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Abstract

Graph bootstrap percolation is a simple cellular automaton introduced by Bol-
lobás in 1968. Given a graph H and a set G ⊆ E(Kn) we initially ‘infect’ all edges
in G and then, in consecutive steps, we infect every e ∈ Kn that completes a new
infected copy of H in Kn. We say that G percolates if eventually every edge in Kn is
infected. The extremal question about the size of the smallest percolating sets when
H = Kr was answered independently by Alon, Kalai and Frankl. Here we consider
a different question raised more recently by Bollobás: what is the maximum time
the process can run before it stabilizes? It is an easy observation that for r = 3 this
maximum is dlog2(n − 1)e. However, a new phenomenon occurs for r = 4 when,
as we show, the maximum time of the process is n − 3. For r > 5 the behaviour
of the dynamics is even more complex, which we demonstrate by showing that the
Kr-bootstrap process can run for at least n2−εr time steps for some εr that tends
to 0 as r →∞.

Keywords: Bootstrap percolation; weak saturation; cellular automata; monotone
cellular automata; extremal combinatorics
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1 Introduction

Graph bootstrap percolation was introduced by Bollobás in 1968 [10] under the name weak
saturation. For a fixed graph H, a graph G on n vertices is called weakly H-saturated if
there is no copy of H in G, but there is an ordering of the missing edges of G so that
if they are added one-at-a-time, every added edge creates a new copy of H. Bollobás
conjectured that the minimum size of a weakly Kr-saturated graph is

(
n
2

)
−
(
n−r+2

2

)
. This

conjecture was confirmed independently by Alon [1], Frankl [15] and Kalai [19].
Recently, Balogh, Bollobás and Morris [3] observed that weak saturation is strongly

related to bootstrap percolation, a dynamical process introduced by Chalupa, Leath and
Reich [12] in 1979 to model the behaviour of ferromagnets. In bootstrap percolation on
a graph G = (V,E) with infection threshold r > 2 we choose a set A ⊆ V of initially
‘infected’ vertices and we declare the remaining vertices ‘healthy’. Then, in consecutive
rounds, we infect all healthy vertices with at least r infected neighbours. We say that
A percolates if, starting from A as the set of the initially infected vertices, we eventually
infect every vertex in V . More precisely, we set A0 = A and for t = 1, 2, 3, . . . we define

At = At−1 ∪ {v ∈ V : |NG(v) ∩ At−1| > r},

where NG(v) is the neighbourhood of the vertex v in G. Hence A percolates if we have⋃∞
t=0At = V (G).

Let us then redefine weak saturation in the language of bootstrap percolation. We fix
a graph H and we choose a set G ⊆ E(Kn) of edges that we initially infect. (We shall
switch back and forth between thinking of G as a graph and as a set of edges.) Then, in
consecutive steps, we infect every e ∈ Kn that completes a new infected copy of H in Kn.
Formally, we take G0 = G and for t = 1, 2, 3, . . . let

Gt = Gt−1 ∪ {e ∈ E(Kn) : Gt−1 + e contains more copies of H than Gt−1}. (1)

We call this processH-bootstrap percolation and we say thatG percolates (orH-percolates)
if eventually every edge in Kn is infected. Hence, G is weakly H-saturated if and only if
it percolates in H-bootstrap percolation and contains no copy of H.

In bootstrap percolation we are usually interested in the following setup: for 0 < p < 1,
we initially infect every vertex in V independently at random with probability p. We then
look for the critical probability p = pc(G, r) beyond which percolation is more likely to
occur than not. A large number of results, often very sharp, have been obtained in the
search for critical probabilities for various graphs G and values of r. To name a few, the
values of the critical probabilities pc(Zd, r) for infinite grids were found by van Enter [13]
(r = d = 2) and Schonmann [25] (for general r and d). Holroyd [17] and Balogh, Bollobás,
Duminil-Copin and Morris [2] obtained sharp bounds on the critical probabilities for finite
grids. Various families of random graphs were studied in this context by Balogh and
Pittel [6], Janson,  Luczak, Turova and Vallier [18] and Bollobás, Gunderson, Holmgren,
Janson and Przykucki [11].

An analogous question in graph bootstrap percolation was considered in [3]. There,
the authors look at the random graph G(n, p) obtained by choosing every edge of Kn
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independently at random with probability p = p(n). For fixed r, they obtain bounds on
the values of p for which G(n, p) is likely to percolate in the Kr-bootstrap process. In a
similar vein, Gunderson, Koch and Przykucki [16] studied the density threshold for which
G(n, p) percolates in exactly T steps, in the graph bootstrap process.

Another family of problems considered in bootstrap percolation concerns the extremal
properties of the process. For example, the size of the smallest percolating sets in var-
ious graphs was studied by Pete [5], Balogh, Bollobás, Morris and Riordan [4] and by
Morrison and Noel [22]. Morris [21] and Riedl [24] analysed the size of the largest min-
imal percolating sets for the n × n square grid and the hypercube respectively, both for
r = 2. Przykucki [23] and Benevides and Przykucki [7, 8] studied the maximum time the
infection process on a square grid or a hypercube can take before it stabilizes for r = 2.

In this paper we study a question due to Bollobás [9], who initiated the study of
the maximum running time of the graph bootstrap process. Let us define the maximum
running time of the Kr-bootstrap process to be

Mr(n) = max{t : there exists G ⊆ E(Kn) s.t. Gt 6= Gt−1 in the Kr-bootstrap process},

where Gt is defined as in (1). We say that the process stabilizes at time t if t is the smallest
integer such that Gt = Gt+1. Hence Mr(n) is the maximum time the Kr-bootstrap process
takes before it stabilizes starting from any initially infected graph with n vertices.

It is an easy observation that M3(n) = dlog2(n − 1)e. Indeed, at every step of the
K3-bootstrap process, any two vertices at distance two are joined by an edge. Hence, if
Gt is connected then we have diam(Gt+1) = ddiam(Gt)/2e. If Gt is not connected then
the components of Gt remain separate in Gt+1. Therefore to maximize the time until the
process stabilizes we should take G0 to be a connected graph with as large diameter as
possible, i.e., a path on n vertices. It then takes dlog2(n − 1)e steps until we obtain a
clique.

We shall prove two main results.

Theorem 1. We have M4(n) = n− 3 for all n > 3.

Theorem 2. For each fixed r > 5, we have Mr(n) > n2−αr−o(1) as n → ∞, where
αr = r−2

(r
2)−2

.

The rest of this paper is organised as follows. In Sections 2 and 3 we prove Theorems 1
and 2 respectively. We prove Theorem 2 by giving a probabilistic argument showing the
existence of initially infected sets of edges satisfying our bound. In Section 4 we give a
deterministic construction of an initially infected set that in the K5-bootstrap process
runs for at least 1

200
n3/2 time steps before it stabilizes. The construction can be easily

adapted for all r > 5, always guaranteeing the running time to be at least crn
3/2 (this is

weaker than Theorem 2, but the proof is much simpler). Finally, in Section 5 we discuss
some open problems.

