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Abstract

The rectangle covering number of an n × n Boolean matrix M is the smallest
number of 1-rectangles which are needed to cover all the 1-entries of M . Its binary
logarithm is the Nondeterministic Communication Complexity, and it equals the
chromatic number of a graph G�(M) obtained from M by a construction of Lovász
and Saks.

We determine the rectangle covering number and related parameters (clique size,
independence ratio, fractional chromatic number of G�(M)) of random Boolean
matrices, where each entry is 1 with probability p = p(n), and the entries are
independent.

1 Introduction

For a positive integer n, a rectangle is a product R = K × L ⊂ [n] × [n] (with [n] :=
{1, . . . , n}). Given an n × n matrix M with 0/1 entries, a 1-rectangle is a rectangle R
with Mk,` = 1 for all (k, `) ∈ R. A rectangle covering of M is a collection of 1-rectangles

R(1), . . . , R(r) such that {(k, `) |Mk,` = 1} =
⋃
r R

(r)
k,`, i.e., every 1-entry of M is contained

in one of the chosen 1-rectangles. The rectangle covering number [28, 27], rc(M), of M is
the smallest number of 1-rectangles in a rectangle covering of M . The nondeterministic
communication complexity [25] of M is dlog2(rc(M))e.

Rectangle covering is the same as covering by bicliques the edges of the bipartite graph
HM whose vertex set is the disjoint union [n] ] [n], and whose bipartite adjacency matrix
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equals M . Hence, the term biclique covering is often used. In Matrix Theory, the name
Boolean rank [5, 6, 24] is common. There, the Boolean rank lower bounds the nonnegative
rank [15]: Indeed, the rectangle covering number is the best possible lower bound on the
nonnegative rank if one considers only zero-nonzero information of the matrix (cf. [26]).

Rectangle covering coincides with the 2-dimension of certain posets (cf. [8]) and with
the strong isometric dimension of certain graphs [13]. It has applications in coding the-
ory [16], and connections to extremal set theory [17].

The rectangle covering number is an important lower bound on the so-called extension
complexity [36] of polytopes, a quantity of interest in Combinatorial Optimization: Lower
bounds on the rectangle covering number were the techniques which allowed to prove
exponential lower bounds for sizes of linear programming formulations for a number of
combinatorial optimization problems [9, 10, 3]. While random 01-matrices have high
rank, the matrices occurring in Combinatorial Optimization, so-called slack matrices,
have arbitrary real (or rational) entries, and their ranks are typically only polylog in their
sizes. It is important to realize that, while the rank of the actual slack matrix is a lower
bound to the extension complexity, the rank of the 01-matrix (each non-zero entry of the
slack matrix is replaced by 1) is not.

As hinted above, the rectangle covering number is the chromatic number of the (Lovász-
Saks) rectangle graph, G�(M), of the matrix M which has as its vertices the 1-entries of M ,
with two 1-entries being adjacent, if they span a 2×2 rectangle containing a 0-entry of M .
More precisely:

V (G�(M)) =
{

(k, `) ∈ [n]× [n] |Mk,` = 1
}

E(G�(M)) =
{
{(k, `), (k′, `′)}

∣∣Mk,`Mk′,`′ = 1 & Mk,`′Mk′,` = 0
}
.

The following is implicit in [27], and implies χ(G�(M)) = rc(M).

Proposition 1.1 ([27]). The inclusion-wise maximal 1-rectangles of M are precisely the
vertex sets of the inclusion-wise maximal independent sets of G�(M).

Other parameters of M and G� are used as lower bounds in the application areas: the
ratio “number of 1-entries by size of the largest 1-rectangle” is the independence ratio
of G�; so-called fooling sets in M coincide with cliques in G�; the so-called generalized
fooling set bound [7] coincides with the Hall ratio (the supremum of all independence ratios
of induced subgraphs) of G�; fractional rectangle covering [20] is the same as fractional
coloring of G�. (Except for the part about fooling sets, all of these statements follow
from Prop. 1.1.) A fooling set (cf., e.g., [25, 11]), is a set of 1-entries of M which, when
considered as edges of HM (see above), form a cross-free matching, i.e., a matching no two
of whose edges induce a K2,2 in HM .1 Fooling sets are referred to as sets of independent
entries in Matrix Theory [4].

1More precisely, a matching M ⊆ E ⊆ [n] × [n] is cross-free if, for every (k, `), (k′, `′) ∈ M we have
(k, `) = (k′, `′) or (k, `′) /∈ E or (k′, `) /∈ E.
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Our results and connections to related work. In this paper we study the rect-
angle covering number, and the parameters listed above, of a random n × n Boolean
matrix Mn,p, where each entry is independently 1 with probability p = p(n) and 0 with
probability 1 − p, or, respectively, of the random graph Gn,p

� := G�(M
n,p). As usual, we

are interested in n→∞.
In (Communication) Complexity Theory, random objects are usually used for estab-

lishing that hard objects exist in the given model of computation. In this spirit, some
easy results about the (nondeterministic) communication complexity of random functions
and related parameters exist, with p a constant, mostly p = 1/2.

For us, part of the motivation for investigating the parameters studied in this paper
was to see to which extend random Boolean matrices behave similarly to the difficult
families of matrices in Combinatorial Optimization whose rectangle covering number one
would like to bound. In these families, the number of zeros per row/column is typically
small, i.e., the typical number of 0-entries per row is polylog n. In terms of random
matrices, this prompted us to look at these parameters when p = p(n)→ 1 with n→∞
– in the spirit of the study of properties of Erdős-Rényi random graphs. In an analogy
to those random graphs, the results become both considerably more interesting and also
more difficult that way.

The clique number of G
n,1/2
� (fooling set size) was shown [7] to be Θ(lnn), asymp-

totically almost surely (“a.a.s.”, i.e., the probability of that happening tends to 1 with
n → ∞). In the interesting examples from Combinatorial Optimization, the fooling set
bound is typically O(lnn)—even worse than the theoretical maximum (from Turán’s the-
orem, cf. [8]) of O(polylog n) for matrices with O(polylog n) zeros per row/column. For
example, for the Spanning Tree polytope, it was recently shown that the fooling set bound
is (almost) useless [22]. This is in line with what we observe in random matrices: We give
upper and lower bounds for ω(Gn,p

� ) for p→ 1 and also for p→ 0, based on matchings in
random (binomial) bipartite graphs (Section 5).

Recently, Izhakian, Janson, and Rhodes [18] have determined asymptotically the so-
called triangular rank of random Boolean matrices with independent Bernoulli entries.
The triangular rank is important in Communication Complexity [27] and in Combinatorial
Optimization [26], and it is a lower bound to the size of a fooling set. In Izhakian et al.’s
paper, determining the behavior for p→ 0, 1 is posed as an open problem.

The size of the largest monochromatic rectangle in a random Bernoulli matrix was
determined in [31] when p is bounded away from 1, but their technique fails for p → 1.
We determine the asymptotic behaviour of that parameter (the independence number
of the Lovász-Saks rectangle graph) for p → 1 (Section 4). The importance of this
parameter lies mainly in the fact that the independence ratio (the number of vertices over
the independence number) is a lower bound to the chromatic number.

The chromatic number of G
n,1/2
� is given in Sherstov’s lecture notes on Communication

Complexity2. The rectangle covering number of Clique-vs-Stable-Set (which is important
in the context of the extension complexity of the Stable Set polytope) on random graphs

2http://www.cs.ucla.edu/~sherstov/teaching/2012-winter/
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was studied in [3]. We discuss the chromatic number χ(Gn,p
� ) and the fractional chromatic

number χ∗(Gn,p
� ) in Section 6.

Interestingly, the ratio χ/χ∗ tends to infinity a.a.s. in a certain range of p. This is not
only a notable difference to the situation p = 1/2, where the chromatic number and the
independence ratio (which also lower bounds the fractional chromatic number) coincide
a.a.s. It also distinguishes this random graph model from, say, Erdős-Renyi random
graphs, where, a.a.s., the independence ratio is within a constant factor of the chromatic
number.

Since the fractional chromatic number is today the most sucessfully used (combina-
torial) lower bound for extension complexity, it came as a surprise to the authors that
random rectangle graphs exhibit a gap between the fractional chromatic number and the
cromatic number, at least in some parameter ranges. This phenomenon coincides with ob-
servations about some of the matrix families in Combinatorial Optimization, (e.g., related
to spanning trees in complete graphs, see, e.g., [35, 23]), where the fractional chromatic
number might be a weak lower bound. We refer the reader to the conclusions for a
discussion of concrete conjectures on χ-vs-χ∗.

An extended abstract (without proofs) of the results of this paper was accepted to the
13th annual conference on Theory and Applications of Models of Computation, in a form
taylored to Complexity Theory audience [32]. (The conference was canceled and accepted
papers were presented one year later at the April 2017 TAMC.)

