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Abstract

A rack on [n] can be thought of as a set of maps (fx)x∈[n], where each fx is a
permutation of [n] such that f(x)fy = f−1

y fxfy for all x and y. In 2013, Blackburn

showed that the number of isomorphism classes of racks on [n] is at least 2(1/4−o(1))n2

and at most 2(c+o(1))n2
, where c ≈ 1.557; in this paper we improve the upper bound

to 2(1/4+o(1))n2
, matching the lower bound. The proof involves considering racks

as loopless, edge-coloured directed multigraphs on [n], where we have an edge of
colour y between x and z if and only if (x)fy = z, and applying various combinatorial
tools.

1 Introduction

A rack is a pair (X, .), where X is a non-empty set and . : X × X → X is a binary
operation such that:

1. For any y, z ∈ X, there exists x ∈ X such that z = x . y;

2. Whenever we have x, y, z ∈ X such that x . y = z . y, then x = z;

3. For any x, y, z ∈ X, (x . y) . z = (x . z) . (y . z).

If X is finite, we call |X| the order of the rack. Note that conditions 1 and 2 above are
equivalent to the statement that for each y, the map x 7→ x . y is a bijection on X.

As mentioned by Blackburn in [2], racks originally developed from correspondence
between J.H. Conway and G.C. Wraith in 1959, while more specific structures known as
quandles (which are racks such that x.x = x for all x) were introduced independently by
Joyce [10] and Matveev [11] in 1982 as invariants of knots. Fenn and Rourke [4] provide
a history of these concepts, while Nelson [12] gives an overview of how these structures
relate to other areas of mathematics.

the electronic journal of combinatorics 24(2) (2017), #P2.32 1



As a first example, note that for any set X, if we define x.y = x for all x, y ∈ X, then
we obtain a rack, known as the trivial rack TX . IfG is a group and . : G×G→ G is defined
by x . y := y−1xy, then the resulting quandle (G, .) is known as a conjugation quandle.
For a further example, let A be an Abelian group and τ ∈ Aut(A) be an automorphism.
If we define a binary operation . : A×A→ A by x . y = (x)τ + y − (y)τ = (x− y)τ + y
then (G, .) = (A, τ) is an Alexander quandle or affine quandle.1

Let (X, .) and (X ′, .′) be racks. A map φ : X → X ′ is a rack homomorphism if
(x . y)φ = (x)φ .′ (y)φ for all x, y ∈ X. A bijective homomorphism is an isomorphism.

We will only be concerned with racks up to isomorphism. If (X, .) is a rack of order
n, then it is clearly isomorphic to a rack on [n], so we will take [n] to be our underlying
ground set. We will denote the set of all racks on [n] by Rn, and the set of all isomorphism
classes of racks of order n by R′n, so |R′n| 6 |Rn|.

There have been several published results concerning the enumeration of quandles of
small order; Ho and Nelson [6] and Henderson, Macedo and Nelson [5] enumerated the
isomorphism classes of quandles of order at most 8, while work of Clauwens [3] and Ven-
dramin [13] gives an enumeration of isomorphism classes of quandles of order at most 35
whose operator group is transitive (the operator group is defined in Section 2). Recently,
Jedlička, Pilitowska, Stanovskỳ and Zamojska-Dzienio [9] gave an enumeration of medial
quandles (a type of affine quandle) of order at most 13. As far as we are aware, the
only previous asymptotic enumeration result for general racks was due to Blackburn [2],
giving lower and upper bounds for |R′n| of 2(1/4+o(1))n2

and 2(c+o(1))n2
respectively, where

c ≈ 1.557. Theorem 8.2 of [9] improves the upper bound to 2(1/2+o(1))n2
in the case of

medial quandles; the authors then conjecture an upper bound of 2(1/4+o(1))n2
under the

same restriction. The main result of this paper proves this upper bound for general racks,
and hence for (medial) quandles.

Theorem 1.1. Let ε > 0. Then for all sufficiently large integers n,

2(1/4−ε)n2

6 |R′n| 6 |Rn| 6 2(1/4+ε)n2

.

The lower bound follows from the construction in Theorem 4 of [2]; our focus is on
the upper bound. The bound given in Theorem 12 of [2] was obtained by applying group
theoretic results to the operator group associated with a rack; in our arguments we apply
combinatorial results to a graph associated with a rack. This graph is defined in the next
section.

2 Graphical representations of racks

For any rack (X, .), we can define a set of bijections (fy)y∈X by setting (x)fy = x . y for
all x and y. The following well-known result (see for example, [4], [2]) gives the correct
conditions for a collection of maps (fy)y∈X to define a rack.

1Throughout the paper, we write maps on the right.
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Proposition 2.1. Let X be a set and let (fx)x∈X be a collection of functions each with
domain and co-domain X. Define a binary operation . : X ×X → X by x . y := (x)fy.
Then (X, .) is a rack if and only if fy is a bijection for each y ∈ X, and for all y, z ∈ X
we have

f(y)fz = f−1
z fyfz. (2.1)

Proof. As noted earlier, conditions 1 and 2 in the definition of a rack hold if and only if
each fy is a bijection, so it remains to show that condition 3 is equivalent to (2.1). This
is essentially a reworking of the definition; we omit the simple details.

In the light of Proposition 2.1, we can just as well define a rack on a set X by the set
of maps (fy)y∈X , providing they are all bijections and satisfy (2.1). We will move freely
between the two definitions, with x . y = (x)fy for all x, y ∈ X unless otherwise stated.

The operator group of a rack is the subgroup of Sym(X) generated by (fy)y∈X . The
following standard lemma (see for example Lemma 6 of [2]) shows that Proposition 2.1
can be extended to elements of the operator group.

Lemma 2.2. Let (X, .) be a rack and let G be its operator group. Then for any y ∈ X
and g ∈ G, f(y)g = g−1fyg.

Any rack on X can be represented by a directed multigraph on X; we give each vertex
a colour and then put a directed edge of colour i from vertex j to vertex k if and only if
(j)fi = k. We then remove all loops from the graph; i.e. if (j)fi = j we don’t have an
edge of colour i incident to j.

It will be helpful to recast the representation of racks by directed multigraphs in a
slightly different setting. Let V be a finite set and let σ ∈ Sym(V ); then we can define

a simple, loopless directed graph Gσ on V by setting −→uv ∈
−→
E (Gσ) if and only if u 6= v

and (u)σ = v. By considering the decomposition of σ into disjoint cycles, we see that Gσ

consists of a collection of disjoint directed cycles, isolated double edges corresponding to
cycles of length two, and some isolated vertices. We can now extend this definition to the
case of multiple permutations in a natural way.