For each r > 3, the parameter Mr(n) has a natural sister parameter M ′
r(n), defined

as the maximum running time of a percolating graph on n vertices. These quantities are
closely related: it is trivial that Mr(n) > M ′

r(n), while, given a graph on n vertices for
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which the Kr-process (r > 5) runs for time T , it is not hard to construct a percolating
graph on O(n) vertices for which the process runs for time > T .

Independently of the present work, Kilian Matzke [20] has proved Theorem 1 and a
weaker form of Theorem 2, giving Mr(n) = Ω(n3/2) for each r > 5.

2 Maximum running time in the K4-bootstrap process

In this section we prove Theorem 1, that is, we show that M4(n) = n − 3 for all n > 3.
We prove this in two steps: we first give a simple construction to show M4(n) > n − 3;
then we prove the corresponding upper bound. Given a graph G, in this section we define
Gt as in (1) with H = K4. Thus Gt is the graph obtained after running the K4-process
for t steps, starting with the graph G.

Lemma 3. For all integers n > 3, we have M4(n) > n− 3.

Proof. The case n = 3 is trivial. We shall show by induction that for each n > 4 there
is an n-vertex graph G that stabilizes in time exactly n − 3, for which Gn−3 = Kn. The
base case is trivial taking G = K−4 , a complete graph on 4 vertices with one edge deleted.

Suppose then that n > 4 and G is such a graph; it remains to construct a corresponding
graph G+ on n+ 1 vertices. Let xy be any edge of Gn−3 \Gn−4, and let G+ = G+xz+yz
be formed from G by adding one new vertex, z, and two new edges, xz and yz. Let
t 6 n− 3 be the first time that there is a copy of K−4 present in G+

t but not in Gt. Until
this time, exactly the same edges are added in the percolation processes starting from G
and from G+, so G+

t = Gt + xz + yz. Any K−4 present in this graph but not in Gt must
contain z, and hence x, y and one other vertex w. Since the edge zw is missing, xy must
be present, so t > n− 3. Conversely, since Gn−3 is complete, G+

n−3 consists of a complete
graph on n vertices with an extra vertex z joined to x and to y, and it follows that all
edges zw are added in the next step, so G+

n−2 is complete, as required.

We now turn to the upper bound in Theorem 1.

Observation 4. Suppose that K1, K2 ⊆ V (G) are such that K1, K2 induce cliques in Gt

with |K1 ∩K2| > 2. Then K1 ∪K2 induces a clique in Gt+1.

To prove that M4(n) 6 n−3, we prove the following stronger statement by induction.
Once we have established it, the upper bound will easily follow. For a set A and k ∈ N,
we define A(k) to be the collection of subsets of A of size k. So A(2) is the edge-set of the
complete graph with vertex set A.

Lemma 5. Let t > 1 and suppose that e = ij ∈ Gt \ Gt−1 in the K4-bootstrap process.
Then for some d = d(e) ∈ {0, 1} the edge e is contained in a clique of size t + 3 + d in
Gt+d.

Proof. We prove the lemma by induction on t. The case t = 1 is immediate. So assume
that t > 2 and that the statement is true for t− 1. Now suppose that e = ij ∈ Gt \Gt−1.
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We want to find d(e) ∈ {0, 1} such that e is contained in a clique of size t + 3 + d(e) in
Gt+d(e).

The edge ij appears in Gt by virtue of some 4-element set K such that i, j ∈ K and
(K(2) − ij) ⊆ Gt−1. Note that we cannot have (K(2) − ij) ⊆ Gt−2, otherwise we would
have ij ∈ Gt−1. So there is another edge f of K(2) in Gt−1 \ Gt−2. By induction there
exists some d(f) and a set C ⊆ V (G) such that f ∈ C(2), |C| > (t − 1) + 3 + d(f) and
C(2) ⊆ Gt−1+d(f). We consider the following cases.

1. Suppose first that i, j ∈ C. Then we cannot have d(f) = 0 as this would imply that
C induces a clique in Gt−1 and hence the edge e is in Gt−1, which contradicts the
choice of e. Hence we have d(f) = 1 and, taking d(e) = d(f) − 1 = 0, we observe
that C induces a clique in Gt+d(e) = Gt of size (t−1)+d(f)+3 = t+d(e)+3 = t+3
that contains i, j. Hence, we are done in this case.

2. Suppose instead that at least one of the vertices i, j is not in C. We further divide
this case into two subcases.

(a) If d(f) = 1 then K and C both induce cliques in Gt−1+d(f) = Gt. Since
f ∈ K(2) ∩ C(2), we have |K ∩ C| > 2 and, by Observation 4, at time t+ 1, K
and C will merge to form a single clique of size at least |C| + 1 > t + 3 + 1.
Hence, we are done choosing d(e) = 1.

(b) If d(f) = 0 then both K and C induce cliques in Gt. If |K ∩ C| = 2 then
by Observation 4 at time t + 1 they merge to form a complete graph of size
|C|+ 2 > t+ 1 + 3 in Gt+1. So again we are done taking d(e) = 1.

If |K ∩ C| = 3 then C contains exactly one endpoint of e. Assume that
i ∈ C, j /∈ C. Since K(2) − e ⊆ Gt−1, j has two neighbours j1, j2 ∈ K ∩ C
in Gt−1. This implies that both C and {j, j1, j2} induce cliques in Gt−1 and
that they intersect in two points, i.e., in j1 and j2. Hence by Observation 4 we
have that C ∪ {j} induces a clique of size |C|+ 1 > t+ 3 in Gt. Hence, taking
d(e) = 0 we are done. This completes the proof of Lemma 5.

Theorem 1 follows easily from Lemma 5.

Proof of Theorem 1. Let T be the time at which the K4-bootstrap process stabilizes
starting from an arbitrary graph G = G0. For any edge e, let t(e) be the time at which
the edge e is added to the infected set. For all e ∈ GT we have that

n > t(e) + d(e) + 3,

since by Lemma 5 we know that Gt(e)+d(e), a graph on n vertices, contains a clique of size
t(e) + d(e) + 3. Now since d(e) ∈ {0, 1}, we have

n > max
e∈GT

{t(e) + d(e) + 3} > max
e∈GT

{t(e) + 3} = T + 3.

This completes the proof of Theorem 1.
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3 Lower bounds on Mr(n) for r > 5

In this section we use a probabilistic argument to prove Theorem 2. In other words,
taking αr = r−2

(r
2)−2

, we show that for every ε > 0 and for n large enough (depending on

r and ε) there exists an n-vertex graph G = G(r, n) such that the Kr-bootstrap process
started from G stabilizes after at least n2−αr−ε time steps. Throughout we fix r > 5 and
ε > 0; all constants in what follows may depend on r and ε.

The simplest possible way to construct a graph that takes a fairly long time to sta-
bilize in the Kr-bootstrap process is as follows. Consider a sequence e0, H1, e1, H2, . . . ,
et−1, Ht, et where each Hi is a copy of Kr, each ei is an edge, and all of e1, . . . , et and
H1, . . . , Ht are vertex disjoint except that both ei−1 and ei are (vertex disjoint) edges of
Hi. Take G0 to be the union of all the edges contained in H1, . . . , Ht in the chain, with
all edges ei, except e0, deleted. Then, clearly, ei is the unique edge added at step i, and
the process stabilizes at time t. Of course, this construction only gives the rather weak
lower bound Mr(n) > b(n− 2)/(r − 2)c = Θ(n).

