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Abstract

It is shown that every shifted simplicial complex ∆ is EKR of type (r, s), provided
that the size of every facet of ∆ is at least (2s + 1)r − s. It is moreover proven
that every i-near-cone simplicial complex is EKR of type (r, i) if depthK∆ > (2i +
1)r − i − 1, for some field K. Furthermore, we prove that if G is a graph having
at least (2i + 1)r − i connected components, including i isolated vertices, then its
independence simplicial complex ∆G is EKR of type (r, i). The results of this paper,
generalize the main result of Frankl (2013).

Keywords: Erdős-Ko-Rado theorem, Simplicial complex, Matching number, Alge-
braic shifting, i-Near-Cone

1 Introduction and preliminaries

Throughout this paper, the set of positive integers {1, 2, . . .} is denoted by N. Form,n ∈ N
with m 6 n, the set {i ∈ N : m 6 i 6 n} is denoted by [m,n]; for m = 1, we also write
[n].

A family A of sets is intersecting if A ∩ B 6= ∅, for every pair of sets A,B ∈ A. A
classical result in extremal set theory is the famous theorem of Erdős, Ko, and Rado [7].
It asserts that the maximum size of an intersecting family of r-subsets (i.e., subsets of size
r) of [n] is

(
n−1
r−1

)
, provided that n > 2r. In other words, the largest possible intersecting

families of r-subsets of [n] are the families of all r-subsets containing some fixed element
of [n], whenever n > 2r. For a nice survey on this topic we refer to [4].

Let A be a family of subsets of [n]. A subfamily M of A is called a matching if the
elements of M are pairwise disjoint. The matching number of A, denoted by ν(A) is
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defined to be the size of the largest matching of A. Therefore, a nonempty family A
is intersecting if and only if ν(A) = 1. In [6], Erdős proposed the following conjecture
concerning the maximum size of a family of subsets of [n] which has a given matching
number.

Conjecture 1.1. Assume that A is a family of r-subsets of [n] with ν(A) 6 s. If n >
(s+ 1)r − 1, then

|A| 6 max

{(
(s+ 1)r − 1

r

)
,

(
n

r

)
−
(
n− s
r

)}
. (1)

For s = 1, Conjecture 1.1 is the same as Erdős-Ko-Rado Theorem (note that Conjec-
ture 1.1 is trivially true for s = 1 and n = r(s + 1) − 1). Also, for r = 1, the conjecture
clearly holds. Erdős [6] proved that there exists an integer n0(r, s) such that the inequality
(1) is valid for every family of r-subsets of [n] with ν(A) 6 s, provided that n > n0(r, s).
Frankl [8] proved that n0(r, s) can be chosen to be (2s+ 1)r− s. More explicit, he proved
the following result.

Theorem 1.2. [8, Theorem 1.1] Assume that A is a family r-subsets of [n] with ν(A) 6 s.
If n > (2s+ 1)r − s, then

|A| 6
(
n

r

)
−
(
n− s
r

)
.

The aim of this paper is to extend Theorem 1.2 to some classes of simplicial com-
plexes. Erdős-Ko-Rado type theorems for simplicial complexes have been studied by
several authors; see e.g., [1], [2], [3], [12], [14]. Let us continue with some preliminaries
from simplicial complexes.

A simplicial complex ∆ on the ground set V (∆) := [n] is a collection of subsets of
[n] that is closed under taking subsets; that is, if F ∈ ∆ and F ′ ⊆ F , then also F ′ ∈ ∆.
Every element F ∈ ∆ is called a face of ∆. The dimension of a face F is defined to
be dimF := |F | − 1. The dimension of ∆, which is denoted by dim ∆, is defined to be
d − 1, where d = max{|F | : F ∈ ∆}. A facet of ∆ is a maximal face of ∆ with respect
to inclusion. Let F(∆) denote the set of facets of ∆. It is clear that F(∆) determines ∆.
When F(∆) = {F1, . . . , Fm}, we write ∆ = 〈F1, . . . , Fm〉 and say that ∆ is generated by
F1, . . . , Fm. A simplicial complex ∆ is called pure if all facets of ∆ have the same size.
We say that ∆ is a simplex if it consists of all subsets of [n]. Thus, a simplex has exactly
one facet, namely [n]. The link of ∆ with respect to a subset F ⊆ [n], denoted by lk∆F ,
is the simplicial complex

lk∆F = {G ⊆ [n] \ F : G ∪ F ∈ ∆}.