Definition 2.3. Suppose Σ = {σ1, . . . , σk} ⊆ Sym(V ) is a set of permutations on a set V .

Define a directed, loopless multigraph GΣ = (V,
−→
E ) with a k-edge-colouring by putting a

directed edge of colour i from u to v if and only if u 6= v and (u)σi = v.
We also define the reduced graph G0

Σ to be the directed graph on V obtained by letting

e = −→uv ∈
−→
E (G0

Σ) if and only if there is at least one directed edge from u to v in GΣ.

Note that the reduced graph contains at most two edges between any u, v ∈ V , namely
−→uv and −→vu. Also observe that if Σ′ ⊆ Σ, then GΣ′ is a subgraph of GΣ.

Before continuing, let us clarify some terminology. A path in a directed multigraph
G need not respect the orientation of the edges, so for x, y ∈ V (G), there is an xy-path
in G if and only if there is an xy-path in the underlying undirected graph. A component
of a directed graph G is defined to be a component of the underlying undirected graph.
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For x, y ∈ V (G), a directed xy-path is a sequence of vertices x = x0, . . . , xr = y such that
−−−→xixi+1 ∈

−→
E (G) for all i.

Now let us return specifically to racks.

Definition 2.4. Let R = (X, .) be a rack, and let (fy)y∈X be the associated maps. For
any S ⊆ X, define ΣS = {fy | y ∈ S}. Then by GS we mean the directed multigraph
GΣS

in the sense of Definition 2.3; GS thus has an associated |S|-edge-colouring, although
if |S| = 1 we may not necessarily consider GS as being coloured. We will also write
GR = GX , indicating the graph for the whole rack.

When describing racks on [n] in a graphical context, we may refer to elements of [n]
as vertices. The following two observations are straightforward but crucial.

Lemma 2.5. Let Σ ⊆ Sym(V ) be a family of permutations, and let u, v ∈ V be distinct.
Then there is a uv-path in GΣ if and only if there is a directed uv-path in GΣ.

Proof. We need only prove the ‘only if’ statement. Let u = u0, . . . , ut = v be a path in
GΣ; any edge −−−→uiui−1 is part of a directed cycle and thus can be replaced with a directed
ui−1ui-path. Replacing each such edge gives a directed uv-walk; the shortest such walk is
a path.

Lemma 2.6. Let Σ ⊆ Sym(V ) be a family of permutations and U ⊆ V . Then U is an
orbit of the natural action of 〈Σ〉 on V if and only if U spans a component in GΣ.

Proof. Let u, v ∈ V . Then u and v are in the same orbit of the natural action if and only
if there exists a sequence (σi1 , . . . , σim) of elements from Σ and a sequence (ε1, . . . , εm) ∈
{−1, 1}m such that v = (u)σε1i1 · · ·σ

εm
im

. But this is exactly equivalent to there being a
uv-path in GΣ with edges successively coloured i1, . . . , im, and the value of εi indicating
the direction of the edge. Thus the partition of V into orbits of 〈Σ〉 coincides with the
partition of V into components of GΣ.

Applying this last result to a rack R on [n] shows that the orbits of the operator group
(in its natural action on [n]) coincide with the components of GR.

We can illustrate these notions with a simple example. Let (X, .) be a rack; then a
subrack of (X, .) is a rack (Y, .|Y×Y )2 where Y ⊆ X. Thus a subset Y ⊆ X forms a
subrack if and only if for all y, z ∈ Y , (z)fy ∈ Y ; as each fy is a bijection we then also
have that (z)f−1

y ∈ Y for all z and thus Y and X \ Y are separated in the graph GY .

3 Outline of the proof

In this short section we give a brief outline of how we will count the number of racks on
[n]. We shall reveal information about an unknown rack on [n] in several steps, counting
the number of possibilities for the revealed information at each step. At the end the rack

2The notation .|Y×Y in the above context will always be abbreviated to ., with the restriction to the
subset Y left implicit.
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will have been determined completely, so we obtain an upper bound on the number of
racks.

The principle behind the argument is as follows: we choose a set T ⊆ [n] and reveal
the maps (fj)j∈T . We then consider the components of the graph GT ; a key lemma shows
that if V is a set of vertices such that each component contains precisely one element
from V , then revealing the maps (fv)v∈V determines the entire rack R. The difficulty is
in finding a set T which is not too big, but such that GT has relatively few components.

We will actually need to consider two different sets T and W . We choose a threshold
∆ and first consider the set of vertices S>∆ that have degree strictly greater than ∆ in
the underlying graph G0

R; we will choose probabilistically a relatively small set W ⊆ [n]
such that any vertex with high degree in G0

R also has high degree in G0
W . Because the

degree of any vertex in S>∆ is so high, the number of components of G0
W contained in

S>∆ is small; this allows us to determine the maps (fs)s∈S>∆
.

For the vertices in S6∆ (those with degree at most ∆ in G0
R), we will construct greedily

a set T of a given size by adding vertices one at a time and revealing their corresponding
maps, each time choosing the vertex whose map joins up the most components. It will
follow that for every j ∈ S6∆ \ T , fj can only join up a limited number of components of
GT ; we will reveal the restriction of fj to these components.

Because of the complex nature of this argument, we will ‘store’ these revealed maps
in a 7-tuple I = I(R), and then count the racks consistent with I. The main term in the
argument comes from considering maps in S6∆\T acting within components of GT ; we can
control the action of these maps by first revealing some extra information corresponding
to the neighbours of T in G0

R, which can themselves be controlled as T consists of low
degree vertices.

In Section 4 we formally define the information I(R), which requires some straight-
forward graph theory; in Section 5 we show that the number of possibilities for I is at
most 2o(n

2). In Section 6 we will complete the proof of Theorem 1.1.

4 Important information in a rack

4.1 Degrees in graphical representations of racks

Let R = ([n], .) be a rack and T ⊆ [n]; for each v ∈ [n], define

Γ+
T (v) = {(v)fj | j ∈ T, (v)fj 6= v},

so Γ+
T (v) is the set of vertices w such that −→vw ∈

−→
E (GT ). If V ⊆ [n], we define Γ+

T (V ) :=⋃
v∈V Γ+

T (v).

Definition 4.1. With notation as above, the out-degree of v (with respect to T ) is d+
T (v) =

|Γ+
T (v)|, so d+

T (v) is the out-degree of v in the simple graph G0
T .