To obtain a stronger bound, the idea is to relax the disjointness conditions, but in a
way that will not affect the percolation process. More precisely, by a Kr-chain (within
Kn) we mean a sequence H1, H2, . . . , Ht where each Hs is a complete graph on r vertices
(contained within Kn), and Hi and Hj are edge disjoint unless |i− j| = 1, in which case
they share exactly one edge. Given such a chain we let ei be the edge shared by Hi and
Hi+1, let e0 be some edge of H1 other than e1, and let et be some edge of Ht other than
et−1. Sometimes we describe the chain by the list e0, H1, e1, H2, . . . , et−1, Ht, et. In this
list, the edges ei are distinct, and ei is an edge of Hj if and only if i ∈ {j − 1, j}.

Let K−r denote the graph formed by deleting an edge from Kr. Given a Kr-chain as
above, an external K−r is a (not necessarily induced) subgraph of the graph union

⋃t
i=1Hi

which is isomorphic to K−r and is not contained in any individual Hi. A Kr-chain is good
if it contains no external K−r .

Observation 6. If e0, H1, e1, H2, . . . , et−1, Ht, et is a good Kr-chain, then the graph G0 =⋃t
i=1Hi − {e1, e2, . . . , et} stabilizes at time t in the Kr-bootstrap process.

Proof. Although this is immediate, let us spell out the details. Define Gt as in (1), with
H = Kr. We claim that for i 6 t we have Gi = G0 ∪ {e1, . . . , ei}. Clearly this holds for
i = 0. Suppose it holds for some 0 6 i 6 t− 1; then Gi is a subgraph of

⋃
j6tHj, so any

copy of K−r in this graph has vertex set V (Hj) for some j. Within V (Hj), exactly two
edges are missing in G0 − e0, namely ej−1 and ej. Since (by induction) Gi contains ek if
and only if k 6 i, we have an induced copy of K−r if and only if j = i + 1, so ei+1 is the
unique edge added at step i+ 1. It follows that G0 stabilizes at time t.

Our aim is to show that we can fit a very long good Kr-chain into a set of n vertices,
i.e., to prove the following result. Here and in what follows we ignore rounding to integers
when it makes no essential difference.
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Theorem 7. Let r > 5 and ε > 0 be given, and set αr = r−2
(r
2)−2

. If n is large enough,

then there is a good Kr-chain e0, H1, e1, . . . , eT−1, HT , eT with T = n2−αr−ε using at most
n vertices in total.

By Observation 6 above, Theorem 7 implies Theorem 2. The rest of this section is
devoted to the proof of Theorem 7, for which we use a random construction. We outline
this informally before giving the formal proof. Throughout, r > 5 and ε > 0 are fixed,
n is sufficiently large for various conditions that arise below to hold, and αr and T are
defined as in Theorem 7.

In what follows, we construct a good Kr-chain randomly. There is a snag, however:
if we follow the obvious method (just pick r − 2 new random vertices each time) then,
because there are many steps, we are likely to get stuck (create an external K−r ) relatively
early, at a point where each individual step is unlikely to cause a problem. Intuitively,
we should be able to keep going as long as there is a decent chance that the next step
succeeds. To make this precise, we consider a number m = dlog ne of attempts at choosing
the next r− 2 vertices, and continue if one of these succeeds. Of course this leads to a lot
of dependence (which choice succeeds depends on what happened at previous steps). But
we can get around this in the analysis by considering all possible ways that our choices
could lead to an external K−r .

Outline construction. Let e0 be a uniformly random edge in Kn. For 1 6 t 6 T and
1 6 a 6 m, let Xt,a be a uniformly random set of r−2 vertices of Kn, and et,a a uniformly
random edge within Xt,a, with these choices independent over all t and a. Once these
have been selected, for t running from 0 to T − 1 do the following: pick the smallest
index a = at+1 so that certain conditions specified later hold (if this is possible). Then
set Xt+1 = Xt+1,a, et+1 = et+1,a, and let Ht+1 be the complete graph on et ∪Xt+1.

We think of Xt+1,a as the ath candidate set of new vertices in step t+ 1, and Xt+1 as
the selected set; similarly, et+1,a is a candidate next edge in the chain, and et+1 the actual
next edge. A candidate set Xt+1,a is successful if it satisfies certain conditions (C0)–(C4)
below. Later we shall write Ft+1 for the event that our construction fails at step t+ 1, in
the sense that none of the candidates Xt+1,a for Xt+1 is successful. We write

Gt = F c
1 ∩ · · · ∩ F c

t

for the ‘good’ event that the construction succeeds up to (at least) step t.
The first of the conditions referred to above is

Xt+1,a is disjoint from et. (C0)

This condition ensures that et ∪Xt+1 is indeed a set of r vertices.
We shall always write Gt =

⋃
16s6tHs for the graph constructed so far. Our second

condition is the following:

No pair A 6= V (et) of vertices contained in et ∪Xt+1,a is contained in any Hs,
s 6 t.

(C1)
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Note that if we select Xt+1,a to be Xt, and so take Ht+1 to be the complete graph on
et ∪ Xt,a+1, then condition (C1) applies to every edge A of Ht+1 other than et. Thus, if
conditions (C0) and (C1) hold at each step t′ 6 t, then e0, H1, e1, . . . , Ht, et is a Kr-chain:
each Hs is a complete graph on r vertices, and for i < j (using (C1) at step j) we see that
Hi and Hj are edge disjoint unless j = i+ 1, in which case they share only one edge, ei.

For 2 6 i 6 r−1, we say that a set A of i vertices is dangerous at time t (or sometimes
just dangerous) if there is a set B of r vertices with A ⊂ B and B 6= V (Hs) for all s 6 t
such that the graph Gt∪A(2) includes all but at most one of the edges within B. In other
words, A is dangerous if adding all edges within A would create an external K−r which
contains A. The next condition involves avoiding such sets:

No set A 6= V (et) with 2 6 i 6 r − 1 vertices and with A ⊆ et ∪ Xt+1,a was
dangerous at time t.

(C2)

Note that the conditions above depend on the particular choice of X1, . . . , Xt, which
seems difficult to analyse. However, we will not deal directly with these conditions; rather,
we control the probability of Ft+1 in terms of the (more manageable) event that any a
priori possible choice of the X1, . . . , Xt (from the potential candidates) violates one of
the conditions above.

Observation 8. If, for each step t, 1 6 t 6 T , we manage to choose a candidate Xt = Xt,a

so that conditions (C0)–(C2) hold, then (e0, H1, . . . , HT , eT ) is a good Kr-chain.