Let ∆ be a simplicial complex. The simplicial complex ∆(i) := {F ∈ ∆ : dimF 6 i}
is the i-skeleton of ∆. Also, the simplicial complex ∆[i] := 〈F ∈ ∆ : dimF = i〉 is the
i-pure skeleton of ∆.

A face of ∆ of size r is an r-face of ∆. We denote the number of r-faces of ∆ by fr(∆).
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Note. Many authors define an r-face to be a face with dimension r. We follow Swartz
[13] and Woodroofe [14] in considering an r-face to be a face with size r (rather than
dimension r).

A simplicial complex ∆ is said to be Cohen–Macaulay over a field K if for every F ∈ ∆
and every i less than dim(lk∆F ), it holds that H̃i(lk∆F ;K) = 0, where H̃i(∆;K) denotes
the simplicial homology of ∆ with coefficients in K (this definition of Cohen–Macaulayness
coincides with the one which appears in the context of combinatorial commutative algebra
via the Stanley–Reisner correspondence). It is well-known that every Cohen–Macaulay
simplicial complex is pure (see for example [9, Lemma 8.1.5]). We say that a simplicial
complex ∆ is sequentially Cohen–Macaulay over a field K if every pure skeleton of ∆ is
Cohen–Macaulay over K.

Woodroofe [14] defined the depth of ∆ over K as

depthK∆ = max{` : ∆(`) is Cohen–Macaulay over K}.

We note that depthK∆ is at most the minimum facet dimension of ∆, and equality holds
if ∆ is sequentially Cohen–Macaulay over K.

Let ∆ be a simplicial complex and W be a subset of V (∆). The anti–star of ∆ with
respect to W , denoted by ast∆W , is the simplicial complex

ast∆W = {F ∈ ∆ : F ∩W = ∅}.

When W = {v} is a singleton, we sometimes write ∆ \ v instead of ast∆W .

Definition 1.3. A simplicial complex ∆ is said to be EKR of type (r, s) if every family
A of r-faces of ∆ with ν(A) 6 s satisfies the inequality

|A| 6 fr(∆)−min fr(ast∆W ),

where the minimum is taken over all subsets W of V (∆) with |W | = s.

We restate Theorem 1.2 using the language of simplicial complexes:

Theorem 1.4. Let ∆ be a simplex on ground set [n]. If n > (2s + 1)r − s, then ∆ is
EKR of type (r, s).

In the subsequent sections, we extend Theorem 1.4 as follows. In Section 2, we focus
on shifted simplicial complexes (see Definition 2.1). The main result of that section
is Theorem 2.2, which asserts that every shifted simplicial complex ∆ is EKR of type
(r, s), provided that the size of every facet of ∆ is at least (2s + 1)r − s. Our main tool
in the proof of Theorem 2.2 is (exterior) algebraic shifting. This method was used in
[12] and [14] to prove other Erdős-Ko-Rado type theorems for simplicial complexes. In
Section 3, we consider i-near-cone simplicial complexes (see Definition 3.1). We show in
Theorem 3.3 that every i-near-cone simplicial complex is EKR of type (r, i) if depthK∆ >
(2i + 1)r − i − 1, for some field K. In Section 4, we concentrate on the independence
simplicial complexes associated to graphs. In Proposition 4.2, we characterize the graphs
for which the independence complex ∆G is i-near-cone and conclude in Corollary 4.4 that
if G is a graph having at least (2i + 1)r − i connected components, including i isolated
vertices, then ∆G is EKR of type (r, i).
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2 Shifted simplicial complexes

In this section, using shifting theory, we study the property of being EKR of type (r, s)
for shifted simplicial complexes. We first provide some definitions and basic facts from
shifting theory.

Definition 2.1. A simplicial complex ∆ on an ordered ground set {v1, . . . , vn} is shifted
if whenever σ is a face of ∆ containing vi, then (σ \ {vi}) ∪ {vj} is a face of ∆ whenever
j < i. An r-family F of subsets of {v1, . . . , vn} is shifted if it generates a shifted complex.

Consider the set of all simplicial complexes on a given ordered ground set V . A shifting
operation associates to each such simplicial complex ∆ a new simplicial complex Shift ∆
on the ground set V such that

(S1) For every simplicial complex ∆, Shift ∆ is a shifted complex.

(S2) If ∆ is a shifted complex, then Shift ∆ = ∆.

(S3) fi(Shift ∆) = fi(∆) for every i with 0 6 i 6 dim∆ + 1.

(S4) If Γ ⊆ ∆ are simplicial complexes, then Shift Γ ⊆ Shift ∆.

