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Abstract

Let F = (Kn,P) be a circulant homogeneous factorisation of index k, that
means P is a partition of the arc set of the complete digraph Kn into k circulant
factor digraphs such that there exists σ ∈ Sn permuting the factor circulants transi-
tively amongst themselves. Suppose further such an element σ normalises the cyclic
regular automorphism group of these circulant factor digraphs, we say F is normal.
Let F = (Kpd ,P) be a circulant homogeneous factorisation of index k where pd,
(d > 1) is an odd prime power. It is shown in this paper that either F is normal or
F is a lexicographic product of two smaller circulant homogeneous factorisations.

1 Introduction

Let Γ = (V,A) be a digraph with vertex set V = V (Γ) and arc set A = A(Γ). A
factorisation of Γ is a partition P = {P1, . . . , Pk} of A, and is denoted by the pair
(Γ,P). This gives rise to factor digraphs, Γi = (V, Pi) for i = 1, . . . , k. Moreover the
integer k = |P| is called the index of the factorisation and |V | is called the order of the
factorisation.

An automorphism of a factorisation (Γ,P) is an automorphism of the digraph Γ that
preserves the partition P . The automorphism group Aut(Γ,P) consists of all automor-
phisms of (Γ,P). A factorisation (Γ,P) is called transitive if Aut(Γ,P) induces a transitive
action on P ; further (Γ,P) is called homogeneous if it is transitive and in addition the
kernel of Aut(Γ,P) acting on P is transitive on the vertex set V (Γ). That is there ex-
ists a subgroup G 6 Aut(Γ,P) that permutes the parts Pi transitively, and the kernel
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M(= G ∩ Aut(Γ1) ∩ · · · ∩ Aut(Γk)) of G acting on P is vertex transitive on each of the
Γi. Hence G induces isomorphisms between each pair of the factor digraphs. To empha-
sise the groups M and G, we say that the factorisation (Γ,P) is (M,G)-homogeneous.
Such a factorisation is also denoted by (Γ,P ,M,G). We say a homogeneous factorisation
(Γ,P ,M,G) is cyclic if the induced group GP is cyclic.

A digraph is called a circulant if it has a cyclic group of automorphisms which is
regular on the vertex set. (A permutation group is regular if it is transitive and the only
element that fixes a point is the identity.) Let (Γ,P) be (M,G)-homogeneous, suppose
further that M contains a regular cyclic subgroup. Then all of the factor digraphs Γi are
circulants relative to the same cyclic regular subgroup, and (Γ,P) is called a circulant
(M,G)-homogeneous factorisation.

We denote by Kn the complete digraph on n vertices in which each ordered pair of
distinct vertices is an arc. Homogeneous factorisations of Kn with index 2 arise from
pairs Γ,Γ, where Γ is a vertex transitive digraph isomorphic to its complement Γ, that
is, Γ is a vertex transitive self-complementary directed graph. Suppose further that the
factors Γ,Γ are undirected. Then Γ is a vertex transitive self-complementary undirected
graph. Moreover it is easy to see that self-complementary circulants (Γ,Γ) correspond
to a circulant homogeneous factorisation arising from this pair. A better understanding
of vertex transitive self-complementary undirected or directed graphs is a principal mo-
tivation for studying homogeneous factorisations of Kn, see for example [7, 8]. In [9],
self-complementary circulants of prime power order have been classified. Our main pur-
pose of this paper is to classify circulant homogeneous factorisations of complete digraphs
with prime power order, which can be viewed as a generalization of the result of [9].

Let F = (Kn,P) be a circulant homogeneous factorisation. An automorphism τ(∈
Aut(F)) is called a cyclic isomorphism of F if τ is transitive on P . Suppose further that
F is (M,G)-homogeneous. It is proved in [8, Theorem 4.1] that F must be cyclic, that
is there exists σ ∈ G \M such that G = 〈M,σ〉 and GP = 〈σP〉. Such an element σ is a
cyclic isomorphism of F , and we often refer to (Kn,P ,M, σ) as this factorisation when
we wish to emphasise this cyclic isomorphism. Moreover, let Zn(6 M) be the regular
subgroup on V (Kn) and we identify the vertex set with this regular group Zn. Suppose
further that there exists a cyclic isomorphism σ fixing point 1 (the identity element of Zn)
and normalising the regular cyclic subgroup Zn. We say such a circulant homogeneous
factorisation is normal. In this case, σ can be viewed as an automorphism of the cyclic
group Zn, and we can construct such factorisations easily, see Construction 4.3 for more
details. We also give examples of non-normal circulant homogeneous factorisations in
Proposition 4.8.

We next present a lexicographic product construction of two circulant homogeneous
factorisations which is analogous to the lexicographic product construction of two di-
graphs. For more information see [1, 6].

For two digraphs Γi = (Vi, Ai) with i = 1, 2, we denote by A1[A2] the set of all pairs
((u1, u2), (v1, v2)) such that either (u1, v1) ∈ A1, or u1 = v1 and (u2, v2) ∈ A2. Then the
lexicographic product Γ1[Γ2] is defined as the digraph with vertex set V1× V2 and arc set
A1[A2].
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For i = 1, 2, let Fi = (Kni
,Pi,Mi, σi) be a circulant homogeneous factorisation of

index k where σi is a cyclic isomorphism of Fi. Let Pi = {Pi,1, . . . , Pi,k} and suppose that
σi : Pi,j 7→ Pi,j+1 (reading the second subscript modulo k). Write the vertex set Kn1n2 as
V (Kn1) × V (Kn2) and let F1[F2] = (Kn1n2 ,P) where P = {P1,j[P2,j]|1 6 j 6 k}. It is
proved in Lemma 3.1 that F1[F2] is a circulant homogeneous factorisation of index k and
F1[F2] is called the lexicographic product of F1 and F2. Let Γi,j(i = 1, 2, j = 1, . . . , k) be
the factors of Fi. Then Γ1,j[Γ2,j] are factors of F1[F2].

In this paper, we will classify circulant homogeneous factorisations of a complete di-
graph Kpd where p is an odd prime and d > 1. The main theorem is the following.