Proof. As noted above, (C0) and (C1) ensure that we get a Kr-chain. Suppose it is not
good. Then at some step t an external K−r must have been generated. Let its vertex set
be B. Clearly, Gt \ Gt−1 contains at least one edge within B. Hence A = B ∩ V (Ht)
is at set of at least 2 and (by definition of an external K−r ) at most r − 1 vertices with
A 6= V (et) ⊂ V (Ht−1). But then A was dangerous at step t− 1, so condition (C2) did not
hold.

If steps 1, 2, . . . , t succeed, i.e., Gt holds, then by definition conditions (C0)–(C2) were
satisfied at steps 1, . . . , t. Hence

Gt implies that H1, . . . , Ht is a good Kr-chain.

Our aim is to show that with positive probability, we can satisfy conditions (C0)–(C2)
above. Since our construction is inductive, when considering the candidates for Xt+1 we
may assume that Gt holds.

A key step in our proof is to show that there are not too many dangerous i-sets. More
generally, we shall show that for any graph F with r vertices, if we exclude copies arising
inside a single Hs, it is unlikely that Gt contains many more copies of F than a random
graph with the same overall edge density as Gt. To show this, we fix a set A of r vertices,
and think about all possible ways that the chain H1, H2, . . . , Ht can meet A, considering
only cliques Hs that contribute an edge within A, i.e., satisfy |V (Hs) ∩ A| > 2. Since
successive copies of Kr in the chain are related in a different way from those further apart,
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we shall split these copies of Kr in the chain that meet A into subchains. This (hopefully)
motivates the following definition.

Let A be a set of r vertices. By a chain within A we mean a sequence (S1, . . . , Sk) of
subsets of A such that

(i) 2 6 |Si| 6 r − 1 for 1 6 i 6 k and

(ii) |Si ∩ Si+1| 6 2 for 1 6 i 6 k − 1.

By a chain cover C of A we mean a sequence (S1
1 , . . . , S

1
k1

), (S2
1 , . . . , S

2
k2

), . . . , (S`1, . . . , S
`
k`

)
of chains within A. Note that a chain cover need not cover all of the edges in A. Rather,
these chain covers correspond to all possible ways that our long ‘chain’ of copies of Kr

could possibly intersect A (excluding the case where one copy has vertex set A). We say
that a chain cover is minimal if every Sji spans some edge not spanned by any other set

Sj
′

i′ in the chain cover. Clearly, a minimal chain cover contains at most
(
r
2

)
sets Sji in

total, so there are a finite number (depending on r) of minimal chain covers of any r-set
A. Also, if C is minimal, then each of its constituent chains is minimal in the natural
sense (i.e., as a chain cover with one chain).

The cost of a chain C = (S1, . . . , Sk) is

c(C) = |S1|+
k−1∑
i=1

|Si+1 \ Si|,

informally corresponding to the total number of ‘new’ vertices that must hit A in order
to realise the intersection pattern described by C. The edge set E(C) of C is simply⋃k
i=1 S

(2)
i . The benefit b(C) of C is |E(C)|. For a chain cover C = (C1, . . . , Cj), we define

its cost and benefit by c(C) =
∑
c(Ci) and b(C) =

∑
b(Ci). (For b(C) it might be more

natural to take the total number of edges without repetition; this makes no difference in
the argument below.)

Given a set A of r vertices and a chain cover

C = ((S1
1 , . . . , S

1
k1

), (S2
1 , . . . , S

2
k2

), . . . , (S`1, . . . , S
`
k`

))

of A, we say that our random Kr-chain H1, . . . , Ht meets A in C if there exist 0 6 t1 <
· · · < t` such that

tj + kj 6 tj+1 − 1 for each 1 6 j 6 `− 1 and t` + k` 6 t, and

V (Htj+i) ∩ A = Sji for each j 6 ` and 1 6 i 6 kj.

In other words, our Kr-chain H1, . . . , Ht meets A in C if there exist ` ‘time’ intervals
(with gaps between them) so that the copies of Kr in the jth interval intersect A in the
manner described by the jth chain in C. We impose no condition on how other cliques
Hs may meet A.

Observation 9. Suppose that Gt holds. Let A be a set of r vertices spanning at least q
edges in Gt =

⋃
s6tHs, with A 6= V (Hs) for each s 6 t. Then there is some minimal

chain cover C with b(C) > q such that (Hs)
t
s=1 meets A in C.
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Proof. Simply consider a minimal subset of the cliques Hs that between them contain all
> q edges of Gt inside A, and, if necessary, split this set of cliques into intervals with
gaps of at least one between them. Each of these Hs shares at least two and at most
r − 1 vertices with A, and consecutive Hs meet in at most two vertices, since Gt holds so
(H1, . . . , Ht) is a Kr-chain.

Lemma 10 and its consequence Corollary 11 below are key to our analysis; the latter
says, roughly speaking, that the most likely way for a set A (or some other graph F ) to
be covered by a random Kr-chain of length T is when the chain meets it

(
r
2

)
− 1 times

(|E(F )| times), in just one edge, in non-consecutive cliques Hi. This condition is loosely
analogous to the ‘2-balanced’ condition that appears in many small subgraph problems.
We start by showing that for a single chain, a certain ‘cost-benefit ratio’ is maximized in
the single-edge case.

Lemma 10. Let A be a set of r vertices, and C = (S1, . . . , Sk) a minimal chain within
A. Then αr(b(C)− 1) 6 c(C)− 2.

Proof. Recalling the definition of αr, and writing b = b(C) and c = c(C), the inequality
claimed can be rewritten as

(r − 2)(b− 1) 6
((
r
2

)
− 2
)

(c− 2). (2)

Now |
⋃
Si| 6 c, and b = |

⋃
S
(2)
i | 6 |(

⋃
Si)

(2)|, so b 6
(
c
2

)
. The inequality

(r − 2)
((

c
2

)
− 1
)
6
((
r
2

)
− 2
)

(c− 2)

is an equality for c = 2, and is easily seen (by multiplying out) to hold (strictly) for
c = r − 1. Hence (since the left-hand side is convex and the right-hand side linear) it
holds for 2 6 c 6 r − 1; since b 6

(
c
2

)
this proves (2) in these cases.

For c > r+ 1 we use the trivial bound b 6
(
r
2

)
; it is easy to check that this implies (2)

in this case. This leaves only the case c = r. In this case (2) reduces to b 6
(
r
2

)
− 1, i.e.,

we must show that if c(C) = r then there is at least one edge in A(2) missing from E(C).
To see this, recall first that |Si| 6 r − 1 by definition, so k > 2. Also, if |

⋃
Si| < c = r,

then clearly b(C) 6
(
r−1
2

)
<
(
r
2

)
− 1. Hence, we may assume that

⋃
Si = A and that only

consecutive sets Si meet. By minimality there is some u ∈ S1\S2, and some v ∈ Sk \Sk−1.
But then uv /∈ E(C) and we are done.

Remark. We do not need it here, but in fact we have strict inequality in the result above
unless k = 1, c = 2 and so b = 1. To see this we must show in the final case above that
at least two edges are missing, which is not hard.

For what follows, let us recall that T = n2−αr−ε is the number of steps in our con-
struction and m is the number of candidates at each step.

