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Abstract

A finite subset Y on the unit sphere Sn−1 ⊆ Rn is called a spherical design
of harmonic index t, if the following condition is satisfied:

∑
x∈Y f(x) = 0 for

all real homogeneous harmonic polynomials f(x1, . . . , xn) of degree t. Also, for a
subset T of N = {1, 2, · · · }, a finite subset Y ⊆ Sn−1 is called a spherical design of
harmonic index T, if

∑
x∈Y f(x) = 0 is satisfied for all real homogeneous harmonic

polynomials f(x1, . . . , xn) of degree k with k ∈ T .
In the present paper we first study Fisher type lower bounds for the sizes of

spherical designs of harmonic index t (or for harmonic index T ). We also study
‘tight’ spherical designs of harmonic index t or index T . Here ‘tight’ means that the
size of Y attains the lower bound for this Fisher type inequality. The classification
problem of tight spherical designs of harmonic index t was started by Bannai-Okuda-
Tagami (2015), and the case t = 4 was completed by Okuda-Yu (2016). In this paper
we show the classification (non-existence) of tight spherical designs of harmonic
index 6 and 8, as well as the asymptotic non-existence of tight spherical designs of
harmonic index 2e for general e > 3. We also study the existence problem for tight
spherical designs of harmonic index T for some T , in particular, including index
T = {8, 4}.

Keywords: spherical designs of harmonic index; Gegenbauer polynomial; Fisher
type lower bound; tight design; Larman-Rogers-Seidel’s theorem; Delsarte’s method;
semidefinite programming; elliptic diophantine equation.
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1 Introduction and spherical designs of harmonic index t (or T )

Throughout this paper Y is assumed to be a finite non-empty set, and we denote the set
of positive (resp. non-negative) integers by N (resp. N0).

Let Sn−1 = {x = (x1, · · · , xn) ∈ Rn | x21 + · · ·+ x2n = 1} be the unit sphere in the Eu-
clidean space Rn. Delsarte-Goethals-Seidel [6, Definition 5.1] (1977) gave the following
definition of spherical designs.

Definition 1 (Spherical t-designs). Let t ∈ N0. A subset Y ⊆ Sn−1 is called a spherical
t-design on Sn−1, if

1

|Sn−1|

∫
x∈Sn−1

f(x)dσ(x) =
1

|Y |
∑
y∈Y

f(y) (1)

for any real polynomial f(x1, . . . , xn) of degree at most t, where |Sn−1| denotes the volume
(or the surface area) of the sphere Sn−1, and the integral is the surface integral on Sn−1.

The condition (1) is known to be equivalent to the condition:∑
y∈Y

f(y) = 0 for all f(x1, . . . , xn) ∈ Harmn
k , 1 6 k 6 t ,

where Harmn
k is the space of real homogeneous harmonic polynomials of degree k in n

indeterminates.
In connection with the latter equivalent defining condition for spherical t-designs, we

define a weaker concept which we call designs of harmonic index t as follows.

Definition 2 (Spherical designs of harmonic index t). A subset Y ⊆ Sn−1 is called a
spherical design of harmonic index t on Sn−1, if∑

y∈Y

f(y) = 0 (∗)

for all real homogeneous harmonic polynomial f(x1, . . . , xn) of degree exactly t.

More generally we have the following definition.

Definition 3 (Spherical designs of harmonic index T ). Let T be a subset of N. A subset
Y ⊆ Sn−1 is called a spherical design of harmonic index T on Sn−1 if∑

y∈Y

f(y) = 0 for all f(x1, . . . , xn) ∈ Harmn
k with k ∈ T.

A spherical design of harmonic index T with T = {1, 2, . . . , t} corresponds to a usual
spherical t-design, and the case T = {t} corresponds to a spherical design of harmonic
index t.

We should remark that the concept of spherical designs of harmonic index t (or T )
was already introduced by Delsarte-Seidel [7, Definition 4.1] (1989). However the study
of this topic is started in Bannai-Okuda-Tagami [2] (2015).
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The purpose of this paper is to study spherical designs of harmonic index t as well
as harmonic index T for some T , and to convince the reader that these are interesting
mathematical objects. Our main concerns are Fisher type lower bounds for spherical
designs of harmonic index t and T , as well as the classification problems of so-called
‘tight’ designs. Here ‘tight’ means those that attain the lower bound in a Fisher type
inequality. In Section 2 we provide a linear programming bound for spherical designs of
harmonic index T . We also formulate Fisher type inequalities and tight spherical designs
of harmonic index t or T . In Section 3, we discuss our philosophy how to find our test
functions. In the subsequent sections we will study some specific problems. In Section 4
the complete non-existence results for tight spherical designs of harmonic index 6 and
8 are proved. Note that the case of t = 4 was already settled by Okuda-Yu [17] in a
beautiful way by applying the SDP (semidefinite programming) to the existence problem
of equiangular lines. Also note that our proofs for t = 6 and t = 8 are obtained in an
elementary level without recourse to such deeper consideration as SDP. In Section 5 we
show the asymptotic non-existence of harmonic index 2e case for general e > 3. Then we
turn our attention to the case of T = {t1, t2}. The central model is the case T = {8, 4}
in Section 6. In Section 7 we study the cases T = {8, 2}, {8, 6}, {6, 2}, {6, 4}, as well as
{10, 6, 2}, and {12, 8, 4}. We conclude the paper in Section 8 with some remarks.

The techniques which we used in the present paper are: (i) the linear programming
method by Delsarte, (ii) the detailed information on the locations of the zeros as well as
the local minimum values of Gegenbauer polynomials, (iii) the generalization by Nozaki
of the Larman-Rogers-Seidel theorem on 2-distance sets to s-distance sets, (iv) the the-
ory of elliptic diophantine equations, and (v) the semidefinite programming method of
eliminating some 2-angular line systems for small dimensions.

2 Linear programming method for spherical designs of harmonic
index T

In this section we consider a linear programming bound for spherical designs of harmonic
index T . We also introduce some terminology and notation which will be used in the
subsequent sections.

Let Qn,k(x) be the Gegenbauer polynomial of degree k in one variable x as introduced
in [6, Definition 2.1]. Recall how the polynomials Qn,k(x) are normalized [6, Theorem 2.4,
Theorem 3.2]:

Qn,k(1) = dim Harmn
k =

(
n+ k − 1

n− 1

)
−
(
n+ k − 3

n− 1

)
=: hn,k .

The Gegenbauer polynomials Qn,k(x) are orthogonal polynomials on the closed interval
[−1, 1] with respect to the weight function (1− x2)(n−3)/2, i.e.,∫ 1

−1
Qn,k(x)Qn,`(x) (1− x2)

n−3
2 dx = an,kδk,` ,

the electronic journal of combinatorics 24(2) (2017), #P2.14 3



where an,k is some (normalization) constant depending on n and k, and δk,` is the Kro-
necker delta. From this orthogonality it is well established that to any real polynomial
F (x) of degree r we can associate its Gegenbauer expansion

F (x) =
r∑

k=0

fkQn,k(x) , (2)

where the Gegenbauer coefficients fk can be computed as follows:

fk =
1

an,k

∫ 1

−1
F (x)Qn,k(x) (1− x2)

n−3
2 dx.

We denote by x ·y the standard inner product of x and y in Rn. For a subset Y ⊆ Rn

we set I(Y ) := {x ·y | x,y ∈ Y, x 6= y}. If {ek,1, . . . , ek,hn,k
} is any orthonormal basis for

Harmn
k with respect to the inner product 〈f, g〉 = 1

|Sn−1|

∫
x∈Sn−1 f(x)g(x)dσ(x) in Harmn

k ,

then the well-known addition formula says that, for every x,y ∈ Sn−1,

Qn,k(x · y) =

hn,k∑
i=1

ek,i(x)ek,i(y).

From the addition formula we have, for any Y ⊆ Sn−1,

Mk(Y ) :=
∑
x,y∈Y

Qn,k(x · y) =
∑
x,y∈Y

hn,k∑
i=1

ek,i(x)ek,i(y)

=

hn,k∑
i=1

∑
x,y∈Y

ek,i(x)ek,i(y) =

hn,k∑
i=1

(∑
x∈Y

ek,i(x)

)2

.

Thus we obtain (see Definition 3 for (M2)) the following two simple observations:

(M1) The quantity Mk(Y ) is always non-negative;

(M2) Moreover, Mk(Y ) = 0 for any k ∈ T if and only if Y ⊆ Sn−1 is a spherical
design of harmonic index T .