2 Some basic properties of rectangle covering

We summarize some properties of the rectangle covering number in the following remark.
All proofs are easy to trivial, and we leave them to the reader as a warm-up.

Remark 2.1.

(a) Trivial upper bound: If M is an m× n matrix then rc(M) 6 min(n,m).

(b) Redundant rows or columns: If the set of 1s of row k equals the union of the sets of
1s of other rows, then deleting row k does not change the rectangle covering number.
A special case is a row with no 1s. Another special case is this: If n′ (m′, resp.) is the
number of distinct, non-0 rows (columns, resp.) of M , then rc(M) 6 min(n′,m′).

(c) The rectangle covering number is not monotone in the set of 1s. Changing a 0 into
a 1 can affect the rectangle covering number in both directions.

2.1 Hypergraphs and the Binary Logarithm lower bound

Let H = (V,E) be a hypergraph and E ′ ⊂ 2V . We say that E ′ generates H, if every
e ∈ E is a union of e′ ∈ E ′; in symbols:

For all e ∈ E: e =
⋃
e′∈E′
e′⊆e

e′
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The generation number, gen(H), of H is the smallest number of sets in a E ′ which
generates H. The following is an easy lower bound for the generation number.

Lemma 2.2. If H is a hypergraph with all edges distinct, then gen(H) > log2 |E(H)|.

Proof. Let E ′ generate H, and for each e ∈ E(H) consider the set E ′e := {e′ ∈ E(H ′) |
e′ ⊆ e}. Since e =

⋃
e′∈E′e

e′, the hyperedge e is uniquely determined by E ′e ∈ 2E(H′).

Hence, 2|E(H′)| > E.

We leave the proof of the following proposition to the reader. The trick is use 1-
rectangles “generated by” row/column sets (see the definition before Theorem 4.1, p. 7).

Proposition 2.3. Let H be a hypergraph and M its vertex-hyperedge incidence matrix,
i.e., Mv,e = 1 iff v ∈ e. Then gen(H) = rc(M).

This means that hypergraph generation and rectangle covering are equivalent concepts,
and we obtain the following lower bound on the rectangle covering number.

Remark 2.4 (Log-2-lower-bound). If a Boolean matrix has m′ distinct rows and n′ distinct
columns, then rc(M) > log2(max(m′, n′)).

This simple bound has been found independently in Communication Complexity (cf.,
e.g., [28]), Matrix Theory [1], and Combinatorial Optimization [14].

3 The random graph Gn,p
�

We use the conventions
p̄ = 1− p, and λ = p̄n.

E.g., the expected number of zeros in each row of Mn,p is λ.
We denote the number of vertices of Gn,p

� by N . It is a Bin(n2, p) binomial random
variable.

3.1 The cases when p tends to 0 or 1 very fast

When p tends to 0 or 1 quickly, the graph is nearly deterministic, and there is nothing
much to study in terms of random properties.

Denote by G(r) the graph whose vertices are all pairs (k, `) ∈ {1, . . . , r}×{1, . . . , n}∪
{1, . . . , n}× {1, . . . , r} with k 6= `, and let (k, `) be adjacent to (k′, `′) iff k = `′ or ` = k′.

Proposition 3.1.

(a) For p = o(n−3/2), Gn,p
� is a clique with pn2 +O(

√
pn) = o(

√
n) vertices.

(b) for p = 1 − o(n−3/2), the graph Gn,p
� is, a.a.s., isomorphic to a disjoint union of

(n−R)2 isolated vertices with G(R), for R := (n2 −N) = p̄n2 +O(
√
p̄n) = o(

√
n).
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Proof (sketch). For (a), by, say, Chebyshev’s inequality, we have, a.a.s., N = pn2 +
O(
√
pn) = o(sqrtn), since the standard deviation of N is at most

√
pn. Moreover, the

probability that a fixed row (or column) of Mn,p contains two or more ones is at most
p2
(
n
2

)
= o(1/n), so that, by the union bound, a.a.s., there is no row (or column) which

contains two or more ones. Thus, Gn,p
� is a clique of o(

√
n) vertices.

For (b), the same argument shows that the number R := n2−N of zero-entries of Mn,p

is o(
√
n) a.a.s., and that, a.a.s., no two of them are in the same row or column. Hence,

after permuting rows and columns, can transform Mn,p into a matrix all of whose entries
are 1, except for the entries (1, 1), . . . , (R,R), which are 0. So there are (n−R)2 isolated
vertices (bottom right part of the matrix), and the top R rows and leftmost R columns
form a G(R). The same application of Chebyshev as above completes the proof.

Hence, the smallest interesting p is Ω(n−3/2), and the largest interesting p is 1−Ω(n−3/2).

3.2 The cases when p tends to 0 or 1 not too fast

If pn2 tends to infinity sufficiently fast, then the number of vertices of Gn,p
� is concentrated

near pn2

Denote the number of edges ofGn,p
� byN ′. For two potential vertices u, v ∈ {1, . . . , n}2,

we have P(u ∼ v | u, v ∈ V (Gn,p
� )) = 1 − p2 =: δ. We fix this meaning of δ for the

remainder of the paper. Now

EN ′ = p2(1− p2)
n2(n− 1)2

2
= δ

(
pn2

2

)
+O(p2n3) = δ

(
EN

2

)
+O(p2n3),

so that the expected density of Gn,p
� is asymptotic to δ if N is concentrated. Changing

a single matrix entry can affect the number of edges, N ′, by up to 2n − 1, so we do not
expect very good concentration. But, if p is Ω(1/n) and 1−Ω(1/n), then, an application
of Chebyshev’s inequality shows that we have, a.a.s.,

N ′ = δ

(
pn2

2

)
+O

(
pn2
√
δ
)
. (1)

This is a special case of the concentration of the number of r-cliques, which we discuss in
Section 5.

Let us take a more precise look at the number of edges, conditioned on the number
of vertices. With π := N/n2, we find that the probability, conditioned on N , that a fixed
2-by-2 submatrix of Mn,p gives an edge of Gn,p

� equals3

2
(
n2−4
N−2

)
+ 4
(
n2−4
N−3

)
/2(

n2

N

)
= 2

(n2 −N)N(N − 1)

(n2)4

(n2 −N − 1 + 2(N − 2))

3As usual, we denote by (a)b := a(a− 1) . . . , (a− b+ 1) the falling factorial.
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= 2
(n2 −N)N(N − 1)

(n2)4

(n2 +N − 3)

= 2π2(1− π2) +O(1/n2),

and hence,

E(N ′ | N) =

(
n

2

)2

·2π2(1−π2) = (1−π2)

(
πn2

2

)
+O(π2n3) = (1−π2)

(
N

2

)
+O(N2/n) (2)

3.3 Concentration of clique number and chromatic number

The clique size (fooling set size) and the chromatic number (corresponding to the nonde-
terministic communication complexity) are concentrated: Changing one row (or column)
of the matrix can change each of these numbers by at most 1, so a standard application
of McDiarmid’s inequality [29] yields the following.

Proposition 3.2. (a) The size, ω(Gn,p
� ), of the largest clique in Gn,p

� is within t from

its mean with probability at least 1− 2e2t2/n.

(b) The chromatic number, χ(Gn,p
� ), of Gn,p

� is within t from its mean with probability

at least 1− 2e2t2/n.

The bounds are only useful when ω and χ are larger than
√
n. However, we will see

in Sections 5 and 6 that for p = 1− o(1), ω becomes small (even O(1) ultimately) and χ
becomes O(polylog n).

For the clique number, in that region of p, we can give upper and lower bounds differing
by a small constant factor, but for the chromatic number, we do not know any similarly
strong concentration results.

4 Independence number (largest 1-rectangle)

Let α(·) denote the independence number of a graph. We extend the results of Park et
al. [31] from p = Θ(1) to p = 1− o(1).

For K ⊆ {1, . . . , n}, the 1-rectangle generated by the row-set K in M is the largest
1-rectangle R in M with row set K, i.e., R = K × L with

L :=
{
` ∈ {1, . . . , n} | ∀ k ∈ K : Mk,` = 1

}
.

The 1-rectangle generated by a set of columns is defined similarly. Note that every
inclusion-wise maximal 1-rectangle is generated by its row-set and also by its column set.

Theorem 4.1.

(a) If 5/n 6 p 6 1/e, then a.a.s., the largest 1-rectangle is generated by a single row or
column, and if p� (lnn)/n, its size is (1 + o(1))pn.
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(b) Define
a− := blog1/p ec,
a+ := dlog1/p ee, and

a := argmaxb∈{a−,a+}bp
b = argmaxb∈{1,2,3,... }bp

b.

