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Abstract

Jigsaw percolation is a model for the process of solving puzzles within a social
network, which was recently proposed by Brummitt, Chatterjee, Dey and Sivakoff.
In the model there are two graphs on a single vertex set (the ‘people’ graph and
the ‘puzzle’ graph), and vertices merge to form components if they are joined by
an edge of each graph. These components then merge to form larger components if
again there is an edge of each graph joining them, and so on. Percolation is said to
occur if the process terminates with a single component containing every vertex. In
this note we determine the threshold for percolation up to a constant factor, in the
case where both graphs are Erdős–Rényi random graphs.
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1 Introduction

Jigsaw percolation is a dynamical percolation model on finite graphs, which was proposed
by Brummitt, Chatterjee, Dey and Sivakoff [2] as a tool for the study of sequences of
interactions within a social network that enable a group of individuals to collectively solve
a problem. In the model there are two edge sets defined on a common set of vertices,
and, at discrete times, clusters of vertices merge to form larger clusters if they are joined
by at least one edge of each type. Before expanding on the motivation for the model, let
us give the formal definition. We write [n] for {1, 2, . . . , n}.

Definition 1. For i = 1, 2, let Ei ⊂ [n](2) be a set of pairs of elements of V := [n].
Let G be the ordered triple G := (V,E1, E2); we call this object a double graph. Jigsaw
percolation with input G evolves at discrete times t = 0, 1, . . . according to the following
algorithm. At time t there is a partition Ct = {C1

t , . . . , C
kt
t } of the vertex set [n], which is

constructed inductively as follows:

(1) We take k0 = n and Ci
0 = {i} for all 1 6 i 6 n. That is, at time 0 we begin with

every vertex in a separate set of the partition.

(2) At time t > 0, construct a graph Gt on vertex set Ct by joining Ci
t to Cj

t if there
exist edges e1 ∈ E1 and e2 ∈ E2 such that

e` ∩ Ck
t 6= ∅

for each of the four choices of ` ∈ {1, 2} and k ∈ {i, j}.

(3) If E(Gt) = ∅, then STOP. Otherwise, construct the partition

Ct+1 = {C1
t+1, . . . , C

kt+1

t+1 }

corresponding to the connected components of Gt, so each part Ci
t+1 is a union of

those parts of Ct corresponding to a component of Gt.

(4) If |Ct+1| = 1 then STOP. Otherwise, go to step 2.

Since |Ct| is strictly decreasing, the algorithm terminates in time at most
(
n
2

)
. We denote

the final partition by C∞ = (C1
∞, . . . , C

k∞
∞ ). We say that there is percolation, or that the

double graph is solved, if C∞ = {V }, i.e., if we stop in step (4).

Less formally, the jigsaw percolation algorithm begins with each vertex considered a
separate cluster, and proceeds by merging, at each step, clusters of vertices joined by at
least one edge from E1 and at least one edge from E2.

Let us mention in passing a superficially similar, but very different, percolation model
in double graphs introduced by Buldyrev, Parshani, Paul, Stanley and Havlin [3] in 2010.
The set-up is the same, but one defines the partition in a top-down way, finding the
maximal sets of vertices connected in both graphs (V,E1) and (V,E2) (‘mutually con-
nected clusters’). To see the difference note that if these graphs are edge-disjoint and
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connected, then in this model V forms a single ‘mutually connected cluster’, whereas in
jigsaw percolation the algorithm stops where it starts, with a partition into singletons.