We introduce our main identity (see (3) below). (See [6] for the original discussion
about so-called ‘linear programming bounds ’ for spherical designs.) Suppose F (x) is a
non-constant real polynomial of degree r which is of the form (2). For any Y ⊆ Sn−1, if
we calculate

∑
x,y∈Y F (x · y) in two different ways, we find

|Y |F (1) +
∑
x,y∈Y,
x6=y

F (x · y) = |Y |2 f0 +
r∑

k=1

fkMk(Y ). (3)

Now suppose Y ⊆ Sn−1 is a spherical design of harmonic index T . We are interested
in finding a good lower bound for |Y |. (If Y1, Y2 ⊆ Sn−1 are spherical designs of harmonic
index T with Y1 ∩ Y2 = ∅, then so is Y1 ∪ Y2.) If F (x) satisfies
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(LP1) F (u) > 0 for each u ∈ [−1, 1];

(LP2) fk 6 0 for each non-negative integer k not in T .

then we obtain (recall (M1) and (M2)) that

|Y |F (1) 6 LHS of (3) = RHS of (3) 6 |Y |2 f0 , (4)

where the first and second inequalities are due to (LP1) and (LP2), respectively. Moreover
we necessarily have f0 > 0, since by (LP1) the integrand of the following integral

f0 =
1

an,0

∫ 1

−1
F (x) (1− x2)

n−3
2 dx

is non-negative and an,0 =
∫ 1

−1(1− x
2)

n−3
2 dx > 0. By (4) we have

|Y | > F (1)

f0
. (5)

Therefore we want to find the following quantity:

S := sup

{
F (1)

f0
| F (x) satisfies (LP1) and (LP2)

}
. (6)

Definition 4. We call a polynomial F (x) a test function provided that both (LP1) and
(LP2) hold.

Note that the multiplication of F (x) by any positive real number does not affect the

consistency of (LP1) and (LP2), and does not change the value F (1)
f0

. Thus we might
adopt an equivalence relation on the set of test functions defined using the multiplication
by a positive real number.

It is also harmless to restrict the range of the above supremum by only considering
F (x) with (any) fixed constant term f0 = c. If we introduce new variables gk := fk

f0

(k > 0), then the computation of S in (6) becomes the following linear programming of
infinite variables (g1, g2, . . .). (Notice that (6) itself is not a linear programming of the

variables (f0, f1, . . .) because f0 appears in the denominator of F (1)
f0

so that F (1)
f0

is not

actually linear in f0.)

S = sup

{
1 +

∞∑
k=1

gkQn,k(1)

}
subject to (7)

(i) All but finite number of g1, g2, . . . ∈ R are zero;

(ii) A polynomial G(x) = 1 +
∑∞

k=1 gkQn,k(x) satisfies (LP1);

(iii) All g1, g2, . . . satisfy (LP2).
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3 How do we find a good test function?

In this paper we consider the case where T consists of positive even integers t1 > t2 >
· · · > t` > 2. Given n and T , what is the best choice of a test function F (x) for (6)?
The answer is not easy: First of all, what is the definition of “goodness” for F (x)? Of

course, the most obvious one is that a “better” F (x) provides a larger F (1)
f0

. However, this

approach seems hopeless because the exact determination of S in (6) is too difficult. (It is
not even apparent that there exists an optimal test function which attains the supremum
in (6).) This means that there can be many approaches for choosing a test function with
different definitions of “goodness”.

In this section we show our way for choosing a test function, and explain its philosophy.
We should emphasize here that our goal is not to maximize F (1)

f0
. In this paper, for our

purpose, we only deal with a test function F (x) of the following form:

F (x) = f0 +
∑
k∈T

fkQn,k(x). (8)

One reason why we only concern test functions of the form (8) is that it is the easiest
one we can handle. More precisely, Eq. (8) is the easiest form for a polynomial F (x) to
satisfy (LP2). Another reason is that if F (x) has the form (8), then we are able to guess
when the equality in (5) is attained:

Proposition 5. Let Y ⊆ Sn−1 be a spherical design of harmonic index T . Suppose
a polynomial F (x) has the form (8), and satisfies (LP1). (Thus F (x) becomes a test

function.) Then, |Y | = F (1)
f0

if and only if F (α) = 0 for all α ∈ I(Y ).

Proof. Recall |Y | > F (1)
f0

. Thus, |Y | = F (1)
f0

if and only if equality in (4) holds if and

only if
∑
x,y∈Y,
x6=y

F (x · y) = 0 =
∑
k∈T

fkMk(Y ). Suppose |Y | = F (1)
f0

. Since F (x) has the form

(8) and Mk(Y ) = 0 for all k ∈ T (Definition 3), the term
∑
k∈T

fkMk(Y ) vanishes. We see

from (LP1) that the equation
∑
x,y∈Y,
x6=y

F (x · y) = 0 is equivalent to that F (α) = 0 for all

α ∈ I(Y ).

Thus, if Y ⊆ Sn−1 is a spherical design of harmonic index T = {t1 > · · · > t`} (ti :
all even) and F (x) is a test function of the form (8), then the previous proposition says

that |Y | = F (1)
f0

if and only if Y is a distance set where the distances between two distinct

points in Y should occur in the zero set of F (x).
Now it is the time when we should explain our definition of “goodness” for F (x).

Our philosophy for choosing F (x) (of the form (8)) is that we want a distance set Y with

large |I(Y )| whenever |Y | attains F (1)
f0

, i.e., we hope an interesting (=large) “tight” object.
Therefore we require that

a test function F (x) has exactly ` non-negative zeros (9)
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because we think that ` is the naturally expected largest number of non-negative zeros
for F (x) of the form (8). (Of course, it is still a difficult problem to determine the precise
maximum number of minima for F (x) in (8).)

We only deal with the case where there are only finitely many test functions satisfying
our conditions (9), although the choices of test functions are possibly infinite for some
index sets. Suppose that there are only m test functions F1(x), F2(x), . . . , Fm(x) (up to
equivalence) which satisfy our condition (9) for a given index set T . For each test function

Fi(x), put bn,T,Fi
:= Fi(1)

f
(i)
0

, where f
(i)
0 is the constant term in the Gegenbauer expansion of

Fi(x).

Definition 6. With the above conditions and notation, we define bn,T := max
16i6m

{bn,T,Fi
}.

If the size of a spherical design Y of harmonic index T attains the lower bound bn,T , then
Y is said to be tight.

If there exists a unique test function F (x) (up to equivalence), then Definition 6 implies

that bn,T = F (1)
f0

.

Remark 7. We should note that it is a very delicate problem to define “tight” designs for
general T in a rigorous way. In the above argument, we required that our test function
should have as many zeros as possible so that bn,T could be as large as possible. The
reason to get as many zeros is that the “tight” set can be an s-distance set for larger s,
otherwise the size cannot be large.

In the first section we defined the concept of spherical design of harmonic index t or
more general T . This notion was already essentially defined in the literature, as “a spher-
ical design which admits indices T”. (See Delsarte-Seidel [7], say.) On the other hand,
the terminology of spherical design of harmonic index t is already defined as “a spherical
design for which equality in Definition 2 (∗) holds for any homogeneous polynomials of de-
gree t”, say in [7, 14], etc. In order to avoid the confusion with these terminologies, we use
the term ‘spherical designs of harmonic index t (or T )’. It seems that no systematic study
of spherical designs of harmonic index T has been made, before Bannai-Okuda-Tagami
[2]. They used the test function F (x) = cn,t + Qn,t(x), with cn,t = − min

−16x61
Qn,t(x) for

T = {t}, and obtained the following theorem. (Note that this theorem is a special case
of Proposition 5.)

Theorem 8 ([2, Theorem 1.2]). Let Y be a design of harmonic index t on Sn−1. Then
the following inequality holds:

|Y | > 1 +
Qn,t(1)

cn,t
, (10)

where cn,t = − min
−16x61

Qn,t(x). Moreover equality in (10) holds if and only if Qn,t(α) =

−cn,t holds for any α ∈ I(Y ).

Remark 9. For T = {t}, the choice of test function is unique (up to equivalence). The
reason is that our test function is of form (8), i.e. F (x) = f0 + Qn,t(x). Moreover,
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f0 = − min
−16x61

Qn,t(x) is uniquely determined, from the monotonicity of the local minima

of the Gegenbauer polynomial. Hence bn,{t} = 1 + Qn,t(1)

cn,t
and we write bn,t = bn,{t} for

simplicity.

