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Abstract

Let X be a finite collection of sets (or “clusters”). We consider the problem of
counting the number of ways a cluster A ∈ X can be partitioned into two disjoint
clusters A1, A2 ∈ X, thus A = A1 ] A2 is the disjoint union of A1 and A2; this
problem arises in the run time analysis of the ASTRAL algorithm in phylogenetic
reconstruction. We obtain the bound

|{(A1, A2, A) ∈ X ×X ×X : A = A1 ]A2}| 6 |X|3/p

where |X| denotes the cardinality of X, and p := log3
27
4 = 1.73814 . . . , so that

3
p = 1.72598 . . . . Furthermore, the exponent p cannot be replaced by any larger

quantity. This improves upon the trivial bound of |X|2. The argument relies on
establishing a one-dimensional convolution inequality that can be established by
elementary calculus combined with some numerical verification.

In a similar vein, we show that for any subset A of a discrete cube {0, 1}n, the
additive energy of A (the number of quadruples (a1, a2, a3, a4) in A4 with a1 + a2 =
a3 + a4) is at most |A|log2 6, and that this exponent is best possible.

1 Introduction

The purpose of this note is to establish the following theorem:

Theorem 1. Let X be a finite collection of sets. Then we have

|{(A1, A2, A) ∈ X ×X ×X : A = A1 ] A2}| 6 |X|3/p (1)

where |X| denotes the cardinality of X, A = A1 ] A2 denotes the assertion that A is the
disjoint union of A1 and A2, and p := log3

27
4

= 1.73814 . . . . Furthermore, the exponent p
cannot be replaced by any larger quantity.
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Note that 3
p

= 1.72598 . . . . Thus the inequality (1) improves upon the trivial bound

|{(A1, A2, A) ∈ X ×X ×X : A = A1 ] A2}| 6 |X|2 (2)

that arises simply because there are |X|2 pairs (A1, A2), and this pair uniquely determines
A.

Theorem 1 has applications in analyzing the running time of several dynamic pro-
gramming algorithms used in phylogenetic reconstruction literature. Several published
algorithms [4, 5, 6, 7] seek to find a median tree that minimizes the total distance to an
input set of trees, for various definitions of a distance between two trees. For example,
a method called ASTRAL [4, 5] defines the distance between two trees as the number
of quartet trees induced by one tree but not the other, and seeks to find the unrooted
tree that minimizes the sum of this quartet distance to its input set of unrooted trees, a
problem that turns out to be NP-Hard [8]. To make this optimization problem tractable,
ASTRAL uses a dynamic programming approach where the final tree is built by succes-
sively dividing each subset of leaves (called a cluster) A into smaller clusters, A′ and A\A′
while minimizing the number of quartets in the input tree set that will have to be missing
from any tree that includes A′|A\A′ as a bipartition (i.e., a branch; note that a branch
in an unrooted tree is just a bipartition of the leaves). If all possible subsets A′ ⊂ A are
considered when dividing A to two subsets, the algorithm provably returns the optimal
tree (also, the optimal solution has been shown to enjoy statistical consistency under cer-
tain models of gene and species evolution [4]). However, such a dynamic programming
algorithm will have to explore the power set of the set of leaves and will thus require time
exponential in the number of leaves.

To give a practical alternative, ASTRAL solves a constrained version of the problem
where a set X of clusters is defined in advance to constrain the search space; when divid-
ing A, we only look for A′ ⊂ A such that A′ ∈ X and A\A′ ∈ X. The set X is defined
heuristically, and the running time of ASTRAL should be defined asymptotically as a
function of |X|. Throughout the dynamic programming execution, ASTRAL considers
all possible pairs of clusters x, y ∈ X exactly once iff x ∩ y = ∅ and x ∪ y ∈ X. There-
fore, establishing the asymptotic running time of ASTRAL with regards to |X| requires
bounding the left-hand side of (1) ASTRAL simply used the trivial O(|X|2) upper bound
in their running time analysis. We can now improve that analysis to O(|X|1.72598...).