Returning to the jigsaw model, which we consider throughout this paper, Brummitt,
Chatterjee, Dey and Sivakoff [2] suggest that jigsaw percolation may be a suitable model
for analysing how a puzzle may be solved by collaboration between individuals in a social
network. The premise is that each individual has a ‘piece’ of the puzzle, and that these
‘pieces’ must be combined in a certain way in order to solve the puzzle. The process of
solving the puzzle is constrained by the social network of the individuals concerned. To
model this, the authors of [2] suggest that one of the graphs, G1 := (V,E1) say, (which
they call the people graph, and which we call the red graph), could represent the graph of
acquaintances, and that the other graph, G2 := (V,E2), (which they call the puzzle graph,
and which we call the blue graph), could represent the ‘compatibility’ between pairs of
‘pieces’ of the puzzle. The jigsaw percolation algorithm thus represents the merging of
‘compatible puzzle pieces’ by groups of connected individuals. For an in-depth account
of the applications of the model to social networks, we refer the reader to the original
article [2].

In [2], the authors prove a number of necessary and sufficient conditions for percolation
when the red graph G1 is the Erdős–Rényi random graph G(n, p) with n vertices and
edge probability p and the blue graph G2 is a deterministic graph, such as the n-cycle
or another graph of bounded maximum degree. For example, they show that there is
an absolute constant c > 0 such that if, for each n ∈ N, Gn

2 = ([n], En
2 ) is an arbitrary

connected graph on vertex set [n], and Gn
1 is an Erdős–Rényi graph with edge probability

p > c/ log n, then the double graph G := ([n], En
1 , E

n
2 ) percolates with high probability as

n→∞. On the other hand, if the graphs Gn
2 have bounded maximum degree and instead

p < n−ε for some ε > 0, then with high probability the double graph does not percolate.
Gravner and Sivakoff [5] observe that for certain deterministic graphs G2, the jigsaw

percolation model behaves similarly to bootstrap percolation on the grid [n]2, and they use
techniques from bootstrap percolation to prove tight bounds in certain cases. For example,
if G1 = G(n, p) and G2 = Cn is the n-cycle, they show that the critical probability pCn

c (n)
for the corresponding double graph G, defined by

pCn
c (n) := inf

{
p : P(G percolates) > 1/2

}
,

satisfies

pCn
c =

(1 + o(1))π2/6

log n
.

(This critical probability, and specifically the constant π2/6, will be known to readers
who are familiar with bootstrap percolation: it is also (see [6]) the critical probability
for the so-called ‘modified’ bootstrap percolation model on [n]2 – this is, of course, not a
coincidence (see [5] for the details).)

In this note we study the case where both underlying graphs are Erdős–Rényi random
graphs. In order to state our result, we need a little more notation. For the rest of
the paper, we shall take G1 = (V,E1) and G2 = (V,E2) to be independent Erdős–
Rényi random graphs with the same vertex set V = [n], with edge probabilities p1 and
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p2 respectively, and we take G = ([n], E1, E2). A first trivial observation is that if the
double graph G is to percolate then both G1 and G2 must be connected. We shall ensure
this by assuming

min{p1, p2} >
c log n

n
, (1)

for a sufficiently large absolute constant c.1 Under this condition, in this note we determine
the critical value pc(n) of the product p1p2 up to a constant factor. More precisely, we
show that under the assumption (1), if p1p2 6 (1/c)pc(n) then percolation is very unlikely,
and if p1p2 > cpc(n) then percolation is very likely.

Theorem 2. There is an absolute constant c > 0 such that the following holds, with
G = (V,E1, E2), where (V,E1) = G(n, p1) and (V,E2) = G(n, p2) are independent Erdős–
Rényi random graphs on the same set of n vertices, and p1 and p2 are functions of n.

(i) If p1p2 6 1/(cn log n), then P(G percolates)→ 0.

(ii) If p1p2 > c/(n log n) and (1) holds, then P(G percolates)→ 1.

Informally, this result says that

pc(n) = Θ

(
1

n log n

)
.

If p2 satisfying (1) is given, then another way of thinking about Theorem 2 is that
the critical value of p1 is Θ(1/p2n log n) = Θ(1/d log n) (provided this also satisfies (1)),
where d = (n − 1)p2 is the expected degree of vertices in G2. Theorems 1 and 2 of [5]
also show that, for certain families of (deterministic) d-regular graphs G2 (with d possibly
being a function of n), the critical value of p1 is Θ(1/d log n), although the authors of [5]
also show that this does not always hold.

