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Abstract

Let G = (V,E) be a graph and k > 0 an integer. A k-independent set S ⊆ G is a
set of vertices such that the maximum degree in the graph induced by S is at most k.
Denote by αk(G) the maximum cardinality of a k-independent set of G. For a graph
G on n vertices and average degree d, Turán’s theorem asserts that α0(G) > n

d+1 ,
where the equality holds if and only if G is a union of cliques of equal size. For

general k we prove that αk(G) >
(k + 1)n

d+ k + 1
, improving on the previous best bound

αk(G) >
(k + 1)n

dde+ k + 1
of Caro and Hansberg [E-JC, 2013]. For 1-independence we

prove that equality holds if and only if G is either an independent set or a union
of almost-cliques of equal size (an almost-clique is a clique on an even number of
vertices minus a 1-factor). For 2-independence, we prove that equality holds if and
only if G is an independent set. Furthermore when d > 0 is an integer divisible by 3

we prove that α2(G) >
3n

d+ 3

(
1 +

12

5d2 + 25d+ 18

)
.

1 Introduction

Let G = (V,E) be a graph on n vertices and let k > 0 be an integer. A k-independent
set S ⊆ V is a set of vertices such that the maximum degree in the graph induced by S is
at most k. Let αk(G) denote the maximum cardinality of a k-independent set of G and
call it the k-independence number of G. For k = 0 we have α0(G) = α(G) where α(G) is
the independence number of G. Let d be the average degree of graph G. Turán’s theorem
[Tur41] asserts that α(G) > n

d+1
, where equality holds if and only if G is a union of cliques

of equal size. Turán’s bound was improved by the Caro-Wei bound [Car79, Wei81] which
asserts that α(G) >

∑
v∈V

1
deg(v)+1

, where equality holds if and only if G is a union of

cliques (see also [AS08] page 95 for a proof). The following two conjectures were made in
[BCHN13]:
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Conjecture 1. For a graph G on n vertices and an integer k > 1, we have

αk(G) >
k + 1

d+ k + 1
n,

where d is the average degree of graph G.

Conjecture 2. For a graph G on n vertices and an integer k > 1, we have

αk(G) >
∑
v∈V

k + 1

deg(v) + k + 1
.

Conjecture 1 follows from Conjecture 2 by Jensen’s inequality. Hence Conjecture 2 is
a strengthening of Conjecture 1. The first result on bounding k-independence was given
in [CT91], where it was shown that if d > k + 1 then

αk(G) >
k + 2

2(d+ 1)
n.

Furthermore, an important step in proving Conjecture 1 was made in [CH13, Theorem
18], where it was shown that if the average degree d > 0 is an integer then

αk(G) >
(k + 1)(d+ 2t)

(d+ k + t+ 1)(d+ t)
n >

k + 1

d+ k + 1
n,

where t is such that d ≡ k + 1 − t (mod k + 1) and 1 6 t 6 k + 1. As a corollary they
have the result

αk(G) >
k + 1

dde+ k + 1
n.

Now we shall describe our results. An almost-clique is a clique on an even number of
vertices minus a 1-factor. In this paper we prove that

α1(G) >
2

d+ 2
n,

where equality holds if and only if G is either an independent set or a union of almost-
cliques of equal size.

For general k we prove αk(G) > k+1
d+k+1

n, thus solving Conjecture 1. More generally

we prove that αk(G) > f
(

d
k+1

)
n, where

f(x) =
1

1 + x

(
1 +

{x} (1− {x})
(bxc+ 1) (bxc+ 2)

)
and where bxc is the floor function and {x} is the fractional part function.

Notice that [CH13, Theorem 18] gives the same bound when d is an integer. The
novelty of our bound is that d does not need to be an integer. Furthermore, we improve
the bounds for 2-independence, showing that if d = 3t for some integer t > 0 then

α2(G) >
n

t+ 1

(
1 +

4

15t2 + 25t+ 6

)
.
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This improves the bound in [CH13, Problem 23] for d = 3t, where the best previous bound
was α2(G) > n

t+1
. Finally we make modest progress on Conjecture 2 by showing that

α1(G) >
∑
v∈V

2

deg(v) + 2

holds for graphs G of maximum degree at most 4.
All along this paper, we will use the following notation and definitions. Let G be a

graph. V (G) denotes the set of vertices of G and n(G) = |V (G)| denotes its cardinality.
E(G) denotes the set of edges ofG and e(G) denotes its cardinality. For a vertex v ∈ V (G),
deg(v) = degG(v) is the degree of v in G. By ∆(G) we denote the maximum degree of
G and by d(G) the average degree 1

n(G)

∑
v∈V (G) deg(v). The minimum degree of G is

denoted by δ(G). For a subset S ⊆ V (G), we write G[S] for the graph induced by S in
G, and degS(v) stands for the degree degG[S](v) of v in G[S]. For an integer m > 1, mG
is the graph consisting of m disjoint copies of G. Lastly, for a vertex v ∈ V (G), G − v
represents the graph G without vertex v and all the edges incident to v.