We first demonstrate why the exponent p is best possible. Let n be a large multiple
of 3, and let X denote the collection of all sets A ⊂ {1, . . . , n} whose cardinality |A| is
equal to either n/3 or 2n/3. Clearly

|X| =
(
n

n/3

)
+

(
n

2n/3

)
= 2

n!

(n/3)!(2n/3)!
.

On the other hand, if A ∈ X has cardinality 2n/3, then it can be partitioned in
(
2n/3
n/3

)
ways into A1 ]A2 with A1, A2 ∈ X, and no partition is available when A has cardinality
n/3. Thus the left-hand side of (1) is equal to(

n

2n/3

)
×
(

2n/3

n/3

)
=

n!

(n/3)!(n/3)!(n/3)!
.
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Using the Stirling approximation n! = nne−n+o(n) as n → ∞, we conclude that the left-
hand side of (1) is equal to exp(n(log 3+o(1))), while |S| is equal to exp(n

3
(log 27

4
+o(1))),

and on sending n→∞ we conclude that (1) can fail whenever p > log3
27
4

.
Now we show why (1) holds for p = log3

27
4

. This will be a consequence of the following
convolution estimate on the discrete unit cube {0, 1}n (which we view as a subset of Zn

for the purposes of defining convolution):

Theorem 2 (Convolution). Let n > 1 be a natural number, and let f, g, h : {0, 1}n → R
be functions. Set p := log3

27
4

. Then we have

f ∗ g ∗ h(1n) 6 ‖f‖`p({0,1}n)‖g‖`p({0,1}n)‖h‖`p({0,1}n) (3)

where 1n denotes the element (1, . . . , 1) of {0, 1}n, f ∗ g ∗ h denotes the convolution

f ∗ g ∗ h(w) :=
∑

x,y,z∈{0,1}n:x+y+z=w

f(x)g(y)h(z)

and ‖ · ‖`p({0,1}n) denotes the `p norm

‖f‖`p({0,1}n) := (
∑

x∈{0,1}n
|f(x)|p)1/p.

Let us now see why Theorem 2 implies Theorem 1. We first observe that to prove
Theorem 1, it suffices to do so under the additional assumption that all the sets in X are
finite. Indeed, if we let Ω :=

⋃
A∈X A denote the union of the sets in X, then X partitions

Ω into at most 2|X| cells. Some of these cells may be infinite, but we may replace any such
cell with a single point without affecting either the left or right-hand side of (1). After
applying this replacement, every set in X is now finite.

Without loss of generality, we may now assume that all the sets A in X are subsets of
{1, . . . , n} for some natural number n > 1. We now define the functions f, g, h : {0, 1}n →
{0, 1} as follows. For any (a1, . . . , an) ∈ {0, 1}n, we set f(a1, . . . , an) = g(a1, . . . , an) = 1
when the set {1 6 i 6 n : ai = 1} lies in X, and f(a1, . . . , an) = g(a1, . . . , an) = 0
otherwise. Similarly, we set h(a1, . . . , an) = 1 when the set {1 6 i 6 n : ai = 0} lies in X,
and h(a1, . . . , an) = 0 otherwise. It is then easy to see that

‖f‖`p({0,1}n) = ‖g‖`p({0,1}n) = ‖h‖`p({0,1}n) = |X|1/p

and
f ∗ g ∗ h(1n) = |{(A1, A2, A) ∈ X ×X ×X : A = A1 ] A2}|

giving the claim.

Remark 3. Young’s convolution inequality establishes (3) with p replaced by 3/2 (or
any exponent less than 3/2). This corresponds to the trivial bound (2). The ability to
improve the exponents in Young’s convolution inequality is reminiscent of the Kunze-Stein
phenomenon [3] in semisimple Lie groups, as well as the hypercontractivity inequality on
the Boolean cube (see e.g. [2]). Indeed, the proof of Theorem 2 will be similar to the proof
of hypercontractivity in that we will soon reduce matters to verifying the one-dimensional
case n = 1.
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Remark 4. The above argument in fact establishes the more general inequality

|{(A1, A2, A) ∈ X ×X1 ×X2 : A = A1 ] A2}| 6 |X|1/p|X1|1/p|X2|1/p

whenever X,X1, X2 are finite collections of sets.

