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Abstract

The Caccetta-Häggkvist Conjecture asserts that every oriented graph on n ver-
tices without directed cycles of length less than or equal to l has minimum outdegree
at most (n−1)/l. In this paper we state a conjecture for graphs missing a transitive
tournament on 2k + 1 vertices, with a weaker assumption on minimum outdegree.
We prove that the Caccetta-Häggkvist Conjecture follows from the presented con-
jecture and show matching constructions for all k and l. The main advantage of
considering this generalized conjecture is that it reduces the set of the extremal
graphs and allows using an induction.

We also prove the triangle case of the conjecture for k = 1 and 2 by using
the Razborov’s flag algebras. In particular, it proves the most interesting and
studied case of the Caccetta-Häggkvist Conjecture in the class of graphs without
the transitive tournament on 5 vertices. It is also shown that the extremal graph
for the case k = 2 has to be a blow-up of a directed cycle on 4 vertices having in
each blob an extremal graph for the case k = 1 (complete regular bipartite graph),
which confirms the conjectured structure of the extremal examples.

In the paper we are considering oriented graphs, i.e., directed graphs without loops,
multiple edges and two vertices connected by edges in both directions. By Tm we denote
a transitive tournament — an oriented graph on m vertices with all possible edges and no
directed cycles. By ~Cl we denote a directed cycle on l edges. We also denote the minimum

outdegree as
δ+(G) = min

v∈G

deg+(v).
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Whenever the graph G is known from the context we will omit it and write just δ+. By
blow-up of an oriented graph H we consider a graph whose vertex set is divided into v(H)
equal parts with all the edges between parts placed accordingly to edges in H (between
each two parts there are all edges directed in one way or no edges at all) and no edges
inside the parts. We call those parts of the blow-up by blobs. By k-iterated blow-up of
an oriented graph H we consider a graph which is a blow-up of (k − 1)-iterated blow-up
of H, where the 1-iterated blow-up of H is just a blow-up of H.

In 1978 Caccetta and Häggkvist [4] stated the following conjecture

Conjecture 1 (Caccetta-Häggkvist Conjecture). Every oriented graph on n vertices with-

out directed cycles of length less than or equal to l has δ+ 6 (n− 1)/l.

The conjecture was proved for many large values of l by Caccetta and Häggkvist [4],
Hamidoune [11], Hoáng and Reed [14], and Shen [25]. Another approach was to force a
directed cycle of length at most l + c for some small c. This was proved for c = 2500 by
Chvátal and Szemerédi [5], for c = 304 by Nishimura [17], and for c = 73 by Shen [26].

Small values of l are more difficult and received much attention. Even for l = 3 the
conjecture is still open. We focus more on this case.

Let c be the minimal constant for which each triangle-free graph has δ+ 6 cn. Conjec-
tured value is c = 1/3 ≈ 0.3333. Caccetta and Häggkvist [4] proved that c 6 (3−

√
5)/2 ≈

0.3820. Then it was improved by Bondy [3] to (2
√
6 − 3)/5 ≈ 0.3798, Shen [24] to

3 −
√
7 ≈ 0.3542, Hamburger, Haxell, and Kostochka [10] to 0.3532, and to 0.3465 by

Hladký, Král’, and Norine [13]. Recently, Sereni and Volec [27] stated even further im-
provement to 0.3388 using flag algebras in a sophisticated way.

For more results and problems related to the Caccetta-Häggkvist Conjecture see [23].
The main obstacle, which makes this problem hard, is the fact that there are many

non-isomorphic extremal examples. The same is happening for example in case of the well-
known Turán Conjecture. Bondy [3] observed that the class of extremal graphs for the
Caccetta-Häggkvist Conjecture is closed under lexicographic product. Later, Razborov
[21] generalized the Bondy’s construction.

Here we present a new way of proving the Caccetta-Häggkvist Conjecture. The main
idea is to define a set of conjectures, which lead to the Caccetta-Häggkvist Conjecture,
such that for each of them the set of extremal examples is more restricted and we can use
the inductive arguments in parts of the extremal graphs. This way, it will be easier to
prove those partial conjectures using the graph limits methods and inductive arguments.

Let us now state the main conjecture.

Conjecture 2. Every oriented graph on n vertices without directed cycles of length less

than or equal to l and without transitive tournament T2k+1 has

δ+ 6

(

1

l + 1
+

1

(l + 1)2
+

1

(l + 1)3
+ . . .+

1

(l + 1)k

)

n.