We can of course define the in-degree d−T (v) similarly. We now show that when S is a
subrack, then all components of G0

S are out-regular.
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Lemma 4.2. Let ([n], .) be a rack and (S, .) be a subrack, and let C span a component
of GS, and hence also of G0

S. Then for any u, v ∈ C, d+
S (u) = d+

S (v).

Proof. First suppose that v is an out-neighbour of u, so that there is a directed edge
−→uv ∈

−→
E (GS) of some colour i ∈ S, i.e. (u)fi = v. Take an arbitrary w ∈ Γ+

S (u), so w 6= u
and there exists a j ∈ S such that w = (u)fj; as S is a subrack, k := (j)fi ∈ S. Now
observe that

(v)fk = (v)f(j)fi = (v)f−1
i fjfi = (u)fjfi = (w)fi.

Suppose for a contradiction that (v)fk = v; then (w)fi = v = (u)fi, and thus w = u,
contradicting the fact that w ∈ Γ+

S (u). Hence (w)fi = (v)fk ∈ Γ+
T (v), and as w ∈ Γ+

S (u)
was arbitrary we have that (Γ+

S (u))fi ⊆ Γ+
S (v). As fi is a bijection, d+

S (u) = |Γ+
S (u)| 6

|Γ+
S (v)| = d+

S (v).
Now let u, v ∈ C be arbitrary; from Lemma 2.5, there is a directed path u =

u0, . . . , ur = v in GS[C]. From above, we have that d+
S (u) 6 d+

S (v). By instead con-
sidering a directed vu-path we have that d+

S (v) 6 d+
S (u), and the result follows.

4.2 Some multigraph theory

The construction of the information I(R) requires some straightforward graph theory.
Here, a multigraph G = (V,E) is defined by a vertex set V = V (G) and an edge multiset
E = E(G) of unordered pairs from V . For multisets A and B, A ] B is the multiset
obtained by including each element e with multiplicity m, where m is the sum of the
multiplicity of e in A and the multiplicity of e in B. If F is a multiset of unordered pairs
from V (G), G+ F is the multigraph with vertex set V (G) and edge multiset E(G) ] F .

In this subsection we will consider only undirected multigraphs for clarity. As paths
and components of a directed multigraph are defined by the underlying undirected multi-
graph, all of these results remain true for directed multigraphs. We will write cp(G) for
the number of components of a multigraph G.

Let G be a multigraph3. Then for distinct u, v ∈ V (G) we have that cp(G+ {uv}) =
cp(G)− 1 if and only if there is no uv-path in G. The following result is standard.

Proposition 4.3. Let G be a multigraph and E1 and E2 be multisets of unordered pairs
of elements of V (G). Then cp(G)− cp(G+ E2) > cp(G+ E1)− cp(G+ E1 + E2).

Proof. The case where |E2| = 1 follows from the above observation, since there is a uv-
path in G+E1 if there is a uv-path in G. The general case now follows by induction.

Definition 4.4. Let G be a multigraph and E be a multiset of unordered pairs of elements
of V (G). Let C ⊆ V (G) span a component4 of G; we say that C is merged by E if there
exist u ∈ C, v ∈ V (G) \ C such that uv is an edge from E. We denote by M(G,E) the
set of (vertex sets of) components of G merged by E.

3While the following results can be formulated using just simple graphs, we will use multigraphs to
be consistent with the definition of the graph of a rack.

4In other words, C is the vertex set of a component of G; the component itself is a multigraph, not
just a set of vertices.
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Note that for multisets of edges E and F , M(G,E ] F ) = M(G,E) ∪M(G,F ). As a
single edge can merge at most two components, |M(G, {e})| 6 2 for any unordered pair e.

Lemma 4.5. Let G be a multigraph and E and {e} be multisets of unordered pairs of
elements of V (G). If cp(G+ E + {e}) = cp(G+ E), then M(G,E ] {e}) = M(G,E).

Proof. Write e = uv; if u and v are in the same component of G then e is not a merging
edge and M(G, {e}) = ∅, so suppose that u and v are in different components of G. Write
C for the vertex set of the component containing u and D for that containing v, so that
M(G, {e}) = {C,D}.

As cp(G+ E + {e}) = cp(G+ E) we have that C and D are both contained a single
component of G + E; it follows easily that C,D ∈ M(G,E). It follows that in all cases
we have M(G, {e}) ⊆M(G,E) and thus that M(G,E ] {e}) = M(G,E).

Corollary 4.6. Let G be a multigraph and E be a multiset of unordered pairs of elements
of V (G). Then |M(G,E)| 6 2(cp(G)− cp(G+ E)).

Proof. Order E as {e1, . . . , el} and write a = cp(G)− cp(G+E); then there are precisely
a edges ei1 , . . . , eia such that cp(G+{e1, . . . , eij}) = cp(G+{e1, . . . , eij−1})−1 for each j.
Write Ek = {e1, . . . , ek} for each k, so we always have M(G,Ek) = M(G,Ek−1 ] {ek}) =
M(G,Ek−1) ∪ M(G, {ek}). Now consider adding the edges of E in the order given to
G; if k 6= ij for any j then cp(G,Ek) = cp(G,Ek−1) and so from Lemma 4.5 we have
that M(G,Ek) = M(G,Ek−1), while if k = ij for some j we have that |M(G,Ek)| 6
|M(G,Ek−1)| + 2. As there are only a such edges it follows that |M(G,E)| 6 2a =
2(cp(G)− cp(G+ E)).

4.3 The information I(R)

We introduce the following terminology. For any rack R = ([n], .) and any ∆ with
1 6 ∆ 6 n− 1, let

S6∆(R) := {v ∈ [n] | d+
R(v) 6 ∆}

denote the set of all vertices with out-degree in G0
R at most ∆. Write S>∆(R) = [n] \

S6∆(R) for the set of all vertices with out-degree strictly greater than ∆. We now show
that this partition is actually a partition into subracks.

Lemma 4.7. Let R = ([n], .) be a rack and 1 6 ∆ 6 n − 1. Then (S>∆(R), .) and
(S6∆(R), .) are both subracks of R.

Proof. By Lemma 4.2 (with S = R), two vertices in the same component of GR have
the same out-degree. Hence S>∆(R) and S6∆(R) are separated in GR and thus both
(S>∆(R), .) and (S6∆(R), .) are subracks.