The proof of lower bound in Theorem 2 is straightforward and follows from standard
methods; the real content of this paper is the proof of the upper bound.

2 Proof of part (i) of Theorem 2

Here we present the very brief proof of part (i) of Theorem 2, although really it is no more
than the argument used by Aizenman and Lebowitz [1] to derive the lower bound up to a
constant factor for the critical probability for 2-neighbour bootstrap percolation on [n]2.

The percolation process defined above can be broken down into smaller steps, in each
of which two clusters (parts of the current partition) merge – specifically, one can modify
step (3) of Definition 1 to merge an arbitrary pair of sets Ci

t joined in the graph Gt,
rather than entire connected components. Since we start with a partition into singletons,
considering the first step at which a cluster of size at least log n appears, it follows that if

1With some tightening, our arguments could be made to work under the (optimal) assumption that
min{p1, p2} > (1 + ε) log n/n, where ε > 0 is fixed but arbitrary. We choose to make the stronger
assumption in (1) for clarity of the exposition.
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(G,E1, E2) percolates, then there is some set A of at least log n but at most 2 log n vertices
such that the red and blue graphs restricted to A are both connected. Using independence
of the red and blue graphs, the facts that a connected graph must contain a spanning tree
and that there are kk−2 labelled trees on k vertices, and the bound

(
n
k

)
6 (en/k)k, we see

that

P(G percolates) 6
2 logn∑
k=logn

(
n

k

)
kk−2pk−11 kk−2pk−12

6
1

p1p2

2 logn∑
k=logn

(enkp1p2)
k

6
1

p1p2

2 logn∑
k=logn

(2enp1p2 log n)k

6 2en log n
∞∑

k=logn

(2enp1p2 log n)k−1 .

For p1p2 6 1/(e4n log n), say, the quantity in brackets is at most 1/e2 and it follows that
the final bound is o(1), proving (i).

We can now move on to the main part of this paper: the second part of Theorem 2.

3 Proof of part (ii) of Theorem 2

Let us begin with a small number of conventions. As already mentioned, G1 and G2

will always be independent Erdős–Rényi random graphs on vertex set V := [n], with
densities p1 and p2 respectively. Throughout, we assume that c is a sufficiently large
absolute constant, that the number of vertices n is sufficiently large, and that p1 and p2
satisfy

p1p2 =
c

n log n
and

c log n

n
6 p1 6 p2. (2)

The assumptions of Theorem 2 (ii) require p1p2 > c/(n log n) rather than the equality in
(2), but we may couple with smaller p1 and p2 if necessary so that (2) holds. Constants
implicit in O(·) notation (and its variants) are independent of c (and of n). For later
use, let us note some immediate consequences of (2); these follow since p1 6

√
p1p2 and

p2 = (p1p2)/p1:

p1 6

(
c

n log n

)1/2

6 n−1/2 and p2 6
1

(log n)2
. (3)

We need a key definition: that of an ‘internally spanned’ set of vertices. The definition
enables one to say which sets of sites (internally) percolate, without any help from other
vertices, and is motivated by several similar notions in the bootstrap percolation literature
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(see, for example, [1, 4]). Our method for showing that G percolates will broadly take
the form ‘there exists a nested sequence of internally spanned sets U1 ⊂ · · · ⊂ Um, with
Um = [n]’; the crux will be finding such a sequence.

Definition 3. A set U ⊂ [n] is internally spanned by G if the double graph GU :=
(U,EU

1 , E
U
2 ) percolates, where EU

i is the edge set of the induced subgraph of Gi on vertex
set U , for i = 1, 2 (that is, EU

i := E
(
Gi[U ]

)
). We write I(G,m) for the event that V (G)

contains an internally spanned set of size at least m.