In [2, 17] they discussed the cases when t = 2 and 4. In the following section we
discuss the existence problem of tight spherical designs of harmonic index t for t = 6 and
8. As is seen from Remark 9, if we consider T = {2e}, then there is only one positive zero
of F (x), equivalently, only one positive minima of Qn,2e(x) exists.

If we take T = {8, 4}, say, there are only at most two positive zeros. With prop-
erty (9) and some calculation, it is shown that our test function F (x) is determined
uniquely. For T = {t1, t2, . . . , t`} with ti even, it seems that we can expect that there
are at most ` non-negative zeros although we do not know the exact answer for general
T . Among the possible test functions with this property, finding the best one, namely
with the largest bn,T , is not easy for general T . For example, in the discussion below,
in the case of T = {12, 8, 4} the candidates of test function F (x) are not necessarily
unique. Also, in some cases, no good test function exists. Thus, here we are compro-
mising in taking the test function which seems to be the most natural one. We cannot
eliminate the possibility of the existence of a better test function, in general case. For
specific T , which are discussed in subsequent sections, we believe the choices of our test
functions are natural and meaningful, although we do not show that rigorously at this
stage. This situation may look to be an embarrassing situation, but this is even true for
the definition of tight spherical t-designs, originally defined by Delsarte-Goethals-Seidel
[6]. In the case of ordinary tight spherical 2e-designs, the specifically chosen test function
(Re(x))2 = (Qn,0(x) + · · · + Qn,e(x))2 satisfies the requirement that there are possible
maximum e positive zeros. Moreover, it is expected to give the maximum bn,T (with
T = {1, 2, . . . , 2e}), so it satisfies our criterion of ‘good’ test function. On the other hand,
there is no easy proof that it is the best test function. Still, the concept of tight spherical
t-design in this particular choice of the test function was very meaningful. Our defini-
tion of tight spherical designs of harmonic index T has the same feature, and we have to
compromise that the definitions of tight designs are not completely rigorously defined in
the general case of T . (To show the test function is a best one is not easy and in many
cases it is still undecided. However, such a problem is an unavoidable fact in this kind of
theories.)

4 The non-existence of tight spherical designs of harmonic index
6 and 8

In this section we will prove the non-existence of tight spherical designs of harmonic index
t = 6 and t = 8. The lower bound in Theorem 8 is obtained by the inequality (5) using
following test function F (x).

F (x) = cn,t +Qn,t(x) with cn,t := −minQn,t(x). (11)

the electronic journal of combinatorics 24(2) (2017), #P2.14 8



Throughout this section, F (x) = cn,2e +Qn,2e(x) and we say Y is a tight spherical design
of harmonic index 2e if |Y | attains the lower bound bn,2e in (10).

Lemma 10. If Y is a tight spherical design of harmonic index 2e, then |Y | 6 n(n+1)
2

.

Proof. Recall that if Y ⊆ Sn−1 is a tight spherical design of harmonic index t, then
I(Y ) ⊆ {x | F (x) = 0}. It is known that F (x) have exactly two roots {α,−α}, which
means that Y is bounded above by the cardinality of spherical 2-distance set. For any
spherical 2-distance set X ⊆ Sn−1 with I(X) = {α, β} and α+ β > 0, Musin [15] proved

|X| 6 n(n+1)
2

. Therefore |Y | 6 n(n+1)
2

.

4.1 The non-existence of tight spherical designs of harmonic index 6

In this subsection Y denotes a tight spherical design of harmonic index 6. The Gegenbauer
polynomial Qn,6(x) (with our normalization Qn,6(1) = dim Harmn

6 ) is given by

Qn,6(x) = n(n+2)(n+10)
6! {(n+4)(n+6)(n+8)x6−15(n+4)(n+6)x4+45(n+4)x2−15}.

By taking the largest root for Q′n,6(x) = 0, we get (see e.g. the proof of [2, Corollary 4.1])
the point α at which Qn,6(x) takes the minimum value, i.e., Qn,6(α) = −cn,6. The lower
bound bn,6 of |Y | defined in (10) can be obtained as well. The following are our results:

α2 =
5(n+6)+

√
10(n+3)(n+6)

(n+6)(n+8)
,

cn,6 = −
n(n+2)(n+10)

(
2(n−2)(n+3)(n+6)+(n+3)(n+4)

√
10(n+3)(n+6)

)
36(n+6)(n+8)2

,

bn,6 =
(n+4)

(
20
√

10(n+3)(n+6)+(n+3)(n+6)(n2+9n−12)
)

20
(
2(n−2)(n+6)+(n+4)

√
10(n+3)(n+6)

) .

It is not difficult to check that |Y | = bn,6 >
n(n+1)

2
if n > 37. Moreover, b2,6 = 2 and

b24,6 = 231 are the only two cases for which bn,6 ∈ Z when n 6 36.

Remark 11. We should remark that not all the roots of F (x) in (11) will necessarily
appear in I(Y ) when n is small. Consider the case n = 2. Recall that b2,2e = 2 is proved
for general e in [2, p. 6]. Let y1, y2 be two unit vectors in R2 with angle θ = jπ/2e for odd
j. Then, by the argument in [2, p. 2], Y = {y1, y2} is a tight spherical design of harmonic
index 2e on S1.

Larman-Rogers- Seidel (1977) proved the following fact.

Theorem 12 ([12, Theorem 2]). Let X be a 2-distance set in Rn with Euclidean distances
c and d (c < d). If |X| > 2n+ 3, then we have

c2

d2
=

(k − 1)

k

for some integer k with 2 6 k 6 1+
√
2n

2
.
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Suppose n = 24. Then Y is an at most 2-distance set in S23 with I(Y ) ⊆ {±α}.
Assume X is a spherical 2-distance set with I(X) = {±α} such that |Y | 6 |X|. (There
exists such X, otherwise |Y | is strictly larger than the cardinality of any 2-distance set.)
If we put c =

√
2− 2α and d =

√
2 + 2α, then c and d become the Euclidean distances

between two distinct vectors in X. Note that |X| > |Y | = b24,6 = 231 > 2 × 24 + 3 =
51. However, in this case, we obtain c2/d2 = 1/3 from easy calculation, contrary to
Theorem 12. Hence there exists no tight spherical design of harmonic index 6 when
n = 24.

4.2 The non-existence of tight spherical designs of harmonic index 8

In this subsection Y ⊆ Sn−1 denotes a tight spherical design of harmonic index 8. The
Gegenbauer polynomial Qn,8(x) is

Qn,8(x) = n(n+2)(n+4)(n+14)
8!

{
(n+6)(n+8)(n+10)(n+12)x8−28(n+6)(n+8)(n+10)x6

+210(n+6)(n+8)x4−420(n+6)x2+105
}
.

As in the preceding subsection we can obtain α, cn,8, and also

bn,8 =
1

252× 12.03144913 · · ·
× n4(1 + o(1)). (12)

It can be checked that |Y | = bn,8 >
n(n+1)

2
if n > 20 and, if n 6 19, the only integral value

is b2,8 = 2. By a similar argument as in Remark 11 one trivial example exists when n = 2.

Remark 13. We do not give the formulas of α, bn,8 and cn,8 explicitly, since they are

extremely complicated. Here, bn,8 >
n(n+1)

2
is checked from the formula of bn,8 rather than

from the asymptotic form (12).

5 The asymptotic non-existence of tight spherical designs of
harmonic index 2e for general e

In this section we consider the existence of tight spherical designs of harmonic index 2e
for e > 5, since the cases e = 2, 3, 4 were already treated. Our main result in this section
is the following theorem.

Theorem 14. Let e > 2 be fixed. Then there exist positive constants A2e and B2e such
that

lim
n→∞

cn,2e
ne

= A2e and lim
n→∞

bn,2e
ne

= B2e,

where A2e and B2e depend only on e. Therefore,

cn,2e = A2en
e(1 + o(1)) and bn,2e = B2en

e(1 + o(1)).

Corollary 15. Let e > 3 be fixed. If n is sufficiently large, then there exist no tight
spherical designs of harmonic index 2e.
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Proof. If Y is a tight spherical design of harmonic index 2e, then I(Y ) ⊆ {±α} for some

α > 0, and it follows from Lemma 10 that |Y | 6 n(n+1)
2

. On the other hand, if n is
sufficiently large, then Theorem 14 implies

|Y | = bn,2e = B2en
e(1 + o(1)),

a contradiction.