Theorem 1.1. Let F = (Kpd ,P) be a circulant homogeneous factorisation of index k
where pd(d > 1) is an odd prime power. Then either F is normal or F = F1[F2] is a
lexicographic product where Fi is a circulant homogeneous factorisation of index k and
order pdi for i = 1, 2 and d = d1 + d2 (d1, d2 > 1).

2 Preliminary results

From now on, we always assume that pd(d > 1) is an odd prime power.
A finite permutation group is called a c-group if it contains a cyclic regular subgroup.

A precise list of primitive c-groups is given in the following lemma.

Lemma 2.1. ([8, Theorem 1.2]) Suppose that X is a primitive permutation group on Ω
and X contains a cyclic regular subgroup. Then one of the following holds:

(i) |Ω| = q, and X 6 AGL(1, q), where q is a prime;

(ii) |Ω| = 4, and X = Sym(Ω);

(iii) X is almost simple and 2-transitive on Ω.

Corollary 2.2. Suppose that X is a solvable primitive c-group on Ω where |Ω| = pd is an
odd prime power. Then |Ω| = p and Zp 6 X 6 AGL(1, p).

Let Zn be a cyclic group of order n, considered in its action (by multiplication) as
a subgroup of the symmetric group Sym(Zn). A Zn-circulant is a Cayley digraph Γ =
Cay(Zn, S) with vertex set Zn and arc set A(Γ) = {(g, sg) | g ∈ Zn, s ∈ S}, for some non-
empty subset S of Zn \ {1}. We also denote by Ẑn the right regular representation of the
group Zn. Then each Zn-circulant Γ admits Ẑn as a subgroup of automorphisms. Consider
also Aut(Zn) as a subgroup of Sym(Zn) in its natural action. Then Aut(Zn) normalises
Ẑn in Sym(Zn), and Aut(Zn)∩Aut(Γ) is equal to Aut(Zn, S) := {σ ∈ Aut(Zn) | Sσ = S}.
In fact the normaliser NAut(Γ)(Ẑn) = ẐnoAut(Zn, S), see for example [2, 11]. The Cayley

digraph Γ = Cay(Zn, S) is said to be a normal circulant if Ẑn is normal in Aut(Γ), or
equivalently, if Aut(Γ) = Ẑn o Aut(Zn, S).

A circulant is called arc-transitive if its automorphism group is transitive on the arc
set. The finite arc-transitive circulants were classified independently by István Kovács [3]

the electronic journal of combinatorics 24(2) (2017), #P2.27 3



and Cai Heng Li [5] in 2004. The following result concerning arc-transitive circulants of
order pd is an immediate corollary of Theorem 1.3 in [5], (just note that in [5, Theorem
1.3], the orders of the deleted lexicographic product type digraphs cannot be a prime
power).

Theorem 2.3. Let Γ = Cay(Zpd , S) be a connected arc transitive directed circulant of
order pd where p is an odd prime and d > 1 is an integer. Then one of the following
holds:

(i) Γ is a complete digraph.

(ii) Γ is a normal circulant.

(iii) There exists an arc-transitive circulant Σ of order pd−i such that Γ = Σ[Kpi ] where
1 6 i < d. Let Zpi 6 Zpd be the subgroup of order pi. Then sZpi ⊆ S for any s ∈ S.

Let Ω be the vertex set of Kn. Then a factorisation (Kn,P) is also simply denoted by
(Ω,P).

Let F = (Kn,P) be a (M,G)-homogeneous factorisation of index k where P =
{P1, . . . , Pk}, and assume that G is imprimitive on the vertex set of Kn. Let B be a
block of G. Let PB

i = Pi ∩ (B ×B) and PB = {PB
1 , P

B
2 , . . . , P

B
k }. Then the factorisation

(B,PB) is called the induced sub-factorisation of F on the block B.

Lemma 2.4. ([7, Lemma 4.1]) Let (Kn,P ,M,G) be a homogeneous factorisation of in-
dex k and let B be a nontrivial block of G. Then the induced sub-factorisation (B,PB)
is an (MB

B , G
B
B)-homogeneous factorisation of index k. Further, GP is permutationally

isomorphic to GPB
B .

Let (Kn,P) be a circulant (M,G)-homogeneous factorisation of index k where P =
{P1, . . . , Pk} and identify the vertex set with the regular group Zn. Choose the point
1 ∈ Zn, let Pi(1) = {α ∈ Zn|(1, α) ∈ Pi} and let P(1) = {P1(1), . . . , Pk(1)}. Then P(1) is
a partition of Zn \ {1}, and the factor digraphs Γi = Cay(Zn, Pi(1)). The lemma below
gives a relation between the partition P and P(1), it can be derived from [7, Lemma 2.3]
easily.

Lemma 2.5. ([7, Lemma 2.3]) 1. Let (Kn,P) be a circulant (M,G)-homogeneous factori-
sation. Then P(1) is a partition of Zn \ {1} and each factor digraph Γi = Cay(Zn, Pi(1)).
Let G1 be the point stabilizer. Then G1 induces a transitive action on P(1), GP1 = GP

and the G1-actions on P and P(1) are equivalent.
2. Let P(1) = {P1(1), . . . , Pk(1)} be a partition of Zn\{1}. Define Γi = Cay(Zn, Pi(1))

and let Pi be the set of arcs of Γi. Then P = {P1, . . . , Pk} is a partition of the arc set
of Kn. Let G be such that Ẑn 6 G 6 Sym(Zn). Suppose the point stabilizer G1 leaves
P(1) invariant, and acts transitively on P(1). Then G = ẐnG1 leaves P invariant, and
acts transitively on P. Let M be the kernel of the action of G on P. Then (Kn,P) is a
circulant (M,G)-homogeneous factorisation.
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In the papers [8, 10], circulant homogeneous factorisations of complete digraphs Kn

have been studied. The following theorem gives some basic properties of such factorisa-
tions.

Theorem 2.6. ([8, Theorem 4.1]) Let (Kn,P) be a circulant (M,G)-homogeneous fac-
torisation of index k. Then the following statements hold:

(i) G is soluble and GP ∼= Zk.
(ii) for each prime divisor r of n, k|(r − 1).

We list some results concerning the induced sub-factorisations in the following lemma,
the proofs of these results can be found in [8, 9].

Lemma 2.7. Let (Kn,P) be a circulant (M,G)-homogeneous factorisation of index k
where P = {P1, . . . , Pk} and identify the vertex set of Kn with the regular group Zn.