If A is a family of r-subsets of [n], then ShiftA is defined to be the set of r-faces of
Shift(∆(A)), where ∆(A) is the simplicial complex generated by A. In our proofs we
need a shifting operation that satisfies the following extra property:

(S5) If A has the property that among every s + 1 members of A, there are two with
nonempty intersection, then the same property holds for ShiftA. In other words,
ν(ShiftA) 6 ν(A).

Kalai proved (see [10, Theorem 6.3 and subsequent Remarks]) that a specific shifting
operation called exterior algebraic shifting (with respect to a field K) satisfies (S5). We
denote the exterior algebraic shift of ∆, with respect to a field K, by ShiftK ∆. The
precise definition of exterior algebraic shifting will not be important for us, but it can be
found in [9] from a commutative algebraic perspective, or in [10] from a more elementary
perspective.

We are now ready to prove that every shifted simplicial complex ∆ is EKR of type
(r, s), provided that the size of facets of ∆ are large enough. In the proof we do not rely
on a specific shifting operator, but only require (S1, S2, S3, S4, S5) for the operator Shift.

Theorem 2.2. Let ∆ be a shifted complex having minimal facet size k. Then ∆ is EKR
of type (r, s), for every natural numbers r and s with k > (2s+ 1)r − s.

Proof. Suppose that the ordered set {v1, . . . , vn} is the ground set of ∆. Let A be a family
of r-faces of ∆ with ν(A) 6 s. Note that by assumption n > k > s. Set W = {v1, . . . , vs}.
It is sufficient to prove that

|A| 6 fr(∆)− fr(ast∆W ).
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Let n be the size of the ground set of ∆. We proceed by induction on n. Note that if ∆ is
a simplex, then Theorem 1.4 guarantees that the assertion is true. Also, there is nothing
to prove if r = 1.

Thus assume that ∆ is not a simplex and r > 2. It then follows from (S1), (S4) and
(S5) that ShiftA is a shifted family of r-faces of Shift ∆ with ν(ShiftA) 6 s. On the
other hand, ∆ is a shifted complex, and thus we conclude from (S2) that Shift ∆ = ∆.
This argument shows that ShiftA is in fact a shifted family of r-faces of ∆, and (S3)
shows that its size is |A|. Let A1 be the set of all faces σ ∈ ShiftA with vn ∈ σ and set
A2 = ShiftA \ A1. We study the size of A1 and A2.

To study the size of A1, we set

A′1 = {σ \ {vn} : σ ∈ A1}.

Hence |A′1| = |A1|. We claim that ν(A′1) 6 s.

Proof of the claim. Suppose by contradiction that ν(A′1) > s + 1. Hence, there exist
σ1, σ2, . . . , σs+1 ∈ A1 such that σi ∩ σj = {vn}, for every pair of integers i 6= j. It follows
that

|σ1 ∪ σ2 ∪ . . . ∪ σs+1| = (s+ 1)r − s 6 k − sr 6 n− sr < n− s.

It follows that there exist v`1 , . . . , v`s such that v`i /∈
⋃s+1

j=1 σj for every integer i with
1 6 i 6 s. Set

σ′j = (σj \ {vn}) ∪ {v`j},

for every j with 1 6 j 6 s. Also, set σ′s+1 = σs+1. By the definition of shiftedness, we know
that σ′j belongs to ShiftA, for every j with 1 6 j 6 s+ 1. Further, σ′i ∩ σ′j = ∅, for every
i 6= j. This shows that σ′1, . . . , σ

′
s+1 is a matching of ShiftA. Hence, ν(ShiftA) > s + 1

which is a contradiction. This completes the proof of the claim.

It follows that A′1 is a family of (r − 1)-faces of lk∆vn with ν(A′1) 6 s. Notice lk∆vn
is a shifted complex on ground set {v1, . . . , vn−1}. It is clear that the minimum facet size
of lk∆vn is at least k − 1 and k − 1 > (2s+ 1)(r − 1)− s. On the other hand, r > 2 and
this shows that the size of the ground set of lk∆vn is at least k− 1 > s+ 1. Thus, W is a
subset of the ground set of lk∆vn. The induction hypothesis implies that

|A1| = |A′1| 6 fr−1(lk∆vn)− fr−1(astlk∆vnW ).

We now consider A2. It is clear that A2 is a a family of r-faces of ∆\vn with ν(A2) 6 s.
Since ∆ is a shifted complex which is not a simplex, we conclude that the minimum facet
size of ∆ \ vn is at least k. Hence the induction hypothesis implies that

|A2| 6 fr(∆ \ vn)− fr(ast∆\vnW ).