Proof of Theorem 14. Szegő [19, p. 107] gives the asymptotic property of Gengebauer
polynomial Cλ

t (x):

lim
λ→∞

λ−
t
2Cλ

t (λ−
1
2x) =

Ht(x)

t!
,

where Ht(x) is the Hermite polynomial of degree t.

Recall that if n > 3 then Qn,t(x) = n+2t−2
n−2 C

(n−2)/2
t (x). (See e.g. [6, p. 365].) Putting

λ = n−2
2

and t = 2e, we have

lim
λ→∞

λ−
t
2Cλ

t (λ−
1
2x) = lim

n→∞

(
n− 2

2

)−e
n− 2

n+ 4e− 2
Qn,2e(

√
2

n− 2
x)

= 2e lim
n→∞

n−eQn,2e(

√
2

n− 2
x).

Set Pn,e(x) = n−eQn,2e(
√

2
n−2 x) for simplicity. Then we have

2e lim
n→∞

Pn,e(x) =
H2e(x)

(2e)!
. (13)

Take the derivative with respect to x on both sides of (13). For fixed e, since P ′n,e(x)

uniformly converges to 2e

(2e−1)!x
2e−1 as n tends to be infinity, we get the following result:

2e lim
n→∞

d

dx
Pn,e(x) = 2e

d

dx

(
lim
n→∞

Pn,e(x)
)

=
H ′2e(x)

(2e)!
=

4e

(2e)!
H2e−1(x),

where the last equality is due to the property H ′t(x) = 2tHt−1(x). Let x1 be the largest
zero of H2e−1(x). Then

2e lim
n→∞

d

dx

(
n−eQn,2e(

√
2

n− 2
x)

)∣∣∣
x=x1

=
1

(2e)!
H ′2e(x1) = 0.

Thus the following equality can be obtained.

A2e = − lim
n→∞

minQn,2e(x)

ne
= − lim

n→∞

Qn,2e(
√

2
n−2 x1)

ne
= −H2e(x1)

2e(2e)!
.

Recall that bn,t = 1 + Qn,t(1)

cn,t
and Qn,t(1) =

(
n+t−1
n−1

)
−
(
n+t−3
n−1

)
. This implies

B2e = lim
n→∞

bn,2e
ne

=
1

(2e)!A2e

= − 2e

H2e(x1)
.
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Remark 16. In Theorem 14 we did not give explicit evaluation of B2e, but it is possible to
give it, since the locations of the zeros of Hermite polynomials and the (local) minimum
values of H2e(x) are well studied. Also, if we want to evaluate bn,2e explicitly from below,
rather than evaluating B2e, it is also possible, although we will not discuss it in this paper.
For this purpose, the following papers [4], [8], [9], [11] may be useful to do that. It seems
that there are many literature on this.

6 Tight spherical designs of harmonic index {8, 4}

In what follows, we assume T = {t1, t2, . . . , t`} with t1 = 2e > t2 > · · · > t` and ti
(1 6 i 6 `) even. And we investigate the case where our test function is of the form

F (x) = f0 +Qn,2e(x) + ft2Qn,t2(x) + · · ·+ ft`Qn,t`(x).

Let L(x) = Qn,2e(x) + ft2Qn,t2(x) + · · ·+ ft`Qn,t`(x). Then as we mentioned in Section 3,
it is better that F (x) have as many zeros in [−1, 1]. For this purpose we are interested in
the case where L(x) attains minimum value at ` non-negative points α1, . . . , α` ∈ [0, 1].

Delsarte-Goethals-Seidel (1977) gave an upper bound for a spherical s-distance set
X ⊆ Sn−1.

Theorem 17 ([6, Theorem 4.8]). If X is a spherical s-distance set in Sn−1, then |X| 6(
n+s−1
n−1

)
+
(
n+s−2
n−1

)
.

Using the above theorem, we obtain the following lemma which gives the relation
between the size of tight spherical design of harmonic index T and the cardinality of
spherical s-distance set.

Lemma 18. If Y is a tight spherical design of harmonic index T , and L(x) = Qn,2e(x) +
ft2Qn,t2(x) + · · ·+ ft`Qn,t`(x) takes minimum value at ` non-negative points, then

|Y | 6

{ (
n+2`−2
n−1

)
+
(
n+2`−3
n−1

)
if 2 - e(

n+2`−1
n−1

)
+
(
n+2`−2
n−1

)
if 2 | e

Proof. Let cn,T,L = −minL(x) and F (x) = L(x) + cn,T,L. If e is even (resp. odd), then
F (x) has 2` (resp. 2` − 1) zeros. By the assumption, F (x) has ` non-negative roots.
Namely, |I(Y )| 6 2` if e is even, then Y ∈ Sn−1 is an at most 2`-distance set. It follows
from Theorem 17 that |Y | 6

(
n+2`−1
n−1

)
+
(
n+2`−2
n−1

)
. Similarly, we can get the conclusion if

e is odd.

Consider the case of T = {t1, t2} with t2 = even and t1 = 2e > t2. In this case we use
the test function F (x) = f0 + Qn,2e(x) + ft2Qn,t2(x). Let L(x) = Qn,2e(x) + ft2Qn,t2(x).
In this case we are interested in the cases when L(x) has the minimum value −cn,T at
exactly two non-negative points α, β (with α > β) and choose f0 = cn,T . For this purpose
we take

L(x) = Qn,2e(x) + ft2Qn,t2(x),
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and we want to determine ft2 such that

Qn,2e(x) + ft2Qn,t2(x) = a(x2 − α2)2(x2 − β2)2 − cn,T

for some α, β and cn,T .
Suppose t1 = 8 and t2 = 4. Then the problem is to find f4 such that

Qn,8(x) + f4Qn,4(x) = a(x2 − α2)2(x2 − β2)2 − cn,T . (14)

The Gegenbauer polynomial Qn,4(x) is

Qn,4(x) =
n(n+ 6)

4!

{
(n+ 2)(n+ 4)x4 − 6(n+ 2)x2 + 3

}
.

By comparing the coefficients in (14), we obtain the following equations:

a = n(n+2)(n+4)(n+6)(n+8)(n+10)(n+12)(n+14)
8!

,

2a(α2 + β2) = 28n(n+2)(n+4)(n+6)(n+8)(n+10)(n+14)
8!

,

a(α4 + β4 + 4α2β2) = 210n(n+2)(n+4)(n+6)(n+8)(n+14)
8!

+ n(n+2)(n+4)(n+6)
4!

f4,

2aα2β2(α2 + β2) = 420n(n+2)(n+4)(n+6)(n+14)
8!

+ 6n(n+2)(n+6)
4!

f4,

aα4β4 − cn,T = 105n(n+2)(n+4)(n+14)
8!

+ 3n(n+6)
4!

f4.

Therefore,

α2 + β2 =
14

n+ 12
,

(α2 + β2)2 + 2α2β2 = 210
(n+10)(n+12)

+ 1680
(n+8)(n+10)(n+12)(n+14)

f4,

α2β2(α2 + β2) = 210
(n+8)(n+10)(n+12)

+ 5040
(n+4)(n+8)(n+10)(n+12)(n+14)

f4.

We have

f4 =
(n+ 4)(n+ 5)(n+ 14)

60(n+ 12)
.

Hence α2 and β2 are the solutions of the following quadratic equation in the variable u:

u2 − 14

n+ 12
u+

21

(n+ 8)(n+ 12)
= 0.

Finally, we obtain

α2, β2 =
7(n+ 8)± 2

√
7(n+ 5)(n+ 8)

(n+ 8)(n+ 12)
,

bn,T =
1

252
(n+ 1)(n+ 2)(n+ 5)(n+ 6),
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where bn,T is the lower bound in (5).
In the following we shall prove the non-existence of tight spherical designs of harmonic

index {8, 4} stated in Theorem 23 below. If Y is a tight spherical design of harmonic index
{8, 4}, then I(Y ) ⊆ {±α,±β}. We define

U(h) :=

⌊
1

2
+

√
h2

2h− 2
+

1

4

⌋
.

For a spherical s-distance set, Nozaki (2011) generalized Larman-Rogers-Seidel theorem
[12, Theorem 2] as follows.