(1) Let ∆ be a block of G with order m where m|n. Then ∆ = xZm is a coset of
the subgroup Zm, and the induced sub-factorisation (∆,P∆) is a circulant (M∆

∆ , G
∆
∆)-

homogeneous factorisation of index k.
(2) Let σ ∈ G be a cyclic isomorphism which fixes the point 1 and maps Pi → Pi+1

(reading the subscript modulo k). Let ∆ = Zm be a block of G. Then σ fixes Zm setwise
and σ|Zm is a cyclic isomorphism of the induced sub-factorisation (∆,P∆) where P∆ =
{P∆

1 , P
∆
2 , . . . , P

∆
k }. Moreover σ|Zm : P∆

i → P∆
i+1.

(3) Let B be a minimal block of G such that 1 ∈ B. Then B = Zp for some prime p

and Ẑp CG
Zp

Zp
6 AGL(1, p).

(4) Suppose n = pd(d > 2) is an odd prime power. Then Zp ⊂ Zp2 ⊂ · · · ⊂ Zpd−1 is a
block chain of G. Let G1 be the point stabilizer of 1. Then G1 maps elements of order pi

to elements of order pi for i = 1, . . . , d.

Proof. (1) Let B be a block of G such that 1 ∈ B and |B| = m. Consider the multipli-
cations by the elements in B, we have BB = B. Thus B = Zm is the subgroup of order
m of Zn. Suppose next that ∆ is a block of order m, and x ∈ ∆. Then ∆ = xZm as
required. Hence M∆

∆ contains the regular subgroup Zm. It follows from Lemma 2.4 that
the induced sub-factorisation (∆,P∆) is a circulant (M∆

∆ , G
∆
∆)-homogeneous factorisation

of index k.
(2) Since σ fixes 1 and 1 ∈ ∆, σ fixes the block ∆. Since P∆

i = Pi ∩ (∆ × ∆),
σ|∆ : P∆

i → P∆
i+1. Therefore σ|Zm is a cyclic isomorphism of the induced sub-factorisation

(∆,P∆).
(3) This is [8, Lemma 4.4].
(4) It follows from [8, Lemma 2.4] and Corollary 2.2 that Zp ⊂ Zp2 ⊂ · · · ⊂ Zpd−1 is a

block chain of G. For i = 1, . . . , d, G1 fixes block Zpi and so maps elements of order pi to
elements of order pi. (See also [9, Lemma 4.3, Corollary 4.4].)

We also need the following useful lemma. Since the circulant homogeneous factorisa-
tion must be cyclic by Theorem 2.6 (1), the following lemma is a direct corollary of [7,
Lemma 5.2].
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Lemma 2.8. ([7, Lemma 5.2]) Let (Kn,P) be a circulant (M,G)-homogeneous factori-
sation of index k. Let K be the kernel of the G-action on P, and let B be a nontrivial
G-invariant partition of V (Kn). Then each element of G \K fixes exactly one block of B.

We finish this section by giving the following easy proposition.

Proposition 2.9. Suppose that F = (Kp,P) is a circulant homogeneous factorisation of
order p where p is an odd prime. Then F is normal.

Proof. Let G = Aut(F) and let M be the kernel of G acting on P . By Theorem 2.6 (1)
G is solvable, and hence G is a primitive solvable c-group. By Corollary 2.2, Ẑp C G 6
Ẑp o Zp−1. Any element σ ∈ G \M is a cyclic isomorphism of F and hence F is normal
by definition.

3 Lexicographic product constructions

Suppose (Kn,P , X, Y ) is a circulant homogeneous factorisation of index k and let σ ∈ Y
be a cyclic isomorphism. Recall that we also refer to (Kn,P , X, σ) as this factorisation.

Lemma 3.1. Suppose that Fi = (Kni
,Pi,Mi, σi)(i = 1, 2) are two circulant homogeneous

factorisations of index k where σi are cyclic isomorphisms of Fi. Let Pi = {Pi,1, . . . , Pi,k}
and suppose that σi : Pi,j 7→ Pi,j+1 (reading the second subscript modulo k). Let F1[F2] =
(Kn1n2 ,P ,M, σ1 × σ2) where P = {P1,j[P2,j]|1 6 j 6 k} and M = M2 oM1. Then F1[F2]
is a circulant homogeneous factorisation of index k and Zn2 is a block of 〈M,σ1 × σ2〉.
Moreover, for any j ∈ {1, . . . , k}, let Cay(Zn1n2 , Sj) be the factor digraphs of F1[F2].
Then sZn2 ⊆ Sj for any s ∈ Sj \ Zn2.

Proof. Write the vertex set Kn1n2 as V (Kn1) × V (Kn2). Then it is easy to see that
P = {P1,j[P2,j]|1 6 j 6 k} is a partition of the arc set of Kn1n2 .

Let Γi,j(i = 1, 2, j = 1, . . . , k) be the factors of Fi. Then Γ1,j[Γ2,j] are factors of
(Kn1n2 ,P). For each j = 1, . . . ., k, since M1 6 Aut(Γ1,j),M2 6 Aut(Γ2,j), the auto-
morphism group of Γ1,j[Γ2,j] contains M2 oM1 which is transitive on the vertex set. In
addition, let 〈xi〉 ⊆ Mi be the corresponding regular cyclic group on V (Kni

). Then
(1, · · · , 1, x2)x1(∈ M2 oM1) generates a regular cyclic group on V (Kn1n2). Lastly, it is
easy to check that the natural action of σ1 × σ2 on V (Kn1) × V (Kn2) maps P1,j[P2,j] to
P1,j+1[P2,j+1]. Therefore (Kn1n2 ,P) is a circulant (M,σ1× σ2) homogeneous factorisation
of index k.

We may assume that the factor digraph Γ1,j[Γ2,j] is a circulant Cay(Zn1n2 , Sj) for
j = 1, . . . , k. For any u ∈ V (Kn1), let Bu = {(u, v)|v ∈ V (Kn2)}. Then {Bu|u ∈ V (Kn1)}
is a block system of 〈M2 oM1, σ1 × σ2〉 acting on the vertex set V (Kn1) × V (Kn2). By
Lemma 2.7 (1), {Bu|u ∈ V (Kn1)} = {xZn2|x ∈ Zn1n2}, hence it is easy to deduce that
sZn2 ⊆ Sj for any s ∈ Sj \ Zn2 .