2 Lower bounds on k-independence as a function of maximum
degree

For a graph G, we will denote by χk(G) the k-chromatic number of G, i.e. the minimum
number t such that there is a partition V (G) = V1(G)∪ V2(G)∪ . . .∪ Vt(G) of the vertex
set V (G) such that ∆(G[Vi]) 6 k for all 1 6 i 6 t. The following theorem is proven in
[Lov66].

Theorem 3. Let G be a graph with maximum degree ∆. If k1, k2, . . . , kt > 0 are integers
such that ∆+1 =

∑t
i=1(ki+1), then there is a partition V (G) = V1(G)∪V2(G)∪. . .∪Vt(G)

of the vertex set of G such that ∆(G[Vi]) 6 ki for all 1 6 i 6 t.

A partition as in the theorem above can be found in polynomial time. In [HL97] it is
shown how to find such a partition in time O(n3).

Corollary 4. If G is a graph of maximum degree ∆ then χk(G) 6
⌈

∆+1
k+1

⌉
.

Now as αk(G) > n
χk(G)

we get the following bound first proved in [HS86]

Theorem 5. Let G be a graph of order n and maximum degree ∆. Then

αk(G) >
n⌈

∆+1
k+1

⌉ .
Furthermore, as the partition in Theorem 3 can be found in polynomial time, we also

can find the k-independent set in Theorem 5 in polynomial time by picking the largest
set in the partition.

the electronic journal of combinatorics 24(2) (2017), #P2.15 3



The bound in Theorem 5 is tight for k = 0 and k = 1. For k = 0, an example of the
sharpness of the bound is a union of cliques of equal size. For k = 1, an example of the
sharpness of the bound is a union of almost-cliques of equal size, as noted in [CH13].

For k > 2, the bounds of Theorem 5 can be improved in certain ranges by using bounds
on dominating sets. Recall that a set S ⊆ V is a dominating set of a graph G = (V,E) if
each vertex in V is either in S or is adjacent to a vertex in S. The domination number
γ(G) is the minimum cardinality of a dominating set of G. The following bound was
proven in [Ree96]

Theorem 6. If G is a graph of order n and minimum degree δ(G) > 3, then γ(G) 6 3
8
n.

The following Theorem was proven in [HP13, Theorem 3 (ii)].

Theorem 7. Let k > 0 be a fixed integer. If there is a constant c such that for all n every
graph G of order n with minimum degree δ(G) > k + 1 satisfies γ(G) 6 cn, then every
graph G of order n and maximum degree ∆(G) 6 k + 1 satisfies αk(G) > (1− c)n.

We will also need the following corollary also stated in [HP13].

Corollary 8. Let G be a graph of order n with maximum degree ∆ 6 3. Then α2(G) > 5
8
n.

Proof. Follows directly from combining Theorem 7 and Theorem 6.

Generalizing Corollary 8 we shall give improved bounds on α2(G) in the case where
the maximum degree of G is divisible by 3.

Theorem 9. Let G be a graph of order n with maximum degree ∆ 6 3t, for a natural
number t. Then α2(G) > 5

5t+3
n.

Proof. We prove the statement by induction on t. The base case t = 1 is proven in
Corollary 8. Assume that the theorem holds for t − 1 and we will prove for t. Let G
be a graph of order n and maximum degree ∆ 6 3t. By Theorem 3 there is a partition
V (G) = V1(G)∪V2(G) of the vertex set ofG such that ∆(G[V1]) 6 3t−3 and ∆(G[V2]) 6 2.
If |V2| > 5

5t+3
n we are done, because ∆(G[V2]) 6 2. Thus we may assume that |V1| > 5t−2

5t+3
n.

Applying the induction hypothesis on G[V1] we conclude that

α2(G[V1]) >
5

5t− 2
· 5t− 2

5t+ 3
· n =

5

5t+ 3
n

and we are done.

Corollary 10. Let G be a graph of order n with maximum degree ∆ > 0, where ∆ is
divisible by 3. Then α2(G) > 15

5∆+9
n.
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3 Lower bounds on k-independence in terms of average degree

Definition 3.1. Define the function f(x) for real x > 0 in the following manner:

f(x) =
1

1 + x

(
1 +

{x} (1− {x})
(bxc+ 1) (bxc+ 2)

)
,

where bxc is the floor function and {x} is the fractional part function.

Lemma 11. Let x > 0 be a real number. Then f(x) > 1
1+x

, and equality holds if and
only if x is an integer.

Proof. Notice that for any real x > 0 we have

{x} (1− {x})
(bxc+ 1) (bxc+ 2)

> 0,

and the equality holds if and only if x is an integer, and thus we are done.

In this section we will prove the following theorem:

Theorem 12. Let k > 0 be an integer. Then for any graph G of order n and average
degree d we have

αk(G) > f

(
d

k + 1

)
n.