Theorem 19 ([16, Theorem 5.1]). Let Y be an s-distance set on Sn−1 with s > 2 and
I(Y ) = {β1, . . . , βs}. Put N :=

(
n+s−2
s−1

)
+
(
n+s−3
s−2

)
. If |Y | > 2N , then for each i = 1, . . . , s,

ki :=
∏

j=1,...,s,
j 6=i

1− βj
βi − βj

must be an integer with |ki| 6 U(N).

If X = Y ∪ (−Y ) is an antipodal spherical s-distance set, then Y is a spherical
(s− 1)-distance set. Nozaki (2011) proved the following theorem. The conditions of |X|
in Theorem 20 are less restrictive than that in Theorem 19.

Theorem 20 ([16, Theorem 5.2]). Let X be an antipodal s-distance set on Sn−1 where s
is an odd integer at least 5.
Suppose I(X) = {−1,±β1,±β2, . . . ,±β s−1

2
}.

(1) Let N =
(
n+s−4
s−3

)
. If |X| > 4N , then for each i = 1, . . . , (s− 1)/2,

ki :=
∏

j=1,..., s−1
2 ,

j 6=i

1− β2
j

β2
i − β2

j

must be an integer with |ki| 6 U(N).

(2) Let N =
(
n+s−3
s−2

)
. If |X| > 4N + 2, then for each i = 1, . . . , (s− 1)/2,

ki :=
1

βi

∏
j=1,..., s−1

2 ,

j 6=i

1− β2
j

β2
i − β2

j

must be an integer with |ki| 6 b
√

2N2/(N + 1)c.

With the above theorem and [16, Theorem 5.3], Nozaki showed that inner products
for an antipodal spherical s-distance set are in fact rational.
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Theorem 21 ([16, Theorem 5.4]). Suppose X is an antipodal s-distance set on Sn−1 with
s > 4. If |X| > 4

(
n+s−3
s−2

)
+ 2, then β is rational for any β ∈ I(X).

A tight spherical design of harmonic index {8, 4} is regarded as an at most 4-distance
set Y ⊂ Sn−1 with I(Y ) ⊆ {±α,±β}. We construct an antipodal set X ′ = Y ∪ (−Y ).
Note that I(X ′) ⊆ {−1,±α,±β}. Assume X ⊂ Sn−1 is a spherical 5-distance set with
I(X) = {−1,±α,±β} such that |X| > |X ′| = 2|Y |. By applying Theorem 20 to the set
X for s = 5, we obtain the next lemma.

Lemma 22. Suppose Y ′ is a spherical 4-distance set {±α,±β}. Let X = Y ′ ∪ (−Y ′).

(1) If |Y ′| > 2
(
n+1
2

)
, then the following two numbers are integers:

k1 =
1− α2

β2 − α2
, k2 =

1− β2

α2 − β2
.

(2) If |Y ′| > 2
(
n+2
3

)
+ 1, then the following two numbers are integers:

k1 =
1− α2

β(β2 − α2)
, k2 =

1− β2

α(α2 − β2)
.

Theorem 23. There exists no tight spherical design of harmonic index {8, 4} on Sn−1

for all n.

Proof. If Y is a tight spherical design of harmonic index {8, 4}, then

|Y | = (n+ 1)(n+ 2)(n+ 5)(n+ 6)

252
with I(Y ) ⊆ {±α,±β},

where

α, β =

√
7(n+ 8)± 2

√
7(n+ 5)(n+ 8)

(n+ 8)(n+ 12)
.

Assume X is a spherical 4-distance set with I(X) = {±α,±β} such that |Y | 6 |X|. We
shall consider three cases: n > 76, 9 6 n 6 75, and 2 6 n 6 8.

Case (1): If n > 76, then

|X| > |Y | > 2
((
n+2
3

)
+
(
n+1
2

))
> 2
(
n+2
3

)
+ 1.

By Theorem 19, k1, k2 are integers. We have

k2 =
1− β2

α2 − β2
=

2 +
√

(n+5)(n+8)
7

4
= z ∈ Z.

Hence (n+ 5)(n+ 8) = 7(4z − 2)2. By Lemma 22 we have

αβ =

√
21

(n+ 8)(n+ 12)
∈ Q.
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Then (n+ 8)(n+ 12) = 21p2/q2 for some coprime integers p and q. Furthermore 21p2/q2

should be an integer. Thus q2|21, i.e., q = 1. We have (n+ 8)(n+ 12) = 21p2 and get the
following table for some integers y1, y2, y3.

n+ 5 n+ 8 n+ 12
(i) y21 7y22 3y23
(ii) 7y21 y22 21y23
(iii) 3y21 21y22 y23
(iv) 21y21 3y22 7y23

We know that gcd(n+5, n+8) = 1 or 3. If gcd(n+5, n+8) = 1, then (n+5)(n+8) =
7(4z − 2)2 implies that n + 5 = y21, n + 8 = 7y22 or n + 5 = 7y21, n + 8 = y22. If
gcd(n+ 5, n+ 8) = 3, then n+ 5 = 3y21, n+ 8 = 21y22 or n+ 5 = 21y21, n+ 8 = 3y22.

For case (i), n + 12 = 3y23 is obtained from (n + 8)(n + 12) = 21p2. We can similarly
get the other three cases in the above table.
(i). 7 = 3y23 − y21 implies y21 ≡ 2 (mod3). Impossible.
(ii). 7 = 21y23 − 7y21 implies y21 ≡ 2 (mod3). Impossible.
(iii). 3 = 21y22 − 3y21 implies y21 ≡ 6 (mod7). Impossible.
(iv). We cannot get a contradiction from a basic observation, but this problem can be
formulated as the integral solutions of the following equation:

y2 = (n+ 5)(n+ 8)(n+ 12).

By linear transformation x = n+ 8, this equation becomes y2 = x3 + x2 − 12x. From the
database of elliptic curve with LMFDB label 168.b2, we know that

(x, y) = (−4, 0), (0, 0), (3, 0)

are all integral solutions of y2 = x3 + x2 − 12x, namely, y2 = (n + 5)(n + 8)(n + 12) has
no non-trivial integral solution.

Remark 24.
i). Any elliptic curve over Q has a Weierstrass equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (∗∗)

They are often displayed as a list [a1, a2, a3, a4, a6]. More information about the database
of elliptic curve is available from:

http://www.lmfdb.org/EllipticCurve/Q

ii). The integral solutions of some elliptic equations of form (∗∗) can be solved using
SAGE [18] with the following two commands (the reader should put suitable values for
a1, a2, a3, a4, a6):

E=EllipticCurve(QQ,[a1, a2, a3, a4, a6])
E.integral_points()
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Case (2): If 9 6 n 6 75, then |X| > |Y | > 2
(
n+1
2

)
. Using the first statement in Lemma 22,

we see that both 1−α2

β2−α2 and 1−β2

α2−β2 are integers. It is easy to check that neither of them is
an integer for 9 6 n 6 75.

Case (3): If 2 6 n 6 8, b8,T = 65 is the unique case with bn,T ∈ Z. We set up the
semidefinite programming (SDP) method on the upper bounds for spherical 4-distance
sets with the indicated inner product values. Theorem 25 is what we set up to estimate
the upper bounds of spherical 4-distance sets. Such an SDP formula can be obtained from
special setting of Bachoc-Vallentin [1, p. 10–11] or generalization of Barg-Yu [3, Theorem
3.1] for spherical 2-distance sets. We choose the positive semidefinite matrices Snk with
size (9 − k) × (9 − k) and linear constraints

∑
ci,cj∈Y Qn,k(〈ci, cj〉) > 0 for k = 1, · · · , 8.

(Snk is the same notation in [3]). When n = 8, the SDP upper bound solved by CVX for
the spherical 4-distance set is 50.23.

We follow the argument in [10, p. 79] to obtain rigorous bound of our semidefinite
programming problems. We independently solve the dual problem to avoid numerical
issue in CVX and guarantee that our bounds are justified. We checked that the error did
not affect our results. i.e. our computational SDP bounds plus the error still strictly less
than linear programming bound of tight spherical designs of harmonic index T . Then,
such tight designs do not exist.

In our problem, the solved value and the error are 1 + 1
3

∑4
i=1 xi = 50.23 and ε =∑24

i=1 xiε
′
i 6 4.7605 × 10−5, where ε′i = max{εi, 0}. (Even if we take ε′i = |εi|, the error

ε =
∑24

i=1 xiε
′
i is very small and bounded above by 0.00011592.) Hence our computational

SDP bound plus error is still strictly less than the LP bound (=65) for spherical design of
harmonic index {8, 4}. We can conclude there exists no tight spherical design of harmonic
index {8, 4}.

