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Abstract

The chromatic symmetric function XH of a hypergraph H is the sum of all
monomials corresponding to proper colorings of H. When H is an ordinary graph,
it is known that XH is positive in the fundamental quasisymmetric functions FS ,
but this is not the case for general hypergraphs. We exhibit a class of hypergraphs
H — hypertrees with prime-sized edges — for which XH is F -positive, and give an
explicit combinatorial interpretation for the F -coefficients of XH .

Keywords: symmetric function, quasisymmetric function, chromatic symmetric func-
tion, graph coloring, hypergraph, hypertree

1 Introduction

In [13], Stanley defined the chromatic symmetric function of a graph G, and since then
this invariant has been an object of much study [1,3,4,8,10,11]. A coloring of an ordinary
graph G = (V,E) is a map χ : V → P = {1, 2, . . .}. We say χ is proper if χ(u) 6= χ(v)
whenever {u, v} ∈ E. Given χ : V → P, we write xχ =

∏
v∈V xχ(v) where x1, x2, . . . are

commuting indeterminates. We then define the chromatic symmetric function XG of a
finite graph G to be

XG =
∑
χ

xχ

with the sum over all proper colorings χ of G.
The chromatic symmetric function XG is indeed a symmetric function, since the

properness of a coloring is preserved under any permutation of the set of colors P. It
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is possible, then, to consider the expansion of XG in various bases of the ring of symmet-
ric functions Sym, and there are a number of conjectures and open problems concerning
positivity of XG in these bases.

Our present interest is in the larger ring QSym of quasisymmetric functions. Qua-
sisymmetric functions have been a powerful tool in algebraic combinatorics since they were
first investigated by Stanley [12] and Gessel [5] in the 1970s and 1980s. In particular, the
fundamental quasisymmetric functions F n

S have have many applications in enumerative
combinatorics and representation theory. The precise definition of F n

S is given in Section
2.

If X is a symmetric function of degree n, then it is also quasisymmetric, so we may
consider the coefficients aS in the expansion X =

∑
S⊆[n−1] aSF

n
S . If each aS is nonnega-

tive, we will say that X is F -positive. In [13], Stanley used the theory of P -partitions to
show that XG is always F -positive. The F -coefficients of XG count linear extensions of
posets defined by acyclic orientations of G.

In [15], Stanley presented a generalization of the chromatic symmetric function to
hypergraphs. Informally, a hypergraph is a graph where the edges are allowed to contain
more than two elements. More precisely, a hypergraph is a pair H = (V,E) where V is
finite and E is a family of subsets of V such that if e ∈ E then |e| > 1. The elements of
E are called hyperedges, or just edges. A proper coloring of the hypergraph H is a map
χ : V → P so that no edge e ∈ E is monochromatic.

Given a hypergraph H, the chromatic symmetric function XH is defined in the same
way as the chromatic symmetric function of an ordinary graph. That is,

XH =
∑
χ

xχ

where the sum is taken over all proper colorings χ of H. Again XH is symmetric, but
unlike in the case of ordinary graphs, XH is not always F -positive. For example, if
H = (V,E) where V = {1, 2, 3, 4} and E = {{1, 2, 3}, {2, 3, 4}} then

XH = 2F{1} + 6F{2} + 2F{3} + 4F{1,2} + 8F{1,3} + 4F{2,3} − 2F{1,2,3} (1)

is not F -positive. Note that the coefficients in Equation (1) sum to 24 = 4!. This is
not a coincidence. The sum of the F -coefficients in a chromatic symmetric function XH

will always be n! where n = |V |, which can be seen by considering the coefficient of
x1x2 . . . xn. Thus when XH is F -positive, we may ask if XH can be written as a sum
of fundamental quasisymmetric functions indexed by permutations. However, for our
purposes it is convenient to consider the set of bijections π : V → [n], which we denote
LV , rather than the set of bijections σ : V → V forming the symmetric group SV . To
avoid confusion, we will call π ∈ LV a labeling and reserve the word permutation for
bijections σ ∈ SV . If V = [n] the sets coincide and we write Sn for S[n].

A hypertree is a hypergraph generalization of a tree, which will be defined in Section
2. An example of a hypertree is depicted in Figure 1. Our main result is the following
fact, appearing as Theorem 9 in Section 5.
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Theorem. Let V be a finite set with |V | = n, and let H = (V,E) be a hypertree so that
|e| is a prime number for each edge e ∈ E. Then XH is F -positive. In particular,

XH =
∑
π∈LV

FDesH(π)

where DesH(π) is the set of H-descents of the labeling π ∈ LV , to be defined in Section 5.

We note that it is easy to extend Theorem 9 to disjoint unions of hypertrees, or hyper-
forests, but for simplicity we only consider the connected case. We guess (Conjecture A)
that the primality condition could be removed, although our proof relies on primality in
a crucial way.

In Section 2 we give relevant background needed for the rest of the paper. In Section
3, we use a standardization procedure due to Gessel and Reutenauer [7] to show F -
positivity of XH when H consists of a single prime-sized edge. In Section 4, we combine
the result of Section 3 with the theory of P -partitions due to Stanley [12] and Gessel
[5] to show F -positivity of XH for a hypertree H with prime-size edges. In Section
5 we describe a combinatorial interpretation of the results in Section 4 by giving the
definition of H-descents and proving Theorem 9. We conclude in Section 6 by giving some
conjectures and suggestions for further work. In the Appendix we give, for n = 2, 3, 4,
explicit decompositions of the set of nonconstant colorings χ : [n] → P into inequalities
corresponding to the fundamental quasisymmetric functions F n

S .

2 Background

2.1 Symmetric and quasisymmetric functions

A formal power series of bounded degree X in the variables x1, x2, . . . is called symmetric
if it is unchanged after any permutation of its variables. Some important symmetric
functions include the power sum symmetric function

pn = xn1 + xn2 + . . . ,

the elementary symmetric function

en =
∑

i1<···<in

xi1xi2 · · ·xin ,

and the complete homogeneous symmetric function hn

hn =
∑

i16···6in

xi1xi2 · · ·xin .