Corollary 13. Let k > 0 be an integer. Then for any graph G of order n and average
degree d we have

αk(G) >
k + 1

d+ k + 1
n.

Proof. This follows from Theorem 12 and Lemma 11, as

1

1 + d
k+1

=
k + 1

d+ k + 1
.

We note that Theorem 12 was proven for the case where the average degree d of graph
G is an integer in [CH13] (Theorem 3.7). Here we prove it in full generality. The difference
between our proof and the proof in [CH13] is that we make the induction on the ranges of
the degrees, while in [CH13] the induction is on the average degree as an integer. Before
proving Theorem 12 we will need a few more lemmas and definitions.

Definition 3.2. Define a function g(x) for real x > 0 in the following manner:

g(x) =

1, if x = 0
2dxe − x
dxe (1 + dxe)

, if x > 0.

where dxe is the ceiling function.
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Lemma 14. For all real x > 0 we have f(x) = g(x).

Proof. First notice that

g(x) =
2bxc+ 2− x

(bxc+ 1) (bxc+ 2)
.

This follows from the fact that if x is not an integer then dxe = bxc + 1, while if x = n
for some integer n > 0 then g(n) = f(n) = 1

n+1
. We conclude that

g(x)− 1

x+ 1
=

2bxc+ 2− x
(bxc+ 1) (bxc+ 2)

− 1

x+ 1

=
(2bxc+ 2− x) (x+ 1)− (bxc+ 1) (bxc+ 2)

(x+ 1) (bxc+ 1) (bxc+ 2)

=
(x− bxc)− (x− bxc)2

(x+ 1) (bxc+ 1) (bxc+ 2)

=
{x} (1− {x})

(x+ 1) (bxc+ 1) (bxc+ 2)

= f(x)− 1

x+ 1
.

and we are done.

Lemma 15. The function f(x) is continuous, monotonically decreasing and convex on
the interval [0,∞).

Proof. As f(x) = g(x) for x > 0, it suffices to prove the claim for g(x). The continuity of
g(x) for x > 0 follows from the fact that

lim
x→0+

g(x) = 1 = g(0),

and for any integer n > 1

lim
x→n−

g(x) = lim
x→n+

g(x) =
1

n+ 1
= g(n).

Now as the function g(x) is continuous and monotonically decreasing on each interval
[n, n + 1] for any integer n > 0, it follows that g(x) is monotonically decreasing on the
interval [0,∞).
To prove convexity we will use the following fact:
If a function is continuous on an open interval I and possesses a non-decreasing right-
derivative on I, then the function is convex on I (this is Theorem 5.3.1 in [JBHUL93]).
Notice that for every integer n > 0 the right-derivative of g(x) on the interval [n, n + 1)
satisfies

g′(x+) = − 1

(n+ 1)(n+ 2)
,

hence the right-derivative of g is non-decreasing in the interval (0,∞). We conclude that
g(x) is convex in the interval (0,∞). Finally, by the continuity of g(x), we can extend
the convexity to the interval [0,∞), and we are done.
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Lemma 16. Let k > 0 and r > 0 be integers. Let G is a graph of order n with e edges
and average degree d = 2e

n
. If r(k + 1) < d 6 (r + 1)(k + 1) holds and

αk(G) >
2

r + 2

(
n− e

(r + 1)(k + 1)

)
,

then αk(G) > f
(

d
k+1

)
n.

Proof. Set t = d
k+1

. As r(k + 1) < d 6 (r + 1)(k + 1) we have r < t 6 r + 1.
Hence dte = r + 1. Thus we have

αk(G) >
2

r + 2

(
n− e

(r + 1)(k + 1)

)
=

2

dte+ 1

(
n− dn

2dte(k + 1)

)
(as r + 1 = dte)

=
2

dte+ 1

(
n− tn

2dte

) (
as t =

d

k + 1

)
=

2n

dte+ 1

(
1− t

2dte

)
= n

2dte − t
dte (1 + dte)

= g(t)n = f(t)n (by Lemma 14)

and we are done.

Lemma 17. Let k > 0 be an integer. If G is a graph of order n with e edges then

αk(G) > n− e

k + 1
.

Proof. Set G0 = G. If there is a vertex v0 ∈ V (G0) such that degG0
(v0) > k + 1 remove

it from the graph G0 and call the resulting graph G1 (that is, G1 = G0 − v0).
Now, if there is a vertex v1 ∈ V (G1) such that degG1

(v1) > k+1 remove it from the graph
G1 and call the resulting graph G2 (that is, G2 = G1 − v1).
We can repeat this operation iteratively until we get a graph Gi for some i > 0 such that
the maximum degree of Gi satisfies ∆(Gi) 6 k. Notice that i 6

⌊
e

k+1

⌋
, as there are e

edges in G0, and in each iteration the number of edges in the resulting graph is decreased
by at least k + 1. Hence if we have reached iteration t for t =

⌊
e

k+1

⌋
, then graph Gt will

contain at most e − (k + 1)
⌊

e
k+1

⌋
6 k edges, and thus Gt is a k-independent set, which

means that i 6 t. Since V (Gi) is a k-independent set in G and |V (Gi)| = n− i > n− e
k+1

,
we are done.