The form of Theorem 2 is very amenable to an induction on dimension:

Proposition 5. Let n1, n2 > 1 be natural numbers. If Theorem 2 holds for n = n1 and
n = n2, then it holds for n = n1 + n2.

Proof. Let f, g, h : {0, 1}n1+n2 → R be functions. For any x ∈ {0, 1}n1 , let fx : {0, 1}n2 →
R denote the function

fx(x′) := f(x, x′)

for x′ ∈ {0, 1}n2 (where we identify the pair (x, x′) with an element of {0, 1}n1+n2 in the
usual fashion). Then we can write

f ∗ g ∗ h(1n1+n2) =
∑

x,y,z∈{0,1}n1 :x+y+z=1n1

fx ∗ gy ∗ hz(1n2).

Applying Theorem 2 for n = n2 and the functions fx, gy, hz, we thus have

f ∗ g ∗ h(1n1+n2) 6
∑

x,y,z∈{0,1}n1 :x+y+z=1n1

‖fx‖`p({0,1}n2 )‖gy‖`p({0,1}n2 )‖hz‖`p({0,1}n2 ).

Applying Theorem 2 for n = n1 and the functions x 7→ ‖fx‖`p({0,1}n2 ), y 7→ ‖gy‖`p({0,1}n2 ),
z 7→ ‖hz‖`p({0,1}n2 ), we obtain

f ∗ g ∗ h(1n1+n2) 6 ‖f‖`p({0,1}n1+n2‖g‖`p({0,1}n1+n2‖h‖`p({0,1}n1+n2

which gives Theorem 2 for n = n1 + n2.

From this proposition and induction, we see that to prove Theorem 2, it suffices to do
so in the one-dimensional case n = 1. We may normalize

‖f‖`p({0,1}) = ‖g‖`p({0,1}) = ‖h‖`p({0,1}) = 1,

so that we may write

f(0) = a1/p

f(1) = (1− a)1/p

g(0) = b1/p

g(1) = (1− b)1/p

h(0) = c1/p

h(1) = (1− c)1/p
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for some 0 6 a, b, c 6 1. The inequality (3) then simplifies to the elementary inequality

(ab(1− c))1/p + (bc(1− a))1/p + (ca(1− b))1/p 6 1. (4)

Observe that equality is attained here when (a, b, c) = (0, 1, 1), (1, 0, 1), (0, 1, 1) or
(2/3, 2/3, 2/3); the final case (a, b, c) = (2/3, 2/3, 2/3) also reveals that the inequality
(4) fails if p is replaced by any quantity larger than log3

27
4

. This is of course consistent
with the second part of Theorem 1.

The fact that equality is attained in (4) in four different locations seems to rule out
any quick proof of (4) using convexity-based methods such as Jensen’s inequality. Instead,
we argue as follows. First observe that when a = 0, the left-hand side of (4) simplifies
to (bc)1/p, and it is then clear that the inequality (4) holds whenever a = 0 and is strict
unless (a, b, c) = (0, 1, 1). Next, we analyze the left-hand side of (4) for (a, b, c) close to
(0, 1, 1). Writing (a, b, c) = (α, 1− β, 1− γ) for some small α, β, γ > 0, we can write the
left-hand side of (4) as

(αγ)1/p + ((1− β)(1− γ)(1− α))1/p + (αβ)1/p.

For α, β, γ small enough, we have

(1− β)(1− γ)(1− α) 6 1− 1

2
(α + β + γ)

(say), which by the concavity of x 7→ x1/p implies that

((1− β)(1− γ)(1− α))1/p 6 1− 1

2p
(α + β + γ).

On the other hand, from the arithmetic mean-geometric mean inequality we certainly
have

(αγ)1/p, (αβ)1/p 6 (α + β + γ)2/p.