A formal power series X in variables x1, x2, . . . is called quasisymmetric if the coeffi-
cients of xα1

i1
xα2
i2
· · ·xαkik and xα1

j1
xα2
j2
· · ·xαkjk in X are the same whenever i1 < . . . < ik and

j1 < . . . < jk. Sums and products of quasisymmetric functions are also quasisymmetric,
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so the set of quasisymmetric functions forms a ring QSym. An important basis of QSym
is given by the fundamental quasisymmetric functions F n

S indexed by subsets S ⊆ [n− 1].
They are defined by

F n
S =

∑
i1,i2,...,in

xi1xi2 · · ·xin

with the sum over all weakly increasing sequences i1 6 i2 6 . . . 6 in of positive integers
with the restriction that if j ∈ S then ij < ij+1. For example, if n = 4 and S = {1, 3}
then F n

S is the sum of all monomials xi1xi2xi3xi4 with i1 < i2 6 i3 < i4. If S = [n − 1]
then F n

S = en, while if S = ∅ we have F n
S = hn. These are the only cases in which F n

S is
actually symmetric. In what follows all the symmetric and quasisymmetric functions are
homogeneous of a fixed degree n, so we will write FS = F n

S without ambiguity.

2.2 P -partitions

One of the first applications of the theory of quasisymmetric functions was to the theory
of P -partitions of a poset P [5, 12]. Given a poset P on a finite vertex set V , a mapping
χ : V → P = {1, 2, . . .} is a P -partition if x 6P y implies χ(x) 6 χ(y). If P is the
poset [n] with the usual order, then a P -partition is a sequence of increasing integers
χ(1) 6 χ(2) 6 χ(3) 6 . . . 6 χ(n). This is equivalent to the usual definition of a partition
of the integer χ(1) +χ(2) + · · ·+χ(n). Traditionally a partition of an integer is written in
descending order, so what we call P -partitions were called reverse P -partitions by Stanley
in [12,16].

Suppose that ω ∈ LV is a labeling of V . In what follows it will be convenient to
identify ω with the total order <ω put on the vertices of P where x <ω y means that
ω(x) < ω(y). A (P, ω)-partition is a P -partition χ that has strict inequalities where the
orders P and ω disagree. That is, if x <P y then χ(x) 6 χ(y), and if both the inequalities
x <P y and x >ω y occur then χ(x) < χ(y).

It is sometimes useful to rephrase the definition of (P, ω)-partitions in terms of covering
relations. We write xlP y, and say that y covers x in P , if x <P y and there is no z ∈ P
so that x <P z <P y. By transitivity, we see that χ is a (P, ω)-partition if and only if
χ satisfies the conditions that χ(x) 6 χ(y) when xlP y and that χ(x) < χ(y) whenever
xlP y and x >ω y.

Given a bijective labeling π ∈ LV and a subset S ⊆ [n − 1], let A(π, S) be the set of
χ : V → P satisfying the conditions

χ(π−1(1)) 6 χ(π−1(2)) 6 . . . 6 χ(π−1(n))

and χ(π−1(i)) < χ(π−1(i+ 1)) when i ∈ S.
The main result on (P, ω)-partitions we need is the following fact, sometimes called

the “fundamental theorem of (P, ω)-partitions”. See [14, Lemma 3.15.3] for a proof when
(P, ω)-partitions are taken to be order-reversing. It is given without proof in [16, 7.19.4]
for (P, ω)-partitions taken to be order-preserving as we do. Recall that the descent set
Des(σ) of a permutation σ ∈ Sn is the set of i < n so that σ(i) > σ(i + 1). A linear
extension π of P is an bijective P -partition π ∈ LV .
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Theorem 1. Let P = (V,6P ) be a finite poset with |V | = n and let ω : V → [n] be any
bijection. Then the set of (P, ω)-partitions is exactly the disjoint union⊎

π

A(π,Des(ωπ−1))

where the union is taken over all linear extensions π : V → [n] of P .

Note that for any π ∈ LV and S ⊆ [n− 1], the sum of all monomials corresponding to
mappings χ ∈ A(π, S) is a fundamental quasisymmetric generating function:∑

χ∈A(π,S)

xχ =
∑

χ∈A(π,S)

xχ(π−1(1))xχ(π−1(2)) · · ·xχ(π−1(n)) = FS. (2)

Define KP,ω to be the sum of all monomials xχ associated with (P, ω)-partitions χ. Then
from Theorem 1 and Equation (2) we see how to expand KP,ω into the fundamental
quasisymmetric functions.

Corollary 2. Let P = (V,6P ) be a finite poset with |V | = n and let ω ∈ LV be any
labeling. Then we have

KP,ω =
∑
π

FDes(ωπ−1)

where the sum is taken over all linear extensions π of P .

2.3 Hypertrees

There are a number of closely-related definitions of hypertree occurring in the literature.
We adopt the definition given in [6]. Let H = (V,E) be a hypergraph. A path in H is a
nonempty sequence

v1, e1, v2, e2, . . . , em, vm+1

of distinct vertices vi ∈ V and edges ei ∈ E so that vi, vi+1 ∈ ei for each i. A sequence of
vertices and edges satisfying all the conditions of a path except that v1 = vm+1 and m > 1
is a cycle. We say that a hypergraph H = (V,E) is connected if there is a path from
v to v′ for any given v, v′ ∈ V . A hypertree is a hypergraph that is connected and has
no cycles. Thus in a hypertree there is a unique path between any two distinct vertices.
Figure 1 depicts a hypertree as well as a hypergraph that is not a hypertree.

A hypergraph H is called linear if |e ∩ e′| 6 1 for any distinct edges e, e′ ∈ E. Any
hypertree H is linear, for if e1, e2 are distinct edges of H sharing two distinct vertices
v1, v2 ∈ e1 ∩ e2 then H has the cycle v1, e1, v2, e2, v1. It is not true that XH is F -positive
whenever H is linear. For example, XH is not F -positive when H consists of the edges
{1, 2, 3}, {1, 4}, {2, 4}, {3, 4, 5}.