Corollary 18. Let k > 0 be an integer. If G is a graph of order n with average degree
0 < d 6 k + 1, then αk(G) > f

(
d

k+1

)
n.

Proof. This follows from Lemma 17 by setting r = 0 in Lemma 16.
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Finally we are ready to prove the main theorem of this section.

Proof of Theorem 12:
Let k > 0 be an integer. Recall that we need to prove that for any graph G of order n
and average degree d we have

αk(G) > f

(
d

k + 1

)
n.

We will prove by induction on integer r > 0 that for any graph G of order n and average
degree d 6 (r + 1)(k + 1) we have:

αk(G) > f

(
d

k + 1

)
n.

The base of the induction r = 0 was proven in Corollary 18. We will assume that the
claim holds for r − 1 > 0 and we will prove for r.

By Lemma 16 and the induction hypothesis, it suffices to prove that that if G is a
graph on n vertices, e edges and average degree d satisfying r(k+ 1) < d 6 (r+ 1)(k+ 1),
then

αk(G) >
2

r + 2

(
n− e

(r + 1)(k + 1)

)
.

We can assume that both n and e are divisible by (r + 2)(k + 1). This is because we can
build a graph G′ = (r+ 2)(k+ 1)G (namely, G′ is a disjoint union of (r+ 2)(k+ 1) copies
of G), where d(G) = d(G′), and the number of vertices n′ and number of edges e′ of G′ are
both divisible by (r + 2)(k + 1). If αk(G

′) > n′f
(

d
k+1

)
then the original graph G satisfies

αk(G) >
n′

(r + 2)(k + 1)
f

(
d

k + 1

)
= nf

(
d

k + 1

)
(this observation which greatly simplifies the proof is essentially taken from [CH13, Lemma
16]).

We define parameter t as follows:

t =
2e− nr(k + 1)

(r + 2)(k + 1)
.

Notice that t is an integer (because n and e are divisible by (r+2)(k+1)), and that t > 0
(because d > r(k + 1)).

Set G0 = G. If there is a vertex v0 ∈ V (G0) such that degG0
(v0) > (r + 1)(k + 1),

remove it from the graph G0 and call the resulting graph G1 (that is, G1 = G0 − v0).
Now if t > 1 and there is a vertex v1 ∈ V (G1) such that degG1

(v1) > (r + 1)(k + 1),
remove it from the graph G1 and call the resulting graph G2, (that is, G2 = G1 − v1).

We repeat this operation iteratively, that is on iteration i (starting with i = 0) we first
check if i = t or ∆(Gi) < (r+ 1)(k+ 1), and if one of these conditions holds we terminate
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the process. Otherwise, we pick a vertex vi ∈ V (Gi) such that degGi
(vi) > (r + 1)(k + 1)

and remove it from the graph Gi. We call the resulting graph Gi+1 (that is Gi+1 = Gi−vi).
Suppose that the process above terminated on iteration j 6 t (that is, the last graph

created in the process is Gj). If j < t then ∆(Gj) < (r+ 1)(k+ 1), and thus by Theorem
5 we have αk(Gj) > n−t

r+1
. Now we shall prove that if j = t we also have αk(Gj) > n−t

r+1
.

First we notice that

n− t = n− 2e− nr(k + 1)

(r + 2)(k + 1)

=
(r + 2)(k + 1)n+ nr(k + 1)− 2e

(r + 2)(k + 1)

=
2[n(r + 1)(k + 1)− e]

(r + 2)(k + 1)
. (3.1)

Now we claim that d(Gt) 6 r(k+1). Notice that as in each iteration at least (r+1)(k+1)
edges were removed we have that e(Gt) (the number of edges in graph Gt) satisfies

e(Gt) 6 e− t(r + 1)(k + 1)

= e− (r + 1)(2e− nr(k + 1))

r + 2

=
nr(r + 1)(k + 1)− er

r + 2

=
r[n(r + 1)(k + 1)− e]

r + 2

=
1

2
(k + 1)r(n− t) (by Equation 3.1).

It follows that

d(Gt) =
2e(Gt)

n− t
6 r(k + 1).

Now as d(Gt) 6 r(k + 1) we can apply the induction hypothesis on Gt. By the induction
hypothesis and Lemma 11 we have

αk(Gt) >
n− t
r + 1

.

We conclude that

αk(G) > αk(Gj)

>
n− t
r + 1

=
2

r + 2

(
n− e

(r + 1)(k + 1)

)
(by Equation 3.1)

> f

(
d

k + 1

)
n (by Lemma 16)
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and that is exactly what we needed to prove. This concludes the proof of the induction.

The proof of Theorem 12 gives a polynomial time algorithm for finding a k-independent

set of cardinality at least f
(
d(G)
k+1

)
n for any graph G on n vertices.

Algorithm I

Input: A graph G on n vertices and e edges.