Lemma 3.2. Let n, n1, n2 be positive integers such that n = n1n2 and n1, n2 > 2. Let
F = (Kn,P , X, σ) be a circulant homogeneous factorisation of index k where σ is a cyclic
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isomorphism fixing point 1 and let P = {P1, . . . , Pk}. Let Σj = Cay(Zn, Pj(1))(j =
1, . . . , k) be the corresponding factor digraphs. Suppose that Zn2 is a block of Y = 〈X, σ〉
and for any j ∈ {1, . . . , k} and any s ∈ Pj(1) \ Zn2, sZn2 ⊆ Pj(1). Then there exists two
circulant homogeneous factorisations Fi of order ni, (i = 1, 2) such that F = F1[F2].

Proof. Let F2 = (Kn2 ,P2, X
Zn2
Zn2

, Y
Zn2
Zn2

) be the induced sub-factorisation on the block Zn2

by F where P2 = {P2,j|j = 1, . . . , k} and P2,j = Pj ∩ (Zn2 ×Zn2). By Lemma 2.7 (1) (2),
F2 is a circulant homogeneous factorisation of order n2 and σ|Zn2

is a cyclic isomorphism
of F2.

Let X̄ and 〈σ̄〉 be the induced permutation groups of X and 〈σ〉 on the block system

Zn/Zn2 = {gZn2|g ∈ Zn} respectively. Then Ẑn/Zn2 6 X̄. Next we define an induced
quotient factorisation F1 on this block system Zn/Zn2 . For j = 1, . . . , k, let

P1,j(1) = Pj(1) \ Zn2 and P2,j(1) = Pj(1) ∩ Zn2 .

Then Pj(1) = P1,j(1) ∪ P2,j(1). First note that Γ2,j := Cay(Zn2 , P2,j(1))(j = 1, . . . , k) are
the factor digraphs of F2. Suppose that σ : Pj → Pj+1. Then σ|Zn2

: P2,j(1) → P2,j+1(1)
and hence σ|Zn2

: Γ2,j → Γ2,j+1.

On the other hand, it is proved in [4, Lemma 2.2] that Cay(Zn, P1,j(1)) = Γ1,j[Kn2 ]

where Γ1,j = Cay(Zn/Zn2 , P1,j(1)) and P1,j(1) = {s = sZn2 | s ∈ P1,j(1)}. Then σ̄ :

P1,j(1) → P1,j+1(1) and so σ̄ : Γ1,j → Γ1,j+1. Moreover, Σj = Γ1,j[Γ2,j] is a lexicographic
product graph. Let P1 = {P1,j|j = 1, . . . , k} where P1,j is the arc set of Γ1,j. Write the
vertex set of Kn1 as the quotient group Zn/Zn2 and let F1 = (Kn1 ,P1). It is easy to deduce
that F1 is a circulant (X̄, σ̄)-homogeneous factorisation of order n1 and F = F1[F2] as
required.

Corollary 3.3. Let F = (Kpd ,P) be a circulant homogeneous factorisation of index
k where pd is an odd prime power and let m < d be a positive integer. For any j ∈
{1, . . . , k}, let Cay(Zpd , Sj) be the factor digraphs of F . Then the following two statements
are equivalent.

1. There exist two circulant homogeneous factorisations Fi(i = 1, 2), such that F =
F1[F2] where F2 is of order pm.

2. For any j ∈ {1, . . . , k} and any s ∈ Sj with o(s) > pm, sZpm ⊆ Sj.

Proof. Just note that by Lemma 2.7 (4), Zpm is a block of Aut(F), the result follows from
Lemma 3.1 and 3.2.

Moreover we have the following useful remark.

Remark 3.4. Let F = (Kn,P , X, σ) be a circulant homogeneous factorisation of index
k where σ is a cyclic isomorphism fixing point 1 and let P = {P1, . . . , Pk}. Suppose
further that F = F1[F2] is of lexicographic product form where F2 is of order n2, and
Zn2 is a block of 〈X, σ〉. Then F2 is the sub-factorisation induced on the block Zn2

by F , and F1 is the quotient factorisation induced on the block system {gZn2|g ∈ Zn}
defined as in the proof of Lemma 3.2. In particular, with the notation in Lemma 3.2, the
factor digraphs of F1 are the quotient cayley digraphs Γ1,j = Cay(Zn/Zn2 , P1,j(1)) and

P1,j(1) = {s = sZn2 | s ∈ P1,j(1)}. Suppose that σ : Pj → Pj+1. Then σ̄ : Γ1,j → Γ1,j+1.
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4 Cyclic isomorphisms and normal circulant homogeneous fac-
torisations of order pd

Let (Kpd ,P) be a circulant (X, Y )-homogeneous factorisation of index k, and suppose
that X contains a regular cyclic subgroup Zpd . We always identify the vertex set of Kpd

with the group Zpd . The following lemma discusses the orders of the cyclic isomorphisms.

Lemma 4.1. Let F = (Kpd ,P) be a circulant (X, Y )-homogeneous factorisation of index
k and let τ be a cyclic isomorphism. Then k|(p − 1) and k|o(τ). Moreover there exists
a cyclic isomorphism σ ∈ Y such that σ fixes 1 and r|k for each prime divisor r of the
order o(σ).

Proof. By Theorem 2.6, k|(p − 1). Since τ is transitive on P and |P| = k, k|o(τ). By
Theorem 2.6 again, there exists a cyclic isomorphism σ ∈ Y \ X such that Y = 〈X, σ〉
and Y P = 〈σP〉 is a cyclic group of order k. Since Ẑpd 6 X is vertex transitive, we may
assume that σ fixes the point 1. Let q be a prime such that (q, k) = 1. For any positive
integer m, σq

m
(∈ Y ) is still transitive on P and so is also a cyclic isomorphism of F .

Therefore replacing σ by some power of σ if necessary, we may assume r|k for each prime
divisor r of the order o(σ).

Remark 4.2. Let F = (Kpd ,P) be a circulant homogeneous factorisation of index k. For
convenience we will assume from now on that, for a cyclic isomorphism σ of F , σ fixes
the point 1. Moreover if r|k for each prime divisor r of the order o(σ), then we say the
cyclic isomorphism σ satisfies Lemma 4.1.