The following lemma provides a characterization of hypertrees that will be useful. It
is a generalization of the fact that any ordinary tree can be constructed from a single
vertex by adding one leaf at a time.

the electronic journal of combinatorics 24(2) (2017), #P2.2 5



Figure 1: Two hypergraphs, H1 and H2, with edges circled. H1 is a hypertree with an
edge-labeling satisfying Equation (3). H2 is not a hypertree, as it includes the cycles
2, e2, 4, e3, 6, e4, 2 and 2, e1, 7, e4, 2.

Lemma 3. Let H = (V,E) be a hypergraph. Then H is a hypertree if and only if there
is an ordering of its edges so that E = {e1, e2, . . . , ek} with

|(e1 ∪ e2 ∪ · · · ∪ ei) ∩ ei+1| = 1 (3)

for i = 1, . . . , k − 1.

Proof. First suppose that H = (V,E) has an edge-ordering E = {e1, . . . , ek} satisfying
Equation (3). Let Hi = (Vi, Ei) where Vi = e1 ∪ · · · ∪ ei and Ei = {e1, . . . , ei}. Let
{v} = ei+1 ∩ Vi. No cycle of Hi+1 can use the edge ei+1, since the vertex v would need to
be repeated. Inductively assuming that Hi is a hypertree, Hi+1 must be a hypertree as
well. So H is a hypertree.

Now suppose that H is a hypertree. It is enough to find an f ∈ E and v ∈ f so that
e ∩ f ⊆ {v} for any e ∈ E with e 6= f . The edge f can be seen as an analog for a leaf
in an ordinary tree. Once such an f is found, let H ′ = (V ′, E ′) with V ′ = V \f ∪ {v},
E ′ = E\{f}. Then H ′ is a hypertree with k−1 edges, so we may assume inductively that
H ′ has an ordering e1, e2, . . . , ek−1 of E ′ satisfying the desired condition. Setting ek = f ,
we see that e1, . . . , ek is the desired order of E.

To find such an f and v ∈ f , let v1, f1, v2, f2, . . . , vl, fl, vl+1 be a path of maximal
length l in H. We claim that the choice fl = f , v = vl satisfies the desired property.
Suppose that there is e ∈ E with e ∩ fl 6⊆ {vl}. Then there is u ∈ e ∩ fl with u 6= v.
Choosing any u′ ∈ e with u′ 6= u, we claim that

v1, f2, . . . , vl, fl, u, e, u
′ (4)

is a path. For if u = vi for some i then we would have a cycle vi, fi, . . . , fl, vi. Similarly,
for any i we cannot have e = fi or u′ = vi without creating a cycle. Thus (4) is a path of
length l + 1, contradicting the maximality of l.
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3 The single edge case

Let H = (V,E) be a hypergraph with the single edge e = V . Then the set of proper
colorings of H is the set of all colorings that are not constant. Thus if |V | = n then
XH = pn1 − pn. In the case that n is prime, we will show that there is a partition of
the set of all nonconstant colorings into subsets of the form A(π, S). This will show that
XH = pn1 − pn is F -positive. Furthermore, we will see in Section 4 that if such a partition
can be found for each edge e in a hypertree then there is a similar partition of the set of
proper colorings of that hypertree. It will then follow that chromatic symmetric functions
of hypertrees with prime-sized edges are F -positive. (For those readers familiar with the
Schur functions, we note that it is not hard to show that pn1 − pn is Schur-positive for
any n using the Murnaghan-Nakayama rule, for example. However, this method does not
extend to hypertrees in general.)

We say that c ∈ SV is cyclic if there is an ordering of V so that V = {v1, v2, . . . , vn}
where c(vi) = vi+1 for i < n, with c(vn) = v1. Note that in this definition, a cyclic
permutation has no fixed points. The goal of this section is to prove the following fact.

Theorem 4. Let V be a set with |V | = n prime and let c : V → V be an arbitrary cyclic
permutation of V . Then the set of nonconstant colorings χ : V → P is the disjoint union⊎

π∈LV

A(π,Des(πcπ−1)). (5)

Theorem 4 immediately gives the F -expansion of the symmetric function pn1 − pn when n
is prime. We have

pn1 − pn =
∑
π∈Sn

FDes(πcπ−1). (6)

The conjugation πcπ−1 is equivalent to the cyclic permutation c after its elements have
been relabeled via π. Thus Equation 6 states that pn1 − pn is the sum of the fundamental
quasisymmetric functions corresponding to descent sets of relabelings of c.

In the Appendix we give the sets A(π,Des(πcπ−1)) in the decomposition (5) for the
cases V = {1, 2} and V = {1, 2, 3}.

To prove Theorem 4, we will describe a technique due to Gessel and Reutenauer [7].
It will be convenient in what follows to use the language of words rather than colorings.
A word w on an alphabet A of length n is an n-tuple w = w(1) · · ·w(n) ∈ An. There is
a natural action of the cyclic group Cn on An given by identifying Cn with the rotations
ri : An → An with ri(w(1) · · ·w(n)) = w(i) · · ·w(n)w(1) · · ·w(i− 1). A necklace of length
n is an orbit of this action. If w ∈ An is such that that ri(w) 6= w for 1 6 i < n, we say
that the orbit of w is a primitive necklace. For example, the orbit of 1211 is primitive, but
the orbit of 1212 is not. When n is prime, every necklace is primitive unless it consists
only of a single letter a ∈ A repeated n times. In particular, the words w whose orbit is
primitive are equivalent to proper colorings of the single-edge hypergraph.
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Gessel and Reutenauer describe a bijection between words on a the alphabet P =
{1, 2, 3, . . .} and multisets of primitive necklaces. In particular, they show that∑

v

xv =
∑
c

FDes(c). (7)

where the sum on the left-hand side is taken over all primitive necklaces v of length n and
the sum on the right-hand side is taken over all cyclic permutations c : [n]→ [n]. When
n is prime, the orbit of any nonconstant word w ∈ An is a primitive necklace and each
orbit has size n, so Equation (7) reduces to

1

n
(pn1 − pn) =

∑
c

FDes(c). (8)

The symmetric function in Equation (8) is also interesting from an algebraic standpoint: it
is the Frobenius characteristic of the Sn-representation given by the degree-n multilinear
part of the free Lie algebra on a set of size n. Equations (6) and (8) are equivalent, since
every cyclic permutation will appear exactly n times in the sum (6).