Theorem 25. Let Y be a spherical 4-distance set with inner products a, b, c and d. Let p
be a positive integer. The cardinality |Y | is bounded above by the solution of the following
semidefinite programming problem:

1 +
1

3
max(x1 + x2 + x3 + x4)

subject to(
1 0
0 0

)
+

1

3

(
0 1
1 1

)
(x1 + x2 + x3 + x4) +

(
0 0
0 1

) ∑
(u,v,t)∈{a,b,c,d}

x(u, v, t) � 0

3 +Qn,k(a)x1 +Qn,k(b)x2 +Qn,k(c)x3 +Qn,k(d)x4 > 0, k = 1, 2, . . . , p

Snk (1, 1, 1) + Snk (a, a, 1)x1 + Snk (b, b, 1)x2 + Snk (c, c, 1)x3 + Snk (d, d, 1)x4

+
∑

(u,v,t)∈{a,b,c,d}

Snk (u, v, t)x(u, v, t) � 0, k = 0, 1, . . . , p

x1, x2, x3, x4, x(u, v, t) > 0,

the electronic journal of combinatorics 24(2) (2017), #P2.14 17



where Sk(·, ·, ·) are (p− k + 1)× (p− k + 1) matrices with entries related to Gegenbauer
polynomial and explicit definition can be found in [3] equation (2-3).

In this theorem the variables x1, . . . , x4 refer to the number of ordered pairs of vectors
in Y with inner product a, b, c and d respectively; for instance (1/3)x1 = |Y |−1

∣∣{(c1, c2) ∈
Y 2 : 〈c1, c2〉 = a}

∣∣. The variables x(u, v, t) refer to the number of triples in Y such
that inner products are (u, v, t), where (u, v, t) ∈ {a, b, c, d}. The number of (u, v, t) is
the combinations with repetition for choosing three times out of 4 elements and it is(
4+3−1

3

)
= 20. We use CVX solver in MATLAB to solve the above optimization problems.

We set up p = 8 i.e. Sn0 matrix is an 9 × 9 matrix. The key inequalities to set up SDP
bounds for spherical few distance sets are:∑

ci,cj∈Y

Qn,k(〈ci, cj〉) > 0

and ∑
ci,cj ,cm∈Y

Snk (〈ci, cj〉, 〈ci, cm〉, 〈cj, cm〉) � 0.

Therefore, for spherical s-distance sets with s > 5, it is not hard to set up the SDP
upper bounds for the cardinality and clarify the feasibility of our SDP bounds.

7 Tight spherical designs of harmonic index {6, 4}, {6, 2},
{8, 6}, {8, 2}, as well as {10, 6, 2}, {12, 8, 4}

We consider the cases when T = {t1, t2, . . . , t`} and L(x) takes the minimum value −cn,T,L
at ` non-negative points, where

L(x) = Qn,2e(x) + ft2Qn,t2(x) + · · ·+ ft`Qn,t`(x).

In this section, we will prove the non-existence of tight spherical designs of harmonic
index T for some T with ` = 2 or 3.

7.1 The non-existence of tight spherical designs of harmonic index {6, 4}

Find f4 such that

Qn,6(x) + f4Qn,4(x) = ax2(x2 − α2)2 − cn,T,L. (15)

By comparing the coefficients in (15), we get the following results:

α2 =
15

2(n+ 8)
− 15

(n+ 8)(n+ 10)
f4,

α4 =
45

(n+ 6)(n+ 8)
− 180

(n+ 4)(n+ 8)(n+ 10)
f4.
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Solving for f4 and α2 from these two equations gives:

f4 =
n+ 10

10(n+ 4)(n+ 6)

(
(n+ 6)(n− 12)± 2(n+ 8)

√
−(n+ 6)(n− 4)

)
,

α2 =
3
(

2(n+ 6)±
√
−(n+ 6)(n− 4)

)
(n+ 4)(n+ 6)

.

If n > 5, then f4 is a complex number. So we cannot find L(x) = Qn,6(x) + f4Qn,4(x)
satisfying our assumption. It is easy to check that b2,T = 2, b3,T = 3 (or 0) and b4,T = 2.
By Remark 11, there exists no tight spherical design of harmonic index {6, 4} when n = 2
and |Y | = 2. When n = 3 and n = 4, observe that the lower bounds for spherical designs
of harmonic index 6 are about 3.41 and 5.29, respectively, which are strictly larger than
b3,T and b4,T . Note that spherical design of harmonic index {6, 4} should also satisfy the
condition for harmonic index 6. From the discussion above, there exists no tight spherical
design of harmonic index {6, 4} for any n.

7.2 The non-existence of tight spherical designs of harmonic index {6, 2}

The Gegenbauer polynomial Qn,2(x) is

Qn,2(x) =
(n+ 2)(nx2 − 1)

2
.

Let Qn,6(x) + f2Qn,2(x) = ax2(x2 − α2)2 − cn,T,L. Then with similar calculation we have
the following results.

f2 =
(n− 2)(n+ 4)(n+ 10)

32(n+ 8)
, α = ±

√
15

2(n+ 8)
,

bn,T =
n(n+ 4)(2n+ 1)2

15(7n− 4)

=
1

2401× 15
(1372n3 + 7644n2 + 10199n+ 7200) +

1920

2401(7n− 4)
.

Case (1): If n > 8817, i.e.,
∣∣∣ 1920
2401(7n−4)

∣∣∣ < 1
2401×15 , then bn,T is not an integer.

Case (2): Tight spherical design Y of harmonic index {6, 2} is regarded as an at most
3-distance set in Sn−1 with I(Y ) ⊆ {0,±α}.
Lemmens-Seidel (1973) proved the following fact.

Theorem 26 ([13, Theorem 3.4]). If there are |X| equiangular lines with angle arccos α
in Euclidean n-dimensional space Rn, and if |X| > 2n, then 1/α is an odd integer.

Then we can give a weaker condition for α with 3-distance set as follows.

the electronic journal of combinatorics 24(2) (2017), #P2.14 19



Theorem 27. If X ⊆ Sn−1 is a spherical 3-distance set with I(X) = {0,±α} and
|X| > 2n, then 1/α is an integer.

Proof. Let X be a set of unit vectors whose mutual inner product set is {0,±α}, and let
G be the Gram matrix of such vectors. Then,

G =

 1 x
. . .

x 1

 , A =
1

α
(G− I) =

 0 x′

. . .

x′ 0

 ,

where x ∈ {0,±α} and x′ ∈ {0,±1}.
G is a symmetric and positive semidefinite matrix of order |X|. It has the smallest

eigenvalue 0 of multiplicity m > |X| − n. Therefore, A has the smallest eigenvalue
−1/α of multiplicity m > |X| − n. Moreover, −1/α is an algebraic integer since A is
an integer matrix, and every algebraic conjugate of −1/α is also an eigenvalue of A with

multiplicity m. If |X| > 2n, then m > |X|
2

. Note A cannot have more than one eigenvalue
of multiplicity m because A is a |X| × |X| matrix. Therefore −1/α is rational, since it is
also an algebraic integer, hence −1/α is an integer.

There is an example of X in Sn−1 with I(X) = {0,±α} and |X| > 2n so that 1/α is
an even integer.

Example 28. The E8 root system consists of 240 points in S7 with inner products
0,±1/2,−1. An example of the above is a half of E8-roots, which consists of 120 points
in S7 by choosing one of antipodal pairs.

Assume X is a spherical 3-distance set with I(X) = {0,±α} such that |X| > |Y |.
If 5 6 n 6 8816, then |X| > |Y | > 2n. By Theorem 27, we know that 1/α ∈ Z. And

it is easy to check that 1
α

=
√

2(n+8)
15
∈ Z and bn,T ∈ Z cannot hold simultaneously for

5 6 n 6 8816.
Case (3): If 2 6 n 6 4, then b2,T = 2 is the unique integral case. By Remark 11,
Y = {(1, 0), (0, 1)} is a tight spherical design of harmonic index {6, 2} in S1 ⊆ R2.