Finally we have

|A| = | ShiftA| = |A1|+ |A2| 6 fr−1(lk∆vn)− fr−1(astlk∆vnW )

+ fr(∆ \ vn)− fr(ast∆\vnW ).
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The desired inequality now follows by observing that

fr−1(lk∆vn) + fr(∆ \ vn) = fr(∆)

and
fr−1(astlk∆vnW ) + fr(ast∆\vnW ) = fr(ast∆W ).

Remark 2.3. Let ∆ be a shifted complex having minimal facet size k > (2s + 1)r − s.
Suppose that the ordered set {v1, . . . , vn} is the ground set of ∆. Consider a family A of
r-faces of ∆ with ν(A) 6 s. It follows from the proof of Theorem 2.2 that

|A| 6 fr(∆)− fr(ast∆W ),

where W = {v1, . . . , vs}. This observation will be used in the proof of Theorem 3.3.

3 Intersecting faces of i-near-cones

In this section we study the property of being EKR of type (r, s) for i-near-cone simplicial
complexes. The main result of this section is Theorem 3.3 which states that an i-near-
cone is EKR of type (r, i), provided that depthK∆ is large enough. In the proof, we use
exterior algebraic shifting and Theorem 2.2. Therefore in this section we fix a field K and
by Shift ∆ we always mean the exterior algebraic shifting with respect to K.

Let ∆ be a simplicial complex and v be a member of the ground set of ∆. The complex
∆ is a near-cone with respect to the apex vertex v if (σ\{w})∪{v} is a face of ∆ whenever
σ is a face of ∆ and w is an element of σ.

We next define the notion of i-near cone simplicial complexes. It was first introduced
by Nevo [11]

Definition 3.1. Let ∆ be a simplicial complex with some distinct elements v1, . . . , vi in
the ground set of ∆. The complex ∆ is an i-near-cone with apex v1, . . . , vi if there exists
a chain of nonempty simplicial complexes ∆(0) ⊃ ∆(1) ⊃ . . . ⊃ ∆(i) with ∆(0) = ∆ such
that whenever 1 6 j 6 i the following conditions hold.

(i) vj ∈ ∆(j − 1),

(ii) ∆(j) = ast∆(j−1)vj,

(iii) ∆(j − 1) is a near-cone with respect to vj.

Let ∆ be a simplicial complex with ground set V (∆). For every subset G ⊆ V (∆),
the restriction of ∆ to G is defined to be the simplicial complex

∆G = {F ∈ ∆ : F ⊆ G}.

The following proposition has a crucial role in the proof of Theorem 3.3.
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Proposition 3.2. Let ∆ be an i-near cone. Assume that v1, . . . , vi is the apex of ∆ and
set F = {v1, . . . , vi}. Suppose that the minimum size of facets of ∆ and Shift ∆ is at
least k with k > i. View Shift ∆ as having ordered ground set {u1, . . . , un}, and view
Shift(ast∆F ) as having ordered ground set G = {ui+1, . . . , un}. For r 6 k − 2i,

fr((Shift ∆)G) = fr(Shift(ast∆F )).

Proof. Consider a face σ ∈ (Shift ∆)G, with |σ| = r. Since the minimum facet size of
Shift ∆ is at least k and r 6 k − 2i < k − i, we conclude that Shift ∆ has a face of size
r + i containing σ. It then follows from the definition of shiftedness that

σ ∪ {u1, . . . , ui} ∈ Shift ∆.

Thus σ ∈ lkShift ∆{u1, . . . , ui}. This shows that

fr((Shift ∆)G) 6 fr(lkShift ∆{u1, . . . , ui}).

The converse inequality is trivial, because

lkShift ∆{u1, . . . , ui}) ⊆ (Shift ∆)G.

Hence we conclude that

fr((Shift ∆)G) = fr(lkShift ∆{u1, . . . , ui}). (†)

Now consider a face τ ∈ ast∆F with |τ | = r. We use the notation from Definition 3.1
to prove that τ ∪ F ∈ ∆. Since the minimal facet size of ∆ is at least k > r + 2i > r + i,
there exists w ∈ V (∆)\ (τ ∪F ) such that τ ∪{w} ∈ ∆. It is clear from Definition 3.1 that
τ ∪ {w} ∈ ∆(i) ⊂ ∆(i− 1). Since ∆(i− 1) is a near-cone with respect to vi, we conclude
that

τ ∪ {vi} = ((τ ∪ {w}) \ {w}) ∪ {vj} ∈ ∆(i− 1) ⊆ ∆.