Now fix
∆ := (log2 n)3,

so ∆ 6 n − 1 for sufficiently large n. Given a rack R, we will construct a set T (R) ⊆
S6∆(R), with |T (R)| 6 (log2 n)2, by the following procedure (the subgraph GA, where
A ⊆ [n], is described in Definitions 2.3 and 2.4).
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Construction 4.8. If S6∆(R) = ∅ then T (R) = ∅. Otherwise, order the vertices of
S6∆(R) as follows: first choose u1 so that cp(G{u1}) 6 cp(G{v}) for any v ∈ S6∆(R). Given
a partial ordering u1, . . . , uk, choose the next vertex uk+1 such that cp(G{u1,...,uk,uk+1}) 6
cp(G{u1...,uk,v}) for any v ∈ S6∆(R) \ {u1, . . . , uk}. Now take

L := b(log2 n)2c

and define

T (R) :=

{
{u1, . . . , uL} if |S6∆(R)| > L

S6∆(R) otherwise.

We now introduce some more notation. For any j ∈ [n], write
−→
E j =

−→
E (G{j}) for the

set of edges of GR of colour j and

Mj := M(GT (R),
−→
E j)

for the set of (vertex sets of) components of GT (R) merged by the edges of colour j. Note

that if j ∈ T (R) then
−→
E j ⊆

−→
E (GT (R)) and so Mj = ∅.

The key property of the set T (R) is given in the next lemma.

Lemma 4.9. Let R = ([n], .) be a rack. Then for any j ∈ S6∆(R) \ T (R),

|Mj| 6
2n

(log2 n)2
.

Proof. Note that if |S6∆(R)| 6 L = b(log2 n)2c, then T (R) = S6∆(R) and the statement
is trivial. We will thus assume that s = |S6∆(R)| > L+ 1 and so |T (R)| = L.

For 1 6 i 6 s, write Hi = G{u1,...,ui} and xi = cp(Hi−1) − cp(Hi), where H0 = G∅ is

the empty graph on [n]. Note that cp(Hi) = cp(Hi−1 +
−→
E ui) 6 cp(Hi−1), and so xi > 0

for each i; we also have that

s∑
i=1

xi =
s∑
i=i

(
cp(Hi−1)− cp(Hi)

)
= cp(H0)− cp(Hs) 6 cp(H0) = n.

Now fix an i and suppose that xi < xi+1; then

cp(Hi−1)− cp(Hi) < cp(Hi)− cp(Hi+1)

= cp(Hi−1 +
−→
E ui)− cp(Hi−1 +

−→
E ui +

−→
E ui+1

)

6 cp(Hi−1)− cp(Hi−1 +
−→
E ui+1

),

from Proposition 4.3. But then cp(G{u1,...ui−1,ui}) > cp(G{u1,...ui−1,ui+1}), contradicting
our ordering of the vertices. Hence xi > xi+1, and as i was arbitrary we conclude that
(xi)

s
i=1 is a decreasing sequence. From this and the fact that

∑s
i=1 xi 6 n it follows that

xL+1 6 n/(L+ 1) 6 n(log2 n)−2.
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j

Yj

Figure 1: A representation of the components of GT (R), with the edges of colour j in blue. Here,
precisely five components (shaded light blue) are merged by the edges of colour j, so |Mj | = 5; Yj
is the set of vertices in these shaded components. If j ∈ S6∆(R) \T (R) then only the restriction
fj |Yj is included in the information I(R).

Now take j ∈ S6∆(R) \ T (R), so in our ordering of S6∆(R) we have j = uk for
some k > L. By our construction, cp(G{u1,...,uL,j}) > cp(G{u1,...,uL,uL+1}); noting that

GT (R) = G{u1,...,uL} = HL, we may rewrite this as cp(GT (R) +
−→
E j) > cp(HL+1), and thus

cp(GT (R))− cp(GT (R) +
−→
E j) 6 cp(HL)− cp(HL+1) = xL+1 6

n

(log2 n)2
.

We can combine this with Corollary 4.6 to see that

|Mj| = |M(GT (R),
−→
E j)| 6 2

(
cp(GT (R))− cp(GT (R) +

−→
E j)

)
6

2n

(log2 n)2
,

showing the result.

Before formally defining the information I(R) associated with a rack R, we will need
some more notation. Firstly, write

T+(R) := T (R) ∪ Γ+
R(T (R)).

For any j ∈ S6∆(R) \ T (R), define

Yj :=
⋃
C∈Mj

C

to be the set of vertices in components of GT (R) merged by
−→
E j, and write

Zj := [n] \ Yj

(see Figure 1). The following lemma gives the key property of the set Zj, in a slightly
more general setting. If U, V ⊆ [n] are such that (V )fj = V for all j ∈ U , we say that V
is U-invariant ; we will write j-invariant instead of {j}-invariant.
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Lemma 4.10. Let R = ([n], .) be a rack, W ⊆ [n] and j ∈ [n]. Let C ⊆ [n] span a

component of GW , with C /∈M(GW ,
−→
E j). Then C is j-invariant.

Proof. Take a set C as described and let x ∈ C be arbitrary. If (x)fj = y 6= x then −→xy is

an edge of colour j; as C is not merged by
−→
E j, we must have (x)fj = y ∈ C and (as x

was arbitrary and fj is a bijection) it follows that (C)fj = C.

Now apply this lemma with W = T (R); for any C ⊆ [n] spanning a component of
GT (R) with C /∈Mj, (C)fj = C. As Zj consists of all vertices in components of GT (R) not

merged by
−→
E j, we have that (Zj)fj = Zj, and thus that (Yj)fj = Yj.

We will now formally define the information associated with a rack R.

Definition 4.11. Let R = ([n], .) be a rack and let ∆ = (log2 n)3. Then with notation
as above let M be the (|S6∆(R)| − |T (R)|)-tuple

M := (Mj)j∈S6∆(R)\T (R),

where we order the vertices in some arbitrary way, and let

Y :=
⋃

j∈S6∆(R)\T (R)

(Yj × {j}) ⊆ [n]2.

We define

I(R) :=
(
S6∆(R), .|[n]×S>∆

, T (R), .|T (R)×[n], .|[n]×T+(R), M, .|Y
)
.

As i . j = (i)fj, the second entry of this 7-tuple is equivalent to the set of maps
(fj)j∈S>∆(R) or alternatively the graph GS>∆(R). The fourth entry is equivalent to the
set of maps (fj|T (R))j∈[n]; from Lemma 4.7, the image of each of these maps is contained
within S6∆(R). Knowing the fourth entry determines Γ+

R(T (R)), which is necessary for
the fifth entry. Note also that the fifth entry is equivalent to the set of maps (fj)j∈T+(R)

and thus the graph GT+(R), while the seventh entry is equivalent to (fj|Yj)j∈S6∆(R)\T (R).
We will think of I as a map from Rn to a set of 7-tuples; the form of this set will be

considered in more detail in Section 6. In the next section, we show that the image I(Rn)
is small. We will do this by first considering the map I ′, where I ′(R) = (I1(R), I2(R))
and then I ′′, where I ′′(R) = (I3(R), . . . , I7(R)).