Suppose further that the circulant homogeneous factorisation (Kpd ,P) is normal, that
is there exists a cyclic isomorphism σ normalising the regular subgroup Zpd . Hence σ can
be viewed as an automorphism of the group Zpd , that is σ ∈ Aut(Zpd) ∼= Zpd−1(p−1).

Construction 4.3. Let pd be an odd prime power such that d > 1 and k > 2 a positive
integer such that k|(p − 1). Suppose that σ ∈ Aut(Zpd) such that each prime divisor of
o(σ) divides k and k|o(σ). In particular (o(σ), p) = 1. Since Aut(Zpd) ∼= Zpd−1 × Zp−1, σ
belongs to the cyclic subgroup of order p− 1 and hence σ acts semiregularly on Zpd \ {1}.
Let ∆1, . . . ,∆t be the orbits of σ on Zpd \ {1}. As k|o(σ), σk divides each ∆i into k
orbits, say ∆i,1,∆i,2, . . . ,∆i,k. Relabeling if necessary, we may assume that ∆σ

i,j = ∆i,j+1

where i ∈ {1, . . . , t}, j ∈ {1, . . . , k} (reading the second subscript modulo k). For any
j1, . . . , jt ∈ {1, . . . , k}, let

P1(1) = ∆1,j1 ∪∆2,j2 ∪ · · · ∪∆t,jt .

For i = 2, . . . , k, let

Pi(1) = P1(1)σ
i−1

= ∆1,j1+(i−1) ∪∆2,j2+(i−1) ∪ · · · ∪∆t,jt+i−1.

Then P(1) = {P1(1), . . . , Pk(1)} is a σ-invariant partition of Zpd \ {1}. For each i, let
Γi = Cay(Zpd , Pi(1)), let Pi be the set of arcs of the circulant Γi, and let P = {P1, . . . , Pk}.
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By Lemma 2.5 (2) (taking G as 〈Zpd , σ〉), F = (Kpd ,P) is a normal circulant homogeneous
factorisation of index k and σ is a cyclic isomorphism of this factorisation. Denote
J = {j1, . . . , jt}. Since this construction F depends on the choice of σ and J , we also
denote this construction by Fσ,J .

Note that there do exist p, d, k, σ satisfying the conditions of Construction 4.3. Con-
versely, suppose that (Kpd ,P) is a normal circulant homogeneous factorisation of index k.
Then each factor digraph Γi is a circulant Cay(Zpd , Pi(1)) where Pi(1) = {α ∈ Zn|(1, α) ∈
Pi}. Let σ ∈ Aut(Zpd) be a cyclic isomorphism. As proved in Lemma 4.1, we may assume
that each prime divisor of the order o(σ) divides k. Therefore σ induces a transitive action
on P(1) = {P1(1), . . . , Pk(1)} and σk fixes each Pi(1) for i = 1, . . . , k. As defined above
in Construction 4.3, let ∆1, . . . ,∆t be the orbits of σ on Zpd \ {1}. And for each i, σk

divides ∆i into k orbits, say ∆i,1,∆i,2, . . . ,∆i,k such that ∆σ
i,j = ∆i,j+1. It is easy to show

that there exists j1, . . . , jt ∈ {1, . . . , k} such that P1(1) = {∆1,j1 ∪∆2,j2 ∪ · · · ∪∆t,jt} and

Pi(1) = P1(1)σ
i−1

as in Construction 4.3. Therefore Construction 4.3 provides us with a
method for constructing all normal circulant homogeneous factorisations of order pd, we
write this result in the following proposition.

Proposition 4.4. Let F be a normal circulant homogeneous factorisations of order pd

and index k. And let σ ∈ Aut(Zpd) be a cyclic isomorphism of F which satisfies Lemma
4.1. With above notation, there exists J = {j1, . . . , jt} such that F = Fσ,J which is defined
in Construction 4.3.

We will need the following easy lemma for the proof of the main theorem.

Lemma 4.5. Let pd be an odd prime power such that d > 2, and let σ ∈ Aut(Zpd) such
that o(σ)|(p− 1). Let Zpi 6 Zpd be a subgroup. Then

(1) o(σ|Zpi
) = o(σ).

(2) Let σ̄ ∈ Aut(Zpd/Zpi) be the automorphism of the quotient group induced by σ.
Then o(σ) = o(σ̄).

Proof. (1) Suppose Aut(Zpd) = 〈µ〉 × 〈γ〉 = Zp−1 × Zpd−1 . Then µ is a product of
pd−1
p−1

disjoint (p − 1)-cycles acting on Zpd \ {1}. By assumption σ ∈ 〈µ〉 and hence

o(σ|Zpi
) = o(σ).

(2) It is easy to check that Aut(Zpd/Zpi) = Aut(Zpd)/〈γpd−1−i〉 and so o(σ) = o(σ̄).

Lemma 4.6. Suppose that (Kpd ,P) is a normal circulant homogeneous factorisation of
index k and σ ∈ Aut(Zpd) is a cyclic isomorphism satisfying Lemma 4.1. Let τ ∈ Aut(Zpd)
such that k|o(τ) and each prime divisor of o(τ) divides k. Then τ is a cyclic isomorphism
of (Kpd ,P) if and only if o(σ) = o(τ).

Proof. By assumption we may assume that o(σ) = mk, o(τ) = nk where m,n are positive
integers and each prime divisor of m and n divides k.

Suppose first that o(σ) = o(τ). Since Aut(Zpd) is cyclic, τ = σl for some integer l such
that (l, o(τ)) = 1. This implies (l, k) = 1. Since σ is transitive on P and |P| = k, so is τ .
Therefore τ is a cyclic isomorphism of (Kpd ,P).
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Conversely, suppose that τ is a cyclic isomorphism. Then τ is transitive on P . Let
H = 〈σ, τ〉. Then H is transitive on P . Note that σ, τ ∈ Aut(Zpd) ∼= Z(p−1)pd−1 , we have

that H = 〈α〉 where α generates H and o(α) = mk·nk
(m,n)k

= mn
(m,n)

k. Suppose that m 6= n,

without loss of generality, we may assume m
(m,n)

6= 1 and τ = α
m

(m,n) . Since both α and

τ are transitive on P , (k, m
(m,n)

) = 1. However by assumption each prime divisor of m

divides k, a contradiction. Therefore m = n and o(σ) = o(τ).