Gessel and Reutenauer make use of a form of standardization, a map from multisets
of necklaces to permutations. Since are working with colorings instead of multisets of
necklaces, we give a variant of their argument that suffices to prove Theorem 4. In the
proof it will be convenient to assume without loss of generality that V = [n] and c is the
particular cyclic permutation c(i) = i+ 1 for 1 6 i < n with c(n) = 1.

Recall the lexicographic order on words. If v = v(1)v(2) · · · v(n),w = w(1)w(2) · · ·w(n)
are words on the alphabet P, we write v 6lex w if v = w, or else either

v(1) < w(1) (9)

or, inductively,

v(1) = w(1) and v(2) · · · v(n) 6lex w(2) · · ·w(n). (10)

Assuming n is prime and w is a nonconstant word, define the cyclic standardization of
w, which we’ll denote cstd(w), to be the permutation obtained by ordering the rotations
of w lexicographically. That is, we say π = cstd(w) if π is the unique permutation in
Sn so that rx(w) <lex ry(w) whenever π(x) < π(y). We find π = cstd(w) by setting
π(i) = j when ri(w) is the jth smallest rotation of w. For example, if w = 2114132 then
π = cstd(w) = 4137265. We have π(2) = 1 since r2(w) = 1141321 is the least rotation of
w lexicographically, π(5) = 2 since r5(w) = 1322114 is the next smallest, etc.

By the primality of n, the set of words w ∈ Pn that are not constant is the disjoint
union ⊎

π∈Sn

{w ∈ Pn : cstd(w) = π}.

Thus the proof of Theorem 4 is immediate from the following lemma.
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Lemma 5. Let n be prime and let w ∈ Pn be a nonconstant word. Then cstd(w) = π if
and only if w ∈ A(π, S) where S = Des(πcπ−1).

Proof. First, suppose that cstd(w) = π. To show that w ∈ A(π, S), we must first show
that w(π−1(i)) 6 w(π−1(i + 1)) for any 1 6 i < n. Suppose π(x) = i and π(y) = i + 1.
Then ry(w) = w(y)w(y + 1) · · · is the next largest rotation of w in lexicographic order
after rx(w) = w(x)w(x + 1) · · · , where we take n + 1 = 1, n + 2 = 2, etc. In particular,
we must have w(x) 6 w(y), or w(π−1(i)) 6 w(π−1(i+ 1)) as desired.

Now suppose that i is a descent of πcπ−1. We must show that w(x) < w(y). We have
πcπ−1(i) > πcπ−1(i+ 1), so that π(x+ 1) > π(y + 1). Then we have

rx+1(w) = w(x+ 1)w(x+ 2) · · · >lex ry+1(w) = w(y + 1)w(y + 2) · · · .

But we also know that w(x)w(x+ 1) · · · <lex w(y)w(y + 1) · · · , and the only way both of
these lexicographic inequalities can occur is if w(x) < w(y). Thus w ∈ A(π, S).

Conversely, suppose that w ∈ A(π, S). To show that cstd(w) = π, we will show
that π(x) < π(y) implies rx(w) <lex ry(w). Since n is prime, all rotations of w are
distinct, and so it is enough to show that π(x) < π(y) implies rx(w) 6lex ry(w). We will
proceed inductively. For any word v = v(1)v(2) · · · v(n) ∈ Pn, let v|m be the truncation
v(1) · · · v(m). We will show that for each m, if π(x) < π(y) we must have rx(w)|m 6lex

ry(w)|m. By transitivity, it is enough to assume that π(x) = i and π(y) = i + 1. If
m = 1, the truncations rx(w)|m, ry(w)|m are the single-character words w(x), w(y). We
know w(π−1(i)) 6 w(π−1(i+ 1)) since w ∈ A(π, S), and so w(x) 6 w(y).

Now suppose that π(x) < π(y) implies that rx(w)|m 6lex ry(w)|m for any x, y. We will
show that rx(w)|m+1 6lex ry(w)|m+1 in the case π(x) = i, π(y) = i+ 1. By the argument
for the base case, we know w(x) 6 w(y). If w(x) < w(y) we are done by property (9) in
the definition of lexicographic order, so assume w(x) = w(y). Since w ∈ A(π, S), i must
be an ascent of πcπ−1. Thus πcπ−1(i) < πcπ−1(i+1), or equivalently, π(x+1) < π(y+1).
By our inductive hypothesis, we know that rx+1(w)|m 6 ry+1(w)|m. Since w(x) = w(y),
it follows by property (10) that w(x)(rx+1(w)|m) 6lex w(y)(ry+1(w)|m), or equivalently
rx(w) 6lex ry(w).

4 Proof of F-positivity

With Theorem 4 established, we can now prove the F -positivity of XH when H = (V,E)
is a hypertree with prime-sized edges. The primality gives us the decomposition described
in Theorem 4 for each edge e ∈ E, and the hypertree structure will enable us to put these
decompositions together to get a similar decomposition of the set of all proper colorings
of H. The tool we need is the theory of P -partitions.

The key fact we will use about hypertrees is that posets on different edges are com-
patible with each other.

Lemma 6. Let H = (V,E) be a hypertree with E = {e1, . . . , ek}. Suppose that each edge
ei ∈ E has an associated poset Pi with vertex set ei and relation <i. Define the relation
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< on V by taking the transitive closure of all the relations <e, so that x < y in V if there
is a chain x = v1 <i1 v2 <i2 · · · <il vl = y. Then P = (V,<) is a poset.