An example construction of a graph giving the above bound is a k-iterated blow-up
of ~Cl+1. In other words, we take n divisible by (l + 1)k and divide the vertices into l + 1
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equal parts. Between the parts we put all the edges forming a ~Cl+1. So, between each
two parts there is a complete one-way directed bipartite graph or no edges at all. Inside
each part we iteratively, k − 1 times, do the same — divide each of them into l+ 1 equal
parts and put edges forming a ~Cl+1. It can be easily seen there are no cycles of length less
than or equal to l. Each transitive tournament can have vertices only in at most two big
parts (since in ~Cl+1 there is no T3). Similarly in each smaller parts. Hence, the biggest
transitive tournament we can find is T2k and there is no T2k+1. Outdegree of each vertex
is exactly n(l + 1)−1 + n(l + 1)−2 + n(l + 1)−3 + . . . + n(l + 1)−k. Each summand comes
from the edges between parts of the different size.

In the most interesting case l = 3 the conjecture is following.

Conjecture 3. Every oriented graph on n vertices without ~C3 and T2k+1 has

δ+ 6

(

1

4
+

1

42
+

1

43
+ . . .+

1

4k

)

n.

In this case, for k = 1 the set of extremal examples is just the set of all complete
regular bipartite graphs. For k = 2 we show that it is a blow-up of ~C4 with some extremal
graph from the case k = 1 in each blob (Theorem 7). This is also conjectured to be true
in general.

Conjecture 4. Every extremal graph on n vertices without ~C3 and T2k+1 having

δ+ =

(

1

4
+

1

42
+

1

43
+ . . .+

1

4k

)

n

is a blow-up of ~C4 having in each blob some graph without ~C3 and T2k−1+1 with outdegree

inside this blob equal to
(

1

4
+

1

42
+

1

43
+ . . .+

1

4k−1

)

n.

In other words, every extremal graph for Conjecture 3 is a (k − 1)-iterated blow-up of ~C4

with some complete regular bipartite graph in every small blob.

Observation 5. For each l, Conjecture 2 implies the Caccetta-Häggkvist Conjecture.

In particular, Conjecture 3 implies the Caccetta-Häggkvist Conjecture in the triangle case.

Proof. Let us assume that the Caccetta-Häggkvist Conjecture is false, i.e., there exists a
graph G on n vertices without any directed cycle of length less than or equal to l having
δ+(G) > (n−1)/l. Since n is an integer, we have δ+(G) > n/l. Let k be sufficiently large,
so that G does not contain T2k+1. From the fact that

1

l + 1
+

1

(l + 1)2
+

1

(l + 1)3
+ . . . =

1

l
,

we have

δ+(G) >
n

l
>

(

1

l + 1
+

1

(l + 1)2
+

1

(l + 1)3
+ . . .+

1

(l + 1)k

)

n.

It means that graph G also contradicts Conjecture 2.
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In this paper we prove Conjecture 3 in the case k = 2 together with the theorem
describing the structure of the extremal graphs. This indicates that proving Conjecture 2
might be easier and it might be the way to prove the Caccetta-Häggkvist Conjecture.

The main tool used in the proofs is the flag algebra calculus developed by Razborov
[19]. Since there are already many results using this method (see for example [1, 2, 6,
7, 8, 9, 12, 18, 22]), here we omit the whole presentation of the theory. For unexperi-
enced readers, we recommend a Razborov’s survey [20] or recent book of Lovász [16] with
introduction to the theory and examples of results obtained using this techniques.

In this paper we use the standard flag algebra notation from [19]. By J·K we understand
the averaging operator from flags with one labeled vertex to nonlabeled flags. In the
drawings of flags we use unfilled circle to denote the rooted vertex. In the text, we
identify each graph (e.g., ~C3) with unlabeled flag representing its density.

Theorem 6. In the case k = 2 Conjecture 3 is true, i.e., every oriented graph on n
vertices without ~C3 and T5 has δ+ 6

5

16
n.

Proof. To prove this statement, we run a flag algebra programme in the space of flags on
5 vertices without ~C3 and T5, which proves that if > 5/16, then

s(
−

5

16

)

·

{
6 0.