Let j be the least integer such that τ ∪ {vj, . . . , vi} ∈ ∆. We should prove that j = 1.
Assume by contradiction that j > 1. Again, since the minimal facet size of ∆ is at least
k > r + 2i > r + i, there exists x ∈ V (∆) \ (τ ∪ F ) such that

τ ∪ {vj, . . . , vi} ∪ {x} ∈ ∆.

It is clear that
τ ∪ {vj, . . . , vi} ∪ {x} ∈ ∆(j − 1) ⊂ ∆(j − 2).

Since ∆(j − 2) is a near-cone with respect to vj−1, we conclude that

τ ∪ {vj−1, vj, . . . , vi} = ((τ ∪ {vj, . . . , vi, x}) \ {x}) ∪ {vj−1} ∈ ∆(j − 2) ⊆ ∆,

which contradicts the choice of j. Therefore τ ∪F ∈ ∆, which yields that τ ∈ lk∆F . This
shows that

fr(ast∆F ) 6 fr(lk∆F ).
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The converse inequality is trivial, because lk∆F ⊆ ast∆F . Hence, using S3, we conclude
that

fr(Shift(ast∆F )) = fr(ast∆F ) = fr(lk∆F ) = fr(Shift(lk∆F )). (‡)

On the other hand, we know from [12, Proposition 3.6] that

fr(lkShift ∆{u1, . . . , ui}) = fr(Shift(lk∆F )).

The assertion now follows from the above equality together with equalities † and ‡.

We are now ready to prove the main result of this section.

Theorem 3.3. Let r and i be positive integers and ∆ be an i-near-cone with

depthK∆ > (2i+ 1)r − i− 1.

Then ∆ is EKR of type (r, i).

Proof. The case r = 1 is trivial. Hence, suppose that r > 2. Assume that v1, . . . , vi
is the apex of ∆ and set F = {v1, . . . , vi}. Consider a family A of r-faces of ∆ with
ν(A) 6 s. It suffices to prove that |A| 6 fr(∆)− fr(ast∆F ). In order to do this, we use
algebraic shifting. Consider the simplicial complex Shift ∆ and assume that the ordered
set {u1, . . . , un} is its ground set. It follows from (S5) that ShiftA a family of r-faces of
Shift ∆ with ν(ShiftA) 6 s. It also follows from (S3) that its size is | ShiftA| = |A|. Let
k be the minimum size of facets of ∆ and Shift ∆. By [5, Corollary 4.5] and the definition
of depth, we conclude that

k > depthK∆ + 1 > (2i+ 1)r − i > r + 2i.

Set W = {u1, . . . , ui} and G = {ui+1, . . . , un}. It follows from (S3), Remark 2.3 and
Proposition 3.2 that

|A| = | ShiftA| 6 fr(Shift ∆)− fr(astShift ∆W ) = fr(Shift ∆)− fr((Shift ∆)G)

= fr(∆)− fr(ast∆F ).

The following corollary is an immediate consequence of Theorem 3.3 and proves that
every sequentially Cohen-Macaulay i-near-cone ∆ is EKR of type (r, i), provided that the
size of every facet of ∆ is large enough. Note that if ∆ is sequentially Cohen-Macaulay
over K then depthK∆ is the minimum facet dimension of ∆.

Corollary 3.4. Let r and i be positive integers and ∆ be a sequentially Cohen-Macaulay
i-near-cone having minimal facet size k > (2i+ 1)r − i. Then ∆ is EKR of type (r, i).
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4 Simplicial complexes associated to graphs

Let G be a simple undirected graph with vertex set V (G) and edge set E(G). For a
vertex v ∈ V (G), the neighbor set of v is NG(v) = {u | {u, v} ∈ E(G)} and We set
NG[v] = NG(v) ∪ {v} and call it the closed neighborhood of v. The degree of v, denoted
by degG(v) is the size of NG(v). The independence simplicial complex of G is defined by

∆G = {A ⊆ V (G) | A is an independent set in G}.

We recall that A ⊆ V (G) is an independent set in G if none of its elements are adjacent.
We say that a graph G is sequentially Cohen-Macaulay (resp. near-cone, i-near-cone) if
its independence simplicial complex ∆G is sequentially Cohen-Macaulay (resp. near-cone,
i-near-cone). In this section, we characterize the i-near-cone graphs. We first consider
the near-cone case. The following lemma says that a graph G with n vertices is near cone
if and only if it has a vertex v such that every neighborhood of v has degree n− 1

Lemma 4.1. A graph G is near-cone with apex v ∈ V (G) if and only if for every u ∈
NG(v), we have NG[u] = V (G).