Proof. Form a directed graph G on V by setting x→ y when there is an edge e ∈ E with
x, y ∈ e and x <e y. Then G is easily seen to be acyclic since H is a hypertree, and any
directed acyclic graph determines a poset after extending transitively.

Theorem 7. Let H = (V,E) be a hypertree so that |e| is prime for each e ∈ E. Then
XH is F -positive.

Proof. Say E = {e1, . . . , ek}. For each edge ei ∈ E fix a particular cyclic permutation
ci : ei → ei. Since each edge ei ∈ |E| has |ei| prime, by Theorem 4 the set of nonconstant
colorings χi : ei → P is the disjoint union⊎

π∈Lei

A(π,Des(πciπ
−1)). (11)

Let PC(H) be the set of proper colorings χ : V → P of H. Note that χ ∈ PC(H)
if and only if the restriction χ|ei is not constant for every edge ei ∈ E. Given a tuple
(π1, . . . , πk) ∈ Le1 × · · · × Lek , define the set

A(π1, π2, . . . , πk) = {χ : P→ V : χ|ei ∈ A(πi,Des(πiciπ
−1
i )) for all i}.

We note that for each coloring χ ∈ PC(H), there is a unique k-tuple (π1, . . . , πk)
so that χ ∈ A(π1, . . . , πk). We must take πi to be the unique πi ∈ Sn so that χ|ei ∈
A(π,Des(πiciπ

−1
i ). Thus the set of all proper colorings of H has the partition

PC(H) =
⊎

π1,...,πk

A(π1, π2, . . . , πk) (12)

where the union is taken over all k-tuples (π1, . . . , πk) ∈ Le1 × · · · × Lek . We will observe
that for any choice of π1, . . . , πk, the set A(π1, . . . , πk) is actually the set of (P, ω)-partitions
for a particular P = Pπ1,...,πk and ω = ωπ1,...,πk . The proof will then be complete after
applying Theorem 1 to each set A(π1, . . . , πk).

Fix a choice of (π1, . . . , πk) ∈ Le1 × · · · × Lek . For each i, define a poset Pπi on
the vertex set ei by the rule that x <Pπi

y when πi(x) < πi(y). (Note that Pπi is in
fact a total order.) Let ωπi : ei → [m] be the labeling πici. Then πi is the unique
linear extension of Pπi , so by Theorem 1 the set of (Pπi , ωπi)-partitions is exactly the set
A(πi,Des(ωπiπ

−1
i )) = A(πi,Des(πiciπ

−1
i )). Thus A(π1, π2, . . . , πk) is the set of colorings χ

so that χ|ei is a (Pπi , ωπi)-partition for each i.
By Lemma 6 there are well-defined posets P = Pπ1,...,πk and Q = Qπ1,...,πk given by

taking the transitive closure of the relations of the posets Pπi and ωπi respectively. Let
ω = ωπ1,...,πk be an arbitrary linear extension of Q. (In general there may be many linear
extensions ω, but we fix a particular one.) We claim that A(π1, π2, . . . , πk) is exactly the
set of (P, ω)-partitions.
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Let χ be a (P, ω)-partition. We will show that χ ∈ A(π1, . . . , πk) by showing χ|ei is
a (Pπi , ωπi)-partition for each i. If u, v ∈ ei with u <Pπi

v, then since χ is a P -partition
we must have χ(u) < χ(v), so χ|ei is a Pπi-partition. If in addition u >ωi v, then u >ω v
since ω is a linear extension of Qπ1,...,πk . Thus we must have χ(u) < χ(v) since χ is a
(P, ω)-partition. So χ|ei is a (Pπi , ωπi)-partition.

Conversely, suppose that χ ∈ A(π1, . . . , πk). We will show that χ is a (P, ω)-partition.
If u lP v is a covering relation in P , we must have u, v ∈ ei for some i. Then by the
definition of P , we have u <Pπi

v, and so χ(u) 6 χ(v) since χ|ei is a (Pπi , ωπi)-partition.
This shows that χ is a P -partition. Similarly, if u <ω v then we have u <ωi v since ω is a
linear extension of Q. Thus χ(u) < χ(v) since χ|ei is a (Pπi , ωπi)-partition.

Now for every (π1, . . . , πk) ∈ Le1×· · ·×Lek fix some choice of linear extension ωπ1,...,πk
of Q(π1, . . . , πk). Since A(π1, . . . , πk) is the set of (Pπ1,...,πk , ωπ1,...,πk)-partitions, we may
apply Theorem 1 along with Equation (12) to get

PC(H) =
⊎

π1,...,πk

⊎
π

A(π,Des(ωπ1,...,πkσ
−1)) (13)

where the union is taken over all tuples (π1, . . . , πk) ∈ Le1×· · ·×Lek and linear extensions
π : V → [n] of Pπ1,...,πk . Finally, the F -positivity of XH follows by applying Equation (2)
to each set A(σ,Des(ωπ1,...,πkσ

−1)).

By rewriting Equation (13) in a simpler form we can give an expression for XH as a
sum of fundamental quasisymmetric functions indexed by labelings π ∈ LV . Note that
π ∈ LV is a linear extension of Pπ1,...,πk if and only if πi lists the elements of ei in the
same order they are listed in in π. It follows that every π ∈ LV appears exactly once in
the union (13). We can also define the posets Q = Qπ1,...,πk strictly in terms of a linear
extension π. The poset Q is the transitive closure of the relations x <Q y in V if x, y
share an edge ei and πci(x) < πci(y). We summarize this in the following corollary.