5 Determining the information I(R)

5.1 Random subsets

The part of the argument relating to the vertices of high degree requires some probabilistic
tools. In particular, we will require a result of Hoeffding [7] known as the Chernoff bounds ;
we will use the following, more workable version (see for example Theorems 2.1 and 2.8
and Corollary 2.3 of [8]).
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Theorem 5.1. Let X1, . . . , Xn be independent random variables, each taking values in
the range [0, 1]. Let X =

∑n
i=1Xi. Then for any ε ∈ [0, 1],

P(X > (1 + ε)E[X]) 6 e−ε
2E[X]/3

and
P(X 6 (1− ε)E[X]) 6 e−ε

2E[X]/2.

Let R = ([n], .) be a rack. To ease notation, we write d+
v = d+

R(v) for any v ∈ [n].

Lemma 5.2. Let R = ([n], .) be a rack and let p, ε ∈ (0, 1). Construct a random subset X
of [n] by retaining each element with probability p, independently for all elements. Then

1. P(|X| > (1 + ε)np) 6 e−ε
2np/3;

2. For any v ∈ [n] and 0 < δ 6 d+
v p, P

(
d+
X(v) 6 (1− ε)δ

)
6 e−ε

2δ/2.

Proof. For each j, let Xj = 1{j∈X}, so that each Xj ∼ Ber(p) and the variables (Xj)
n
j=1

are independent. Then |X| =
∑n

j=1Xj ∼ Bi(n, p) and E[X] = np, so we can apply
Theorem 5.1 to |X|, showing the first statement.

For the second statement, take a vertex v ∈ [n] and let v1, . . . , vd+
v

be the out-
neighbours of v in G0

R; for each 1 6 i 6 d+
v , choose an element jvi ∈ [n] such that

(v)fjvi = vi and put
Jv := {jvi | i = 1, . . . , d+

v }.

The elements jv1, . . . , jvd+
v

are clearly distinct and so |Jv| = d+
v . Now

|Jv ∩X| =
d+
v∑

i=1

Xjvi ∼ Bi(d+
v , p),

so E[|Jv ∩X|] = d+
v p and we can apply Theorem 5.1 to see that for any 0 < δ 6 d+

v p,

P
(
|Jv ∩X| 6 (1− ε)δ

)
6 P

(
|Jv ∩X| 6 (1− ε)d+

v p
)
6 e−ε

2d+
v p/2 6 e−ε

2δ/2.

Since d+
X(v) > |Jv ∩X|, the second result follows.

5.2 The high degree part

We will need the following crucial lemma.

Lemma 5.3. Let R = ([n], .) be a rack and T ⊆ [n]. Let C span a component of GT ,
and let v ∈ C. Let A ⊆ [n] be [n]-invariant. Then knowledge of the maps (fi|A)i∈T and
fv|A is sufficient to determine the maps (fu|A)u∈C, and further, the maps (fu|A)u∈C are
conjugate in Sym(A).
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Proof. Let u ∈ C, so from Lemma 2.5 there is a directed vu-path in GT . Let the colours
of the edges of this path be i1, . . . , il, so (v)fi1 · · · fil = u and thus from Lemma 2.2
fu = f−1

il
· · · f−1

i1
fvfi1 · · · fil . As A is [n]-invariant, (A)fij = A for any j, and thus

fu|A = f−1
il
|A · · · f−1

i1
|Afv|Afi1|A · · · fil |A.

But as each ij ∈ T , all of these maps are determined and thus fu|A is determined. Also
note that fu|A is conjugate to fv|A by the map (fi1 · · · fil)|A, proving the result.

We will now show the first main result of this section.

Proposition 5.4. Let R = ([n], .) be a rack. Then for n sufficiently large there exists a
set W ⊆ [n], with

|W | 6 w0(n) :=
7

2

n

(log2 n)3/2
, (5.1)

such that I ′(R) = (I1(R), I2(R)) is determined by the sets S6∆(R) and W and the maps
(fi)i∈W .

Proof. We will construct the set W by a mixture of probabilistic and deterministic ar-
guments. Let p = (log2 n)−3/2 and consider a random subset X of [n] as described in
Lemma 5.2. Let E be the event that |X| 6 3np/2; from item 1 of the lemma (with
ε = 1/2) we have that

P(Ec) 6 P(|X| > 3np/2) 6 e−np/12.

Since np→∞ as n→∞, it follows that P(Ec) < 1/2 if n is large enough.
Now for each v ∈ [n] and U ⊆ [n], call v U-bad if d+

U(v) 6 (log2 n)3/2/2, and let Bv
be the event that v is X-bad, so that P(Bv) = P

(
d+
X(v) 6 (log2 n)3/2/2

)
. Let N = N(X)

denote the number of X-bad vertices in S>∆ := S>∆(R), so that N =
∑

v∈S>∆
1Bv . Now

d+
v p > ∆p = (log2 n)3/2 for each v ∈ S>∆; hence from item 2 of Lemma 5.2 (with ε = 1/2

and δ = ∆p),

E[N ] =
∑
v∈S>∆

P(Bv) =
∑
v∈S>∆

P
(
d+
X(v) 6 (log2 n)3/2/2

)
6 e−(log2 n)3/2/8|S>∆|.

Let F be the event that N = 0, i.e. that every vertex in S>∆ is X-good. Then from
Markov’s Inequality

P(F c) = P(N > 1) 6 E[N ] 6 |S>∆|e−(log2 n)3/2/8 6 ne−(log2 n)3/2/8 → 0

as n→∞. Hence P(F c) < 1/2 if n is large enough.
If n is large enough, then P(Ec ∪F c) < 1/2 + 1/2 = 1, and thus P(E ∩ F) > 0. Hence

we can find a set U ⊆ [n] such that |U | 6 3np/2 and each vertex in S>∆ is U -good; this
means that d+

U(v) > (log2 n)3/2/2 whenever v ∈ S>∆, or in graphical terms, that each
vertex v ∈ S>∆ is adjacent to at least (log2 n)3/2/2 vertices in G0

U .
Now from Lemma 4.7 there are no edges from S>∆ to S6∆ = [n] \ S>∆, so S>∆ is

a disjoint union of vertex sets of components of G0
U . Each component of G0

U contained
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within S>∆ has size at least (log2 n)3/2/2+1 and hence there are at most 2|S>∆|(log2 n)−3/2

such components. Write the vertex sets of these components as {C1, . . . , Cr} and take a
set of vertices V = {v1, . . . , vr} such that vk ∈ Ck for each k; we have shown that

|V | = r 6
2n

(log2 n)3/2
.