Output: A k-independent set S of size at least f
(
d(G)
k+1

)
n.

1. Set i = 0, G0 = G, B = f
(
d(G)
k+1

)
n and GOTO 2.

2. If n(Gi) >
⌈

∆(Gi)+1
k+1

⌉
B then apply Theorem 5 to find a k-independent set

S in Gi of size at least B and END. Otherwise GOTO 3.

3. Choose a vertex v of maximum degree in Gi, set Gi+1 = Gi−v, set i = i+1
and GOTO 2.

The correctness of the algorithm follows directly from the proof of Theorem 12. Notice
however that at certain points in the proof of Theorem 12 we take our graph and expand
it to a union of several disjoint copies of the graph. This does not affect the validity of
Algorithm 1 because a removal of a vertex v in algorithm I corresponds to the removal
of the same vertex v from each copy in the extended graph until it is exhausted from all
copies (as it remains a vertex of maximum degree). Finally as the procedure in Theorem
5 has running time O(n3), Algorithm I has running time of O(n3) too.

4 The case of equality for the 1-independence bound

Given a graph G of order n with average degree d and e edges, the combination of Theorem
12 and Lemma 11 implies that

α1(G) > f

(
d

2

)
>

2

d+ 2
n =

n2

n+ e

(
as d =

2e

n

)
(4.1)

Recall that an almost-clique is a clique on an even number of vertices minus a 1-factor.
Let t be an even integer. We denote by Jt an almost clique on t vertices. In this section
we shall show that α1(G) = 2

d+2
n if and only if G is either an independent set or a union

of almost-cliques of equal size.
First of all it is clear that for all even integers t > 2 we have

α1(Jt) = 2 =
2

d (Jt) + 2
t.

This was first stated in [CH13, Theorem 17]. Now we shall prove that if α1(G) = 2
d+2

n
then G is either an independent or a union of almost-cliques of equal size. We will do so
in a series of lemmas.
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Lemma 19. Let G be a graph of order n and average degree d. If α1(G) = 2
d+2

n then d
is an even integer.

Proof. This follows from Theorem 12 and Lemma 11.

Lemma 20. Let k > 0 be integer. Let G be a graph of order n with average degree
d(G) = 2k. If α1(G) = n

k+1
then G is 2k-regular (that is all its vertices are of degree 2k).

Proof. The claim is trivial for k = 0 and for the case n 6 2. Henceforth we assume that
k > 1 and n > 3. Suppose (by contradiction) that G is not 2k-regular. Then from the
fact that d(G) = 2k we know that G contains a vertex v of degree at least 2k+1. Remove
vertex v from G and call the resulting graph G′ (that is, G′ = G− v).

Thus we have

α1(G) > α1(G′)

>
(n− 1)2

e(G′) + n− 1
(by Equation 4.1)

>
(n− 1)2

kn− 2k − 1 + n− 1
(as e(G′) 6 kn− (2k + 1))

=
(n− 1)2

(n− 2)(k + 1)

>
n

k + 1
(as (n− 1)2 > n(n− 2))

We got a contradiction and the proof follows.

Recall that Cn is a cycle on n vertices and Pn is a path on n vertices. Notice that the
almost clique on 4 vertices is simply a cycle on 4 vertices, that is J4 = C4.

Lemma 21. Let G be a graph of order n and maximum degree ∆(G) 6 2. If α1(G) = n
2

then G is a union of copies of C4.

Proof. Each connected component of G is either a path or a cycle. Now notice that for all
integers n > 0 we have α1(Pn) > 2

3
n, and thus for all n > 3 we have α1(Cn) > 2

3
(n− 1).

It follows that α1(Pn) > n/2 for all n > 0, and that α1(Cn) = n/2 if and only if n = 4.
This concludes the proof.

Lemma 22. Let k > 1 be integer. Let G be a graph of order n and maximum degree
∆(G) 6 2k. If α1(G) = n

k+1
then G is a union of copies of J2k+2.

Proof. We will prove the claim by induction on k. The base of the induction k = 1 is
simply Lemma 21. Assume that the claim holds for k − 1 and we will prove it for k.

Let G be a graph of order n and maximum degree ∆(G) 6 2k. Assume that α1(G) =
n
k+1

. By Theorem 3 there is a partition V (G) = V1(G)∪V2(G) of the vertex set of G such
that ∆(G[V1]) 6 2k − 2 and ∆(G[V2]) 6 1.
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Let G1 = G[V1] be a graph on n1 vertices and G2 = G[V2] be a graph on n2 vertices.
Observe that n2 6 n

k+1
, as G2 is a 1-independent set. If n1 >

k
k+1

n, then by Theorem 5

and the fact that ∆(G1) 6 2k − 2, we have α1(G1) > n
k+1

. Thus n1 6 k
k+1

n.

As n1 6 k
k+1

n, n2 6 1
k+1

n and n1+n2 = n, we conclude that n1 = k
k+1

n and n2 = 1
k+1

n.