The proof of the lower bound of Theorem 2 could now be rephrased as follows. First,
observe that if G percolates, then, by merging components two at a time, we have that
V (G) must contain an internally spanned set of size roughly log n. Second, using well-
known properties of trees, one can show that if p is small then this event is unlikely to
occur.

The proof of the upper bound is divided into three parts, with a corresponding division
of both the red and blue edges into three subsets. In the first part of the proof we show
that with high probability there is a set A of at least (log n)3/2 vertices which is internally
spanned by the first set of (red and blue) edges. This is the core of the proof: the
‘bottleneck’ event to percolation (in a certain sense) is the existence of an internally
spanned set of size about log n.2 Then we show, using the second set of edges, that with
high probability the set A is contained in an internally spanned (with respect to the edges
reveal so far) set B of size n/16. Finally, using the condition (1), we show using the third
set of edges and the set B that with high probability the whole vertex set is internally
spanned.

In each of the first two parts we specify an ‘exploration algorithm’, in which the edges
of each of the underlying graphs are revealed in an order that depends on what has been
observed so far. The purpose is to reveal as few edges as possible (in order that we may
reveal them later if necessary) in the search for a nested sequence of internally spanned
sets. The algorithms are set out explicitly in Definitions 5 and 10.

Between the three parts of the proof, independence is maintained by sprinkling : for
each i = 1, 2 and j = 1, 2, 3, we take G

(j)
i to be an independent copy of G(n, pi), where p1

and p2 satisfy the conditions (2) as before; we then set E
(j)
i := E(G

(j)
i ),

Gi := G
(1)
i ∪G

(2)
i ∪G

(3)
i , and G(j) :=

(
[n], E

(j)
1 , E

(j)
2

)
.

Constructing the Gi in this way maintains both conditions in (2), with a different value of
c. More precisely, the edge probability p′i of Gi satsfies 1− p′i = (1− pi)3, so p′i is a little
less than 3pi. One could therefore replace c by 9c in (2), and any double graph satisfying
the new conditions could be coupled with our double graph.

2This observation was also exploited in the proof of the lower bound, although it is nothing new: a
similar idea was used in [2, 5] on jigsaw percolation, and previously in [1, 6] (among many other papers)
on bootstrap percolation.
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3.1 Part I

In this first part of the proof we prove the following lemma.

Lemma 4. The probability that G(1) contains an internally spanned set of size at least
(log n)3/2 is at least 1− e−

√
n.

We prove the lemma by repeatedly attempting to build an internally spanned set of
size at least (log n)3/2 by adding one vertex at a time to a so-called ‘trial set’ (we call
this the 1-by-1 algorithm). If we find a suitable vertex to add to the trial set, then we
continue. If not, then we discard the vertices from the trial set, and start again; we
call this starting a new round. Discarding the trial set will ensure independence between
rounds (see below). More precisely, the algorithm performs a sequence of ‘tests’, asking
whether certain potential red edges or potential blue edges are present. (More precisely
still, the ‘test’ corresponding to a pair {x, y} of vertices and i ∈ {1, 2} asks whether

xy ∈ E(1)
i .) We shall make sure that no test is performed twice.

The subtlety is in the order in which we reveal the edges: the aim is to reveal as few
edges as possible in the search for each new vertex. Given an internally spanned trial set
X, we first reveal all red edges from (not-yet-discarded) vertices outside X to the most
recently added vertex v in X. Since a potential red edge is tested immediately after the
first time one of its ends is added to X, it cannot be tested twice within a round.3 Let
R be the set of vertices outside X incident with such red edges. We test for blue edges,
to the whole of the trial set, only from vertices in R. If there is a vertex in R with a
blue edge to any vertex in the trial set, then we add one such vertex to the trial set. We
discard all other vertices in R until the end of this round; this ensures that no potential
blue edge is tested twice within a round. At the end of a round we permanently discard
all vertices in the trial set. Since a tested edge (red or blue) always has at least one end
in the trial set, this ensures that no edge is tested in two different rounds, giving us the
independence we need.