Since p < 2, we conclude that the inequality (4) holds whenever α + β + γ is sufficiently
small, or equivalently when (a, b, c) is sufficiently close to (0, 1, 1). Since both sides of
(4) depend continuously on a, b, c, we now see that (4) holds whenever a is sufficiently
small, and similarly for b and c. Thus we may assume a, b, c > ε for some small absolute
constant ε > 0.

We next consider the boundary case a = 1, b, c > ε. Here, we claim strict inequality:

(b(1− c))1/p + (c(1− b))1/p < 1. (5)

Indeed, from the Cauchy-Schwarz inequality one has

(b(1− c))1/2 + (c(1− b))1/2 6
(
(b1/2)2 + ((1− b)1/2)2

)1/2 (
((1− c)1/2)2 + (c1/2)2

)1/2
= 1

and the claim follows since 1
p
> 1

2
.
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For similar reasons, we obtain strict inequality in (4) when b = 1 or c = 1. By
continuity, this establishes (4) in all regions except the region

ε 6 a, b, c 6 1− ε

for some small absolute constant ε > 0. We now work in this region.
We can rewrite (4) as(

1− c
c

)1/p

+

(
1− a
a

)1/p

+

(
1− b
b

)1/p

6
1

(abc)1/p
;

writing x := (1−a
a

)1/p, y := (1−b
b

)1/p, z := (1−c
c

)1/p, x, y, z lies in the region(
ε

1− ε

)p

6 x, y, z 6

(
1− ε
ε

)p

(6)

and the above inequality transforms to

x+ y + z 6 exp

(
f(x) + f(y) + f(z)

p

)
or equivalently

f(x) + f(y) + f(z)− p log(x+ y + z) > 0 (7)

where f : (0,+∞)→ (0,+∞) is the function f(z) := log(1 + zp).
Since the region (6) is compact, and the inequality (7) is already known on the bound-

ary of this region, it suffices to verify (7) when (x, y, z) is a critical point of the left-hand
side, that is to say that

f ′(x) = f ′(y) = f ′(z) =
p

x+ y + z
.

Since f ′(z) = p
z+z1−p , we can rewrite this condition as

x+ x1−p = y + y1−p = z + z1−p = x+ y + z. (8)

The function x 7→ x+x1−p is increasing for x < (p−1)1/p and decreasing for x > (p−1)1/p,
so it can only attain any given value at most twice. From (8) and the pigeonhole principle,
we conclude that at least two of x, y, z are equal. Without loss of generality we may assume
x = y, then from (8) we have

x1−p = x+ z

and
z1−p = 2x

and hence
x1−p = x+ (2x)

1
1−p .
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Dividing by x we obtain

x−p = 1 + 2
1

1−px
p

1−p

and then setting u := x−p we conclude that

u = 1 + (u/2)
1

p−1 . (9)

The function u 7→ 1 + (u/2)
1

p−1 is convex, equals 2 when u = 2, 0 when u = 0, and is
larger than u for sufficiently large u. As a consequence, the equation (9) has exactly two
solutions, one at u = 2 and one with u > 2; see Figure 2. The second solution can be
computed numerically as u = 10.70297 . . . . Thus, there are two critical points (x, y, z)
with x = y, the first of which is

(2−1/p, 2−1/p, 2−1/p) = (0.67113 . . . , 0.67113 . . . , 0.67113 . . . ),

and the second of which can be computed numerically as

(x, y, z) = (0.25568 . . . , 0.25568 . . . , 2.48086 . . . ).

At the first critical point, we have f(x) = f(y) = f(z) = log(3/2), and one easily verifies
that the left-hand side of (7) vanishes since p = log(27/4)/ log(3). At the second critical
point, one can numerically verify that

f(x) = f(y) = 0.089321 . . . ; f(z) = 1.766695 . . .

and hence
f(x) + f(y) + f(z)− p log(x+ y + z) = 0.040307 · · · > 0

at this critical point, giving the claim.