(3)

There exists a constant λ0, such that if 1/e 6 p 6 1 − λ0/n, then, a.a.s., a largest
1-rectangle is generated by a rows or columns and its size is (1 + o(1))apan.

The result is important for Section 6. In the proof, we first get rid of rectangles which
are squares, using a simple union bound, and then use Chernoff-style concentration for
non-square rectangles.

Before we present the proof in §§4.1–4.2, we discuss the result. First of all, note that
log1/p e = 1/ ln(1/p). The following helps compare the quantities.

Remark 4.2. (a) If p > 1/e, then

1/e2 6
p

e
6 p · plog1/p e 6 pa 6

1

p
· plog1/p e 6

1

pe
6 1/e, (4)

i.e., pa ≈ 1/e, more accurately pa = (1− op→1(1))/e.

(b) With p = 1 − p̄ = 1 − λ/n, the following makes the range of α(Gn,p
� ) clearer: Since

p̄ 6 ln(1/(1−p̄)) 6 p̄+ p̄2 holds when p̄ 6 1− 1/e, we have

1

ep̄
=

n

eλ
6 p

n

λ
=
p

p̄
6

1

1 + p̄
· 1

p̄
6 log1/p e 6

1

p̄
=
n

λ
(5)

Corollary 4.3. For p = 1− λ
n

with λ0 6 λ = o(n), we have α
(
Gn,p

�

)
=
n2

eλ
+O(n).

Proof of the corollary from Theorem 4.1. For the given p = 1− p̄, if 1/e = pa, we have

apa = (1 +O(p̄))
log1/p e

e
=

1 +O(p̄)

e ln 1
1−p̄

=
1 +O(p̄)

e (p̄+ p̄2/2 + p̄3/3 + . . .)
=
(∗)

1 +O(p̄)

ep̄
=

1

ep̄
+O(1) =

n

eλ
+O(1),

where equation (∗) uses p̄ = o(1). Multiplying by n and invoking Theorem 4.1(b), we
obtain the desired bound.

4.1 Small p: Proof of Theorem 4.1 (a)

Theorem 4.1 (a) occurs in a weaker form in [31], with the additional condition that
p = Ω(1): Their proof does not cover the case p→ 0; the following one does.

We say that a rectangle is bulky, if it extends over at least 2 rows and also over at least 2
columns. The proof of Theorem 4.1 proceeds by considering three types of rectangles:
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1. those consisting of exactly one row or column (they give the bound in the theorem);

2. square bulky rectanges;

3. bulky rectangles which are not square.

Let us start with the easiest type (1). The size of such a rectangle is the number of
1s in the chosen row.

Lemma 4.4. For all p, n, a.a.s., there exists a row in Mn,p containing at least pn 1s.
If p � (lnn)/n, for every constant ε ∈ ]0, 1], a.a.s., no row or column has more than
(1 + ε)pn 1s.

Proof. For the first statement, note that the probability that number of 1s in a fixed row
is less than pn is at most 1/2 (median of a binomial distribution). Since the rows are
independent, the probability that all rows have fewer than pn 1s is at most 2−n.

For the second statement, we use an easy Chernoff-type bound (Theorem 4.4(2) in
[30]). Denote by X the number of 1s in a fixed row of Mn,p. Then

P(X > (1 + ε)pn) 6 e−ε
2pn/3 6 e−2 lnn = n−2,

where the last inequality holds for large enough n, because pn � lnn implies pn >
6ε−2 lnn for n sufficiently large. Hence, the probability that a row (or a column) exists
which has at least (1 + ε)pn 1s is o(1).

We now deal with rectangles of type (2).

Lemma 4.5. If p > 5/n, then, a.a.s., there is no square 1-rectangle of size
√
pn×√pn.

Proof. We abbrevieate κ := pn. By the union bound, for the probability q = q(n) that
there exists a 1-rectangle of size

√
κ×
√
κ, we have

q 6

(
n√
κ

)2

pκ 6

(
e2n

p

)√κ
pκ;

where we used the inequality
(
s
t

)
6 (es/t)t. Applying ln, we find

ln q 6
√
κ lnn+ 2

√
κ+
√
κ ln(1/p)− κ ln(1/p) =

√
κ
(

lnn+ 2−
(√

κ− 1
)

ln(1/p)
)
. (6)

Now we distinguish cases. If (2 lnn)2/n 6 p 6 1/e, then
√
κ > 2 lnn, and hence we can

bound the expression in the parentheses in (6) as follows:

lnn+ 2−
(√

κ− 1
)

ln(1/p) 6 lnn+ 2− 2 lnn+ 1 6 − lnn,

for all large enough n. Hence, q → 0 in this region. If, on the other hand, 5/n 6 p 6
(2 lnn)2/n, then

ln q 6
√

5
(

lnn+ 2−
(√

5− 1
)(

lnn− 2 ln(2 lnn)
))

6 −
√

5
(√

5− 2
)

lnn+O(ln lnn) = −Ω(lnn).

Hence, q → 0 in this region, too, which completes the proof of the lemma.
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Finally, we come to rectangles of type (3). Consider the probability, %, that Mn,p

contains a bulky 1-rectangle of size s. By Lemma 4.5, if such a 1-rectangle has dimensions
a × b, we must have a <

√
pn or b <

√
pn, or else % = o(1). We have % 6 2%′, where

%′ is the probability that Mn,p contains a 1-rectangle of size s consisting of at least as
many columns than rows. For %′, we need to consider only 1-rectangles with a <

√
pn.

Moreover, increasing b if necessary, w.l.o.g., we may restrict to rectangles generated by a
row-set of size a, with 2 6 a 6 n (the lower bound a > 2 comes from the condition that
the rectangle be bulky).

Lemma 4.6. With κ = pn, if 5 6 κ = O(polylog n), then, a.a.s., there is no bulky
rectangle of size at least κ.

Proof. By the remarks above, we have to bound the probability that there exists a row-set
of size a ∈ {2, . . . ,

√
κ} which generates a 1-rectangle of size at least κ/a.

Firstly, for a given set K of a rows, we bound the probability that the rectangle it
generates has size at least pn. Denote by S the number of columns in the rectangle
generated by K. This is a Bin(n, pa) r.v. and we find that

P(a · b > κ) = P(S > κ/a) 6

(
n

κ/a

)
pκ =

(
n

κ/a

)(κ
n

)κ
.

Secondly, we sum over all sets K of cardinality a, and compute(
n

a

)(
n

κ/a

)
pκ(1 − pa)n−κ/a 6 na+κ/a−κ+κ logn κ = n−

(
κ(1−1/a)−a−o(κ)

)
,

where κ logn κ = o(κ) follows from κ = O(polylog n).
Now, because a <

√
κ, we have that the exponent on 1/n is κ(1 − 1/a) − o(κ) > κ/3,

as a > 2. Finally, summing over all a, we obtain, as an upper bound for the probability
that one of these rectangles has size κ or larger, the expression n−(κ/3−1) which is o(1), as
κ > 5.

Now we deal with bulky rectangles.

Lemma 4.7. With κ := pn, if ln4 n 6 κ 6 n/e, then, a.a.s., there is no bulky rectangle of
size at least κ.

Proof. By the remarks above Lemma 4.6, we have to bound the probability that there
exists a row-set of size a ∈ {2, . . . ,

√
κ} which generates a 1-rectangle of size at least κ/a.

For 2 6 a <
√
κ, let Xa count the number of columns ` with Mk,` = 1 for k = 1, . . . , a.

We are going to show that

P :=

√
κ∑

a=2

(
n

a

)
P
(
Xa > κ/a

)
= o(1).

The r.v. Xa has Bin(n, pa) distribution. We compute
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P
(
Xa > κ/a

)
6

(
n
κ/a

)
(pa)κ/a 6

(
en
κ/a

)κ/a
(pa)κ/a =

((
(ea)1/(a−1)p

)κ/a)a−1

. (7)

Now there exists a constant % < 1 such that

(ea)1/(a−1) 6

{
8%, for all a > 2, and

e%, for a > 4.
(8)

Consequently, we distinguish two cases:

(i) p 6 1/8 and

(ii) 1/8 < p 6 1/e.

Case (i): p 6 1/8. In this case, we compute

P =

√
κ∑

a=2

(
n

a

)
P
(
Xa > κ/a

)
6

√
κ∑

a=2

(
n

a

)((
(ea)1/(a−1)p

)κ/a)a−1

[by (7)]

6

√
κ∑

a=2

(
n

a

)(
%κ/a

)a−1
[by (8)]

6

√
κ∑

a=2

(
n

a

)(
%
√
κ
)a−1

[since a 6
√
κ and % < 1]

= %
√
κ

√
κ∑

a=2

(
n

a

)(
%
√
κ
)a−2

6 %
√
κ n2

√
κ−2∑
a=0

(
n− 2

a

)(
%
√
κ
)a

[replacing a a− 2]

6 %
√
κ n2 (1 + %

√
κ)n−2 [Binomial theorem]

6 %
√
κ n2 en%

√
κ

6 %
√
κ n2 en%

ln2 n

[because p > (ln4 n)/n and % < 1]

= o(1) [because % = 1− Ω(1).]