Here is a formal description of the algorithm.

Definition 5. (The 1-by-1 algorithm.) The algorithm is divided into rounds, indexed
by k, and each round is divided into steps, indexed by t. At the start of the kth round
there is a set Ak ⊂ [n] of active vertices and a set Dk ⊂ [n] of discarded vertices. We
begin with A1 = [n] and D1 = ∅. The procedure for the kth round is as follows:

(1) At the start of the tth step of the kth round there is a set X t
k = {x1k, . . . , xtk} ⊂ Ak

of trial vertices, a set At
k ⊂ Ak of active vertices, and a set Dt

k ⊂ Ak of discarded
vertices. These sets partition Ak, so for all t, Ak is the disjoint union of X t

k, At
k and

Dt
k. To begin, we have X0

k = D0
k = ∅ and A0

k = Ak.

3Looking at it from the point of view of vertices, rather than edges, the fact that a potential new
vertex has been considered at the tth step, and found not to have a red edge to the most recently added
vertex, does not stop us from testing the same vertex again at later steps, since in those steps we will be
testing for different red edges.

the electronic journal of combinatorics 24(2) (2017), #P2.36 7



(2) For t = 0, move an arbitrary active vertex to the trial set. That is, set X1
k = {x1k},

D1
k = ∅ and A1

k = A0
k \ {x1k}, where x1k ∈ A0

k is arbitrary.

(3) For t > 1, reveal all edges of G
(1)
1 (that is, all red edges from the first sprinkling)

between At
k and {xtk}, and let

Rt
k :=

{
x ∈ At

k : xxtk ∈ E
(1)
1

}
.

Then, reveal all edges ofG
(1)
2 (that is, all blue edges from the first sprinkling) between

Rt
k and X t

k, and let

Bt
k :=

{
x ∈ Rt

k : xxsk ∈ E
(1)
2 for some 1 6 s 6 t

}
.

(4) If Bt
k 6= ∅, then let xt+1

k be an arbitrary element of Bt
k. Then set

X t+1
k := X t

k ∪ {xt+1
k }, At+1

k := At
k \Rt

k, and Dt+1
k := Dt

k ∪Rt
k \ {xt+1

k }.

If t > (log n)3/2 then STOP, otherwise set t := t+ 1 and go to step (3).

(5) If Bt
k = ∅, then set

Ak+1 := Ak \Xk and Dk+1 := Dk ∪Xk.

If
k >

n

2(log n)3/2

then STOP, otherwise set k := k + 1 and t := 0, and go to step (1).

Before starting the analysis, let us note that since we consider at most n/(2(log n)3/2)
rounds, and stop each with a trial set of size at most (log n)3/2, we start each round with

|A0
k| = |Ak| > n/2. (4)

Let Bt
k be the event that X t+1

k is (defined and) has size t + 1 (if t > 1 then this is
equivalent to the event that Bt

k is (defined and) non-empty). We shall show that Bt
k is

not too unlikely. For technical reasons, we also need to consider the event

St
k =

{
|Rs

k| 6 n3/4 for s = 1, 2, . . . , t
}

that within round k, we have not ‘used up’ too many vertices by step t. (Here and in what
follows we ignore rounding to integers in expressions such as n3/4. This makes essentially
no difference.) For k 6 n/(2(log n)3/2) and t > 1, let

rtk := P
(
Bt
k ∩ St

k

∣∣ Bt−1
k ∩ St−1

k

)
,

noting that S0
k is the trivial event that always holds

We shall need two different estimates on rtk, according to whether t is larger or smaller
than (log n)/c.
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Lemma 6. Suppose that k 6 n/
(
2(log n)3/2

)
and 1 6 t 6 t1 = (log n)3/2. Then

rtk >

{
1− exp

(
− (n/5)p1p2t(1− p2t)

)
unconditionally,

(1/10)np1p2t(1− p2t) if np1p2t 6 1.