Corollary 11. Let C be a minimal chain cover of some r-set A consisting of ` chains and
having total cost c and benefit b. Then T `n−c 6 n−αrb−ε.
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Proof. If C = (C1, . . . , C`) then c =
∑`

i=1 c(Ci) and b =
∑`

i=1 b(Ci). Applying Lemma 10
to each chain Ci and summing, we see that αr(b− `) 6 c− 2`. Rearranging gives

(2− αr)`− c 6 −αrb.

The result follows recalling that T = n2−αr−ε and noting that ` > 1.

Fix a set A of r vertices. Given a minimal chain C = (S1, . . . , Sk) within A and an
integer 0 6 t 6 T − k, let

[A, t, C]

denote the event that there exist indices at, at+1, . . . , at+k ∈ [m] such that if we set Vs =
es−1,as−1 ∪Xs,as for s = t + 1, . . . , t + k, then we have Vt+j ∩ A = Sj for j = 1, . . . , k. In
other words, [A, t, C] is the event that it is conceivable (considering all a priori possible
choices for which candidate set/edge is chosen at steps t, . . . , t + k) that the consecutive
copies of Kr, Ht+1, . . . , Ht+k, meet A in the chain C. The key here is that the event
[A, t, C] depends only on the random variables Xs,a for t 6 s 6 t+ k, a ∈ [m].

Recalling the definition of c(C), it is not hard to see that for the event [A, t, C] to hold,
we need c of the relevant candidate vertices to fall in A which (as we shall now show) is
an event with probability O∗(n−c); here, as usual, the O∗ notation hides bounded powers
of log n. To spell this out, suppose that [A, t, C] holds and that at, . . . , at+k are indices as
above. Then, recalling that by definition et,at ⊂ Xt,at , for j = 2, . . . , k we have

Xt+j,at+j
⊇ Vt+j \ Vt+j−1 ⊇ Sj \ Sj−1.

Also,
Xt,at ∪Xt+1,at+1 ⊇ et,at ∪Xt+1,at+1 = Vt+1 ⊇ S1.

Since the sets Xs,a are independent random subsets of r − 2 = O(1) vertices chosen
uniformly from n vertices, for each j the event Xt+j,at+j

⊇ Sj \ Sj−1 has probability

O(n−|Sj\Sj−1|). Furthermore, these events are independent for different j. Similarly, the
event Xt,at ∪ Xt+1,at+1 ⊇ S1 has probability O(n−|S1|), and is independent of the events
involving Xt+j,at+j

, j > 2. Combining these bounds, and taking a union bound over the
mk+1 possible choices for at, . . . , at+k, we see that

P([A, t, C]) = O
(
mk+1n−|S1|−|S2\S1|−···−|Sk\Sk−1|

)
= O

(
mk+1n−c(C)

)
= O∗(n−c(C)), (3)

where we used the bound m 6 log n, and also that k is bounded, since k 6
(
r
2

)
.

For C = (C1, . . . , C`) a minimal chain cover of A with each chain Cj having length kj,
let BA,C be the event that there exist 0 6 t1 < t2 < · · · < t` such that tj + kj 6 tj+1 − 1
for each 1 6 j 6 `− 1 and t` + k` 6 T , and

[A, tj, Cj] holds for j = 1, 2, . . . , `. (4)

Note that if the Kr-chain (Hs)
t
s=1 meets A in C, then BA,C holds. Indeed, informally

speaking, BA,C is the event that it is conceivable that our chain might meet A in C. The
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advantage of working with BA,C is that it avoids the complicated dependence introduced
by the rule for selecting the next Kr in our chain.

Since [A, tj, Cj] depends only on the random variables Xt,a, tj 6 t 6 tj+kj, 1 6 a 6 m,
with C and the tj fixed the ` events appearing in (4) are independent. Hence, using (3)
and summing over the at most T ` choices for t1, . . . , t`, we have

P(BA,C) = O∗(T `n−c(C1)−c(C2)···−c(C`)) = O∗(T `n−c(C)) = O∗(n−αrb(C)−ε),

where the final step follows from Corollary 11.
For 1 6 q 6

(
r
2

)
, let BA,q be the event that there exists some minimal chain cover C

of A with b(C) > q such that BA,C holds. Since there are O(1) minimal chain covers of A,
we see that

P(BA,q) = O∗(n−αrq−ε). (5)

By Observation 9, for any t 6 T , if Gt holds and A spans at least q edges in Gt =
⋃
s6tHs,

with A 6= V (Hs) for each s 6 t, then BA,q holds. This allows us to prove our key lemma
on the number of dangerous i-sets.

Recall that a set A of i vertices is dangerous at time t if adding all edges inside A
to Gt would create an external copy of K−r (or of Kr) with vertex set B ⊃ A. We will
consider the ‘bad’ event B1

t which we define as

Gt ∩ { for some 2 6 i 6 r − 1, there are more than ni−ε/2 dangerous i-sets at time t }.

Lemma 12. For r > 5 and ε > 0 fixed, setting T = n2−αr−ε, we have P(
⋃
t6T B1

t ) = o(1).

Proof. For 2 6 i 6 r − 1 let Yt,i denote the number of dangerous i-sets at time t. Let Zi
denote the number of r-sets A such that BA,qi holds, where qi =

(
r
2

)
− 1−

(
i
2

)
. If Gt holds

and an i-set A′ is dangerous at time t, then it is contained in an r-set A, not the vertex
set of any Hs, s 6 t, such that A spans at least qi edges in Gt. But then BA,qi holds, as
noted above. Since a particular r-set can be responsible for at most

(
r
i

)
6 2r i-sets being

dangerous, it follows that, for any t 6 T , if Gt holds then Yt,i 6 2rZi. Thus it suffices to
show that

P(Zi > 2−rni−ε/2) = o(1), (6)

for each i.
We claim that, for 2 6 i 6 r − 1, we have

r − i 6 αr
((
r
2

)
− 1−

(
i
2

))
. (7)

This holds for i = 2 by definition of αr. For i = r − 1 it simplifies to 1 6 αr(r − 2) and
hence to (r − 2)2 >

(
r
2

)
− 2, which is easily seen to hold for r > 5. Hence, by convexity,

(7) holds for all 2 6 i 6 r − 1. By (5) we have

E[Zi] =
∑
A

P(BA,qi) = O∗(nr−αrqi−ε) = o(nr−αrqi−ε/2).

But then, by (7), E[Zi] = o(ni−ε/2), and (6) follows by Markov’s inequality.
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Lemma 12 shows that one ‘global bad event’ is unlikely. The next lemma considers
another, much simpler one.

Lemma 13. Let r > 5, ε > 0 and set T = n2−αr−ε. Let B2
t be the event that the maximum

degree of Gt is at least n1−ε. Then P(
⋃
t6T B2

t ) = o(1).