Case (ii): 1/8 < p 6 1/e. In this case, by (8), the same calculation as in the p < 1/8-
case works if the sum is started with a = 4. For the first two terms of the sum, a = 2, 3,
we use a Chernoff bound on Xa. The convenient choice is Corollary 21.9 in [12]: With
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c := ap1−a and µ := EXa, we have

P
(
Xa > κ/a

)
= P

(
Xa > cµ

)
6
(
e1−1/c/c

)cµ
[Corollary 21.9 in [12]]

=
(
e1−1/c/c

)pn/a
= (1 + Ω(1))Ω(n) = o(n−3) (∗),

(9)

where (∗) follows as a > 2 implies that c = 1 + Ω(1) (c is greater than and bounded away
from 1), which in turn implies that e1−1/c/c = 1− Ω(1) (the base of the exponent is less
than and bounded away from 1).

We conclude

P =

√
κ∑

a=2

(
n

a

)
P
(
Xa > κ/a

)
=

(
n

2

)
P
(
X2 > κ/2

)
+

(
n

3

)
P
(
X3 > κ/3

)
+

√
κ∑

a=4

(
n

a

)
P
(
Xa > κ/a

)
= o(1) + o(1) + o(1),

where the first two “o(1)”s follow from (9), and the third is the same calculation as in the
previous case.

This concludes the proof of Theorem 4.1(a).

4.2 Large p: Proof of Theorem 4.1(b)

Now we prove the part of Theorem 4.1 about p > 1/e. Again, we first prove a statement
about square rectangles.

Lemma 4.8. For every ε > 0 there exists a constant λ0 such that, if p̄n = λ > λ0, then,
a.a.s., there is no square 1-rectangle of size

n

λ1−ε ×
n

λ1−ε

Proof. This is a direct union bound computation. With b := n
λ1−ε

, the probability that
such a 1-rectangle exists is at most(

n

b

)2

pb
2

=

(
n

b

)2

(1− p̄)b2 6 eb(2 ln(en/b)−λb/n) = eb·Ab ,

where

Ab = 2 ln(en/b)− λb/n
= 2 ln

(
e λ1−ε)− λε 6 −1,

where the last inequality holds if λ > λ0 and λ0 is large enough. The claim follows because
b→∞ (since λ 6 n.
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As above, we need the notion of a “bulky” rectangle: Here, we say that a rectangle
of dimensions k × ` is bulky, if k 6 `. By Lemma 4.8, in particular, a.a.s., a bulky
rectangle must have k < n/λ2/3. Again, by exchanging the roles of rows and columns,
and multiplying the final probability estimate by 2, we only need to consider 1-rectangles
with at least as many columns as rows (i.e., bulky ones).

Proof of Theorem 4.1(b). For every b ∈ {1, . . . , n}, denote by Xb the number of columns
of the 1-rectangle generated by the row set {1, . . . , b}—a random variable with Bin(n, pb)
distribution. We prove that, for every 1 < u < 2,

n/λ
2/3∑

b=1

(
n

b

)
P(bXb > u apan) = o(1), (10)

which, together with Lemma 4.8, proves Theorem 4.1(b).
We split the proof into two lemmas, dealing with the cases b 6 log1/p e and b >

log1/p e, respectively, stated below. Establishing these lemmas completes the proof of
Theorem 4.1(b).

Lemma 4.9. For every u ∈ ]1, 2[ there exists a constant λ0 > 1 such that, for every
p̄ > λ0/n, and for every 1 6 b 6 log1/p e, we have(

n

b

)
P
(
Xb > u

a

b
pan
)

= ou(1/n).

Lemma 4.10. For every u ∈ ]1, 2[ there exists a constant λ0 such that, if p̄n = λ > λ0,
and log1/p e 6 b 6 n/λ3/2, then(

n

b

)
P
(
Xb > u

a

b
pan
)

= ou(1/n).

Proof of Lemma 4.9. Define

δ := min

(
u
apa

bpb
− 1, 1

)
.

Note that δ > u − 1 > 0 by the definition of a in (3). The “1” in the second argument
of the mininum is somewhat arbitrary: the particular version of the Chernoff inequality
which we refer to, [30, Thm 4.4-2], requires δ 6 1. Using this Chernoff bound in

P(Xb > u apan/b) 6 P(Xb > (1 + δ) EXb) 6 e−δ
2 EXb/3,

and the inequality
(
n
b

)
6 (en/b)b, we estimate

ln

((
n

b

)
P
(
Xb > u

a

b
pan
))
6 b ln

(en
b

)
− δ2pbn/3
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6 n

(
b

n
ln
(en
b

)
− δ2

3e

)
[since b 6 log1/p e]. (∗)

For any real b ∈ [1, log1/p e], denote by Ab the term inside the parentheses in (∗).
Since b 7→ Ab is nondecreasing on [1, n], we have, for every b ∈ [1, log1/p e],

Ab 6 Alog1/p e

6 A1/p̄ [A· nondecreasing and log1/p e 6
1

p̄
6 n, by (5)]

6 An/λ0 [A· nondecreasing and 1/p̄ 6 n/λ0 6 n]

=
ln(eλ0)

λ0

− δ2

3e

6
ln(e2λ0)

λ0

− (u− 1)2

3e
[as δ > u− 1]

Hence, for sufficiently large λ0, depending only on u, we have, for all b ∈ [1, log1/p e],

Ab = −Ωu(1),

so that
P(Xb > apan/b) 6 e−nAb = e−Ωu(n) = ou(1/n)

which concludes the proof of the lemma.

Proof of Lemma 4.10. By Lemma 4.8, we already know that, if a bulky 1-rectangles gen-
erated by b rows exists with non-o(1) probability, we must have b < n/λ2/3.

Define δ as follows, 0 < u− 1 6 δ := (u− 1)ap
a

bpb
6 uap

a

bpb
− 1, and let

ε :=

{
(u− 1)2/3, if δ 6 3/2;

ln 5/2− 1 + 2/5, otherwise.

We do the case distinction because we use two slightly different versions of Chernoff in
our estimate of

% := P
(
Xb > u

a

b
pan
)
.

If δ 6 3/2, then

% 6 P
(
Xb > (1 + δ) EXb

)
6 e−δ

2pbn/3 [Chernoff, e.g., [19, Cor. 2.3]]

6 e−(u−1) (u−1)a
b
pan/3 [definition of δ, and δ > u− 1]

= e−ε
a
b
pan.

If, on the other hand, δ > 3/2, then

u
a

b
pan = u

apa

bpb
· EXb > (δ + 1) · EXb > 5

2
· EXb,
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and we have, by Eqn. (2.10) in [19, Cor. 2.4],

% 6 e−ε
a
b
pan.

In both cases, we conclude

ln

((
n

b

)
P
(
Xb > u

a

b
pan
))

6 b ln(en/b)− ε a
b
pan

6 b ln(en/b)− ε an
e2b

[pa > 1/e2 by (4)]

6 b ln(en/b)− ε n2

2e3λb
[a > bn/eλc by (5), & bn/eλc > n/2eλ as λ 6 n/e]

6 b ln(e2λ)− ε n2

2e3λb
[as b > log1/p e > n/eλ, by (5)]

6
n

λ2/3
ln(e2λ)− ε

2e3

n

λ1/3
[as b 6 n/(

√
λ lnλ)]

=
n

λ1/3

(
− ε

2e3
+ oλ→∞(1)

)
.

Hence, if λ is at least a large enough constant, λ0, then(
n

b

)
P
(
Xb > u

a

b
pan
)

= e−Ωu(n2/3) = o(1/n),

and the lemma is proven.

5 Clique number (fooling sets)

Recall that HM is the bipartite graph with bipartite adjacency matrix M , and note that
HMn,p is the “usual” Erdős-Renyi random bipartite graph: each edge is picked indepen-
dently with probability p.

The next lemma, whose easy proof we leave to the reader, gives the relationship
between fooling sets in Communication Complexity, cross-free matchings, and cliques in
the rectangle graph. Recall that a matching F in a bipartite graph H is called cross-free,
if for every two edges e = (u1, u2), f = (v1, v2) ∈ F , none of the “cross edges” (u1, v2),
(u2, v1) is in H.

Lemma 5.1 (Trivial).

Let M be a n× n matrix, and F ⊆ {1, . . . , n} × {1, . . . , n}. The following are equivalent.