Proof. We condition on the outcome of the exploration so far, up to the start of step t
of round k. Note that this information determines whether Bt−1

k ∩ St−1
k holds; we may

assume that it does.
Given the information revealed so far, the conditional distribution of |Rt

k| is binomial
Bin(|At

k|, p1). Since |At
k| 6 n, we have

P
(
(St

k)c
∣∣ Bt−1

k ∩ St−1
k

)
= P

(
|Rt

k| > n3/4
∣∣ Bt−1

k ∩ St−1
k

)
6

(
n

n3/4

)
pn

3/4

1 6
(
en1/4p1)

n3/4

6 e−
√
n,

say, where for the first inequality we have taken a union bound and for the final inequality
we have used the bound p1 6 1/

√
n (from (3)).

Now, conditional on the exploration so far, for each x ∈ At
k we have

P
(
x ∈ Bt

k

)
= p1(1− (1− p2)t) > p1(1− e−p2t) > p1p2t(1− p2t),

since 1− e−x > x(1− x) for all x > 0. On the event Bt−1
k ∩ St−1

k we have

|At
k| > |A0

k| − tn3/4 > n/4,

using (4). Since Bt
k holds if and only if Bt

k 6= ∅, we thus have

P
(
(Bt

k)c
∣∣ Bt−1

k ∩ St−1
k

)
6
(
1− p1p2t(1− p2t)

)n/4
6 exp

(
− (n/4)p1p2t(1− p2t)

)
,

so
rtk > 1− exp

(
− (n/4)p1p2t(1− p2t)

)
− e−

√
n.

The first case of the lemma now follows from the bounds

np1p2t =
ct

log n
= o

(√
n
)

and p2t 6
(log n)3/2

(log n)2
= o(1).

The second case follows from the first and the inequality 1−e−x > x/2, valid for x 6 1.

In the next two lemmas, we break down the 1-by-1 algorithm into two stages: first, in
Lemma 7, we show that the probability the algorithm reaches step

t0 := (log n)/c

in a given round is at least n−O(1)/c. Then, in Lemma 8, we show that the probability it
reaches step

t1 := (log n)3/2,

given that it has reached step t0, is also at least n−O(1)/c.
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Lemma 7. Suppose that k 6 n/
(
2(log n)3/2

)
. Then

P
(
Bt0
k ∩ S

t0
k

∣∣ B0
k

)
> n−4/c.

Proof. The definition of t0 combined with the expression for p1p2 from (2) implies that
np1p2t0 6 1, and hence the second case of Lemma 6 applies for the whole range. Thus,

P
(
Bt0
k ∩ S

t0
k

∣∣ B0
k

)
>

t0∏
t=1

1

10
np1p2t(1− p2t) >

(
c

10 log n

)t0

t0!(1− p2t0)t0 .

Recall that p2 6 (log n)−2, so p2t0 6 (log n)−1 = o(1). Noting that 1−x > e−2x if x 6 1/2
and that t! > (t/e)t for all t ∈ N, it follows that

P
(
Bt0
k ∩ S

t0
k

∣∣ B0
k

)
>

(
ct0

10e log n

)t0

exp
(
− 2p2t

2
0

)
= exp

(
− t0 log(10e)− 2p2t

2
0

)
.

Since p2t0 6 1/ log n, we obtain

P
(
Bt0
k ∩ S

t0
k

∣∣ B0
k

)
> exp(−4t0) = n−4/c,

as required.

Lemma 8. Suppose that k 6 n/
(
2(log n)3/2

)
. Then

P
(
Bt1
k

∣∣ Bt0
k ∩ S

t0
k

)
> n−O(1)/c.