Lemma 4.7. Suppose that F = (Kpd ,P) is a normal circulant homogeneous factorisation
of index k where P = {P1, .., Pk}. Let σ be a cyclic isomorphism (not required to be a
group automorphism) such that σ : Pi → Pi+1 (reading the subscript modulo k). Then
there exists a cyclic isomorphism τ ∈ Aut(Zpd) satisfying Lemma 4.1 and τ : Pi → Pi+1

too.

Proof. Since F is normal, by definition there exists a cyclic isomorphism τ ∈ Aut(Zpd)

satisfying Lemma 4.1. Consider Y = 〈Ẑpd , σ, τ〉 and let X be the kernel of Y acting on
P . Let σ̄ = σP and τ̄ = τP . Then Y/X = 〈σ̄〉 = 〈τ̄〉, and hence σ̄ = τ̄ l for some positive
integer. Replacing τ by τ l, we have that τ : Pi → Pi+1 as required.

Lastly in this section we give examples of non-normal circulant homogeneous factori-
sations of order p2. Note that there do exist p, k, σ1, σ2 satisfying the conditions of the
following proposition.

Proposition 4.8. Let p be an odd prime and k(> 2) a positive integer such that k|(p−1).
Suppose further that σ1, σ2 ∈ Aut(Zp) such that o(σ1) = k and o(σ2) = mk where m >
2 and each prime divisor of m divides k. By Construction 4.3, there exist circulant
homogeneous factorisations Fi of index k and order p such that σi is a cyclic isomorphism
of Fi respectively. Take F = F1[F2]. Then F is a non-normal circulant homogenous
factorisation of order p2.

Proof. By Lemma 3.1 F is a circulant homogeneous factorisation of order p2. Suppose
conversely that F is normal and σ ∈ Aut(Zp2) is a cyclic isomorphism of F satisfying
Lemma 4.1. By Remark 3.4, F2 is the sub-factorisation induced on the block Zp. By
Lemma 2.7 (2), σ|Zp ∈ Aut(Zp) is also a cyclic isomorphism of F2. By Lemma 4.6,
o(σ|Zp) = o(σ2). It follows from Lemma 4.5 that o(σ2) = o(σ). On the other hand, F1

is the quotient factorisation of the block system {gZp|g ∈ Zp2} by Remark 3.4, and the
induced σ̄ ∈ Aut(Zp2/Zp) is also a cyclic isomorphism of F1. Still by Lemma 4.6 and
Lemma 4.5, we have o(σ1) = o(σ̄) = o(σ) which contradicts the fact that o(σ1) 6= o(σ2).
Therefore F is not normal.

5 Proof of Theorem 1.1

We first study the structures of circulant homogeneous factorisations of order pd.

Lemma 5.1. Let (Kpd ,P , X, Y ) be a circulant homogeneous factorisation of index k, and
let σ ∈ Y be a cyclic isomorphism. Let Γi = Cay(Zpd , Si) be the factor digraphs where
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1 6 i 6 k. Then either Ẑpd C Y and σ ∈ Aut(Zpd), or for any i ∈ {1, . . . , k} and any
s ∈ Si with o(s) = pd, sZp ⊂ Si.

Proof. If d = 1 then Y is a soluble primitive c-group. It follows from Corollary 2.2 that
Ẑp C Y 6 AGL(1, p) and σ ∈ Aut(Zp).

Next suppose that d > 2. Let X1 and Y1 be the point stabilizers of 1 in X and Y
respectively. Then Y1 = 〈X1, σ〉 and suppose that σ : Si → Si+1(1 6 i 6 k), reading the
subscript modulo k.

First take any g ∈ S1 with o(g) = pd. Consider the orbital digraph Γg of Y with arc set
∆ = (1, g)Y . Then Γg = Cay(Zpd , S1g∪S2g∪· · ·∪Skg) where S1g = gX1 is a subset of S1 and

Sig = (S1g)
σi−1 ⊆ Si for i = 2, . . . , k. Since o(g) = pd, Γg is a connected Y -arc-transitive

circulant of order pd. By Lemma 2.7 (4), o(h) = pd for any h ∈ S1g ∪ S2g ∪ · · · ∪ Skg.
In particular, Γg is not the complete graph Kpd . Applying Theorem 2.3, we have either

Ẑpd C Y and σ ∈ Aut(Zpd) or gZp ⊂ S1g ∪ S2g ∪ · · · ∪ Skg.
In the latter case, we claim that gZp ⊂ S1g ⊂ S1. Note that B = {xZp | x ∈ Zpd} is a

block system of Y . Suppose gZp∩Sig 6= ∅ where k > i > 2. Then gσ
1−i
Zp∩S1g 6= ∅. Since

S1g = gX1 , there exists x ∈ X1 such that gx ∈ gσ1−i
Zp. It follows that (gZp)

σ1−i
= (gZp)

x

and so gZp is fixed by xσi−1. Since gZp 6= Zp, xσ
i−1 fixes at least two blocks gZp and Zp,

contradicting Lemma 2.8. Hence gZp ⊂ S1g.
For any gi ∈ Si(i > 2) with o(gi) = pd, we consider the orbital digraph Γgi of Y with

arc set ∆ = (1, gi)
Y as well. Applying the same argument as above repeatedly, it is easy

to deduce that either Ẑpd CY and σ ∈ Aut(Zpd), or for any i ∈ {1, . . . , k}, sZp ⊂ Si where
s ∈ Si with o(s) = pd.

Proposition 5.2. Let (Kpd ,P , X, Y ) be a circulant homogeneous factorisation of index
k, and let σ ∈ Y be a cyclic isomorphism. Let Γi = Cay(Zpd , Si) be the factor digraphs.

Then there exists n ∈ {1, . . . , d} such that Ẑpn C Y
Zpn

Zpn
and σ|Zpn

∈ Aut(Zpn). Moreover,

for each i ∈ {1, . . . , k} and each s ∈ Si with o(s) > pn, we have sZp ⊂ Si.