Proof. Notice that ∆G is near-cone with apex v if and only if (A \ {w}) ∪ {v} is an
independent set of G, for every independent set A ∈ ∆G and every vertex w ∈ A. This
equivalent to say that v is not adjacent to any vertex of A \ {w}, for every independent
set A ∈ ∆G and every vertex w ∈ A. This means that v is not adjacent to any vertex
of A, for every independent set A ∈ ∆G with |A| > 2. Therefore, ∆G is near-cone with
apex vertex v if and only if for every vertex u ∈ NG(v), the largest independent set of G,
containing u is the singleton {u}, i.e., NG[u] = V (G).

The following proposition is an immediate consequence of Lemma 4.1 and characterizes
i-near-cone graphs. Recall that for every graph G and every vertex v ∈ V (G), the graph
G \ v is obtained from G by deleting the vertex v and every edge adjacent to v.

Proposition 4.2. A graph G is an i-near-cone if and only if there are distinct vertices
v1, . . . , vi ∈ V (G) and a chain of subgraphs G(0) ⊃ G(1) ⊃ · · · ⊃ G(i) with G(0) = G
such that whenever 1 6 j 6 i the following conditions hold.

(i) vj is a vertex of G(j − 1),

(ii) G(j) = G(j − 1) \ vj,

(iii) For every u ∈ NG(j−1)(vj), we have NG(j−1)[u] = V (G(j − 1)).

In particular, G is an i-near-cone if it has i isolated vertices.

For a graph G, we denote the minimal facet size of ∆G by minind(G). It is clear
that minind(G) is equal to the minimum size of maximal independent sets of G. As an
immediate consequence of Corollary 3.4 and Proposition 4.2, we conclude the following
result.
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Corollary 4.3. Let r and i be positive integers and G be a sequentially Cohen-Macaulay
graph having i isolated vertices. If minind(G) > (2i + 1)r − i, then ∆G is EKR of type
(r, i).

A list of sequentially Cohen-Macaulay graphs can be found in [14, Page 1224–1225].
In particular every chordal graph (i.e., the graph which has no induced cycle of length
at least 4) is sequentially Cohen-Macaulay. Also, if every connected component of G is
sequentially Cohen-Macaulay, then G is sequentially Cohen-Macaulay too.

Let ∆1 and ∆2 be two simplicial complexes with disjoint vertex sets. The join of ∆1

and ∆2 is defined to be

∆1 ∗∆2 = {F ∪G : F ∈ ∆1 and G ∈ ∆2}.

It is know by [14, Lemma 2.12] that for every field K, we have depthK∆1∗∆2 = depthK∆1+
depthK∆2 + 1. On the other hand one can easily see that if G is a graph with connected
components G1, . . . , Gt, then ∆G = ∆G1 ∗ · · · ∗∆Gt . This yields that for every field K and
every graph G with t connected components, the quantity depthK∆G is at least t− 1.

Corollary 4.4. Let r and i be positive integers and G be a graph having i isolated vertices.
If the number of connected components of G is at least (2i+ 1)r − i, then ∆G is EKR of
type (r, i).

Proof. The assertion follows immediately from Theorem 3.3, Proposition 4.2 and the
above argument.

Let G be a graph. The complementary graph G is the graph with V (G) = V (G)
and E(G) consists of those 2-element subsets {u, v} of V (G) for which {u, v} /∈ E(G).
Woodroofe [14, Lemma 4.4] proves that if G is graph with at least two vertices which has
connected complement, then for every field K, we have depthK∆G > 1. As a consequence,
we conclude the following result.

Corollary 4.5. Let r, i,m and t be positive integers and G be a graph with connected
components G1, . . . , Gt. Assume further that

(i) t > (2i+ 1)r − i−m,

(ii) G1, . . . , Gi are isolated vertices and

(iii) For every integer j with i + 1 6 j 6 i + m, the graph Gj has at least two vertices
and the complementary graph Gj is connected.

Then ∆G is EKR of type (r, i).

Proof. The assumptions (i), (iii), together with [14, Lemmas 2.12 and 4.14] imply that
for every field K, we have depthK∆G > (2i+ 1)r − i− 1. The assertion now follows from
Theorem 3.3 and Proposition 4.2.
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