Proof. Suppose that a vertex v has degree at least n1−ε in some Gt. Then v must be in
(crudely) at least n1−ε/r of the cliques Hs, s 6 t, and hence in at least n1−ε/(2r) of the
selected sets Xs. Thus, v is in at least n1−ε/(2r) of the candidate sets Xs,a, 1 6 s 6 T ,
1 6 a 6 m. For each v, let Nv be the number of these candidate sets that contain v.
Then Nv has a binomial distribution with mean m(T + 1)(r − 2)/n = O∗(n1−αr−ε) =
o(n1−ε/(2r)). Thus the probability that Nv > n1−ε/(2r) is exp(−Ω(n1−ε)) = o(n−100),
say, and the probability that there exists such a v is o(1).

After this preparation we are now ready to prove Theorem 7.

Proof of Theorem 7. As above, we fix r > 5 and ε > 0, and define m = dlog ne and
T = n2−αr−ε, where αr = (r−2)/(

(
r
2

)
−2). We consider the outline construction described

above, saying that a candidate choice Xt+1,a for Xt+1 is successful if it satisfies conditions
(C0)–(C2) above, and (C3) and (C4) below. At each step t + 1 6 T we let Xt+1 be
the successful candidate Xt+1,a with the smallest index a if there is one, otherwise, our
construction fails at step t+ 1.

Let Ft be the (finite, of course) σ-algebra generated by (Xs,a)s6t, a6m, i.e., by all in-
formation ‘revealed’ by time t. Notice that Ft encodes everything about our construction
‘up to time t’. In particular, we know how

⋃t
s=1Hs is defined at this point. Our key claim

is that for 0 6 t 6 T − 1 we have

P(candidate Xt+1,1 succeeds | Ft) > 99/100 (8)

whenever all previous steps have succeeded, and neither B1
t nor B2

t holds. Here, as usual,
the probability of an event E, conditional on a σ-algebra F, is the random variable defined
by the conditional expectation of the indicator of E with respect to F.

Suppose for the moment that the inequality (8) holds; we shall see that Theorem 7
easily follows. Indeed, because the Xt+1,a are independent of each other and of Ft, and
identically distributed, if (8) holds, then recalling that Ft+1 denotes the event that our
construction fails at step t+ 1, we have

P(Ft+1 | Ft) =
m∏
a=1

P(candidate Xt+1,a fails | Ft) 6 100−m 6 n−2

whenever (B1
t ∪ B2

t )
c ∩ Gt = (B1

t ∪ B2
t ∪ F1 ∪ · · · ∪ Ft)c holds. Since this latter event is

Ft-measurable, it follows that

P
(
Ft+1 ∩ (B1

t ∪ B2
t ∪ F1 ∪ · · · ∪ Ft)c

)
6 P

(
Ft+1 | (B1

t ∪ B2
t ∪ F1 ∪ · · · ∪ Ft)c

)
6 n−2.
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Also we have P
(
F1

)
6 n−2. But then, considering the least t for which B1

t ∪B2
t ∪Ft holds,

we see that
P
(⋃
t6T

Ft
)
6 Tn−2 + P

(⋃
t6T

B1
t

)
+ P

(⋃
t6T

B2
t

)
= o(1),

using Lemmas 12 and 13. Hence, with probability 1 − o(1) > 0 (for n large enough),
the construction succeeds for T steps. Then, as noted above, the fact that conditions
(C0)–(C2) are satisfied implies that we construct a good Kr-chain of the required length.
It remains only to establish (8).

From now on, we condition on Ft (i.e., on all Xs,a, s 6 t), and assume that our
construction succeeded at steps 1, . . . , t and that neither B1

t nor B2
t holds. The only

relevant randomness remaining is the uniform choice of Xt+1,1 from all sets of r − 2
vertices. Let Ei be the event that Xt+1,1 fails to satisfy condition (Ci). To establish (8) it
suffices to show that P(Ei) = o(1), i = 0, . . . , 4. Clearly, P(E0) = 1−

(
n−2
r−2

)
/
(
n
r−2

)
= o(1).

The case i = 1 is also easy. If E1 holds then either (i) Xt+1,1 includes two vertices
forming an edge uv of Gt or (ii) for some vertex u of et, Xt+1,1 includes a vertex v such that
uv ∈ E(Gt). The first event has probability at most

(
r−2
2

)
e(Gt)/

(
n
2

)
= O(e(Gt)n

−2) =
O(Tn−2) = o(1). Since B2

t does not hold and there are only two choices for u, the second
has probability O(∆(Gt)/n) = o(1).

Before turning to the details, let us outline the argument for E2. If E2 holds, then for
some 0 6 j 6 2 and 1 6 i 6 r− 2 with i+ j < r, some subset of V (et) of size j and some
subset of Xt+1,1 of size i combine to form a dangerous set of size i + j. The case j = 0
will cause no problems, since we assume B1

t does not hold, so there are o(ni) dangerous
sets of size i. (This is analogous to (i) above.) For j > 0, we will have a problem only
if some subset J of V (et) of size j is in Θ(ni) dangerous (i + j)-sets. To avoid this, we
consider a further condition

For each j = 1, 2 and i > 1 with i + j < r, no set of j vertices of Xt+1,a

is contained in more than ni−ε/4 dangerous (i+ j)-sets at time t.
(C3)

This is not quite what we need, however – we would like to use this condition one step
earlier to say that V (et) ⊂ Xt has the properties we want. The problem is that condition
(C3) having been satisfied by Xt only tells us that subsets of V (et) are not in many sets
that were dangerous at time t− 1, rather than at time t. On the other hand, the bound
ni−ε/4 in condition (C3) is much stronger than the bound o(ni) that we need. So we will
be able to deal with this ‘off-by-one’ problem by showing that not too many sets become
dangerous in one step. To make this argument work we will need one final condition. We
say that a set A of vertices with 2 6 |A| 6 r − 1 is deadly at time t if there is a set B of
r vertices with A ⊂ B such that Gt ∪A(2) contains all edges within B, with B not equal
to V (Hs) for any s 6 t. Note that a deadly set is dangerous.

For j ∈ {2, 3}, no set of j vertices of et ∪Xt+1,a containing at most one
vertex of et and at least one vertex of Xt+1,a is contained in more than
n1−ε/8 deadly (j + 1)-sets at time t.

(C4)

As noted above, it remains only to show that P(Ei) = o(1) for i = 2, 3, 4. Before doing
this, we establish some deterministic consequences of our conditions (C0)–(C4), i.e., of
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succeeding with our choice at step t+1. In the following we assume that n is large enough,
depending on the constant c.

Claim 1. Let c > 0 be any positive constant. If the candidate Xt+1,1 satisfies conditions
(C0)–(C4), then for j = 1, 2 and each i > 1 with i+ j < r, every set J of j vertices from
Xt+1,1 is in at most cni (i+ j)-sets that are dangerous at time t + 1.