Now from Lemma 5.3 (with T = U and A = [n]), knowledge of the maps (fi)i∈U and fvk is
sufficient to determine the maps (fu)u∈Ck

; applying this to each component in turn shows
that knowledge of the maps (fi)i∈U and (fv)v∈V is sufficient to determine (fu)u∈S>∆

, i.e.
the second entry of I ′(R). So put W = U ∪ V ; as |U | 6 3n(log2 n)−3/2/2 we have the
result.

Corollary 5.5. Let ε > 0. There exists some positive integer n1 such that for all n > n1,
|I ′(Rn)| 6 2εn

2
.

Proof. Take n sufficiently large for the previous result to hold; then I ′(R) is determined by
S6∆(R) (or equivalently S>∆(R)), W and the maps (fi)i∈W for a suitable set W depending
on R, with |W | 6 w0(n). Now fix such an n; it follows that |I ′(Rn)| is at most the number
of distinct triples (S6∆(R),W, (fi)i∈W ) arising from all racks in Rn. There are clearly at
most 2n possibilities for each of S6∆(R) and W ; as there are n! 6 nn choices for any map
fi, and |W | 6 w0(n), there are at most nnw0(n) possibilities for the maps (fi)i∈W . Hence
|I ′(Rn)| 6 22nnnw0(n), and from (5.1) we have that

log2

(
22nnnw0(n)

)
= 2n+ n(log2 n)w0(n)

= 2n+ n(log2 n)
7

2

n

(log2 n)3/2

= 2n+
7

2

n2

(log2 n)1/2

= o(n2).

Hence for any ε > 0, there exists a positive integer n1 such that for n > n1, |I ′(Rn)| 6
22nnnw0 6 2εn

2
.

5.3 Components of the graph GT (R)

In order to prove that there are few choices for I ′′(R) = (I3(R), . . . , I7(R)), we will need
the following lemma. Recall that T (R) ⊆ S6∆(R) is defined in Construction 4.8 and that
T+(R) = T (R) ∪ Γ+

R(T (R)).

Lemma 5.6. Let R = ([n], .) be a rack. Let C span a component of GT (R), and let v ∈ C.
Then for any j ∈ [n], knowledge of the maps (fl|T (R))l∈[n] and (fi)i∈T+(R) and the vertex
(v)fj is sufficient to determine the map fj|C.

As in Definition 4.11, the maps (fl|T (R))l∈[n] determine the set Γ+
R(T (R)) and thus the

set T+(R).
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Proof. Let u ∈ C; from Lemma 2.5 there is a directed vu-path in GT (R) (note that
this graph is determined from the maps (fi)i∈T (R), knowledge of which is assumed). Let
−→
d (v, u) denote the length of the shortest directed vu-path; we will show that (u)fj is

determined by induction on the graph distance d =
−→
d (v, u). The base case d = 0 is true

by assumption, so take d > 0 and suppose the result is true for smaller d.
Take a shortest directed path (of length d) from v to u and let w be the penultimate

vertex on the path; then −→wu is an edge in GT (R), so there exists some i ∈ T (R) such that
(w)fi = u. As we know fj|T (R), k := (i)fj is determined; as k ∈ T (R) ∪ Γ+

R(T (R)) =

T+(R), the map fk is also determined. Further,
−→
d (v, w) = d − 1, so by the inductive

hypothesis the vertex (w)fj is determined. Now fk = f(i)fj = f−1
j fifj, and so fj =

f−1
i fjfk; hence

(u)fj = (u)f−1
i fjfk = (w)fjfk,

which is determined as we know the vertex (w)fj and the map fk. The result follows by
induction.

We can now show the second main result of this section.

Proposition 5.7. Let ε > 0. Then there exists a positive integer n2 such that for any
n > n2, |I ′′(Rn)| 6 2εn

2
.

Proof. As in Corollary 5.5, |I ′′(Rn)| is equal to the number of distinct values of the
5-tuple I ′′(R) as R ranges over all racks of order n; we will produce bounds for each
of these entries. There are clearly at most 2n choices for the set T (R); recall that by
construction |T (R)| 6 L = b(log2 n)2c and that T (R) ⊆ S6∆(R), so d+

R(v) = |Γ+
R(v)| 6 ∆

for any v ∈ T (R). It follows that |Γ+
R(T (R))| 6

∑
v∈T (R) d

+
R(v) 6 L∆ and thus that

|T+(R)| 6 L+L∆. There are at most n possibilities for the vertex (u)fi for any i, u ∈ [n],
so there are at most (nL)n possibilities for the maps (fj|T (R))j∈[n] and at most (nn)L+L∆

possibilities for the maps (fi)i∈T+(R); hence there are at most 2nn(2+∆)Ln possible values
for the first three entries of I ′′(R) (as R ranges over all racks of order n).

Now consider a rack R ∈ Rn and suppose that the first three entries of I ′′(R) have
been determined. Fix a j ∈ S6∆(R) \ T (R); we must consider the possibilities for the set

Mj of components of GT (R) merged by
−→
E j, and the restricted map fj|C for each C ∈Mj.

If |Mj| = aj then there are (crudely) at most naj possibilities for Mj, as there are at most
n components of GT (R); from Lemma 4.9, aj = |Mj| 6 2n(log2 n)−2, so the number of
possibilities for Mj is at most

b2n(log2 n)−2c∑
aj=0

naj 6

(
1 +

2n

(log2 n)2

)
n2n(log2 n)−2

6 3n · n2n(log2 n)−2

,

for sufficiently large n. Now take a C ∈ Mj and choose an arbitrary v ∈ C; as the maps
(fl|T (R))l∈[n] and (fi)i∈T+(R) have been determined already, we have from Lemma 5.6 that
the restriction fj|C is determined entirely by (v)fj. There are at most n possibilities for

the electronic journal of combinatorics 24(2) (2017), #P2.32 14



this vertex, and so considering the |Mj| components making up Yj, there are at most
n|Mj | 6 n2n(log2 n)−2

possibilities for the restriction fj|Yj .
Now note that M and .|Y are determined by Mj and fj|Yj for each j ∈ S6∆(R) \

T (R); as there are at most n such elements regardless of the set S6∆(R), there are at
most (3n)nn2n2(log2 n)−2

possibilities for M and at most n2n2(log2 n)−2
possibilities for .|Y .