The above statement implies the theorem. Assume there exists a graph contradicting
Theorem 6. It will be still a counterexample if we remove vertices with indegree 0, so
we can assume that each vertex has positive indegree. By considering blow-ups we can
construct an infinite sequence of counterexamples and thus get a counterexample for the
above statement.

Using basic flag algebraic calculus we derive that

96

s(
−

5

16

)

·

{
= 16 + 16 − 15 . (1)

Now, one can use publicly available Flagmatic software developed by Vaughan (see [28])
to maximize the right-hand side of (1) and prove that it is really 0. It is enough to
use flags of size 5 and just three types — triangle, edge on 3 vertices, and the sin-
gle vertex — the respecting matrices are of the sizes 24, 20 and 14. On the webpage
http://www2.im.uj.edu.pl/AndrzejGrzesik/CH we provide the commands for Flag-
matic to reproduce the result, as well as the certificate to verify the calculations, and
non-positive coefficients of the final inequality.

To our knowledge this is the first proof of the triangle case of the Caccetta-Häggkvist
Conjecture in the class of T5-free graphs.

The case k = 1 of Conjecture 3, after forgetting the orientations of edges, means that
a triangle-free graph has edge density less than half, which is the well-known Mantel’s
Theorem. We know that in the undirected case, the only extremal case is a complete
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balanced bipartite graph, hence with orientations, we have that the set of the extremal
graphs is exactly the set of complete regular bipartite graphs. In the case k = 2 we have
the following theorem.

Theorem 7. Every graph on n vertices without ~C3 and T5 having δ+ = (1
4
+ 1

42
)n = 5

16
n

is a blow-up of ~C4 with a complete regular bipartite graph in every blob.

Proof. Consider a graph G satisfying the assumptions. If there exists a vertex of a higher
outdegree than δ+ then, by removing some edges going from this vertex, we obtain a
graph which also satisfies the assumptions. Notice also that adding any edge to the
conjectured structure (blow-up of ~C4 with a complete regular bipartite graph in every

blob) is constructing a ~C3 or T5, so, it is enough to prove this theorem if the degree of
every vertex is equal to δ+. In particular, we can assume that the set of out-neigbours of
any vertex is not contained in the set of out-neigbours of any other vertex.

In the proof of Theorem 6, if the coefficient of the final inequality corresponding to a
particular flag is strictly negative, then this flag cannot appear in any extremal graph as
an induced subgraph. Otherwise, by considering blow-ups we could construct an infinite
sequence of extremal graphs that gives strict inequality, which contradicts the outdegree
assumption. Thus, from the proof of Theorem 6, we have that in every extremal graph
there are no subgraphs isomorphic to any of the following graphs, for each possibility of
putting edges (including non-edge) on the dashed segments:

(A) (B)

One can notice, that nonexistance of the last four graphs means that in the extremal
graph there is no induced subgraph isomorpic to

(C)

with one of the edges belonging to a transitive triangle with edges w1w2, w2w3, w1w3 as
the w1w3 edge.

Consider any extremal graph and pick a transitive triangle with vertices v1, v2, v3 and
edges v1v2, v2v3, v1v3 (there exists, because the edge density is above 1/2). Since the
graph (A) is forbidden, we have that any other vertex of the graph is connected to v1 or
v3. Lets create the following groups of vertices:

G1 — Out-neigbours of v3 which are not connected to v1.

G2 — In-neigbours of v1 which are not connected to v3.
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Other out-neighbours of v3 are contained in out-neighbours of v1 (otherwise it creates a
directed triangle) and other in-neighbours of v1 are contained in in-neighbours of v3, so
all the remaining vertices are out-neighbours of v1 or in-neighbours of v3.

We will show now that the sets G1 and G2 are not empty. If G1 is empty then all
out-neighbours of v3 are out-neigbours of v1, contradicting the assumption from the first
paragraph of this proof. Assume G2 is empty and take any g1 from G1 and any out-
neigbour v of g1. We argue that v is an out-neighbour of v3. If v is in G1, then it is an
out-neighbour of v3. Otherwise, since all the remaining vertices are out-neighbours of v1
or in-neighbours of v3, to avoid directed triangle with v3 and g1, it needs to be an out-
neighbour of v1. There cannot be the edge vv3, because it creates a directed triangle with
the vertex g1. If there is no edge between v and v3 then, together with g1 and v1 it creates
the forbidden graph (C), and so there must be the edge v3v. Thus, all out-neighbours of
g1 are out-neighbour of v3, contradicting the assumption from the first paragraph of this
proof.