7.3 The non-existence of tight spherical designs of harmonic index {8, 6}

Find f6 such that

Qn,8(x) + f6Qn,6(x) = a(x2 − α2)2(x2 − β2)2 − cn,T,L. (16)

Set γ = α2 + β2, ξ = α2β2. By comparing the coefficients in (16), we get the following
results:

γ =
14

n+ 12
− 28

(n+ 12)(n+ 14)
f6, (17)
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γ2 + 2ξ =
210

(n+ 10)(n+ 12)
− 840

(n+ 8)(n+ 12)(n+ 14)
f6, (18)

γξ =
210

(n+ 8)(n+ 10)(n+ 12)
− 1260

(n+ 6)(n+ 8)(n+ 12)(n+ 14)
f6. (19)

Using Eq. (17) and Eq. (19), we have the following relations:

f6 =
n+ 14

2

(
1− n+ 12

14
γ

)
, γ =

420

(n+ 10)
(
45− (n+ 6)(n+ 8)ξ

) .
Therefore Eq. (18) and the above two relations imply that

(n+ 6)2(n+ 8)3(n+ 10)2ξ3

+15(n+ 6)(n+ 8)2(n+ 10)(n− 18)ξ2

−225(n+ 8)(n+ 10)(5n− 6)ξ + 1575(11n− 2) = 0. (20)

We denote the LHS of (20) as g(ξ), then g(ξ) must have at least one non-negative root
since we define ξ = α2β2. However we can prove that g(ξ) only has one real root and that
root is negative. g(ξ) is a degree 3 polynomial with positive leading coefficient and has
two critical points:

ξ1 = − 5(5n− 6)

(n+ 6)(n+ 8)(n+ 10)
, ξ2 =

15

(n+ 6)(n+ 8)
.

Therefore, for n > 2, g(ξ) has local maximum at ξ1 < 0 and local minimum at ξ2 > 0.

We have g(ξ2) = 7200(n+3)(n−4)
n+6

> 0 if n > 4. Then, g(ξ) only has one real root which is
negative for n > 5.

From the calculation, we obtain the lower bound for |Y | is

bn,T =
1

252× 9.427094401 · · ·
× n4(1 + o(1)).

If 2 6 n 6 4, it is easy to check that b4,T = 2 is the unique case when bn,T ∈ Z. However,
the lower bound for spherical design of harmonic index 6 is about 5.29, which is strictly
larger than b4,T . Therefore, there is no tight spherical design of harmonic index {8, 6}.

7.4 The non-existence of tight spherical designs of harmonic index {8, 2}

We want to determine f2 such that

Qn,8(x) + f2Qn,2(x) = a(x2 − α2)2(x2 − β2)2 − cn,T,L.

From calculation we have the following results:

f2 =
(n− 2)(n+ 4)(n+ 5)(n+ 6)(n+ 14)

90(n+ 12)2
,
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α2, β2 =
7

n+ 12
±
√

42(n+ 5)(n+ 10)

(n+ 10)(n+ 12)
.

Then we have

bn,T =
n(n+ 6)(n+ 5)(n2 + 15n+ 8)2

168(n3 + 27n2 + 356n− 240)

=
1

168
(n4 + 14n3 − 133n2 + 2638n− 10584)

+
−4032n2 + 26208n− 15120

n3 + 27n2 + 356n− 240
.

Let p(n) = −4032n2+26208n−15120 and q(n) = n3+27n2+356n−240. Then |p(n)
q(n)
| < 1

168

gives a condition for bn,T not being an integer. This implies that bn,T cannot be an integer
if n > 677343. We can check the remaining cases where bn,T is an integer, and obtain
b2,T = 2, b4,T = 9, b9,T = 96. The case b2,T = 2 is eliminated by Remark 11.

If n = 4, the SDP upper bound for 4-distance set is 8.9981 (< 9).
For n = 9, we assume X is a spherical 4-distance set with I(X) = {±α,±β} such that

|X| > |Y |. Then |X| > |Y | = bn,T > 2
(
n+1
2

)
. But neither 1−α2

β2−α2 nor 1−β2

α2−β2 is an integer.
By Lemma 22, the case where n = 9 is also impossible.

7.5 The non-existence of tight spherical designs of harmonic index {10, 6, 2}.

Consider the case where L(x) = Qn,10(x) + f6Qn,6(x) + f2Qn,2(x) takes minimum value
−cn,T,L at three non-negative points {0, α, β}, i.e.,

L(x) = Qn,10(x) + f6Qn,6(x) + f2Qn,2(x) = ax2(x2 − α2)2(x2 − β2)2 − cn,T,L.

We can solve for f6 and f2 as follows.

f6 =
(n− 2)(n+ 8)(n+ 18)(13n+ 28)

1344(n− 8)(n+ 16)
,

f2 = (n−2)(n+4)(n+8)(n+14)(n+18)(37n3−742n2+1792n+20256)
129024(n−8)2(n+12)(n+16)

.

Then we can get α2, β2 and the lower bound bn,T .

α2, β2 =
45(n− 8)(n+ 12)±

√
15(n− 8)(n+ 12)(43n2 − 244n− 1952)

4(n− 8)(n+ 12)(n+ 16)
,

bn,T =
n(n+ 4)(n+ 8)(4n3 − 10n2 − 143n− 84)2

45(781n4 − 9548n3 + 10128n2 + 160960n− 108032)
.

The following theorem is very useful to consider the existence of spherical design of har-
monic index {10, 6, 2}.

the electronic journal of combinatorics 24(2) (2017), #P2.14 22



Theorem 29 ([16, Theorem 5.3]). Let X be an antipodal s-distance set on Sn−1 where s
is an even integer at least 4. Let I(X) = {−1, β1 = 0,±β2, . . . ,±β s

2
}.

(1) Let N =
(
n+s−3
s−2

)
. If |X| > 4N , then for each i = 1, . . . , s/2,

ki :=
∏

j=1,..., s
2
,j 6=i

1− β2
j

β2
i − β2

j

must be an integer with |ki| 6 U(N).

(2) Let N =
(
n+s−4
s−3

)
. If |X| > 4N + 2, then for each i = 1, . . . , s/2,

ki :=
1

βi

∏
j=2,..., s

2
,j 6=i

1− β2
j

β2
i − β2

j

must be an integer with |ki| 6 b
√

2N2/(N + 1)c.

Similarly, tight spherical design of harmonic index {10, 6, 2} is regarded as an at most
5-distance set Y ∈ Sn−1 with I(Y ) ⊂ {0,±α,±β}. We construct an antipodal set X ′ =
Y ∪ (−Y ) with I(X ′) ⊂ {−1, 0,±α,±β}.

In this subsection, we assume X is an antipodal spherical 6-distance set with I(X) =
{−1, 0,±α,±β} such that |X| > |X ′| = 2|Y |.

Case (1): If n > 170, then |X|/2 > |Y | > 2
(
n+6−3
6−2

)
+ 1. Theorem 21 implies that

α, β ∈ Q. Namely, αβ =
√

(n−8)(n+12)(n+16)
15(23n−172) ∈ Q. So there exists an integer u such that

15(n− 8)(n+ 12)(n+ 16)(23n− 172) = u2.

Assume that n− 8 = Ay21, n+ 12 = By22, n+ 16 = Cy23, 23n− 172 = Dy24. Let p(n1, n2)
be a prime divisor of gcd(n1, n2). Since gcd(n − 8, n + 12) can be one of 1, 2, 4, 5, 10, 20,
then p(n−8, n+ 12) = 2 or 5. And with similar argument, we obtain the following result.

p(n− 8, n+ 12) = 2 or 5, p(n− 8, n+ 16) = 2 or 3,

p(n− 8, 23n− 172) = 2 or 3, p(n+ 12, n+ 16) = 2,

p(n+ 12, 23n− 172) = 2 or 7, p(n+ 16, 23n− 172) = 2, 3, or 5.

Then we get 16 elliptic equations

(n− 8)(n+ 12)(n+ 16) = Ey2

with E | 2× 3× 5× 7. We can obtain the integral solutions of these equations.
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Multiply both sides of the equation (n − 8)(n + 12)(n + 16) = Ey2 by E3 and make
linear transformation M = E2y and N = E(n+ 12). Then (n− 8)(n+ 12)(n+ 16) = Ey2

becomes N(N − 20E)(N + 4E) = M2 with coefficients of M2 and N3 being 1.
If E = 2, with the linear transformation N = 2n + 24 and M = 4y, the equation

becomes N(N − 40)(N + 8) = M2. It has only three integral solutions (N,M) = (0, 0),
(40, 0) and (−8, 0).