Proof. For t0 < t 6 t1, we use the first of the two estimates in Lemma 6, the validity of
which does not depend on t. Using this, and recalling that p2 6 1/(log n)2 (from (3)) and
t 6 (log n)3/2, we have

P
(
Bt1
k

∣∣ Bt0
k ∩ S

t0
k

)
>

t1∏
t=t0+1

(
1− exp

(
− (n/5)p1p2t(1− p2t)

))
>

t1∏
t=t0

(
1− exp

(
− (n/6)p1p2t

))
>

t1∏
t=t0

(
1− exp

(
− ct/(6 log n)

))
> exp

(
− 3

t1∑
t=t0

exp
(
− ct/(6 log n)

))
,

where for the final step we used the inequality 1− x > exp(−3x), valid (by convexity) for
0 6 x 6 0.9, say.4 Thus,

P
(
Bt1
k

∣∣ Bt0
k ∩ S

t0
k

)
> exp

(
− 3e−1/6

1− e−c/(6 logn)

)
> n−O(1)/c,

where the implied constant does not depend on c.

4What we really need in this argument is that p2 � 1/ log n, or equivalently p1 � 1/n, which already
implies the existence of a giant component in each colour. We only need the connectivity condition once
we have obtained an internally spanned set of linear size.
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We now put the previous few lemmas together.

Proof of Lemma 4. Let k 6 n/
(
2(log n)3/2

)
. Then in the kth round, the probability

of finding an internally spanned set of size (log n)3/2 is at least n−O(1)/c, by applying
Lemmas 7 and 8 in turn. Moreover, this bound holds conditional on the result of all
previous bounds, since in proving Lemma 7 and 8 we conditioned on these previous
rounds. Hence the probability that all n/

(
2(log n)3/2

)
rounds terminate ‘early’ (without

finding an internally spanned set of size (log n)3/2) is at most(
1− n−O(1)/c

)n/(2(logn)3/2)
6 exp

(
−Ω

(
n1−O(1)/c

(log n)3/2

))
6 exp

(
−
√
n
)
,

if c is sufficiently large.

3.2 Part II

In this part of the proof we prove the following lemma.

Lemma 9. Given that G(1) contains an internally spanned set of size at least (log n)3/2,
the conditional probability that G(1) ∪ G(2) contains an internally spanned set of size at
least n/16 is at least 1− n−100. That is,

P
(
I
(
G(1) ∪G(2), n/16

) ∣∣∣ I(G(1), (log n)3/2
))

> 1− n−100.

In this range we use a different vertex exploration algorithm in order to find succes-
sively larger internally spanned sets. Rather than adding vertices 1-by-1, as in Part I, we
attempt to double the size of the trial set at each step. We start with a set X0 of size
t1 = (log n)3/2 internally spanned by G(1) (found in Part I), and we continue so that at
step t we have a set Xt of size

xt := 2tt1

internally spanned by G(1) ∪ G(2). In order to maintain independence between steps, we
only add a new vertex v to the trial set if there is at least one edge of each colour from
G(2) joining v to the subset of the trial vertices that was added at the previous step.

Definition 10. (The doubling algorithm.) At the start of the tth step there is a
set Xt of vertices internally spanned by G(1) ∪ G(2), where |Xt| = xt. The set Xt is the
trial set. The set At := V (G) \ Xt of remaining vertices in the graph is the active set.
The algorithm takes as its inputs the double graphs G(1) and G(2), and a set X0 of size
(log n)3/2, internally spanned by G(1).

(1) At step t > 0, reveal all edges of G(2) between At and Xt \ Xt−1, where we set
X−1 = ∅. Let

Bt :=
⋃

v′,v′′∈Xt\Xt−1

{
v ∈ At : vv′ ∈ E

(2)
1 and vv′′ ∈ E

(2)
2

}
.

Thus, Bt is the set of active vertices joined to Xt \Xt−1 by an edge of each colour
from the second sprinkling.
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(2) If |Bt| 6 xt then STOP. Otherwise, let Ct ⊂ Bt be an arbitrary set of exactly xt
vertices of Bt, and set

Xt+1 := Xt ∪ Ct, and At+1 := At \ Ct.