(a) Fooling set property: for all (k, `) ∈ F , Mk,` = 1 and for all (k′, `′) ∈ F \ {(k, `)}
Mk,`′Mk′,` = 0;

(b) The set F is a cross-free matching in HM ;
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(c) F ⊆ V (G�(M)), and F is a clique in G�(M).

It is known that the decision problem whether a bipartite graph has a cross-free
matching of a given size is NP-hard [34].

Recall δ = 1− p2, and p̄ = 1− p. Denote by ν(H) the size of the largest matching of a
bipartite graph H. Clearly, ω(G�(M)) 6 ν(HM). Let a(q) be a function with the property
that, a.a.s., every Erdős-Renyi random graph Gn,q on n vertices with edge-probability q
has an independent set of size at least a(q).

Theorem 5.2.

(a) For n−3/2 6 p = o(1/
√
n), a.a.s., we have

ω(Gn,p
�

) = (1− o(1))ν(HMn,p). (11a)

In particular, if in addition p� 1/n, then, a.a.s., ω(Gn,p
� ) = (1− o(1))n.

(b) If pn− lnn→∞, then, a.a.s., ω(Gn,p
� ) > a(p2).

(c) If p�
√

(lnn)/n and p̄ > n−o(1), then, a.a.s.,

ω(Gn,p
�

) 6 2 log1/δ(pn
2).

(d) If a ∈ ]0, 4[ is a constant and p̄ = n−a, then ω(Gn,p
�

) 6 4/a+1. If, in addition, a < 1,
then ω(Gn,p

�
) = b4/ac+ 1

The proof of Theorem 5.2 is spread over the remainder of this section. In the first
subsection, we study the expected number of cliques of the relevant sizes and obtain
Theorem 5.2(c). Subsection 5.2 estimates the variance of the number of cliques of constant
size. Finally, in Subsection 5.3, we study the connection to matchings in Erdős-Renyi
random bipartite graphs and prove items (a) and (b).

By combining the upper bound in (c) with the lower bound in (b) applied to the classical
theorems about independent sets and cliques in Erdős-Renyi random graphs (cf., e.g.,
[19]), we immediately obtain the following bounds.

Corollary 5.3.

(a) For p in the range n−o(1) 6 p 6 1− Ω(1), we have, a.a.s.,

2
(
log1/δ n− log1/δ log1/δ pn

)
6 ω(Gn,p

�
) 6 2 log1/δ(pn

2)

(b) For p in the range
√

(lnn)/n� p 6 1/ lnn we have, a.a.s.,

2

p

(
ln pn− ln ln pn

)
6 ω(Gn,p

�
) 6 2 log1/δ(pn

2)

In the range given in for (a), the upper bound is within a factor of

(1− o(1))
lnn+ log( pn)

lnn
6 2

of the lower bound. If p tends to 0 faster, however, the upper bound in (b) is off by a
factor of 1/p from the lower bound, which leaves “room for improvement”; cf. Section 7.
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5.1 Upper bounds: The number of r-cliques

Let the random variable X = Xr = Xr,n,p count the number of r-cliques in Gn,p
� . For a

set F ⊆ [n]× [n], denote by AF the event that F is clique in Gn,p
� . We have

Xr =
∑
F

I[AF ], (12)

where the sum ranges over all F of the form F = {(k1, `1), . . . , (kr, `r)}, with all the kj’s

distinct, and all the `j’s distinct. There are r!
(
n
r

)2
of these sets F , and hence

EXr = r!

(
n

r

)2

pr δ
(r2)
.

Elementary calculus shows that, for fixed r > 2, p 7→ r!
(
n
r

)2
pr δ

(r2)
is increasing on

[0, 1/
√
r] and decreasing on [1/

√
r, 1] (see the proof of the (a)-part of Lemma 5.4). The

following lemma describes for which values of r the expectation EXr tends to 0 or infinity,
resp., in the relevant range of p.

Lemma 5.4. (a) If e/n 6 p 6 n−1/2
√

lnn, then EXn →∞.

(b) For constants c > 1, ε > 0 if p = c n−1/2
√

lnn, with r := (1 + ε) n
c2

we have
EXr → 0.

(c) If p � n−1/2
√

lnn and 1 − p = p̄ > n−o(1), then letting r− := 2 log1/δ(pn
2) −

2 log1/δ log1/δ(pn
2) and r+ := 2 log1/δ(pn

2) we have EXr− →∞, and EXr+ → 0.

(d) If a ∈ ]0, 4[ is a constant and 1 − p = p̄ = n−a, then EXr → 0 if r > 4/a + 1, and
EXr →∞ if r < 4/a + 1.

Proof.
(a). First of all, we prove that for r > 2, the function p 7→ EXr,p is non-decreasing]
0, r−1/2

]
and non-increasing on

[
r−1/2, 1

[
.

Clearly, only the function

f : p 7→ p(1− p2)(r−1)/2

is of interest. Taking the derivative, we obtain

f ′(p) = (1− p2)(r−1)/2 − (r − 1)p2(1− p2)(r−3)/2.

If 0 < p < 1, then f ′(p) = 0 and is equivalent to

0 = 1− p2 − (r − 1)p2 = 1− rp2.

For p < 1/
√
r, we have f ′(p) > 0 and p > 1/

√
r, we have f ′(p) < 0.
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Now, for p = e/n, using Stirling’s formula, we have

EXn = n!
( e
n

)n(
1− e2

n2

)(n2)
= Θ(

√
n),

so EXn tends to infinity with n→∞.
Finally, let p = n−1/2

√
lnn. We have

ln EXn

n
=

ln
(
n! pn δ(

n
2)
)

n
= −1 + o(1) + lnn− ln(1/p)− n−1

2
ln(1/δ)

> −1 + o(1) + lnn− ln(1/p)− n−1
2
p2,

where we used ln(1/δ) = ln(1/(1− p2)) 6 p2 +O(p4) and np4 = o(1) in the last inequality.
Replacing p, we get

ln EXn

n
> 1

2
ln lnn+O(1),

which proves the claim in (a) for this particular value of p.

(b). First of all, note that, for 4 6 r < n, using the estimates

√
r
(r
e

)r
6 r! 6 r

(r
e

)r
, and

1
3
√
r
er−r

2/(n−r)
(n
r

)r
6

(
n

r

)
6 er

(n
r

)r
,

we have

1− r
n−r −O( ln r

r
) 6

ln
(
r!
(
n
r

)2
pr δ(

r
2)
)

r
−
(

ln(n2)− ln(1/p)− r−1
2

ln(1/δ)− ln r

)
6 1+ ln r

r
.

(∗)

(We will use this for (c), too.)
Now, with c > 1, p = c n−1/2

√
lnn and r = (1 + ε)n/c2 = (1− Ω(1))n, we get

ln EXr

r
= ln(n2)− ln(1/p)− r−1

2
ln(1/δ)− ln r +O(1)

= ln(n2)− 1
2

ln(n/ lnn)− r−1
2

ln(1/δ)− lnn+O(1)

= 1
2

lnn− r−1
2
n ln(1/δ) +O(ln lnn)

= 1
2

lnn− r−1
2

(
p2 +O(p4)) +O(ln lnn)

= − ε
2

lnn+O(ln ln lnn),

which proves EXr → 0.

(c). With r := r+ = 2 ln(pn2)/ ln(1/δ), using the upper bound from (∗), we get

ln EXr

r
6 ln(pn2)− r−1

2
ln(1/δ)− ln r + 1 + ln r

r
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= 1
2

ln(1/δ)− ln r + 1 + ln r
r

= −Ω(1),

where the last equation follows from r → ∞ (due to p̄ > n−o(1)), which also implies
EXr → 0.

On the other hand, with r := r− = 2 log1/δ(pn
2) − 2 log1/δ log1/δ(pn

2), using the upper
bound from (∗), we get

ln EXr

r
> ln(pn2)− r−1

2
ln(1/δ)− ln r + 1−O( ln r

r
)

>
(
log1/δ log1/δ(pn

2)
)

ln(1/δ)− ln r + 1 +O( ln r
r

)

= ln log1/δ(pn
2)− ln r + 1 +O( ln r

r
)

> − ln 2 + 1 +O( ln r
r

)

= Ω(1).

Again, the last equation and the conclusion EXr →∞ follows from r →∞.

(d). Finally, let 0 < a < 4 be a constant and 1−p = p̄ = n−a. Noting that δ = (1 +p)p̄ =
Θ(p̄), if r = O(1), we have(

EXr

)1/r

= Θ
(
n2p̄(r−1)/2

)
= Θ

(
n2−a(r−1)/2

)
,

which implies EXr →∞ if r > 4/a + 1, and EXr → 0 if r < 4/a + 1.

From this lemma, we immediately get the upper bound on ω in Theorem 5.2(c).

Proof of Theorem 5.2(c). Follows from (c).