Corollary 8 (of the proof of Theorem 7). Let H = (V,E) be a hypertree with edges
e1, . . . , ek. For each i, let ci : ei → ei be an arbitrary cyclic permutation. For each
π ∈ LV , let Q(π) be the poset on V generated by the relations x <Q(π) y when x, y share
an edge ei and πci(x) < πci(y). For each π ∈ LV , fix some choice of linear extension ωπ
of Q(π). Then

XH =
∑
π∈LV

FDes(ωππ−1). (14)

In Corollary 8 the choice of the linear extension ωπ is arbitrary. Every poset has a
linear extension, and this fact is enough to prove F -positivity. From a combinatorial
standpoint, however, it would be desirable to find a specific choice of ωπ that is natural
in some sense. In the next section we do so, giving a simple combinatorial interpretation
to the F -coefficients of XH .
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5 Combinatorial interpretation

Let H = (V,E) be a hypertree. We now define the H-descents DesH(π) of a labeling
π ∈ LV . This definition will assume that H has an edge ordering E = {e1, . . . , ek}
satisfying the conclusion of Lemma 3. For our purposes it does not matter which of these
edge-orderings we choose, but the definitions that follow will depend on this choice. Thus
for the rest of this section we will assume that the hypertree H is equipped with a fixed
choice of edge-ordering satisfying Equation (3).

To make the notation clearer, we first assume that V = [n] so that V is equipped with
the usual order <. Let H = (V,E) be a hypertree with edges E = {e1, . . . , ek} satisfying
Equation (3). Fix a choice of cyclic permutation ci : ei → ei. Since H is a hypertree, for
each i there is a unique path from i to i+ 1 with distinct vertices and edges. Suppose

i = v1, ej1 , v2, ej2 , . . . , ejl , vl+1 = i+ 1

is this path and jr = min(j1, j2, . . . , jl). We say that i is anH-descent if cjr(vr) > cjr(vr+1).

Figure 2: A hypertree with labeled vertices, a suitable ordering of its edges, and a cyclic
permutation of each edge.

For example, let H be the hypergraph in Figure 2. The cyclic permutations ci are
given by reading along the indicated direction in cycle notation, so that c3 is (12, 1, 2)
with 12 7→ 1 7→ 2 7→ 12. The unique path from 1 to 2 is just 1, e3, 2 since 1 and 2 are
both contained in e3. Then c3(1) = 2 < c3(2) = 12, so 1 is not an H-descent. The unique
path from 2 to 3 is given by 2, e2, 4, e1, 10, e4, 13, e7, 3 and the edge with the smallest index
occurring in this path is e1. Then c1(4) = 10 > c1(10) = 7 and so 2 is an H-descent.
Continuing, we find the H-descents are {2, 6, 8, 10, 12}.

Now fix an arbitrary (unordered) set V . Let H = (V,E) be a hypertree with an
edge-ordering satisfying Equation (3) and a cyclic permutation ci of each edge ei. Given
a labeling π ∈ LV , we identify v with π(v) to get an isomorphic hypergraph on [n] where
n = |V |. We then denote the corresponding set of H-descents by DesH(π) and call them
the H-descents of π. With these definitions in hand, we state our main theorem.

Theorem 9. Let H = (V,E) be a hypertree so that |e| is prime for each edge e ∈ E. Fix
an ordering of the edges so E = {e1, . . . , ek} with the property that |(e1∪· · ·∪ei)∩ei+1| = 1
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for all 1 6 i < k, and also fix a choice of cyclic permutation ci : ei → ei of each edge
ei ∈ E. Then

XH =
∑
π∈LV

FDesH(π)

where DesH(π) is the set of H-descents of π with respect to the chosen edge-ordering and
cyclic permutations.

Note that if H consists of a single edge e with a cyclic permutation c : e→ e, DesH(π) is
exactly Des(π−1cπ), so Theorem 9 reduces to Corollary 6.

To prove Theorem 9, we will need a systematic way of combining total orders together.
Let U, V be totally ordered sets (U, ωU), (V, ωV ) where U, V share a single element, say
U ∩ V = {x}. We define ω = ωU ← ωV to be the total order of the union U ∪ V given by
“inserting” V with its total order ωV into the place of x in U . That is, ω is the unique
total order agreeing with ωU , ωV on U, V so that when u ∈ U, v ∈ V we have u <ω v if
and only if u <ωU x. For example, if U = {x <ωU b <ωU y}, V = {a <ωV b <ωV c} are
totally ordered sets then ω = ωU ← ωV is the total order x <ω a <ω b <ω c <ω y. Note
that ωU ← ωV is not the same as ωV ← ωU .

We now consider the total orders that arise from repeated insertion.

Lemma 10. Let H = (V,E) be a hypertree with E = {e1, . . . , ek} so that Equation (3)
holds. Suppose there is a total order ωi on each ei, and define a total order ω on V by

ω = (· · · (ω1 ← ω2)← · · · )← ωk.

Then for any distinct x, y ∈ V , the pair satisfies x <ω y if and only vr <ωjr
vr+1 where

x = v1, ej1 , v2, ej2 , . . . , vl, ejl , vl+1 = y (15)

is the unique path from x to y in H and jr = min(j1, j2, . . . , jl).

Proof. We proceed by induction on the number of edges of H. If H has only one edge,
the statement is trivial, so suppose that the statement holds for hypertrees with fewer
than k edges and that H has exactly k edges. Let H ′ = (V ′, E ′) be the hypertree with
V ′ = e1 ∪ · · · ∪ ek−1 and E ′ = E\{ek}, and let ω′ be the total order on V ′ given by

ω′ = (· · · (ω1 ← ω2)← · · · )← ωk−1,

so that ω = ω′ ← ωk. If both x and y are in V ′ then we are done by the inductive
hypothesis. Similarly if x, y ∈ ek then there is nothing to show. So assume that x ∈ ek\V ′
and y ∈ V ′\ek and let the tuple (15) be the path from x to y. Then we must have j1 = k,
so that {v2} = V ′ ∩ ek. From the definition of the insertion ω′ ← ωk, we have x <ω y if
and only if v2 <ω′ y. Then

v2, ej2 , . . . , vl, ejl , vl+1

is the unique path from v2 to y in H ′. Furthermore,

jr = min(j1, j2, . . . , jl) = min(j2, . . . , jl)

since j1 = k is the highest index of any edge in H. Thus by our inductive hypothesis we
see that v2 <ω′ y is equivalent to vr <ωjr

vr+1.
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Proof of Theorem 9. Given a bijection π : V → [n], let Q(π) be as in the statement
of Corollary 8. For each i let ωi be the total order of ei given by restricting Q to ei,
so that x <ωi y in e if πci(x) < πci(y). Then define ωπ to be the total order on V
given by repeated insertion, so ωπ = (· · · (ω1 ← ω2) ← · · · ) ← ωk. Then ωπ is a linear
extension of Q(π), and by Lemma 10 we see that i is a descent of ωππ

−1 if and only if
vr >ωjr

vr+1, that is, πcjr(vr) > πcjr(vr+1) where jr is the least-index edge in the path
π−1(i) = v1, ej1 , . . . , ejl , vl+1 = π−1(i + 1) from π−1(i) to π−1(i + 1). After identifying v
with π(v), the descents of ωππ

−1 become the H-descents, so that DesH(π) = Des(ωπ−1).
Applying Corollary 8 then finishes the proof.