Combining these bounds, there are at most

2nn(2+∆)Ln(3n)nn4n2(log2 n)−2

= (6n)nn(2+∆)Ln+4n2(log2 n)−2

=: Λn

possibilities for I ′′(R) as R ranges over all racks of order n, for n sufficiently large, and
thus |I ′′(Rn)| 6 Λn.

We have that ∆ = (log2 n)3, so 2 + ∆ 6 2(log2 n)3 for sufficiently large n. Thus for n
sufficiently large

log2 (Λn) = n log2(6n) + (log2 n)

(
(2 + ∆)Ln+

4n2

(log2 n)2

)
6 n log2(6n) + 2n(log2 n)6 +

4n2

log2 n

= o(n2).

Hence for any ε > 0, there exists a positive integer n2 such that for n > n2, |I ′′(Rn)| 6
Λn 6 2εn

2
, proving the result.

6 Maps acting within components of GT (R)

6.1 Some preparatory results

We will need the following easy claim.

Claim 6.1. For real numbers x, y > 0, xy/3 + x2/9 6 (x+ y)2/8.

Proof. Simply observe that (x+ y)2/8− x2/9− xy/3 = (x− 3y)2/72 > 0.

The above claim is used to prove the following key technical lemma. The notation is
chosen to match the quantities defined in the next subsection.

Lemma 6.2. Let n be a positive integer and (ηq)
n
q=1 be a sequence of non-negative integers

such that
∑n

q=1 ηq = n. Set

ζ =

(
n∑
p=1

ηp
p

)(
n∑
q=1

log2 q

q
ηq

)
.

Then ζ 6 n2/4.
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Proof. By expanding the product, we have that

ζ =
n∑
q=1

log2 q

q2
η2
q +

n−1∑
p=1

n∑
q=p+1

log2 p+ log2 q

pq
ηpηq (6.1)

and
n2

4
=

(η1 + · · ·+ ηn)2

4
=

n∑
q=1

η2
q

4
+

n−1∑
p=1

n∑
q=p+1

ηpηq
2
,

so if we set ν = n2/4− ζ, then

ν =
n∑
q=1

dqη
2
q +

n−1∑
p=1

n∑
q=p+1

cp,qηpηq,

where dq := 1/4− (log2 q)/q
2 and cp,q := 1/2− (log2(pq))/pq.

Since 2r > r2 for all positive integers r 6= 3, cp,q > 0 for (p, q) 6= (1, 3). Similarly,
2r

2
> r4 for all positive integers r and thus dq > 0 for all q; hence

ν > d1η
2
1 + d3η

2
3 + c1,3η1η3.

We can bound this sum from below by using Claim 6.1 with x = η3 and y = η1; we have
that

d1η
2
1 + d3η

2
3 + c1,3η1η3 =

η2
1

4
+

(
1

4
− log2 3

9

)
η2

3 +

(
1

2
− log2 3

3

)
η1η3

=
η2

1

4
+
η2

3

4
+
η1η3

2
− (log2 3)

(
η1η3

3
+
η2

3

9

)
>

(η1 + η3)2

4
− (log2 3)

(η1 + η3)2

8

> 0.

A more elaborate version of this argument gives a corresponding stability result, saying
(informally speaking) that ζ is close to n2/4 if and only if η2 is close to n and ηq is close
to 0 for all q 6= 2; for full details see [1].

6.2 Proof of Theorem 1.1

At the end of Section 4, we introduced the information I(R) in a rack R on [n], and
explained how I can be thought of as a map from Rn to a set of 7-tuples; let us call this
set In. In Section 5 we showed that the image I(Rn) ⊆ In has size at most 2o(n

2); in this
section, we will fix an I in this image and consider all racks R ∈ Rn such that I(R) = I.
We will show that once the information corresponding to I is known, there are not too
many possibilities for R.

We will first consider the set In of 7-tuples in more detail. From Definition 4.11 and
the subsequent discussion, each I = (I1, . . . , I7) ∈ In has the form described below.
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1. I1 is a set SI ⊆ [n];

2. I2 is an (n − |SI |)-tuple (σIi ) of elements of Sym([n]), indexed by S̃I := [n] \ SI in
some arbitrary order;

3. I3 is a subset T I of [n] such that T I ⊆ SI ;

4. I4 is an n-tuple (τ Ii )ni=1 of injective maps from T I to SI ;

5. I5 is a sequence (σIi ) of elements of Sym([n]), indexed by the set (T I)+ := T I ∪
(T I)τ I1 ∪ · · · ∪ (T I)τ In in some arbitrary order.

The last two entries of I(R) are graphical in nature; to relate them to an abstract I ∈ In
we will formally define the graph associated with such a 7-tuple I.

Definition 6.3. Let I ∈ In. Write ΣI = {σIi | i ∈ T I} and define GI := GΣI , in the sense
of Definition 2.3, so GI is a |T I |-edge-coloured multigraph on [n]. We write cI for cp(GI)
and CI for the set of vertex sets of components of GI , so |CI | = cI .

We can now describe the form of I6 and I7, namely:

6. I6 is a sequence (M I
j ) of subsets of CI , indexed by SI \ T I in some arbitrary order;

7. I7 is a sequence (ψIj ) indexed by SI \ T I , where Y I
j =

⋃
C∈MI

j
C and ψIj ∈ Sym(Y I

j )

for all j.

To avoid later inconvenience, we will extend the definition of M I
j and Y I

j to all j ∈ [n] as

follows. For each j ∈ S̃I ∪ T I , define a set of ordered pairs from [n] (which we can think
of as edges of colour j) by setting

−→
E I
j := {−→xy | (x)σIj = y, x 6= y}. (6.2)

Then we define M I
j = M(GI ,

−→
E I
j ) and Y I

j =
⋃
C∈MI

j
C.

Now fix an I ∈ In and suppose R ∈ Rn is a rack such that I(R) = I. Recall that
∆ = (log2 n)3 and

I(R) =
(
S6∆(R), .|[n]×S>∆

, T (R), .|T (R)×[n], .|[n]×T+(R), M, .|Y
)
,

where each entry defined by . can also be determined in terms of the maps f1, . . . , fn
corresponding to R. Comparing I(R) with I we see that S6∆(R) = SI , S>∆(R) = S̃I

and T (R) = T I . We also have that fj = σIj for j ∈ S̃I ∪ (T I)+, and thus GT (R) = GI .
Finally, M I

j = Mj and Y I
j = Yj for all j ∈ [n], and fj|Yj = ψIj for j ∈ SI \ T I .