Item (a) of the lemma suggests the question, for which p the value of ω drops from
(1 − o(1))n to (1 − Ω(1))n. If the expectation is “right”, this happens crossing from
p =

√
(lnn)/n to p = (1 + ε)

√
(lnn)/n. This is supported by the fact that our lower

bounds in this region—in the next subsection—appear to be quite simple, in that they
only consider one fixed maximal matching in HMn,p , and delete edges from it until it
becomes cross-free.

5.2 Second moment calculation

Lemma 5.5. If r = O(1) and pδ � 1/n, then Var(Xr) = o
((

EXr

)2 )
.

Proof. With the notations as in equation (12), let F0 := {(1, 1), . . . , (r, r)}, and abbreviate
A0 := AF0 . We have

E(X2) = EX ·
∑
F

P(AF | A0)

where the sum ranges over all F of the form F = {(k1, `1), . . . , (kr, `r)}, with all the kj’s
distinct, and all the `j’s distinct, as in (12).
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If F ⊂ {r+1, . . . , n}×{1, . . . , n}, then the events AF and A0 are clearly independent,
so that, with the following sum ranging over these F , we have∑

F

P(AF | A0) =
(n− r)r

(n)r
EX.

Consequently, we have

E(X2) =
(n− r)r

(n)r

(
EX

)2
+ EX ·

∑
F

P(AF | A0),

where the last sum ranges over all F with F ∩ {1, . . . , r} × {1, . . . , n} 6= ∅. For each
such F ,

P(AF | A0) = O

(
1

pδn

)O(r2)

P(AF ),

with absolute constants in the big-Os.
Hence, if r = O(1) and pδ � 1/n,

E(X2) =
(n)r

(n− r)r
(
EX

)2
+O

(
1

pδn

)O(r2)(
EX

)2
= (1 + o(1))

(
EX

)
.

This proves the statement of the lemma.

The lemma proves that the number of edges of Gn,p
� is a.a.s. as given in equation (1)

on page 6.

Proof of Theorem 5.2(d). The upper bound, for general a is in Lemma 5.4(d). The lower
bound when a < 1 follows from Lemma 5.4(d) and Lemma 5.5.

5.3 Lower bounds: Cross-free sub-matchings

Let ν×(·) denote the size largest cross-free matching of a bipartite graph.
Let H be a bipartite graph, and m = {e1, . . . , er} ⊆ E(H) a matching in H. Define

the graph G′ = G′(H,m) with vertex set V (G′) = {1, . . . , r} and {k, `} ∈ E(G′) if ek, e`
induce a K2,2 in H. Then ν×(H) > α(G′) holds: for any independent set A of G′, the set
{ej | j ∈ A} is a cross-free matching in H.

Our strategy for obtaining a large cross-free matching will be this: fix a large match-
ing m in HMn,p , then bound the independence number of the corresponding random
graph G′n,p(m) := G′(HMn,p ,m). This random graph behaves similarly to an Erdős-Renyi
random graph with |m| vertices and edge-probability p2. The following technical lemma
takes care of the dependency issues which arise.

Let Gr,q denote the Erdős-Renyi random graph with r vertices and edge probability q.

Lemma 5.6. For all positive integers n, r, a, and p ∈ [0, 1], we have

P
(
ν×(HMn,p) < a & ν(HMn,p) > r

)
6 P

(
α(Gr,p2) < a

)
.

the electronic journal of combinatorics 24(2) (2017), #P2.37 20



Proof. LetM be the set of matchings of size r of Kn,n, and for each m ∈M denote by Cm
the event that HMn,p contains m. Fix a matching m ∈ M. For every edge e ∈ E(Kn,n),
we have

P
(
e ∈ HMn,p | Cm

)
= p,

and these events are jointly independent. Hence, for each potential edge e′ of G′n,p(m),

P
(
e′ ∈ G′n,p(m) | Cm

)
= p2,

again with joint independence of the events.
Now, denote by A the event that there does not exists a cross-free matching of size

larger than a in HMn,p . By the discussion above, A and Cm together imply α(G′n,p(m)) < a,
so that

P
(
A | Cm

)
6 P

(
α(G′n,p(m)) < a | Cm

)
= P

(
α(Gr,p2) < a

)
.

It follows that

P
(
ν×(HMn,p) < a & ν(HMn,p) > r

)
= P

(
A ∩

⋃
m

Cm
)
6
∑
m

P
(
A ∩ Cm

)
=
∑
m

P
(
A | Cm

)
P(Cm) 6 P

(
α(Gr,p2) < a

)
,

which concludes the proof of the lemma.

Remark 5.7. We will use Lemma 5.6 in the following way: If p, r−, r+ are such that both

P
(
ν(HMn,p) < r+

)
= o(1), and

P
(
α(Gr+,p2) < r−

)
= o(1),

(13)

then, a.a.s., G�(M
n,p) has a clique of size r−. Indeed,

P
(
ω(G�(M

n,p)) < r−
)

6 P
(
ν×(HMn,p) < r− & ν(HMn,p) > r+

)
+ P

(
ν(HMn,p) < r+

)
6 P

(
α(Gr+,p2) < r−

)
+ P

(
ν(HMn,p) < r+

)
[Lemma 5.6]

= o(1) + o(1) [by (13)].

We are now ready to prove the first two items of Theorem 5.2. We start with the
easiest part.

Proof of Theorem 5.2(b). This is a direct consequence of the remark with r− := a(p2) and
r := n, since, if pn− lnn→∞, then ν(HMn,p) = n, a.a.s. (e.g., [19, Thm 4.1]).

Proof of Theorem 5.2(a). Let ε > 0 be a constant. Proceeding as in Remark 5.7, with
r− := r and r+ := (1+ε)r, if both a.a.s. ν(HMn,p) > r and a.a.s. α(Gr,p2) > (1−ε)r, then,
a.a.s.,

(1− ε)ν(HMn,p) 6 ω(G�(M
n,p)) 6 ν(HMn,p).
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Letting ε tend to 0 then gives the desired result.
For n−3/2 6 p = o(n), a.a.s., the number of edges of Gn,p2 is o(1), and hence α(Gn,p2) =

(1− o(1))n, while easy arguments show that a.a.s. ν(HMn,p) = Ω(n) with concentration in
a window of size O(

√
n). Hence the conditions (13) are satisfied.

For p = Ω(1/n), a classical result by Karp & Sipser [21] states that there is a function
h : ]0,∞[→ [0, 1] with limc→∞ h(c) = 1 such that if p = c/n, then, a.a.s., ν(HMn,p) =
(1−o(1))h(c)/n. Since p = o(1/

√
n), a.a.s., the number of edges of Gn,p2 is o(n), and hence

α(Gn,p2) = (1− o(1))n. It follows that ω(G�M
n,p) = (1− o(1))ν(HMn,p). In particular, if

p� 1/n, then, a.a.s, ν(HMn,p) = (1− o(1))n.

6 (Fractional) Chromatic number

We start with the easy case p 6 1/2.

Corollary 6.1. In the range 1/n� p 6 1/2, we have χ(Gn,p
� ) = (1− o(1))n.

Proof. Remark 2.1(a) gives the upper bound. Theorem 5(a) gives the lower bound for
small p = o(1/

√
n).

For, say, 1/e > p = Ω(n−1/4) (say), Theorem 4.1(a) plus an easy concentration argument
yield α(Gn,p

� ) = (1 + o(1))pn a.a.s. and for 1/e 6 p 6 1/2, the value of a in equation (3) of
Theorem 4.1(b) is 1, so that α(Gn,p

� ) = (1 + o(1))pn there, too.
We conlcude χ(Gn,p

�
) > N/α(Gn,p

�
) = ((1−o(1))pn2)/((1−o(1))pn) = (1−o(1))n.

The case p > 1/2 is more interesting.

6.1 The fractional chromatic number

We briefly review the definition of fractional chromatic number and (equivalently) frac-
tional rectangle covering number.

Let R be a random independent set of G, drawn according to a distribution π, and
consider γ(π) := min

u∈V (G)
P(u ∈ R). A convenient definition of the fractional chromatic

number of G is then χ∗(G) := minπ 1/γ(π), where the minimum is taken over all dis-
tributions π on the set of independent sets of G. It is OK to restrict the supports of
the distributions π to a subset I of all independent sets of G, as long as I contains
all inclusion-wise maximal independent sets. In particular, for a Lovász-Saks rectangle
graph, we can assume w.l.o.g., that R takes values in the 1-rectangles of the corresponding
matrix.