Remark 6. The above methods extend1 to establish the more general bound

f1 ∗ · · · ∗ fk(1n) 6 ‖f1‖`p({0,1}n) . . . ‖fk‖`p({0,1}n)

for any k > 3, where now p := logk
kk

(k−1)k−1 . In particular one has

|{(A1, . . . , Ak−1, A) ∈ X ×X ×X : A = A1 ] · · · ] Ak−1}| 6 |X|k/p

for any finite collection of sets. We sketch the details as follows. By repeating the above
arguments (and using an induction on k to handle boundary cases), one needs to show
that

f(x1) + · · ·+ f(xk)− p log(x1 + · · ·+ xk) > 0

for ε 6 x1, . . . , xk 6 1− ε. We can again restrict attention to critical points, in which

x1 + x1−p1 = · · · = xk + x1−pk = x1 + · · ·+ xk.

1We thank Paata Ivanishvili for this comment.
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Figure 1: A graph of f(x) + f(y) + f(z)− p log(x+ y + z) for 0 6 x 6 1 with y = x and
z = x1−p − x.

As before, x1, . . . , xk can take only two values, say x and z, leading to the equations

x+ x1−p = z + z1−p = ax+ bz

for some positive integers a, b summing to k. Writing u := x−p and v := z/x, we have the
system

u = a− 1 + bv

uv1−p = a+ (b− 1)v.

Differentiating the second equation once with respect to u gives

dv

du
=

v

(b− 1)vp + (p− 1)u
> 0

and differentiating twice gives (after some algebra)

d2v

du2
=
p− 1

vp
dv

du

(2− p)u
(b− 1)vp + (p− 1)u

> 0

so v is again a convex function of u (since 1 < p < 2), and so as before the equation
u = a− 1 + bv has at most two solutions, including the one at u = k−1 and v = 1. Using
the equation x+ x1−p = ax+ bz to implicitly define z in terms of x, the function

af(x) + bf(z)− p log(ax+ bz)
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Figure 2: A graph of u (blue) and 1 + (u/2)
1

p−1 (red) for 2 6 u 6 12.

then has two critical points, including one at x = z = (k − 1)−1/p where the function
vanishes. Direct calculation shows that this critical point is a local minimum (basically
because f ′′((k − 1)−1/p) > 0, which in turn follows from the inequality p > k

k−1), so
the function must be positive at the other critical point (otherwise there would be an
additional critical point from the mean value theorem and intermediate value theorem),
giving the claim.

2 A variant for additive energy

Recall from [9] that the additive energy E(A) of a finite subset A of an additive group
G is defined as the number of quadruples (a1, a2, a3, a4) ∈ A × A × A × A such that
a1 + a2 = a3 + a4. We have the trivial bound E(A) 6 |A|3, which is attained for instance
when A is itself a finite group. By modifying the above arguments, we have the following
refinement in the discrete cube {0, 1}n:

Theorem 7. Let n > 0, and let A ⊂ {0, 1}n. Then E(A) 6 |A|p, where p := log2 6 =
2.58496 . . . . Furthermore, the exponent p cannot be replaced by any smaller quantity.

The second claim is clear, since if A = {0, 1}n then one easily computes that |A| =
|{0, 1}|n = 2n and E(A) = E({0, 1})n = 6n. As in the previous section, the theorem is
proven by induction on n together with an elementary inequality, namely
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Figure 3: A graph of (xp + 4xp/2 + 1)/(1 + x)p for 0 6 x 6 1.

Lemma 8 (Elementary inequality). If a0, a1 > 0, then

ap0 + 4(a0a1)
p
2 + ap1 6 (a0 + a1)

p.