This means that if the information I = I(R) is known, we need only determine the
maps (fj|Zj

)j∈S6∆(R)\T (R) to determine the entire rack R, noting that for each j ∈ [n], the
set Zj = [n] \ Yj = [n] \ Y I

j is determined by I. It follows that an upper bound on the
number of possibilities for these maps is also an upper bound for the number of racks R
such that I(R) = I.

We can further reduce the number of maps left to determine by considering components
of the graph GI .
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Lemma 6.4. Let I ∈ In be fixed and let R ∈ Rn be a rack such that I(R) = I. Let
CI = {C1, . . . , CcI} and let V = {v1, . . . , vcI} be a set of vertices such that vj ∈ Cj for
each j. Then R is determined by I and the maps (fv|Zv)v∈V .

Proof. As I(R) = I, we have that GT (R) = GI and so the set of (vertex sets of) com-
ponents of T (R) is CI . Take any j = 1, . . . , cI ; the knowledge of I determines the maps
(fi)i∈T (R) = (σIi )i∈T I and thus from Lemma 5.3 (with A = [n]) knowledge of the map fvj is
sufficient to determine the maps (fu)u∈Cj

. Applying this over all the components of GT (R)

shows that we can determine the entire rack R by determining the set of maps (fv)v∈V . As
the restrictions (fv|Yv)v∈V are determined by I (fv|Yv = fv|Y I

v
is equal to ψIv if v ∈ SI \ T I

and to σIv |Y I
v

otherwise), we need only determine the restrictions (fv|Zv)v∈V .

Before proving an upper bound we will need some more notation. For I ∈ In and
1 6 q 6 n, let ηIq denote the number of vertices in components of GI of size exactly q.
Then there are ηIq/q components of size exactly q and thus

n =
n∑
q=1

ηIq and cI =
n∑
q=1

ηIq
q
.

Proposition 6.5. Let I ∈ In and define

ζI =

(
n∑
p=1

ηIp
p

)(
n∑
q=1

log2 q

q
ηIq

)
.

Then there are at most 2ζ
I

racks R ∈ Rn such that I(R) = I.

Proof. Write CI = {C1, . . . , CcI} and let V = {v1, . . . , vcI} be a set of vertices such that
vj ∈ Cj for each j. Let R ∈ Rn be a rack such that I(R) = I; from Lemma 6.4, R is
determined by I and the maps (fv|Zv)v∈V . It follows that an upper bound on the number
of possibilities for the maps (fv|Zv)v∈V is also an upper bound for the number of racks R
such that I(R) = I.

Now fix a v ∈ V . Let C ⊆ [n] span a component of GT (R) = GI with C /∈Mv, and let
x ∈ C; from Lemma 4.10 (with W = T (R)), (C)fv = C and so in particular there are at
most |C| possibilities for (x)fv. Now (fj|T (R))j∈[n] = (τ Ij )j∈[n] and (fi)i∈T+(R) = (σIi )i∈(T I)+

are determined by I = I(R), so from Lemma 5.6 fv|C is determined by (x)fv. Thus there
are at most |C| possibilities for fv|C .

As there are ηIq/q components of GT (R) = GI of size q, there are at most N :=∏n
q=1 q

ηIq/q possibilities for the map fv|Zv . Considering all of the cI components together,

there are at most N cI possibilities for the maps (fv|Zv)v∈V ; it follows that there are at
most N cI racks R such that I(R) = I. Now

log2

(
N cI

)
= cI

n∑
q=1

ηIq
q

log2 q
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=

(
n∑
p=1

ηIp
p

)(
n∑
q=1

ηIq
q

log2 q

)
= ζI ,

proving the result.

This proposition allows us to prove the main result.

Proof of Theorem 1.1. Recall that R′n denotes the set of isomorphism classes of racks of
order n; as |R′n| 6 |Rn| it suffices to find an upper bound on |Rn|. Let ε > 0; we have
from Corollary 5.5 and Proposition 5.7 that for n sufficiently large |I ′(Rn)| 6 2εn

2/2 and
|I ′′(Rn)| 6 2εn

2/2. Now take such a sufficiently large n; as I(R) = (I ′(R), I ′′(R)) for any
R ∈ Rn, |I(Rn)| 6 |I ′(Rn)||I ′′(Rn)| 6 2εn

2
, and so there are at most 2εn

2
possibilities

for the 7-tuple I ∈ I(Rn). From Proposition 6.5 and Lemma 6.2, there are at most
2ζ

I
6 2n

2/4 racks R such that I(R) = I, and thus |Rn| 6 2εn
2
2n

2/4.

7 An extremal result

For each positive integer n, let Pn be a partition of [n], and let RPn denote the set of
racks R on [n] such that the components of GR are exactly the parts of Pn. Let m2(n)
denote the number of parts of Pn of size exactly two; an extension of the methods used
in this paper can be used to prove that unless m2(n) ∼ n/2 there exists a constant
0 < κ < 1/4 such that |RPn| 6 2κn

2
for infinitely many n. In other words, informally

speaking, almost all (in an exponentially strong sense) racks R on [n] are such that almost
all components of GR have size 2. The idea of the proof is to find a function similar to
ζ from Proposition 6.5, but taking into account the size of the components of GR rather
than GT (R); the components of size two are a special case as the symmetric group on two
elements is small and abelian. For a full proof, see [1].

References

[1] Matthew Ashford. Graphs of Algebraic Objects. PhD thesis, University of Oxford,
2016.

[2] Simon R Blackburn. Enumerating finite racks, quandles and kei. The Electronic
Journal of Combinatorics, 20(3):#P43, 2013.

[3] F.J.B.J. Clauwens. Small connected quandles. arXiv:1011.2456, 2010.

[4] Roger Fenn and Colin Rourke. Racks and links in codimension two. Journal of Knot
theory and its Ramifications, 1(04):343–406, 1992.

[5] Richard Henderson, Todd Macedo, and Sam Nelson. Symbolic computation with
finite quandles. Journal of Symbolic Computation, 41(7):811–817, 2006.

[6] Benita Ho and Sam Nelson. Matrices and finite quandles. Homology, Homotopy and
Applications, 7(1):197–208, 2005.

the electronic journal of combinatorics 24(2) (2017), #P2.32 19

http://arxiv.org/abs/1011.2456


[7] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[8] Svante Janson, Tomasz  Luczak, and Andrzej Ruciński. Random Graphs. John Wiley
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