Recall the following well-known inequalities:4

ir(G) :=
|V (G)|
α(G)

ω(G)

 6 sup
U⊆V (G)

|U |
α(G[U ])

6 χ∗(G) 6 χ(G) 6
(∗)

(
1 + lnα(G)

)
χ∗(G). (14)

4See [33, Vol. B], Theorem 64.13, for the last inequality.
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The number ir(G) is called the independence ratio. Theorem 4.1(b) allows us to bound
it: With λ/n = p̄ = 1− p as always, we have a.a.s.

N

α(Gn,p
� )
>

(1 + o(1))pn2

(1 + o(1))n/e ln(1/p)
=

(1 + o(1)) ep ln(1/p) n = (1 + o(1)) (1− p̄/2− p̄2/3 +O(p̄3)) eλ, (15)

where the last equation is the Taylor expansion

ln(1/p) =
∞∑
j=1

p̄j

j
=
λ

n

(
1 + p̄/2 + p̄2/3 + . . .

)
.

For p̄ = o(1), this is asymptotic to eλ. It is worth noting that the first inequality in (15)
becomes an asymptotic equality if p̄ = o(1).

We now give upper bounds on the χ∗(Gn,p
� ). To prove an upper bound b on χ∗ for a fixed

matrix M , we have to give a distribution π on the 1-rectangles of M such that, if R is
sampled according to π, we have, for all (k, `) with Mk,` = 1, we have P((k, `) ∈ R) > 1/b.

To prove an “a.a.s.” upper bound for a random matrix, we have to show that

P

(
∃(k, `) : P

(
(k, `) ∈ R |Mn,p & Mn,p

k,` = 1
)
< 1/b

)
= o(1). (16)

Our random 1-rectangle R within the random matrix Mn,p is sampled as follows. Let
K be a random subset of [n], by taking each k into K independently, with probability q.
Then let R := K ×L be the 1-rectangle generated (p. 7) by the row-set K, i.e., L := {` |
∀k ∈ K : Mn,p

k,` = 1}.
Let the random variable Z` count the number of 0s in column `, and set Z := max` Z`.

For k, ` ∈ {1, . . . , n}, conditioned on Mn,p and Mn,p
k,` = 1, the probability that (k, `) ∈ R

equals
q(1− q)Z` > q(1− q)Z ,

so that for every positive integer z, using 1/b = q(1− q)z in (16),

P

(
∃(k, `) : P

(
(k, `) ∈ R |Mn,p & Mn,p

k,` = 1
)
< q(1− q)z

)
= P(Z > z). (17)

To obtain upper bounds on χ∗, we give a.a.s. upper bounds on Z, and choose q accordingly.
The following theorem summarizes the results.

Theorem 6.2. Let p = 1− p̄ = 1− λ/n as usual, and p̄ < 1/2.

(a) If lnn� λ < n/2, then, a.a.s., χ∗(Gn,p
�

) 6 (1 + o(1)) eλ

(b) If λ = Θ(lnn), then, a.a.s., χ∗(Gn,p
�

) = O(lnn).

(c) If 1� λ = o(lnn), then, a.a.s., χ∗(Gn,p
�

) 6 (1 + o(1)) emax
(

2λ,
lnn

ln((lnn)/λ)

)
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Proof. The bound in (a). For every constant t > 0, let

ψ(t) := 1/
(
(1 + t) ln(1 + t)− t

)
.

With

h(t) = h(t, n) :=
λ

ψ(t) lnn
,

using the a standard Chernoff estimate (Theorem 2.1, Equation (2.5) in [19]) we find that

P
(
Z1 > (1 + t)λ

)
6 e−λ/ψ(t) 6 e−h(t)n,

so that, by the union bound,

P
(
Z > (1 + t)λ

)
6 e−h(t). (19)

For every fixed t > 0, h(t) tends to infinity with n, so that the RHS in (19) is o(1).
Using that in (17), we obtain

P

(
∃(k, `) : P

(
(k, `) ∈ R |Mn,p & Mn,p

k,` = 1
)
< q(1−q)(1+t)λ

)
= P(Z > (1+t)λ) = o(1),

and, taking q := 1
(1+t)λ

, we obtain, a.a.s.,

χ∗ 6
1

q(1− q)(1+t)λ
6

1 + t

1 + 1
(1+t)λ

eλ,

where we used (1 − ε)k > (1 − kε2)e−kε for ε < 1. Since this is true for every t > 0, we
conclude that, a.a.s., χ∗ 6 (1− o(1))eλ.

The bounds in (b), (c). Here we use a slightly different Chernoff bound, Lemma 6.3 below.
For (b), suppose that λ 6 C lnn for a constant C > 1. Using Lemma 6.3 below with

α = e2C lnn, we obtain

P
(
Z1 > e2C lnn

)
= O

(
1/
√

lnn
)
e−λ
( eC lnn

e2C lnn

)α
= O

(
1/
√

lnn
)
e− lnn.

and thus
P
(
Z > e2C lnn

)
= o(1).

We conclude similarly as above: with q := 1
e2C lnn

we obtain, a.a.s., χ∗ 6 e3C lnn.
Finally, for (c), if λ = o(lnn), let ε > 0 be a constant, and use Lemma 6.3 again, with

α := max

(
2λ,

(1 + ε) lnn

ln
(

lnn
eλ

) )
.

We find that
P
(
Z1 > α

)
= o
(
e−α ln(α/eλ)

)
,
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and the usual calculation (Appendix A.1) shows that α ln(α/eλ) > lnn, which implies

P
(
Z > α

)
= o(1).

Conclude similarly as above, with q := 1
α

, we obtain, a.a.s.,

χ∗ 6 eα = emax

(
2λ, (1 + ε)

lnn

ln
(

lnn
eλ

)) .
One obtains the statement in the theorem by letting ε tend to 0; the e-factor in the
denominator of the ln of the denominator in α is irrelevant as n→∞.

We have no good reference for the following simple Chernoff estimate (it is almost
exactly Theorem 5.4 in [30], except that we allow λ → ∞ slowly). For the sake of
completeness, we include it here (and its proof in Appendix A.2).

Lemma 6.3. Let p̄ = λ/n with 1 < λ = o(n), and 2λ 6 α 6 n/2. The probability that a
Bin(n, p̄) random variable is at least α is at most

O
(

1/√α
)
· e−λ

(eλ
α

)α
. (20)

To summarize, comparing with (15), we can determine the fractional chromatic number
accurately in the region lnn � λ � n. For λ = Θ(lnn) and for λ = Θ(n), we can
determine χ∗ up to a constant, but for λ = o(lnn), there is a large gap between our upper
and lower bounds.

Inequality (∗) in (14) gives us corresponding upper bounds on χ:

Corollary 6.4.

(a) If lnn� λ = O(n/ lnn), then, a.a.s., χ(Gn,p
�

) = O(λ lnn).

(b) If λ = Θ(lnn), then, a.a.s., χ(Gn,p
�

) = O(ln2 n).

(c) If 1� λ = o(lnn), then, a.a.s., χ(Gn,p
�

) = O
(

max
(
λ lnn,

ln2 n

ln((lnn)/λ)

))
6.2 Binary-Logarithm of the number of distinct rows, and the ratio χ/χ∗

The binary logarithm of the number of distinct rows of the matrix (Remark 2.4) is a
lower bound on the chromatic number of the rectangle graph. This bound is not generally
available for the chromatic number of general graphs. The following proposition shows
these bounds.

Proposition 6.5.

(a) If 1/2 > p̄ = Ω(1/n), then, a.a.s., the 2-Log lower bound on χ(Gn,p
� ) is (1−o(1)) log2 n.
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(b) If p̄ = n−γ for 1 < γ 6 3/2, then a.a.s., the 2-Log lower bound on χ(Gn,p
� ) is

(1− o(1))(2− γ) log2 n.

Proof. Directly from the following Lemma 6.6 about the number of distinct rows, with
λ = n1−γ.

Lemma 6.6.

(a) If 1/2 > p̄ = Ω(1/n), then, a.a.s., Mn,p has Θ(n) distinct non-zero rows.

(b) With p̄ = λ/n, if n−1/2 6 λ 6 1/2, then, a.a.s., Mn,p has Ω(λn) distinct non-zero
rows.

(The constants in the big-Omegas are absolute.)

For the sake of completeness, we sketch the proof in Appendix A.3.

Erdős-Renyi random graphs have the property that the chromatic number is within a
small constant factor from the lower bound one obtains from the independence ratio. For
random rectangle graphs, this is not the case. Indeed, Theorem 6.2(c), together with
Proposition 6.5, shows that, a.a.s.,

χ(Gn,p
� )

χ∗(Gn,p
� )
> (1 + o(1))

log2 n
lnn

ln
(

lnn
λ

) = Ω

(
ln
( lnn

λ

))
,

which is Ω(ln lnn) if λ = lno(1) n.
This gap is more pronounced in the (not quite as interesting) situation when λ = o(1).