Proof. If d = 1, then take n = 1, the result follows from Corollary 2.2. Suppose next
that d > 2. By Lemma 5.1, we may assume that for any i ∈ {1, . . . , k}, sZp ⊂ Si
where s ∈ Si with o(s) = pd. By Lemma 2.7 (4), the subgroup Zpd−1 is a block of

Y and the induced factorisation Fd−1 = (Kpd−1 ,PZ
pd−1

, X
Z
pd−1

Z
pd−1

, Y
Z
pd−1

Z
pd−1

) is a circulant

homogeneous factorisation where Y
Z
pd−1

Z
pd−1

= 〈X
Z
pd−1

Z
pd−1

, σ|Z
pd−1
〉. For any i ∈ {1, . . . , k}, let

Γi(d − 1) = Cay(Zpd−1 , Si(d − 1)) be the corresponding factor digraphs of Fd−1. Then
Si(d − 1) = {s ∈ Si|o(s) 6 pd−1}. Applying Lemma 5.1 to Fd−1, we deduce that either

ˆZpd−1 C Y
Z
pd−1

Z
pd−1

and σ|Z
pd−1
∈ Aut(Zpd−1), or for any i ∈ {1, . . . , k}, sZp ⊂ Si where s ∈ Si

with o(s) = pd−1.

Continuing in this fashion (note that Ẑp C Y
Zp

Zp
by Lemma 2.7 (3)) we have that an

integer n exists such that n ∈ {1, . . . , d}, Ẑpn C Y
Zpn

Zpn
, σ|Zpn

∈ Aut(Zpn) and for any

i ∈ {1, . . . , k}, sZp ⊂ Si where s ∈ Si with o(s) > pn.
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Suppose (Kpd ,P , X, Y ) is a circulant homogeneous factorisation and denote the factor
digraphs by Γi = Cay(Zpd , Si). By Proposition 5.2, there exists n ∈ {1, . . . , d} such that

Ẑpn C Y
Zpn

Zpn
and for each i ∈ {1, . . . , k} and each s ∈ Si with o(s) > pn, sZp ⊂ Si. Thus

for any i ∈ {1, . . . , k}, we divide the Cayley subset Si into the following two parts. Let

S1
i = {s ∈ Si | o(s) 6 pn} and S2

i = {s ∈ Si | pd > o(s) > pn+1}. (1)

Then Si = S1
i ∪ S2

i . Note that we set S2
i = ∅ if n = d.

Lemma 5.3. Suppose that F = (Kpd ,P , X, Y ) is a circulant homogeneous factorisation
of index k with d > 2, and let σ ∈ Y be a cyclic isomorphism. For any i ∈ {1, . . . , k},
let Γi = Cay(Zpd , Si) be the factor digraphs, and suppose that σ : Γi → Γi+1 (reading the
subscript modulo k). Suppose further that n, S1

i , S
2
i are defined as above in (1). Then

there exists a factorisation F ′ = (Kpd ,P ′) satisfying the following conditions.

(i) F ′ is also a circulant (X, Y )-homogeneous factorisation of index k. Let Σi =
Cay(Zpd , Ti) be the corresponding factor digraphs of F ′. Then σ : Σi → Σi+1 is
a cyclic isomorphism of F ′.

(ii) For any i ∈ {1, . . . , k} and any r ∈ Ti such that o(r) > p, we have rZp ⊆ Ti. (This
implies F ′ is of lexicographic product form by Corollary 3.3.)

(iii) For any i ∈ {1, . . . , k}, let T 2
i = {r ∈ Ti|o(r) > pn}. Then T 2

i = S2
i .

(iv) For any i ∈ {1, . . . , k}, let S0
i = {s ∈ Si | o(s) = p} and T 0

i = {r ∈ Ti | o(r) = p}.
Then T 0

i = S0
i .

Proof. If n = 1, take F ′ = F . We next assume that n > 2. Let Xn = X
Zpn

Zpn
, Yn = Y

Zpn

Zpn

and let τ = σ|Zpn
. Then Yn = 〈Xn, τ〉. By Lemma 2.7 the induced sub-factorisation (on

the block Zpn) Fn = (Zpn ,PZpn
) is (Xn, Yn)-homogeneous and τ is a cyclic isomorphism

of Fn.
By Proposition 5.2, Xn = Ẑpn o L where L 6 Aut(Zpn) and fixes each S1

i (1 6 i 6
k) setwise. Moreover τ ∈ Aut(Zpn) and τ k ∈ L. Applying Lemma 2.7 to Fn, B1 =
{gZp | g ∈ Zpn} forms a complete block system of Yn on Zpn . As τ normalises L,
(gZp)

Lτ = (gZp)
τL. For any gZp ∈ B1 such that gZp 6= Zp, it follows from Lemma 2.8

that gτ
i
Zp 6= (gZp)

x for any x ∈ L and 1 6 i < k. Thus we may suppose that L has km
orbits (for some integer m > 1) on B1 \ {Zp} and after relabelling if necessary, we may
suppose that ∆j,1,∆j,2, . . . ,∆j,k are L-orbits on B1 \ {Zp} such that ∆τ

j,i = ∆j,i+1 where
j ∈ {1, . . . ,m}, i ∈ {1, . . . , k}.

Let

Ri =
m⋃
j=1

∆j,i and S0
i = {s ∈ S1

i | o(s) = p}.

Take T 1
i = S0

i ∪Ri and take T 2
i = S2

i . Let Ti = T 1
i ∪T 2

i . Then {T1, . . . , Tk} is a partition of
Zpd\{1}. By Lemma 2.7 (4) and our construction it is easy to see that the vertex stabilizer
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X1 of X fixes each Ti(i = 1, . . . , k) and σ : Ti 7→ Ti+1. Define Σi = Cay(Zpd , Ti), (i =
1, . . . , k) and let P ′i be the set of arcs of Σi and let P ′ = {P ′1, . . . , P ′k}. By Lemma 2.5
(2) F ′ = (Kpd ,P ′) is a circulant (X, Y )-homogeneous factorisation of index k, and σ is a
cyclic isomorphism of F ′. The results (ii), (iii) and (iv) follow from the construction of
F ′ obviously.

We are ready to prove Theorem 1.1.
Proof of Theorem 1.1: We proceed by induction on d. If d = 1, the result follows

from Proposition 2.9. Assume inductively the result holds for circulant homogeneous
factorisations of order 6 pd−1 where d > 2.