Since n1 = k
k+1

n and ∆(G1) 6 2k − 2 we have by Theorem 5 that α1(G1) > n
k+1

. Thus
we have

n

k + 1
= α1(G) > α1(G1) >

n

k + 1

and we conclude that α1(G1) = n
k+1

.

Finally, as G1 has exactly n1 = k
k+1

n vertices, maximum degree ∆(G1) 6 2k − 2 and
α1(G1) = n

k+1
, we have by the induction hypothesis that G1 is a union of copies of J2k.

Let the copies of J2k in G1 be U1, U2, . . . , Ut where t = n
2(k+1)

(that is, G1 = U1∪U2∪ . . .∪
Ut). Let v be an arbitrary vertex of G2. We claim that v (as a vertex of G) is adjacent to
all the 2k vertices of Ui for some i. Suppose (for the sake of contradiction) that this does
not hold. Then there are two cases.

Case 1: For all i > 1, v is adjacent to at most 2k − 2 vertices of Ui.
In this case we can pick from each Ui two vertices that are not adjacent to v (this is
possible as k > 2). Call the resulting set S. Notice that S ∪ {v} is a 1-independent set in
G of size 2t+ 1 > n

k+1
. We get a contradiction and thus this case is done.

Case 2: There are i, j > 1 such that v is adjacent to 2k − 1 vertices in Ui, is adjacent
to at most one vertex of Uj, and v is not adjacent to any other vertex in G1.

In this case we pick arbitrarily two vertices from each Uk, where k 6= i and k 6= j. Call
the resulting set S. Now we pick a vertex u1 from Ui which is not adjacent to v. As J2k is
a clique minus a 1-factor there is a vertex u2 in Ui such that u1 and u2 are not adjacent.
We add u1 and u2 to the set S. Finally we pick vertices u3 and u4 in Uj such that u3 and
u4 are not adjacent to v. This is possible as k > 2 and v is adjacent to at most one vertex
in Uj. Add u3 and u4 to the set S. Notice that S ∪{v} is a 1-independent set in G of size
2t+ 1 > n

k+1
. Once again we got a contradiction.

We have shown that each vertex v in G2 is adjacent to all the 2k vertices of Ui for
some i (dependent on v). We conclude that G is a union of copies of J2k+2, and thus we
are done.

Finally we are ready to prove the main theorem of this section.

Theorem 23. Let G be a graph of order n and average degree d. If α1(G) = 2
d+2

n then
G is either an independent set or a union of almost-cliques of equal size.

Proof. The case d = 0 is trivial as then the graph G must be an independent set. We
will assume henceforth that d > 0. By Lemma 19 the average degree d must be an
even integer. Let d = 2k for some integer k > 1. By Lemma 20 we have that G is in
fact 2k-regular. Finally by Lemma 22 graph G is a union of copies of J2k+2, and we are
done.
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5 Caro-Wei type bound for 1-independence

Let f(x) be the function from Definition 3.1, that is for real x > 0

f(x) =
1

1 + x

(
1 +

{x} (1− {x})
(bxc+ 1) (bxc+ 2)

)
.

For all integers k > 0 and real x > 0 define fk(x) = f
(

x
k+1

)
.

Lemma 24. For any integer k > 0 and for x in the interval [0,∞), the function fk(x) is
continuous, monotonically decreasing and convex.

Proof. The proof of continuity and that the function is monotonically decreasing is almost
identical to the proof of Lemma 15 and thus omitted. The convexity of fk(x) follows from
the convexity of f(x) as proven in Lemma 15, combined with the fact that the composition
of a convex function with an affine function is convex.

Corollary 25. For all integers k > 0 and n > 1 we have fk(n − 1) − fk(n) > fk(n) −
fk(n+ 1).

Proof. This inequality follows from the convexity of the function fk(x) on the interval
[0,∞).

In this section we shall make the following conjecture:

Conjecture 26. Let G be a graph of order n with degree sequence d1, . . . , dn. Then

αk(G) >
n∑
i=1

fk (di)

For k = 0 the conjecture above is simply the Caro-Wei bound. Thus the first open case
is the case when k = 1. This conjecture seems to be significantly harder than Conjecture
1. Notice that Conjecture 26 implies Conjecture 2 (by Lemma 11). Furthermore, by
Jensen’s inequality, Theorem 12 follows directly from Conjecture 26. In this section we
shall make a very modest progress by proving that the k = 1 case of Conjecture 26 holds
for graphs of maximum degree 4.

For integers the following formulation of the function f1 is easier to work with.

Lemma 27. For all integers n > 0 we have

f1(n) =

{
2

n+2
, if n is even

1
n+1

+ 1
n+3

, if n is odd.

Proof. Follows directly from Definition 3.1.

The first few values of f1 are: f1(0) = 1, f1(1) = 3
4
, f1(2) = 1

2
, f1(3) = 5

12
and

f1(4) = 1
3
.
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Definition 5.1. Given a graph G. Define

s(G) =
∑

v∈V (G)

f1 (degG(v)) .

