Anti-van der Waerden numbers of 3-term arithmetic progressions

Zhanar Berikkyzy Alex Schulte Michael Young

Department of Mathematics Iowa State University Ames, Iowa, U.S.A.

{zhanarb, aschulte, myoung}@iastate.edu

Submitted: Apr 27, 2016; Accepted: Jun 2, 2017; Published: Jun 16, 2017 Mathematics Subject Classifications: 11B25, 05D10, 11B50

Abstract

The anti-van der Waerden number, denoted by $\operatorname{aw}([n], k)$, is the smallest r such that every exact r-coloring of [n] contains a rainbow k-term arithmetic progression. Butler et al. showed that $\lceil \log_3 n \rceil + 2 \leq \operatorname{aw}([n], 3) \leq \lceil \log_2 n \rceil + 1$, and conjectured that there exists a constant C such that $\operatorname{aw}([n], 3) \leq \lceil \log_3 n \rceil + C$. In this paper, we show this conjecture is true by determining $\operatorname{aw}([n], 3)$ for all n. We prove that for $7 \cdot 3^{m-2} + 1 \leq n \leq 21 \cdot 3^{m-2}$,

 $aw([n],3) = \begin{cases} m+2, & \text{if } n = 3^m \\ m+3, & \text{otherwise.} \end{cases}$

Keywords: arithmetic progression; rainbow coloring; Behrend construction; unitary coloring

1 Introduction

Let n be a positive integer and let $G \in \{[n], \mathbb{Z}_n\}$, where $[n] = \{1, \ldots, n\}$. A k-term arithmetic progression (k-AP) of G is a sequence in G of the form

$$a, a + d, a + 2d, \dots, a + (k - 1)d,$$

where $d \ge 1$. For the purposes of this paper, an arithmetic progression is referred to as a set of the form $\{a, a + d, a + 2d, \ldots, a + (k - 1)d\}$. An *r*-coloring of *G* is a function $c: G \to [r]$, and such a coloring is called *exact* if *c* is surjective. Given $c: G \to [r]$, an arithmetic progression is called *rainbow* (under *c*) if $c(a + id) \neq c(a + jd)$ for all $0 \le i < j \le k - 1$. The anti-van der Waerden number, denoted by $\operatorname{aw}(G, k)$, is the smallest r such that every exact r-coloring of G contains a rainbow k-AP. If G contains no k-AP, then $\operatorname{aw}(G, k) = |G| + 1$; this is consistent with the property that there is a coloring of G with $\operatorname{aw}(G, k) - 1$ colors that has no rainbow k-AP.

An r-coloring of G is unitary if there is an element of G that is uniquely colored. The smallest r such that every exact unitary r-coloring of G contains a rainbow k-AP is denoted by $aw_u(G, k)$. Similar to the anti-van der Waerden number, $aw_u(G, k) = |G| + 1$ if G has no k-AP.

Problems involving counting and the existence of rainbow arithmetic progressions have been well-studied. The main results of Axenovich and Fon-Der-Flaass [1] and Axenovich and Martin [2] deal with the existence of 3-APs in colorings that have uniformly sized color classes. Fox, Jungić, Mahdian, Nešetril, and Radoičić also studied anti-Ramsey results of arithmetic progressions in [6]. In particular, they showed that every 3-coloring of [n] for which each color class has density more than 1/6, contains a rainbow 3-AP. Fox et al. also determined all values of n for which $aw(\mathbb{Z}_n, 3) = 3$.

The specific problem of determining anti-van der Waerden numbers for [n] and \mathbb{Z}_n was studied by Butler et al. in [4]. It is proved in [4] that for $k \ge 4$, $\operatorname{aw}([n], k) = n^{1-o(1)}$ and $\operatorname{aw}(\mathbb{Z}_n, k) = n^{1-o(1)}$. These results are obtained using results of Behrend [3] and Gowers [5] on the size of a subset of [n] with no k-AP. Butler et al. also expand upon the results of [6] by determining $\operatorname{aw}(\mathbb{Z}_n, 3)$ for all values of n. These results were generalized to all finite abelian groups in [7]. Butler et al. also provides bounds for $\operatorname{aw}([n], 3)$, as well as many exact values (see Table 1).

In this paper, we determine the exact value of aw([n], 3), which answers questions posed in [4] and confirms the following conjecture:

Conjecture 1. [4] There exists a constant C such that $aw([n], 3) \leq \lceil \log_3 n \rceil + C$, for all $n \geq 3$.

Our main result, Theorem 2, also determines $aw_u([n], 3)$ which shows the existence of extremal colorings of [n] that are unitary.

Theorem 2. For all integers $n \ge 2$,

$$aw_u([n],3) = aw([n],3) = \begin{cases} m+2, & \text{if } n = 3^m \\ m+3, & \text{if } n \neq 3^m \text{ and } 7 \cdot 3^{m-2} + 1 \leq n \leq 21 \cdot 3^{m-2} \end{cases}$$

In Section 2, we provide lemmas that are useful in proving Theorem 2 and Section 3 contains the proof of Theorem 2.

2 Main Tools

In [4, Theorem 1.6] it is shown that $3 \leq \operatorname{aw}(\mathbb{Z}_p, 3) \leq 4$ for every prime number p and that if $\operatorname{aw}(\mathbb{Z}_p, 3) = 4$ then $p \geq 17$. Furthermore, it is shown that the value of $\operatorname{aw}(\mathbb{Z}_n, 3)$ is determined by the values of $\operatorname{aw}(\mathbb{Z}_p, 3)$ for the prime factors p of n. We have included this theorem below with some notation change.