Consider, e.g., λ = n−ε, for some ε = ε(n) = o(1/ ln lnn), say. Similarly to the proofs of
Theorem 6.2, we obtain that χ∗(Gn,p

� ) 6 emax(10, 2/ε). (The max-term comes from the
somewhat arbitrary upper bound Z 6 max(10, 2/ε).) For the Log-2 lower bound on χ,
we have (1− ε) log2 n, by Proposition 6.5, and thus

χ(Gn,p
� )

χ∗(Gn,p
� )

= Ω(ε lnn).

7 Conclusion and open questions

The most important question for future research is to decide whether the gap between χ∗

and χ goes away for λ = Ω(lnn), or is inherent in the random graph model. Recall that
the largest possible ratio χ/χ∗ is O(lnn). We conjecture the following.

Conjecture 7.1 (Separation between χ∗ and χ, for p = 1−o(1)). There are constants
c, d such that in the range lnc n 6 λ 6 nd, a.a.s.,

χ(Gn,p
� )

χ∗(Gn,p
� )

= Ω
( lnn

ln lnn

)
.
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Conjecture 7.2 (Separation between χ∗ and χ, for constant p). There is a strictly
increasing function c = c(p) such that, for every constant p > 1/2, a.a.s.,

χ(Gn,p
� )

χ∗(Gn,p
� )

= (1 + o(1)) c(p).

Our results show that c(1/2) = 1 and that, if c(·) exists, then limp→1 c(p) =∞.
In order to tackle these two conjectures, it appears necessary improve the techniques for

proving and lower bounds for χ(Gn,p
� ). Our upper bounds rely on bounding the fractional

chromatic number χ∗, and then using the fact that the chromatic number is at most
O(lnn) from χ∗. It is possible that these can be improved. But our upper bounds for the
fractional chromatic number don’t appear to be optimal, either, when p̄ = o(lnn). Our
lower bound is the fractional chromatic number, which we can determine accurately in
the region lnn� λ� n. Obviously, other bounds are needed to prove χ > χ∗.

Last not least, it would be interesting to know whether χ is concentrated on a small
range of values, for some range of p, as is the case for, e.g., both Erdős-Renyi and regular
random graphs.

As for the clique number, in the region p = 1−Ω(1), it seems to be difficult to understand
satisfactorily. The first moment upper bound on the number of fooling sets, Lemma 5.4,
suggests that ω(Gn,p

� ) = (1 − o(1))n for n−1/2 6 p 6 n−1/2
√

lnn , but it seems plausible
that ω = (1− Ω(1))n already for p > p0 = o(n−1/2

√
lnn ).

Question 7.3. Is it true that, a.a.s., ω(Gn,p
� ) = (1− o(1))n for n−1/2 6 p 6 n−1/2

√
lnn ?

More poignantly,

ω(G
n,1/
√
n

� ) = ?

Answering this would likely require to give better lower bounds on ω(Gn,p
� ) than the

ones obtained by fixing the diagonal (and then using α(Gn,p)).
Another question about the fooling set size of random matrices presents itself naturally:

Question 7.4. Is ω(p) unimodal as a function of p? I.e., is there a q = q(n) such
that if, for all n, p1(n) < p2(n) < q(n), a.a.s., ω(Gn,p1

� ) 6 ω(Gn,p2
� ), and if, for all n,

q(n) < p1(n) < p2(n), a.a.s., ω(Gn,p1
� ) > ω(Gn,p2

� )?

It seems plausible that such a q would coincide with the p0 above.
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A Omitted proofs

A.1 Section 6 (chromatic number): The “usual calculation”

With

α := max

(
2λ,

(1 + ε) lnn

ln
(

lnn
eλ

) )
,

we have to show that
α ln(α/eλ) > lnn.

We write it down informally. In the following sequence, each inequality is implied by the
next:

α ln(α/eλ) > lnn [replace α by the 2nd term in the max]

(1 + ε)
ln
(
α
eλ

)
ln
(

lnn
eλ

) > 1

α > ln1/(1+ε) n

(1 + ε) lnn

ln
(

lnn
eλ

) > ln1/(1+ε) n [is true.]

A.2 Section 6 (chromatic number): Chernoff

Proof of Lemma 6.3. Using Thm 1.1 in [2] (here we need the α > 2λ), and the usual
estimates for binomial coefficients, we find that said probability (for n sufficiently large)
is at most an absolute constant times

P
(

Bin(n, p̄) = α
)
6

1.1√
2πα(n− α)/n

(λ
α

)α(n− λ
n− α

)n−α
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6
1√
α

(λ
α

)α(
1− α− λ

n− α

)n−α
6

1√
α

(λ
α

)α
eα−λ,

as promised.

A.3 Section 6 (chromatic number): Number of distinct rows

Proof of Lemma 6.6. For notational convenience, for k = 1, . . . , n, let

Sk := {` |Mk,` = 0}

The Sk are random sets, where the events ` ∈ Sk are all independent and have probabil-
ity p̄. For m > 0, with 0 := {1, . . . , n}, denoting by

Xm := |{S1, . . . , Sk} \ {0}|,

the number of distinct non-zero rows among the first m rows of Mn,p, we need to show
that Xn = Ω(n). This is quite easy for p̄ = Ω(1/n), i.e., Item (a). Here, we just prove it
in the case that p̄ 6 1/2n, i.e., Item (b).

Denote by Am+1 the event that the (m+ 1)st row is zero or a duplicate of the first m
rows, i.e., that

Sm+1 ∈ {0, S1, . . . , Sm}.

We enumerate the distinct sets: {S1, . . . , Sm} =: {Sk1 , . . . , SkXm}. Now, for m > 1, we
have

P
(
Am+1

∣∣∣ |S1|, . . . , |Sm|, Xm

)
= P

(
Sm+1 ∈ {0, S1, . . . , Sm}

∣∣∣ |S1|, . . . , |Sm|, Xm

)
= P(Sm+1 = 0) +

Xm∑
j=1

P
(
Sm+1 = Skj

∣∣∣ |S1|, . . . , |Sm|, Xm

)
= p̄n +

Xm∑
j=1

p̄|Skj|pn−|Skj| 6 p̄n + pn + max(0, Xm − 1)p̄pn−1,

where the last inequality comes from the fact that, since the Skj are all distinct, at most
one of them has cardinality 0. Hence, for m > 2,

P
(
Am+1

∣∣ Xm, X1 = 1
)
6 p̄n + pn + (Xm − 1)p̄pn−1

6 p̄n + pn − p̄pn−1 + p̄pn−1Xm.

Now, for m > 1,

E
(
Xm+1

∣∣ Xm, X1 = 1
)

= Xm + 1−P(Am+1 | Xm, X1 = 1),

> Xm + 1− p̄n − pn + p̄pn−1 − p̄pn−1Xm

= 1 + p̄pn−1 − p̄n − pn + (1− p̄pn−1)Xm.
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Using the law of total probability and solving the recursion5, we find that

E
(
Xm

∣∣ X1 = 1
)
> (1 + p̄pn−1 − p̄n − pn)

1− (1− p̄pn−1)m−2

p̄pn−1
+ (1− p̄pn−1)m−1

With λ := p̄n, again, note that, since, by our assumption above, λ 6 1/2, using the
Bernoulli inequalities 1− tn 6 (1− t)n 6 1− tn+ t2

(
n
2

)
for t < 1, we have

1

2
6 1− λ 6 pn 6 pn−1 6 1− λ

(
n− 1

n
+ λ

n− 1

n

)
6 1,

so that

(1− p̄pn−1)m−2 6 (1− p̄/2)m−2 6 1− λ

2

(
m− 2

n
+
λ

2

m− 2

n

)
.

We conclude that, for m = n,

E
(
Xm

∣∣ X1 = 1
)
> (1− pn)

1− (1− p̄pn−1)m−2

p̄pn−1

> λ

(
n− 1

n
+ λ

n− 1

n

)
·
λ
2

(
m−2
n

+ λ
2
m−2
n

)
λ/n

> (1 + o(1))
λn

2
.

Since P(X1 = 1) = P(S1 = 0) = (1 − p̄n) = 1 − o(1), this implies EXn > E(Xn | X1 =
1) P(X1 = 1) > (1− o(1))λn/2.

To obtain the a.a.s. statement from the one about the expectation, we use Martingale-
based concentration bound (Corollary 2.27 in [19]): as changing one row can affect Xn by
at most 1, we get

P
(
Xn 6 λn/4

)
6 P

(
Xn 6 EXn − λn/4

)
6 e−

(λn)2/32n = e−Ω(λ2n) = o(1),

where the last equation follows from the condition n−3/2 = o(p̄).

5The recursion: µm+1 = α+ βµm = . . . = α

m−1∑
j=0

βj + βmµ1 = α
1− βm

1− β
+ βmµ1.
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