We are ready to prove the main result of this section.

Theorem 28. If G is a graph of order n with maximum degree ∆(G) 6 4 then α1(G) >
s(G)

Proof. We proceed by induction on n. For n = 1 the claim is trivial. Now we will assume
that the claim holds for graphs on at most n− 1 vertices, and we will prove the claim for
graphs on n vertices.

Assume we have a graph G with n > 2 vertices. If ∆(G) 6 1 the claim holds trivially
as G is a 1-independent set in this case. Hence we may assume that 2 6 ∆(G) 6 4.
Furthermore, we may assume that graph G is connected, for otherwise we can apply the
inductive hypothesis to each connected component. Now we will consider 3 cases.

Case 1: ∆(G) = 4
Let v be a vertex of maximum degree in G. Define graph G′ as G′ = G−v. Let v1, v2, v3, v4

be the neighbors of v in G.

s(G′) = s(G)− f1(degG(v)) +
4∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] .

Hence to prove that s(G′) > s(G) it suffices to show that

4∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] > f1(degG(v)),

This follows as

4∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] >
4∑
i=1

[f1(3)− f1(4)] (by Corollary 25)

= 4(
5

12
− 1

3
)

=
1

3
= f1(4) = f1(degG(v)).

Hence, we obtain s(G′) > s(G). Combined with α1(G) > α1(G′) and α1(G′) > s(G′),
which is given by the induction hypothesis, the claim follows.

Case 2: ∆(G) = 3
If G is a 3-regular graph then by Theorem 5 we have α1(G) > 1

2
n > 5

12
n = s(G) (as

f1(3) = 5
12

) and we are done.
The remaining case is when G is a connected graph of maximum degree 3, which

contains a vertex of degree 3 and also a vertex of degree at most 2. Thus G contains a
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vertex v of degree 3 with at least one neighbor of degree at most 2. Let v1, v2, v3 be the
neighbors of v in G and assume that degG(v1) 6 2. Define graph G′ as G′ = G − v and
notice that

s(G′) = s(G)− f1(degG(v)) +
3∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] .

Now

3∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] > (f1(1)− f1(2)) + 2(f1(2)− f1(3))

=
5

12
= f1(3) = f1(degG(v)).

Hence s(G′) > s(G), and thus the claim follows by the induction hypothesis.

Case 3: ∆(G) = 2
Let v be a vertex of maximum degree in G. Define graph G′ as G′ = G− v. Let v1, v2 be
the neighbors of v in G.

s(G′) = s(G)− f1(degG(v)) +
2∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] .

Notice that

2∑
i=1

[f1(degG(vi)− 1)− f1(degG(vi))] >
2∑
i=1

[f1(1)− f1(2)]

= 2

(
3

4
− 1

2

)
=

1

2
= f1(2) = f1(degG(v)).

Hence s(G′) > s(G), and thus the claim follows by the induction hypothesis.

6 Improved bounds for 2-independence

In this section we will improve the bounds for 2-independence for graphs in which the
average degree is an integer divisible by 3. It was proven in [CH13] that a graph G of
order n and average degree d = 3t for an integer t > 0 satisfies α2(G) > n

t+1
. In this

section we improve this bound, proving the following.

Theorem 29. Let t > 0 be an integer. If G is a graph of order n and average degree
d = 3t then

α2(G) >
n

t+ 1

(
1 +

4

15t2 + 25t+ 6

)
.
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Proof. Define function the h(x) =
1

x+ 1

(
1 +

4

15x2 + 25x+ 6

)
. We will prove that

α2(G) > nh(t).
We can assume that n is divisible by l = 15t2 + 25t+ 6. This assumption holds as we

can build a graph G′ = lG (that is G′ is a disjoint union of l copies of G). Notice
that d(G) = d(G′) = 3t and that the number of vertices n′ of G′ is divisible by l.
Now if α2(G′) > n′h(t) then by the pigeonhole principle the original graph G satisfies
α2(G) > n′

l
h(t) = nh(t).

We define parameter s as follows:

s =
6tn

15t2 + 25t+ 6
. (6.1)

Notice that s is an integer as n is divisible by 15t2 + 25t+ 6. Furthermore, s > 0.
Set G0 = G. If there is a vertex v0 ∈ V (G0) such that degG0

(v0) > 3t+ 1, remove it from
the graph G0 and call the resulting graph G1 (that is G1 = G0 − v0).