6 Suggestions for future work

6.1 Removing the primality condition

It is likely that the condition that the edges have prime size could be removed. A closer
examination of the proof of F -positivity (Theorem 7) reveals that it does not depend on
primality per se, but only on the existence of partitions of colorings into disjoint sets of
the form A(π, S).

Theorem 11. Suppose that H = (V,E) is a hypertree with E = {e1, . . . , ek} and let
ni = |ei|. Furthermore, suppose that for each ei and π ∈ Lei there is a set Di(π) ⊆ [ni−1]
so that the set of non-constant colorings χ : ei → P is the disjoint union⊎

π∈Lei

A(π,Di(π)). (16)

Then XH is F -positive.

Proof. For each i and π ∈ Lei , choose some ωπi ∈ Lei so that Des(ωπiπ
−1
i ) = Di(π). Then

apply the proof of Theorem 7 with the maps ωπi playing the role of the maps πici.

Lemma 4 shows that a partition of the form (16) exists when n = |ei| is prime. In fact,
such a partition of the nonconstant colorings of a set of n = 4 elements does exist as well.
It was found and verified using the software package Sage [17]. We give this partition in
the appendix. Finding such a partition for each n would then constitute a proof of the
following.

Conjecture A. Let H be a hypertree. Then XH is F -positive.

We can rephrase this idea in terms of simplicial complexes. A simplicial complex ∆
is a family of subsets of a finite vertex set V so that if F ∈ ∆ and F ′ ⊆ F then F ′ ∈ ∆.
If ∆ is a simplicial complex and S ⊆ ∆ is any subset of ∆, then S is a partial simplicial
complex and we say that S is partitionable if S is a disjoint union

S =
⊎
i

[Gi, Fi]
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where the Fi are maximal faces (also called facets) of ∆, with subsets Gi ⊆ Fi, and where
the sets [Gi, Fi] are defined to be {F ∈ ∆ : Gi ⊆ F ⊆ Fi}.

The existence of a partition of the nonconstant colorings of the form (16) when |ei| = n
is equivalent to the statement a certain partial simplicial complex ∆n\∅ is partitionable.
The complex ∆n is the well-known Coxeter complex of type An−1, a simplicial complex
which among other properties has its facets in bijection with permutations π ∈ Sn.
The intervals [G,F ] are then equivalent to the sets of colorings A(π, S). The problem
of partitionability for a partial simplicial complex S ⊆ ∆n is discussed by Breuer and
Klivans in [2], where S is thought of as a scheduling problem.

6.2 Schur positivity

The Schur functions form an important basis of Sym with deep connections to represen-
tation theory of the symmetric and general linear groups. It is not the case in general
that XH is Schur-positive when H is a hypertree, or even an ordinary tree. For example,
if C = (V,E) is the “claw” with V = {1, 2, 3, 4}, E = {{1, 2}, {1, 3}, {1, 4}} then XC

is not Schur-positive. Stanley has conjectured in [13] that if G is clawfree then XG is
Schur-positive, where a graph G is clawfree when it has no induced subgraphs isomorphic
to the claw C.

It would be interesting to generalize Stanley’s conjecture to hypergraphs, but we do not
attempt that here. Instead we offer a more modest conjecture. We say that a hypergraph
H is an interval hypergraph if it is isomorphic to a hypergraph (V,E) where V = [n]
and each edge e ∈ E is an interval e = {i, i + 1, . . . , j}. Recall that a hypergraph H
is linear if |e ∩ e′| 6 1 for each pair of distinct edges e, e′. For example, if V = [9] and
E = {{1, 2, 3}, {3, 4, 5}, {5, 6}, {6, 7, 8, 9}} then H = (V,E) is an interval hypergraph that
is linear.

Conjecture B. If H is a linear interval hypergraph then XH is Schur-positive.

Note that connected linear interval hypergraphs are hypertrees, so they are at least F -
positive when they have prime-sized edges. If H = G is a linear interval hypergraph that
is in an ordinary graph, G is just a disjoint union of paths. In that case XG was shown
to be e-positive by Stanley [13] and hence Schur-positive.

Conjecture B was motivated by the study of formal group laws. A one-dimensional,
commutative formal group law in characteristic 0 is equivalent to a formal power series of
the form

f(f−1(x1) + f−1(x2) + · · · ) (17)

when f(x) is a formal power series in one variable x with f(0) = 0, f ′(0) = 1. In [18]
and [19], the author gives a number of examples of generating functions f(x) for which
the formal group law (17) can be written as a sum of chromatic symmetric functions of
certain linear interval hypergraphs.
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Note.While this paper was under review, Conjecture B was proved by Brendan Pawlowski
[9]. In fact, his method generalizes to show Schur-positivity for any hypertree with the
property that no three edges intersect.

Appendix: Partitions of nonconstant colorings

We give here explicit partitions of the set of nonconstant colorings χ : [n] → P into
the disjoint sets A(π, S) when n = 2, 3, 4. We write the set A(π, S) in the form of the
inequality

χ(i1)R1 χ(i2)R2 · · · Rn−1 χ(in)

where ij = π−1(j) and the relation Rj is < when j ∈ S and 6 when j /∈ S. The prime
cases n = 2, n = 3 use the partition given in Theorem 4, while the case n = 4 was found
and verified using Sage.