In the table below, we list all the cases when the equation (n−8)(n+12)(n+16) = Ey2

has non-trivial integral solutions.

E solution(n, y)
5 (33, 105)
7 (16, 32), (68, 240)
6 (20, 48), (48, 160)
10 (24, 48), (38, 90)
15 (308, 1440)
21 (9, 5), (488, 2400)
42 (12, 8), (128, 240)
210 (44, 24)

There are two values for n > 170, i.e., n = 308, 488. But in these two cases, α /∈ Q.

Case (2): If 19 6 n 6 169, then the second statement in Theorem 29 implies that
1−β2

α(α2−β2)
must be an integer. And it is easy to check this cannot be satisfied.

Case (3): If 2 6 n 6 18, then b8,T = 8 is the only integral case. Let

m1 = α2 + β2, m2 = (α2 + β2)2 + 2α2β2, m3 = α2β2(α2 + β2).

Then m1(m2 −m2
1) − 2m3 = 0. However, comparing the coefficients in L(x) and R(x),

we obtain

1
2
m1(m2 −m2

1)−m3 = 1
(n+12)(n+14)(n+16)2

(
18900(n−8)
(n+8)(n+18)

f6 − 225(13n+28)(n−2)
16(n+16)

)
.

If n = 8, then the RHS of the above equation is − 15
8192
6= 0. This is a contradiction. And

it implies that, when n = 8, we cannot find a function L(x) satisfying our assumption.

7.6 Tight spherical designs of harmonic index {12, 8, 4}.

Consider the case where L(x) = Qn,12(x) + f8Qn,8(x) + f4Qn,4(x) takes minimum value at
three positive points {α, β, γ}, i.e.,

F (x) = Qn,12(x) + f8Qn,8(x) + f4Qn,4(x) + cn,T,L

= a(x2 − α2)2(x2 − β2)2(x2 − γ2)2 = R(x),

where cn,T,L = − min
−16x61

L(x).
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Let Z1 = α2 + β2 + γ2, Z2 = α2β2 + α2γ2 + β2γ2 and Z3 = α2β2γ2. Comparing the
coefficients in F (x) and R(x), we can obtain the following results.

m1 = Z1, m2 = Z2
1 + 2Z2, m3 = Z1Z2 + Z3, m4 = Z2

2 + 2Z1Z3, m5 = Z2Z3,

where −2am1, am2, −2am3, am4 and −2am5 are the coefficients of x10, x8, x6, x4, x2

in polynomial R(x), respectively. Note that mi is a linear combination of f8 and f4.

Substituting Z2 =
m2−m2

1

2
and Z3 = m3 − Z1Z2 = m3 −m1(

m2−m2
1

2
) into m4 and m5, we

can solve for f8 and f4 as follows.

f8 =
(n+ 8)(n+ 9)(n+ 22)

180(n+ 20)
,

f4 =
(n+ 4)(n+ 5)(n+ 8)(n+ 9)(n+ 18)(n+ 22)

7200(n+ 16)(n+ 20)
.

Immediately we have

Z1 = α2 + β2 + γ2 =
33

n+ 20
,

Z2 = α2β2 + β2γ2 + α2γ2 =
231

(n+ 16)(n+ 20)
,

Z3 = α2β2γ2 =
231

(n+ 12)(n+ 16)(n+ 20)
,

bn,T,F =
1

27720
(n+ 1)(n+ 2)(n+ 5)(n+ 6)(n+ 9)(n+ 10).

We should remark that there is another test function F1(x) = Qn,12(x) + f ′8Qn,8(x) +

f ′4Qn,4(x) + f
(1)
0 , where

f ′8=−
(n+16)(n+22)(n3−19n2−1564n−4064)

220(n−4)(n+8)(n+20)
,

f ′4=
(n+4)(n+18)(n+22)(73n6−1238n5−31603n4+304204n3+5781440n2+22288384n+25661440)

61600(n−4)2(n+8)(n+20)2
.

And in this case we have the following lower bound.

bn,T,F1 = 1
216

(n+2)(n+6)(n+10)(n6+39n5+407n4+989n3+56556n2+279424n+357888)2×

(955n9−48483n8+1094513n7+5943943n6−158073240n5+1292462960n4+

29035332352n3+132584060928n2+227750248448n+126509383680)−1.

It is easy to check that bn,T,F1 > bn,T,F if and only if 30 6 n 6 38. Then

bn,T =

{
bn,T,F1 if 30 6 n 6 38,

bn,T,F otherwise.
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Assume X ∈ Sn−1 is an antipodal spherical 7-distance set with I(X) = {−1,±α,±β,±γ}
such that |X| > 2|Y |, where Y is a tight spherical design of harmonic index {12, 8, 4}.
Case (1): If n > 439, then |X|/2 > |Y | = bn,T > 2

(
n+7−3
7−2

)
+ 1. Theorem 21 implies that

αβγ =

√
231

(n+ 12)(n+ 16)(n+ 20)
∈ Q.

Equivalently, we have (n + 12)(n + 16)(n + 20) = 231y2 for some integer y. With linear
transformation M = 2312y and N = 231(n + 16), we have N(N2 − 4622) = M2. It has
integral solutions (N,M) = (−528, 17424), (−252, 14112), (1617, 53361), (3388, 189728).
However, this gives no positive integral solution for n = N/231− 16.

Case (2): If 34 6 n 6 438, then |X|/2 > |Y | = bn,T > 2
(
n+7−4
7−3

)
+ 1. By Theorem 29,

(1−β2)(1−γ2)
α(α2−β2)(α2−γ2) must be an integer. And it is easy to check this cannot be satisfied.

Case (3): If n 6 33, then b5,T = 35, b6,T = 64, b9,T = 285, b13,T = 1311, b16,T = 3315,
b20,T = 9425, b23,T = 18560 are the integral cases. But LP upper bounds for spherical
6-distance set corresponding to n = 5, 6, 20, 23 are 30.2656, 59.8173, 9405.11, 17926.1,
respectively. When n = 9, 13, 16, we set up the SDP method on the upper bounds for
spherical 6-distance sets. However, the upper bounds coincide with our lower bounds
bn,T . We conclude that there exists no tight spherical design in Sn−1 of harmonic index
{12, 8, 4} if n 6= 9, 13, 16. The existence of such tight designs for n = 9, 13, 16 is still open.

8 Concluding remarks

In this paper we considered mainly spherical designs of harmonic index T = {t}, or
T = {t1, t2}. For some T = {t1, t2, . . . , t`} (with t1 = 2e > t2 > · · · > t` and all ti are
even), it seems that the general interesting case is where L(x) = Qn,2e(x) + ft2Qn,t2(x) +
ft3Qn,t3(x) + · · ·+ ft`Qn,t`(x) and the minimum value of L(x) is at ` non-negative points
α1, α2, . . . , α`. Thus, further studies along this line would be interesting.

As we have shown in Section 5 as well as in previous sections, it seems remarkable
that a spherical design of harmonic index t = 2e has a Fisher type lower bound |Y | >
(constant)·ne, which is the same order as for spherical 2e-design. So, all harmonic index
T -designs are between harmonic index 2e-designs and spherical 2e-designs. It seems that
considering tight T -designs have some meaning, although it seems tight harmonic index
T -designs rarely exist.

As it is discussed in Bannai-Okuda-Tagami [2, Proposition 4.1] that to some extent,

bn := lim
e→∞

bn,2e

is also studied. The result is explained in terms of Bessel functions. As some special cases
are mentioned in [2, p. 10], bn becomes greater than n(n + 1)/2 if n = 7, 8, 9, 10. This
implies that tight spherical designs of harmonic index 2e do not exist, if t = 2e becomes
large, say for n = 7, 8, 9, 10. On the other hand if n 6 6, it seems possible to determine
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the non-existence of tight designs in these cases, but it is not clear how we can show the
non-existence of such harmonic index 2e-designs whose sizes are close to the Fisher type
lower bound. It seems that this remains as an interesting open problem.

In concluding this paper, we remark that the theory as well as the concept of harmonic
index T -designs in Q-polynomial association schemes exactly go parallel with the spherical
case. The concept of T -design for an arbitrary subset T of the index set of nontrivial
relations {1, 2, . . . , d} is already defined in Delsarte [5, Section 3.4] (1973). On the other
hand, it seems that any systematic study on some specific choices of T , beyond the case
T = {1, 2, . . . t} has not begun, even for the case T = {t}. We hope to discuss more on
this topic in a separate paper.
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