Let F = (Kpd ,P). Let Y = Aut(F) and X be the kernel of Y acting on F . Then F is
a circulant (X, Y )-homogeneous factorisation of index k. Let σ be a cyclic isomorphism
satisfying Lemma 4.1 and let Γi = Cay(Zpd , Si) be the factor digraphs (1 6 i 6 k). We
assume that σ : Γi → Γi+1 (reading the subscript modulo k). By Proposition 5.2, there

exists n ∈ {1, . . . , d} such that Ẑpn C Y
Zpn

Zpn
and σ|Zpn

∈ Aut(Zpn). If n = d then F is
normal as required. So we assume next that n < d.

By Proposition 5.2, for each i ∈ {1, . . . , k} and each s ∈ Si with o(s) > pn, sZp ⊂ Si.
Let S1

i = {s ∈ Si | o(s) 6 pn} and S2
i = {s ∈ Si | pd > o(s) > pn+1}. Then Si = S1

i ∪ S2
i .

By Lemma 5.3, there exists a circulant (X, Y ) homogeneous factorisation F ′ = (Kpd ,P ′)
such that σ is also a cyclic isomorphism of F ′. Let Σi = Cay(Zpd , Ti) be the corresponding
factor digraphs of F ′. Then σ : Σi → Σi+1, (reading the subscript modulo k). Setting
T 1
i = {s ∈ Ti | o(s) 6 pn} and T 2

i = {s ∈ Ti | pd > o(s) > pn+1}, we have T 2
i = S2

i .
Moreover, let S0

i = {s ∈ Si | o(s) = p} and T 0
i = {r ∈ Ti | o(s) = p}. Then T 0

i = S0
i by

Lemma 5.3.
By Corollary 3.3 F ′ is of lexicographic product form. Suppose l(> 1) is maximal such

that F ′ = F ′1[F ′2] where F ′2 is a circulant homogeneous factorisation of order pl and F ′1 is
a circulant homogeneous factorisation of order pd−l. Then F ′1 can not be a lexicographic
product of two smaller circulants homogeneous factorisations. By induction, F ′1 is normal.

Suppose first that l > n. By Corollary 3.3, for each i ∈ {1, . . . , k}, rZpl ⊆ Ti for any
r ∈ T 2

i with o(r) > pl. Since T 2
i = S2

i (1 6 i 6 k), we have sZpl ⊆ Si for any s ∈ S2
i

with o(s) > pl. By Corollary 3.3, F = F1[F2] where F2 is a circulant homogeneous
factorisation of order pl and F1 is a circulant homogeneous factorisation of order pd−l.

Suppose next that l < n. We will show that F is normal in this case.
Consider first the induced sub-factorisation A′ of F ′ on the block Zpn . Let τ = σ|Zpn

∈
Aut(Zpn). Then it follows from Lemma 2.7 that τ : T 1

i → T 1
i+1 is a cyclic isomorphism of

A′ and so A′ is normal. Since σ satisfies Lemma 4.1 and o(τ)|o(σ), the cyclic isomorphism
τ of A′ satisfies Lemma 4.1, that is each prime divisor of the order o(τ) divides k.

On the other hand F ′ = F ′1[F ′2], and recall that for each i ∈ {1, . . . , k}, rZpl ⊆ Ti for
any r ∈ Ti with o(r) > pl. By Remark 3.4 we may suppose the factor digraphs of F ′1 are the
quotient Cayley digraphs Σi = Cay(Zpd/Zpl , Ti) and Ti = {r = rZpl | r ∈ Ti, o(r) > pl}
where 1 6 i 6 k. And the induced natural cyclic isomorphism σ̄ : T i → T i+1.

By induction, we have seen that F ′1 is normal, and so by Lemma 4.7 there exists a
cyclic isomorphism ψ̄ ∈ Aut(Zpd/Zpl) satisfying Lemma 4.1 such that ψ̄ : T i → T i+1. By
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Lemma 4.5, we may also assume that ψ̄ is induced by ψ ∈ Aut(Zpd) where o(ψ) = o(ψ̄).
In particular ψ : T 2

i → T 2
i+1, (1 6 i 6 k, reading the subscript modulo k).

Since l < n, we have rZpl ⊆ T 1
i for any r ∈ T 1

i with o(r) > pl, and so the normal
circulant homogeneous factorisation A′ = A′1[A′2] is also of lexicographic product type
where A′1 is of order pn−l and A′2 is of order pl. Again by Remark 3.4, A′1 is the quotient
factorisation induced by A′ on the block system {xZpl |x ∈ Zpn}, and so the induced
automorphism τ̄ ∈ Aut(Zpn/Zpl) is a cyclic isomorphism of A′1. As τ satisfies Lemma 4.1,
by Lemma 4.5, o(τ̄) = o(τ). On the other hand, since Zpn/Zpl < Zpd/Zpl , we can also
view A′1 as the induced sub-factorisation by F ′1 on the block Zpn/Zpl , and so ψ̄|Zpn/Zpl

is also a cyclic isomorphism of A′1. This forces o(ψ|Zpn
) = o(ψ̄|Zpn/Zpl

) = o(τ̄) = o(τ) by

Lemma 4.5 and Lemma 4.6. Next we apply Lemma 4.6 to A′, then ψ|Zpn
is also a cyclic

isomorphism of A′ and hence ψ|Zpn
induces a transitive action on {T 1

i |i = 1, . . . , k}. Note

that ψ̄ : T i → T i+1(1 6 i 6 k) where Ti = {r = rZpl | r ∈ Ti, o(r) > pl} and l < n.
We deduce that ψ|Zpn

: T 1
i → T 1

i+1. Let A be the induced sub-factorisation on Zpn by F .
Applying Lemma 4.6 again to A, we have ψ|Zpn

is also a cyclic isomorphism of A and so
induces a transitive action on {S1

i |i = 1, . . . , k}. By Lemma 5.3, T 0
i = S0

i . and so it is
easy to deduce that ψ|Zpn

: S1
i → S1

i+1. It then follows from S2
i = T 2

i that ψ : Si → Si+1

and so ψ ∈ Aut(Zpd) is a cyclic isomorphism of F . Therefore F is normal. This completes
the proof.
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