Take any vertex g1 from G1 and g2 from G2. If g1 and g2 are not connected, then the
tuple g2, v1, v3, g1 forms the forbidden graph (B), if there is the edge g2g1, the same tuple
forms the forbidden graph (C), so there must be the edge g1g2. Thus, from every vertex
in G1 we have edges to every vertex in G2.

Consider now a vertex w being any out-neighbour of v1. To prevent the tuple g1, g2,
v1, w, for any g1 ∈ G1, g2 ∈ G2, from forming (B) we must have the edge g2w (reversed
edge would make a directed triangle), the edge wg1, or the edge g1w. If the first two
possibilities do not occur, but the last one, then we can find the forbidden graph (C)
in the tuple v1, v3, g1, w (if w and v3 are not connected), or in the tuple g1, g2, v1, w (if
there is the edge v3w, and so the edge v1w belongs to the transitive triangle with edges
v1v3, v3w), or a directed triangle in the triple w, v3, g1 (if there is the edge wv3). Vertex
w cannot have an out-neighbour in G1 and an in-neighbour in G2, because it creates a
directed triangle, thus w has directed edges to all vertices in G1, or from all vertices in G2.

Similarly, by considering now a vertex w′ being any in-neighbour of v3 and taking any
g1 ∈ G1, g2 ∈ G2, we get that there must be the edge g2w

′ or the edge w′g1. Otherwise,
to avoid (B), we must have the edge g1w

′ (which forms a directed triangle) or the edge
w′g2 (which, as previously, dependently on the possible edge between v1 and w′ forms (C)
in w′, g2, v1, v3, or in w′, v3, g1, g2, or a directed triangle w′, g2, v1). Vertex w′ cannot have
an out-neighbour in G1 and an in-neighbour in G2, because it creates a directed triangle,
thus w′ has directed edges to all vertices in G1, or from all vertices in G2.

Since, all the vertices, except vertices in G1 and G2, are out-neighbours of v1 or in-
neighbours of v3, we can split all the remaining vertices to the following groups:

G3 — Vertices with edges from every vertex in G2.

G4 — Vertices with edges to every vertex in G1.

In particular, v1 ∈ G3 and v3 ∈ G4.
There are no directed triangles, so there are no edges from vertices in G3 to vertices

in G1. Assume there is an edge g1g3 for some g1 ∈ G1, g3 ∈ G3. Since all vertices in G3
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are out-neighbours of v1 or in-neighbours of v3, and the last case is making a directed
triangle in the triple g3, v3, g1, we have the edge v1g3. Now, the tuple v1, v3, g1, g3 forms
the forbidden graph (C). Thus there are no edges between vertices in G1 and vertices in
G3. The same argument shows that there are no edges between vertices in G2 and vertices
in G4.

To avoid the forbidden graph (B), each vertex in G3 and each vertex in G4 need to
be connected by some edge. Assume there is an edge g4g3 for some g3 ∈ G3, g4 ∈ G4.
Take any g1 ∈ G1 and g2 ∈ G2. To prevent making the forbidden graph C from the tuple
g4, g1, g2, g3, the edge g2g3 cannot appear in the transitive triangle with edges g2v1 and
v1g3, and so there is no edge v1g3. The edge g3v1 would make a directed triangle with
g4, thus v1 and g3 are not connected, and so there is the edge g3v3. Simmilarily, the edge
g4g1 cannot appear in the transitive triangle with edges g4v3 and v3g1, and so v3 and g4
are not connected, and there is the edge v1g4. But now the tuple v1, g4, g3, v3 forms the
forbidden graph (C). Hence, all the vertices in G3 have edges to all the vertices in G4.

We cannot have a transitive triangle inside any of the groups, because it would make
the forbidden graph (A) with any vertex from the non-neighbouring group.

Lets pick in every group a vertex with minimal outdegree inside this group. This
minimum is at most a quarter of the size of this group, since the groups cannot contain
triangles. By summing up outdegrees of the chosen 4 vertices, we get at most 5n/4. On
the other hand, each of them has outdegree at least 5n/16, so they sum up to at least
5n/4. It is possible only when groups have equal sizes and the traingle-free graph inside
each group is a complete regular bipartite graph.
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