Proof. Suppose the claim fails for some i, j and J . Because condition (C3) is satisfied,
we see that there are Θ(ni) i-sets I disjoint from J such that I ∪ J is dangerous at time
t + 1 but not at time t. Since Ht+1 = (et ∪ Xt+1,1)

(2) contains r = O(1) vertices and
∆(Gt+1) 6 ∆(Gt) + r − 1 = o(n) by our assumption that B2

t does not hold, there are
Θ(ni) of these sets I with the additional property that no vertex in I is in Ht+1, or is
adjacent in Gt+1 to any vertex in Ht+1. For each such set I, by the definition of dangerous
there is an r-set A ⊃ I ∪ J such that Gt+1 ∪ (I ∪ J)(2) contains all but at most one of the
edges within A. Furthermore, since I ∪J is not dangerous at time t, there is such a set A
such that Gt+1\Gt includes at least one edge within A but not within I∪J . In particular,
A\ (I ∪J) contains at least one vertex of Ht+1. Let L = V (Ht+1)∩ (A\ (I ∪J)), so L 6= ∅.

By choice of I, there are no edges from I to Ht+1 in Gt+1. Hence there are no edges
from I to L in Gt+1. Since I, J and L are disjoint, in Gt+1 ∪ (I ∪ J)(2) there are still no
edges from I to L. Hence, in this final graph, there are at least |I||L| missing edges inside
A; as at most one edge is missing, we conclude that |I| = |L| = 1. Furthermore, the only
missing edge in A in Gt+1 ∪ (I ∪ J)(2) is the I–L edge. Hence in Gt+1 ∪ (I ∪ J ∪ L)(2)

the set A is complete. Since V (Ht+1) ∩ A = J ∪ L, we see that A is also complete in
Gt ∪ (I ∪ J ∪ L)(2), so I ∪ J ∪ L is deadly at time t. Note that |I ∪ J ∪ L| = j + 2 < r.

Since we find one such deadly set I ∪ J ∪ L for each of Θ(n) choices for I (recall that
now i = 1), and there are at most r choices for L, we see that some set J ∪L of j + 1 = 2
or 3 vertices of Ht+1 (with at most one in et, namely that in L) is contained in Θ(n)
deadly (j+ 2)-sets I ∪ J ∪L. But this violates our assumption that condition (C4) holds,
completing the proof of the claim.

Claim 2. If the candidate Xt+1,1 satisfies conditions (C0)–(C4), then for i ∈ {2, 3} each
vertex of Xt+1,1 is contained in at most 2ni−ε/4 deadly (i+ 1)-sets at time t + 1.

Proof. The proof is very similar to that of Claim 1. Adopting similar notation, if the
claim fails there is some i ∈ {2, 3} and some singleton set J = {u} ⊂ Xt+1,1 such that
there are 2ni−ε/4 i-sets I disjoint from J with I ∪ J deadly at time t+ 1. Since condition
(C3) holds and a deadly set is dangerous, at least ni−ε/4 of these sets I are such that I ∪J
is deadly at time t+1 but not at time t. As before, since ∆(Gt+1) = O(n1−ε) = o(n1−ε/4),
we may find Θ(ni−ε/4) > 0 such sets I which are disjoint from Ht+1 and send no edges
to Ht+1 in the graph Gt+1. Fix any such I. Then there is an r-set A ⊃ I ∪ J such that
Gt+1 ∪ (I ∪ J)(2) contains all edges in A with (as before) L = V (Ht+1) ∩ (A \ (I ∪ J))
non-empty. (Otherwise I ∪ J was deadly at time t also.) Since L ⊂ V (Ht+1), by choice
of I there are no I–L edges in Gt+1, so the I–L edges (of which there is at least one) are
missing in Gt+1 ∪ (I ∪ J)(2) also, a contradiction.
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We now show that for k = 2, 3, 4 the probability of the event Ek that our first candi-
date Xt+1,1 fails to satisfy condition (Ck) is o(1). Recall that we are assuming that our
algorithm succeeded at earlier steps and that neither B1

t nor B2
t holds. If condition (C2)

fails then for some 0 6 j 6 2 and 1 6 i 6 r − 2 with i + j < r there is an i-element
subset I of Xt+1,1 and a j-element subset J of et such that I ∪ J is dangerous (at time t).
For j = 0, since B1

t does not hold, there are o(ni) dangerous i-sets in Gt. The probability
that Xt+1,1 includes any given one is O(n−i), so the probability that such I, J exist with
j = 0 is o(1). For j ∈ {1, 2}, applying Claim 1 with t replaced by t − 1 (for t > 0; for
t = 0 there is no problem), we see that for each j-element subset J of et ⊂ Xt there are
o(ni) i-sets I such that I ∪ J is dangerous. It follows that P(E2) = o(1).

Turning to E3, fix j ∈ {1, 2} and i > 1 with i + j < r. Call a j-set bad if it is in
at least ni−ε/4 (i + j)-sets that are dangerous at time t. Since at most ni+j−ε/2 (i + j)-
sets are dangerous at time t, there are at most

(
i+j
j

)
nj−ε/4 = O(nj−ε/4) bad j-sets. For

condition (C3) to fail, Xt+1,1 must contain such a bad j-set, an event of probability
O(nj−ε/4n−j) = o(1).

Finally, we turn to E4; the argument is somewhat similar to that for E2. Firstly, as B1
t

does not hold and a deadly set is dangerous, there are at most (j+ 1)nj−ε/4 j-sets J with
the property that J is contained in more than n1−ε/4 deadly (j + 1)-sets at time t. Hence
the probability that Xt+1,1 contains such a j-set is O(nj−ε/4/nj) = o(1). For j = 2, 3 it
remains to bound the probability that for some vertex v of et, the set Xt+1,1 contains a
(j−1)-set J such that J ∪{v} is in more than n1−ε/8 deadly (j+1)-sets. This probability
is o(1) as required unless v is in Θ(nj−1) j-sets each contained in more than n1−ε/8 deadly
(j + 1)-sets. But if this holds, v is in Θ(nj−ε/8) deadly (j + 1)-sets. Since v ∈ et ⊂ Xt,
this contradicts Claim 2 applied at time t− 1.

4 Deterministic constructions

In this section we present a deterministic algorithm that constructs a graph which sta-
bilizes after at least 1

200
n3/2 time steps in the K5-bootstrap process. This construction

generalizes immediately to any r > 6 to obtain graphs that stabilize after at least crn
3/2

time steps in the Kr-bootstrap process. The result is not as strong as Theorem 2, but the
proof, in addition to being deterministic, is much simpler, and perhaps is of independent
interest.

Lemma 14. For all t 6 T = 1
200
n3/2 we can find a collection A = {A1, . . . , At} ⊆ [n](5)

and distinct e0 = {1, 2}, e1, . . . , et ∈ [n](2) with the following properties:

1. e0 ∈ A1, and ei = Ai ∩ Ai+1 for i = 1, . . . , t− 1;

2. |Ai ∩ Aj| 6 1 if |i− j| > 2;

3. there are no distinct u, v, w ∈ [n] and 1 6 i < j < k 6 t, such that {u, v} ⊂ Ai,
{u,w} ⊂ Aj and {v, w} ⊂ Ak (i.e., there are no ‘external triangles’ in the set
system);
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4. for all u ∈ [n] we have deg(u) = |{Ai ∈ A : u ∈ Ai}| 6 1
20

√
n.