Now if s > 1 and there is a vertex v1 ∈ V (G1) such that degG1
(v1) > 3t + 1, remove

v1 from the graph G1 and call the resulting graph G2, that is G2 = G1 − v1.
We repeat this operation iteratively. In iteration i (starting with i = 0) we first check
if i = s or ∆(Gi) 6 3t, and if one of these conditions holds we terminate the process.
Otherwise, we pick a vertex vi ∈ V (Gi) such that degGi

(vi) > 3t + 1 and remove it from
the graph Gi. We call the resulting graph Gi+1 (that is, Gi+1 = Gi − vi).
Suppose that the process above terminated on iteration j 6 s, that is, the last graph
created in the process is Gj. If j < s then ∆(Gj) 6 3t and thus we have

α2(Gj) > (n− s) 5

5t+ 3
(by Theorem 9)

= n
5

5t+ 3

(
1− 6t

15t2 + 25t+ 6

)
= n

5

5t+ 3

15t2 + 19t+ 6

15t2 + 25t+ 6

= n
5

5t+ 3

(5t+ 3)(3t+ 2)

15t2 + 25t+ 6

= n
5(3t+ 2)

15t2 + 25t+ 6

=
n

t+ 1

(
1 +

4

15t2 + 25t+ 6

)
and that is what we wanted to prove.

The remaining case is j = s. In this case e(Gs) 6 3tn
2
− (3t+ 1)s, as in each iteration

at least 3t + 1 edges were removed. Thus d(Gs) 6 3tn−2(3t+1)s
n−s . We shall prove this case

by applying Theorem 12. Hence, because of Lemma 24, we will assume that

d(Gs) =
3tn− (6t+ 2)s

n− s
. (6.2)
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Now we shall prove that 3(t− 1) < d(Gs) 6 3t.
Claim 1: d(Gs) 6 3t

This follows as

d(Gs) =
3tn− (6t+ 2)s

n− s
6 3t.

Claim 2: d(Gs) > 3(t− 1)
We need to prove that

d(Gs) =
3tn− (6t+ 2)s

n− s
> 3(t− 1)

which is equivalent to
3tn− (6t+ 2)s > 3(t− 1)(n− s). (6.3)

Now Equation 6.3 holds if and only if

3n− 5s− 3ts > 0. (6.4)

and Equation 6.4 holds if and only if s < 3n
5+3t

. Finally, as t > 0 in an integer, we have

s =
6tn

15t2 + 25t+ 6
<

3n

5 + 3t

and thus Claim 2 follows.
We have shown that 3(t− 1) < d(Gs) 6 3t, and hence dd(Gs)/3e = t.

Now we apply Theorem 12 to get

α2(Gs) > f

(
d(Gs)

3

)
(n− s)

= g

(
d(Gs)

3

)
(n− s) (by Lemma 14)

=
n− s

(t+ 1)t

(
2t− d(Gs)

3

)
=

2(n− s)
t+ 1

− 3tn− (6t+ 2)s

3t(t+ 1)
(by Equation 6.2)

=
6t(n− s)− 3tn+ (6t+ 2)s

3t(t+ 1)

=
3tn+ 2s

3t(t+ 1)

=
n

t+ 1
+

2

3t(t+ 1)

6tn

15t2 + 25t+ 6
(by Equation 6.1)

=
n

t+ 1

(
1 +

4

15t2 + 25t+ 6

)
.

This completes the proof.
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Corollary 30. If G is a graph of order n and average degree d > 0 then α2(G) > 3
d+3

n.

Proof. If d
3

is not an integer then we have by Theorem 12 and Lemma 11 that α2(G) >
3
d+3

n.

If d
3

is an integer then by Theorem 29 we have α2(G) > 3
d+3

n for d > 0, and we are
done.

7 Discussion

The two most important open questions remaining are the following:

1. Prove Conjecture 2.

2. Improve the bounds of Theorem 12 for k > 2. Even an improvement of the bounds
of Theorem 29 would be interesting.

One direction of trying to prove Conjecture 2 would be to find a probabilistic argument,
similar in spirit to that used for finding a large independent set (see [AS08] page 95):
there one considers a random permutation on the graph vertices, and adds a vertex v to
the independent set if in the permutation it precedes all its neighbors.

As for improving the bound of Theorem 29, one could use the following Theorem
[SSYH09] to gain a slight improvement for the case where the average degree is 3.

Theorem 31. If G is a graph of order n and δ(G) > 2, then γ(G) 6 3n+|V2|
8

, where V2

denotes the set of vertices of degree 2 in G.

This improvement is very slight (details are omitted).

Acknowledgements

Work supported in part by the Israel Science Foundation (grant No. 1388/16). The author
thanks Uriel Feige for helpful discussions.

References

[AS08] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, third
edition, 2008.

[BCHN13] Asen Bojilov, Yair Caro, Adriana Hansberg, and Nedyalko Nenov. Partitions
of graphs into small and large sets. Discrete Applied Mathematics, 161(13-
14):1912–1924, September 2013.

[Car79] Yair Caro. New results on the independence number. Tech. Report, Tel-Aviv
University, 1979.

[CH13] Yair Caro and Adriana Hansberg. New approach to the k-independence num-
ber of a graph. Electronic Journal of Combinatorics, 20(1):#P33, 2013.

the electronic journal of combinatorics 24(2) (2017), #P2.15 18



[CT91] Yair Caro and Zsolt Tuza. Improved lower bounds on k-independence. Jour-
nal of Graph Theory, 15(1):99–107, March 1991.
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