge to v, and

• H3 is vertex-transitive.

In particular, H3 is an r-regular graph for some r ⩾ 2.

Case 1: r = |V (H3)| − 1 (i.e., H3 is complete).
Note that if H1 is complete, then |V (H1)| > |V (H3)| ⩾ 3 because H1 ̸≺ H3. If H1 is

complete, then for two vertices x, y ∈ V (H3) with x ̸= y and an integer n ⩾ 1, we can
verify that H1 ̸≺ Gn

2 (H3; {x, y}), H2 ̸≺ Gn
2 (H3; {x, y}) and H3 ≺ Gn

2 (H3; {x, y}); if H1 is
not complete, then for an integer n ⩾ |V (H3)|, we have H1 ̸≺ Kn, H2 ̸≺ Kn and H3 ≺ Kn.
In either case, it follows that F(H1, H2)− F(H3) is an infinite family, which contradicts
the assumption |F(H1, H2)△F(H1, H3)| < ∞.

Case 2: 3 ⩽ r ⩽ |V (H3)| − 2.
Since H3 is not complete, H3 has non-adjacent vertices x and y. Let n ⩾ 1 be an

integer. We show that Gn
3 (H3; {x, y}) contains neither H1 nor H2 as an induced subgraph.

Set U = V (Gn
3 (H3; {x, y})) − V (H3), and let z be the unique vertex in U adjacent to x

and y.
Suppose that Gn

3 (H3; {x, y}) contains H1 as an induced subgraph, and let H1
1 be an

induced subgraph of Gn
3 (H3; {x, y}) isomorphic to H1. Since H1 ̸≺ H3 and δ(H1) ⩾ 2,

we have V (H1
1 ) ∩ U = {z} and x, y ∈ V (H1). Since xy ̸∈ E(G), it follows from (3.1)

that H1 is a path of order three, which contradicts the assumption that δ(H1) ⩾ 2. Thus
Gn

3 (H3; {x, y}) does not contain H1 as an induced subgraph.
Suppose that Gn

3 (H3; {x, y}) contains H2 as an induced subgraph, and let H1
2 be an

induced subgraph of Gn
3 (H3; {x, y}) isomorphic to H2. Recall that

• H2 has exactly one vertex of degree 1 and exactly one vertex of degree r + 1,

• such two vertices are adjacent in H2, and

• other vertices of H2 have degree r.
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Since r ⩾ 3, only x and y can have degree r+1 inH1
2 . Thus we may assume that x ∈ V (H1

2 )
and all neighbors of x in Gn

3 (H3; {x, y}) belong to V (H1
2 ). In particular, z ∈ V (H1

2 ). If
V (H1

2 ) ∩ (U − {z}) ̸= ∅, then H1
2 has a vertex of degree 1 which is not adjacent to x,

which is a contradiction. Thus V (H2) ∩ (U − {z}) = ∅. Then dH1
2
(z) ⩽ 2 < r, and hence

dH1
2
(z) = 1. In particular, y ̸∈ V (H1

2 ). This implies that |V (H2)| ⩽ |V (H3)|, which is a
contradiction. Thus Gn

3 (H3; {x, y}) does not contain H2 as an induced subgraph.
Since n is arbitrary, F(H1, H2)−F(H3) is an infinite family, which is a contradiction.

Case 3: 2 = r ⩽ |V (H3)| − 2.
Since H3 is a cycle of order at least 4, we can write H3 = u1u2 · · ·umu1 with m ⩾ 4.

Note that u1u3 ̸∈ E(H3). By (3.2), H1 contains a triangle. Recall that H2 is obtained
from H3 by adding a pendant edge. Hence for an integer n ⩾ 1, we can verify that
H1 ̸≺ Gn

2 (H3; {u1, u3}), H2 ̸≺ Gn
2 (H3; {u1, u3}) and H3 ≺ Gn

2 (H3; {u1, u3}). Thus we see
that F(H1, H2)−F(H3) is an infinite family, which is a contradiction.

The contradictions in Cases 1–3 imply that Hi ≺ H5−i for each i ∈ {2, 3}. In par-
ticular, H2 ≃ H3, and hence (H1;H2, H3) is a trivial tuple. This completes the proof of
Theorem 1.2.

4 Concluding Remarks

In this paper, we studied the difference between forbidden pairs having a common graph,
and we gave necessary conditions for |F(H1, H2) △ F(H1, H3)| < ∞. Since vertex-
transitive graphs rarely appear as forbidden subgraphs, it follows from Theorems 1.1 and
1.2 that in most cases, F(H1, H2) will be different from F(H1, H3) if (H1;H2, H3) is not
trivial and either H1 is twin-less or δ(H1) ⩾ 2. However, since the twin-less seems to be a
technical condition, we expect that same situation occurs without the twin-less condition.
On the other hand, we cannot judge from Theorems 1.1 and 1.2 whether Fk(H1, H2) and
Fk(H1, H3) are essentially different or not, where Fk(H) denotes the family of k-connected
H-free graphs. Fujita, Furuya and Ozeki [7] proved that |Fk(H1) △ Fk(H2)| < ∞ if
and only if H1 ≃ H2. Thus we expect that almost all tuples (H1;H2, H3) satisfying
|Fk(H1, H2)△Fk(H1, H3)| < ∞ are trivial. We leave such a problem for the readers.
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