Proof. Let us define the neighbourhood N(u) of u ∈ [n] to be

N(u) = {v ∈ [n] : there exists some Ai ∈ A such that u, v ∈ Ai}.

Also define the second neighbourhood of u to be

N2(u) =
⋃

v∈N(u)

N(v).

Notice that u ∈ N(u) ⊆ N2(u). Also, if for all u ∈ [n] we have deg(u) 6 ∆, then
|N2(u)| < 25∆2.

Let us proceed by induction on t. Assume that we have sets A1, . . . , At−1, and pairs
e0 = {1, 2}, e1, . . . , et−1, satisfying the lemma. We want to find some At and et while
t 6 n3/2/200. Let et−1 = {u, v}. We shall take At = et−1 ∪ {w1, w2, w3} for some distinct
w1, w2, w3 /∈ et−1, and then set et = {w1, w2}. We do this by choosing wi, one at a time,
so that, for i = 1, 2, 3, the vertex wi is not contained in

N2(u) ∪N2(v) ∪N2(w1) ∪ . . . ∪N2(wi−1),

where in defining N2(·) we include the set At = {u, v, w1, . . . , wi−1}. By the condition on
the degrees of all vertices,

|N2(u)|+ |N2(v)|+ |N2(w1)|+ · · ·+ |N2(wi−1)| < 100( 1
20

√
n+ 1)2 < n/2. (9)

Choosing wi that does not belong to any of the above second neighbourhoods ensures
that there are no external triangles formed by the addition of At and that |At ∩ Aj| 6 1
for all j 6 t− 2.

By (9), if the maximum degree of a vertex is at most 1
20

√
n, then there are at least

1
2
n possible choices for each of w1, w2, w3. Now, for each i = 1, 2, 3, choose wi to be the

vertex with the smallest degree among these choices. If this choice makes the degree of
wi larger than 1

20

√
n, then all of these 1

2
n vertices have degree at least 1

20

√
n. Hence there

are at least T = 1
200
n3/2 sets in A. This completes the proof.

Let us show how to turn the set system A into a graph that has a long running time
in the K5-bootstrap process. For T = 1

200
n3/2, given A and e1, . . . , et as defined above,

we define G = ([n], E), where

E =

(
T⋃
i=1

A
(2)
i

)
\ {e1, . . . , eT}. (10)

We shall show that the K5-bootstrap process starting from G0 = G takes T steps to
stabilize. To do this, we need one further definition. Let B be a collection of subsets of
[n] and let H be a graph with vertex set [n]. We say that H is covered by B if every edge
e ∈ H is contained in some set B ∈ B. We say that H is simply covered by B if there
exists some B ∈ B such that e ⊆ B for every e ∈ H. The following observation follows
immediately from the third condition in Lemma 14.

the electronic journal of combinatorics 24(2) (2017), #P2.16 17



Observation 15. Let A be as in Lemma 14. For any distinct u, v, w ∈ [n], if A covers
{u, v, w}(2) then it simply covers it.

Lemma 16. Let G0 = G be defined as in Equation (10) and let (Gt)t6T be the steps of
the K5-process, starting from G. Then for all 1 6 t 6 T we have Gt \Gt−1 = {et}.

Proof. Suppose that the lemma is false and let t′ > 1 be the first time when Gt′ \Gt′−1 6=
{et′}. Hence, for all 1 6 t < t′ we have Gt \ Gt−1 = {et}. Clearly At′ induces a K−5 in
Gt′−1 because et′−1 ∈ Gt′−1 and, by the definition of A, all edges {e1, . . . , eT} are distinct
which implies that et′ /∈ Gt′−1. Hence we have et′ ∈ Gt′ \ Gt′−1 and, by the definition of
t′, we must have some e 6= et′ such that e ∈ Gt′ \Gt′−1.

If e is included at time t′ then it appears by virtue of some K−5 that is contained in
Gt′−1. If there was no Ai that induced all the edges of this K−5 in Gt′−1 then, since Gt′−1

is a subset of
⋃T
i=1A

(2)
i , the set system A would would cover a triangle that it would not

simply cover. That would contradict Observation 15.
Hence e = ek for some k > t′. However, only two sets in A contain ek namely, Ak and

Ak+1. By the definition of t′ we have ek−1, ek, ek+1 /∈ Gt′−1 therefore both Ak and Ak+1

induce
(
5
2

)
− 2 edges in Gt′−1. Hence it is impossible that ek ∈ Gt′ \Gt′−1.

Lemma 16 immediately implies that the K5-bootstrap process starting from G stabi-
lizes after at least 1

200
n3/2 time steps.

5 Open problems

In this paper we considered the problem of finding the maximum running time of the Kr-
bootstrap process. For r > 5 the exact answer remains to be found and it is the obvious
open problem in this direction. In the proof of Theorem 2 we were a little careless with
the o(1) term in the exponent; a more careful version of the argument will give a slightly
stronger bound (presumably n2−αr divided by some power of log n), but still o(n2−αr). It
seems unlikely that any random construction of this type can go (significantly, if at all)
beyond n2−αr , since at this point, in a random graph with the relevant number of edges,
many missing edges e have the property that adding e would create a K−r . It is tempting
to think that therefore Mr(n) = n2−αr+o(1) for r > 5, but we have no real reason to believe
this. Instead, since proving any non-trivial upper bound on Mr(n) is open for r > 5, we
make the following much weaker conjecture.

Conjecture 1. For all r > 5 we have Mr(n) = o(n2).

To support our conjecture, we use an argument of Erdős, Frankl, Rődl [14] to note that
any graph ‘resembling’ those constructed in Lemma 16 and Theorem 2 cannot run for time
Ω(n2). In particular, suppose G is a graph that is constructed by chaining together 5-sets
that do not admit any external triangles (as in condition 3 of Lemma 14) and such that
each 5-set in the chain intersects at most two other 5-sets (again, as in Lemma 14). Now
let T be the running time of the K5-process on G and observe that GT will have at most
O(n2) triangles, as no external triangles were created. Hence, by the triangle removal
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lemma (see, for example Theorem 1.5 in [14]), we may remove a collection of o(n2) edges
so that the remaining graph is triangle free. However, every edge is contained in at most
2 of the 5-sets, from which the graph was constructed, and therefore the number of such
5-sets must be o(n2), as each contains a triangle. Since at least one of our collection of
5-sets becomes filled in at each step of the K5-process, the process can run for at most
o(n2) steps.
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quium, Manebach, 1967), H. Sachs, H. J. Voss, and H. Walther (Editors), Teubner,
Leipzig, Barth, pages 25–31, 1968.

[11] B. Bollobás, K. Gunderson, C. Holmgren, S. Janson, and M. Przykucki. Bootstrap
percolation on Galton–Watson trees. Electronic Journal of Probability, 19:1–27, 2014.

[12] J. Chalupa, P.L. Leath, and G.R. Reich. Bootstrap percolation on a Bethe latice.
Journal of Physics C, 12:L31–L35, 1979.

[13] A. van Enter. Proof of Straley’s argument for bootstrap percolation. Journal of
Statistical Physics, 48:943–945, 1987.
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