If |Xt+1| > n/16 then STOP, otherwise go to step (1).

First we need a lower bound on the probability that the size of the trial set doubles
at step t.

Lemma 11. The probability that |Bt| > xt, conditional on the doubling algorithm having
reached the tth step (that is, |Xt| = xt), is at least

1− exp
(
− Ω

(
c(log n)2

))
.

Proof. Let st be the probability in question, so

st = P
(
|Bt| > xt

∣∣ |Xt| = xt
)
.

Let qt,i be the probability that a vertex v ∈ At is joined to Xt \Xt−1 = Ct−1 by at least

one edge of G
(2)
i . Since |Ct−1| = xt/2 for t > 1 while |C−1| = x0, we have

qt,i > 1− (1− pi)xt/2 > 1− e−pixt/2 >

{
pixt/4 if pixt < 2,

1/2 otherwise.
(5)

By the definition of the doubling algorithm, we have |Xt| 6 n/16 (otherwise we would
have stopped), so there are at least 15n/16 > n/2 vertices v ∈ At. The events that
individual vertices are in Bt are independent (because we do not ‘re-test’ edges). Hence
if Z is a random variable with the Bin

(
n/2, qt,1qt,2

)
distribution, then st > P(Z > xt).

From (5) it is easy to check that

E[Z] = (n/2)qt,1qt,2 > 2xt.

Indeed, if p1xt 6 p2xt < 2, then E[Z] > (n/32)p1p2x
2
t > 2xt since np1p2 > c/(log n)

(from (2)) and xt > (log n)3/2. If p1xt < 2 6 p2xt, then E[Z] > np1xt/16 > 2xt, using
np1 > c log n. Finally, if 2 < p1xt 6 p2xt, then E[Z] > n/8 > 2xt since xt 6 n/16. We
thus have

st > P(Z > xt) > P
(
Z > E[Z]/2

)
> 1− exp

(
− Ω(E[Z])

)
,

using a standard (Chernoff-type) bound for the final step. Now qt,i is increasing in t, so

E[Z] = nqt,1qt,2/2 > nq0,1q0,2/2 > c(log n)2,

where the last inequality follows from (5), recalling that x0 = t1 = (log n)3/2 and that
p1 6 p2 6 (log n)−2 (see (3)). This completes the proof.
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Lemma 9 is now immediate.

Proof of Lemma 9. Recall that we wish to show that

P
(
I
(
G(1) ∪G(2), n/16

) ∣∣∣ I(G(1), (log n)3/2
))

> 1− n−100. (6)

Let t2 be maximal such that xt2 6 n/16, which in particular implies that t2 = O(log n).
By Lemma 11, the left-hand side of (6) is at least

t2∏
t=0

P
(
|Bt| > xt

∣∣ |Xt| = xt
)
>
(

1− exp
(
− Ω(c(log n)2)

))O(logn)

> 1− exp
(
− Ω(c(log n)2)

)
,

which is certainly at least 1− n−100, as required.

3.3 Part III

It remains to show that if G(1) ∪G(2) contains an internally spanned set X of size at least
n/16 then G = G(1) ∪G(2) ∪G(3) is internally spanned with high probability. But this is
trivial: using the final sprinkle, i.e., the edges of G(3), every vertex v ∈ [n] \X is joined
to X by both a red edge and a blue edge, with high probability.

Proof of Theorem 2. As noted above, it remains only to prove (ii), and in doing so, we
may assume (2). By Lemmas 4 (Part I) and 9 (Part II), G(1) ∪G(2) contains an internally
spanned set of size at least n/16 with probability at least 1 − 2n−100. Let X be such a
set. Then the probability that there is any vertex of [n] \X not joined to X by at least

one edge of G
(3)
1 (a red edge from the third sprinkling) and at least one edge of G

(3)
2 (a

blue edge from the third sprinkling) is at most

2n(1− p1)n/16 = o(1),

since p1 > c(log n)/n and c is sufficiently large.
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