The only admissible partition for n = 2 is

χ(1) < χ(2)

χ(2) < χ(1).

There are two partitions for n = 3, with each attained from the other by reversing the
roles of 6 and <. One is

χ(1) 6 χ(2) < χ(3)

χ(1) < χ(3) 6 χ(2)

χ(2) < χ(1) 6 χ(3)

χ(2) 6 χ(3) < χ(1)

χ(3) 6 χ(1) < χ(2)

χ(3) < χ(2) 6 χ(1).

There are many partitions for n = 4. One example is

χ(1) < χ(2) < χ(3) < χ(4)

χ(1) < χ(2) 6 χ(4) 6 χ(3)

χ(1) 6 χ(3) 6 χ(2) < χ(4)

χ(1) 6 χ(3) < χ(4) 6 χ(2)

χ(1) < χ(4) < χ(2) 6 χ(3)

χ(1) < χ(4) 6 χ(3) < χ(2)

χ(2) 6 χ(1) < χ(3) 6 χ(4)

χ(2) 6 χ(1) < χ(4) < χ(3)

χ(2) < χ(3) 6 χ(1) 6 χ(4)

χ(2) < χ(3) 6 χ(4) < χ(1)

χ(2) 6 χ(4) 6 χ(1) < χ(3)

χ(2) 6 χ(4) < χ(3) 6 χ(1)

χ(3) < χ(1) 6 χ(2) < χ(4)

χ(3) < χ(1) 6 χ(4) 6 χ(2)

χ(3) 6 χ(2) < χ(1) 6 χ(4)

χ(3) 6 χ(2) < χ(4) < χ(1)

χ(3) < χ(4) < χ(1) 6 χ(2)

χ(3) 6 χ(4) 6 χ(2) < χ(1)

χ(4) 6 χ(1) < χ(2) 6 χ(3)

χ(4) 6 χ(1) 6 χ(3) < χ(2)

χ(4) < χ(2) 6 χ(1) < χ(3)

χ(4) < χ(2) 6 χ(3) 6 χ(1)

χ(4) 6 χ(3) < χ(1) 6 χ(2)

χ(4) < χ(3) < χ(2) < χ(1).
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[1] José Aliste-Prieto and José Zamora. Proper caterpillars are distinguished by their
chromatic symmetric function. Discrete Math., 315:158–164, 2014.

[2] Felix Breuer and Caroline J. Klivans. Scheduling problems. J. Comb. Theory Ser.
A, 139(C):59–79, April 2016.

[3] Vesselin Gasharov. Incomparability graphs of (3 + 1)-free posets are s-positive. In
Proceedings of the 6th Conference on Formal Power Series and Algebraic Combina-
torics (New Brunswick, NJ, 1994), volume 157, pages 193–197, 1996.

[4] David D. Gebhard and Bruce E. Sagan. A chromatic symmetric function in noncom-
muting variables. J. Algebraic Combin., 13(3):227–255, 2001.

[5] Ira M. Gessel. Multipartite P -partitions and inner products of skew Schur functions.
In Combinatorics and algebra (Boulder, Colo., 1983), volume 34 of Contemp. Math.,
pages 289–317. Amer. Math. Soc., Providence, RI, 1984.

[6] Ira M. Gessel and Louis H. Kalikow. Hypergraphs and a functional equation of
Bouwkamp and de Bruijn. J. Combin. Theory Ser. A, 110(2):275–289, 2005.

[7] Ira M. Gessel and Christophe Reutenauer. Counting permutations with given cycle
structure and descent set. J. Combin. Theory Ser. A, 64(2):189–215, 1993.

[8] Jeremy L. Martin, Matthew Morin, and Jennifer D. Wagner. On distinguishing trees
by their chromatic symmetric functions. J. Combin. Theory Ser. A, 115(2):237 –
253, 2008.

[9] Brendan Pawlowski. Personal communication.

[10] John Shareshian and Michelle L. Wachs. Chromatic quasisymmetric functions and
Hessenberg varieties. In Configuration spaces, volume 14 of CRM Series, pages 433–
460. Ed. Norm., Pisa, 2012.

[11] John Shareshian and Michelle L. Wachs. Chromatic quasisymmetric functions. Adv.
Math., 295:497 – 551, 2016.

[12] Richard P. Stanley. Ordered structures and partitions. American Mathematical So-
ciety, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No.
119.

[13] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial
of a graph. Adv. Math., 111(1):166–194, 1995.

the electronic journal of combinatorics 24(2) (2017), #P2.2 17



[14] Richard P. Stanley. Enumerative combinatorics. Volume 1. Cambridge University
Press, 2nd edition, 1997.

[15] Richard P. Stanley. Graph colorings and related symmetric functions: ideas and
applications: a description of results, interesting applications, & notable open prob-
lems. Discrete Math., 193(1-3):267–286, 1998. Selected papers in honor of Adriano
Garsia (Taormina, 1994).

[16] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

[17] W. A. Stein et al. Sage Mathematics Software (Version 6.1.1). The Sage Development
Team, 2014. http://www.sagemath.org.

[18] Jair Taylor. Formal group laws and chromatic symmetric functions of hypergraphs.
In Proceedings of the 27th International Conference on Formal Power Series and
Algebraic Combinatorics, 2015. http://fpsac.combinatorics.kr/program.

[19] Jair Taylor. Formal group laws and hypergraph colorings. PhD thesis, University of
Washington, 2016. http://hdl.handle.net/1773/36757.

the electronic journal of combinatorics 24(2) (2017), #P2.2 18

http://www.sagemath.org
http://fpsac.combinatorics.kr/program
http://hdl.handle.net/1773/36757

	Introduction
	Background
	Symmetric and quasisymmetric functions
	P-partitions
	Hypertrees

	The single edge case
	Proof of F-positivity
	Combinatorial interpretation
	Suggestions for future work
	Removing the primality condition
	Schur positivity