Proof. By symmetry and scaling we may assume that a1 = 1 and a0 = x ∈ [0, 1], thus we
need to show that

xp + 4xp/2 + 1 6 (1 + x)p

for 0 6 x 6 1 (see Figure 3). Near x = 0, the left-hand side is 1 + O(xp/2) and the
right-hand side is at least 1 + px, so the claim holds for x sufficiently close to zero. At
x = 1, the function xp + 4xp/2 + 1 takes the value of 6, first derivative of 3p, and second
derivative of

p(p− 1) + p(p− 2) = 5.60917 . . . ,

while (1+x)p takes the value of 2p = 6, first derivative of p2p−1 = 3p, and second derivative
of

p(p− 1)2p−2 = 6.14560 . . . ,

so the claim also holds for x sufficiently close to 1. It thus suffices to verify the inequality
at any critical point of the functional

xp + 4xp/2 + 1

(1 + x)p
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in 0 < x < 1. Differentiating, we see that such a critical point solves the equation

(pxp−1 + 2px(p−2)/2)(1 + x)p = (xp + 4xp/2 + 1)p(1 + x)p−1

which simplifies to
xp−1 + 2x(p−2)/2 − 2xp/2 = 1. (10)

The second derivative of the left-hand side is

p− 2

2
x

p−6
2 ((2p− 2)xp/2 + p− 4− px);

since (2p− 2)xp/2 6 (2p− 2)x 6 px and p < 4, we conclude that xp−1 + 2x(p−2)/2 − 2xp/2

is strictly concave. As this function is 0 at x = 0 and 1 at x = 1, and has a derivative of
p−3 < 0 at x = 1, there are exactly two solutions to (10) for 0 6 x 6 1, one at x = 1 and
another with 0 < x < 1; see Figure 4. The second solution can be numerically evaluated
as x = 0.131657 . . . , at which

xp + 4xp/2 + 1 = 1.29634 . . .

and
(1 + x)p = 1.376738 . . .

giving the claim.

Now we establish Theorem 7. The claim is trivial for n = 0, so suppose that n > 1
and that the claim has already been proven for n− 1. For A ⊂ {0, 1}n, we may partition

A = (A0 × {0}) ] (A1 × {1})

for some A0, A1 ⊂ {0, 1}n. We can then split

E(A) = E(A0) + 4|{(a0, a1, a′0, a′1) ∈ A0 × A1 × A0 × A1 : a0 + a1 = a′0 + a′1}|+ E(A1).

By the Cauchy-Schwarz inequality (and writing a0 + a1 = a′0 + a′1 as a0 − a′0 = a′1 − a1)
we have

|{(a0, a1, a′0, a′1) ∈ A0 × A1 × A0 × A1 : a0 + a1 = a′0 + a′1}| 6 E(A0)
1/2E(A1)

1/2

and hence by the induction hypothesis

E(A) 6 |A0|p + 4(|A0||A1|)p/2 + |A1|p.

Applying Lemma 8 and noting that |A0|+ |A1| = |A|, we obtain E(A) 6 |A|p, closing the
induction.
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Figure 4: A graph of xp−1 + 2x(p−2)/2 − 2xp/2 for 0 6 x 6 1.

Remark 9. The same argument shows that

‖f ∗ f‖`2 6 ‖f‖2`4/p

for any function f : {0, 1}n → C (where the convolution f ∗ f is viewed as a function on
{0, 1, 2}n). By several applications of the Cauchy-Schwarz inequality, this implies that

|
∫
a1,a2,a3,a4∈{0,1}n:a1+a2=a3+a4

f1(a1)f2(a2)f3(a3)f4(a4)| 6 ‖f1‖`4/p‖f2‖`4/p‖f3‖`4/p‖f4‖`4/p

for any functions f1, f2, f3, f4 : {0, 1}n → C. Thus, for instance, if A1, A2, A3, A4 ∈ {0, 1}n,
the number of solutions to a1 + a2 = a3 + a4 with a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4 is at
most |A1|p/4|A2|p/4|A3|p/4|A4|p/4.
Remark 10. In [1], the method of compressions is used to obtain optimal lower bounds
for the size |A+ B| of a sumset of two subsets A,B of {0, 1}n of specified cardinality. It
is possible that compression methods could also be used to obtain an alternate proof of
Theorem 7, and perhaps to also refine the upper bound of |A|log2 6 slightly when |A| is not
a power of two. However, we were unable to use the method of compressions to attack
Theorem 1.
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