The electronic journal of combinatorics 24(2) (2017), #P2.39

$n \setminus k$	3	4	5	6	7	8	9	10	11	12	13	14
3	3											
4	4											
5	4	5										
6	4	6										
7	4	6	$\overline{7}$									
8	5	6	8									
9	4	7	8	9								
10	5	8	9	10								
11	5	8	9	10	11							
12	5	8	10	11	12							
13	5	8	11	11	12	13						
14	5	8	11	12	13	14						
15	5	9	11	13	14	14	15					
16	5	9	12	13	15	15	16					
17	5	9	13	13	15	16	16	17				
18	5	10	14	14	16	17	17	18				
19	5	10	14	15	17	17	18	18	19			
20	5	10	14	16	17	18	19	19	20			
21	5	11	14	16	17	19	20	20	20	21		
22	6	12	14	17	18	20	21	21	21	22		
23	6	12	14	17	19	20	21	22	22	22	23	
24	6	12	15	18	20	20	22	23	23	23	24	
25	6	12	15	19	21	21	23	23	24	24	24	25

Table 1: Values of aw([n], k) for $3 \leq k \leq \frac{n+3}{2}$.

Theorem 3 ([4]). Let n be a positive integer with prime decomposition

$$n = 2^{e_0} p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$$

for $e_i \ge 0$, $i = 0, \ldots, s$, where primes are ordered so that $\operatorname{aw}(\mathbb{Z}_{p_i}, 3) = 3$ for $1 \le i \le \ell$ and $\operatorname{aw}(\mathbb{Z}_{p_i}, 3) = 4$ for $\ell + 1 \le i \le s$. Then

$$aw(\mathbb{Z}_n, 3) = \begin{cases} 2 + \sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^{s} 2e_j, & \text{if } n \text{ is odd} \\ 3 + \sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^{s} 2e_j, & \text{if } n \text{ is even.} \end{cases}$$

We use Theorem 3 to prove the following lemma.

Lemma 4. Let $n \ge 3$, then $\operatorname{aw}(\mathbb{Z}_n, 3) \le \lceil \log_3 n \rceil + 2$ with equality if and only if $n = 3^j$ or $2 \cdot 3^j$ for $j \ge 1$.

Proof. Suppose $n = 2^{e_0} p_1^{e_1} p_2^{e_2} \dots p_s^{e_s}$ with $e_i \ge 0$ for $i = 0, \dots, s$, where primes p_1, p_2, \dots, p_s are ordered so that $\operatorname{aw}(\mathbb{Z}_{p_i}, 3) = 3$ for $1 \le i \le \ell$ and $\operatorname{aw}(\mathbb{Z}_{p_i}, 3) = 4$ for $\ell + 1 \le i \le s$. We consider two cases depending on parity of n.

Case 1. Suppose n is odd, that is $e_0 = 0$. Then $\operatorname{aw}(\mathbb{Z}_n, 3) = 2 + \sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^{s} 2e_j$ by Theorem 3. Since $\operatorname{aw}(\mathbb{Z}_p, 3) = 3$ for odd primes $p \leq 13$, we have $p_i \geq 17$ for $i \geq \ell + 1$,

The electronic journal of combinatorics 24(2) (2017), #P2.39

and clearly $p_i \ge 3$ for $i \le \ell$, therefore

$$3^{\operatorname{aw}(\mathbb{Z}_n,3)} = 3^{2+\sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^{s} 2e_j} = 9 \cdot 3^{e_1} \cdots 3^{e_\ell} \cdot 9^{e_{\ell+1}} \cdots 9^{e_s} \leqslant 9 \cdot p_1^{e_1} \cdots p_s^{e_s} = 9n$$

Note that the equality holds if and only if n is a power of 3, that is $e_j = 0$ for $2 \leq j \leq s$. Therefore, $\operatorname{aw}(\mathbb{Z}_n, 3) \leq \lceil \log_3 n \rceil + 2$ for odd n, with equality if and only if $n = p_1^{e_1}$.

Case 2. Suppose n is even, that is $e_0 \ge 1$. Then $\operatorname{aw}(\mathbb{Z}_n, 3) = 3 + \sum_{j=1}^{\ell} e_j + \sum_{j=\ell+1}^{s} 2e_j$ by Theorem 3. If $n = 2^{e_0} \cdot 3^j$ for $j \ge 1$, then by direct computation $\operatorname{aw}(\mathbb{Z}_n, 3) = 3 + j \le 2 + \lceil \log_3 n \rceil$, with equality if and only if $e_0 = 1$. So suppose there is i such that $p_i \ne 3$, and let $h = \frac{n}{2^{e_0} p_i^{e_i}}$.

If $i \leq \ell$ then $p_i \geq 5$, and so $3 \cdot 3^{e_i} < 2^{e_0} p_i^{e_i}$ for all $e_0 \geq 1$ and $e_i \geq 1$. Therefore, since h is odd, by the previous case

$$3^{\operatorname{aw}(\mathbb{Z}_n,3)} = 3 \cdot 3^{e_i} \cdot 3^{\operatorname{aw}(\mathbb{Z}_h,3)} \leqslant 3 \cdot 3^{e_i} \cdot 9h < 2^{e_0} p_i^{e_i} \cdot 9h = 9n.$$

If $i \ge \ell + 1$ then $p_i \ge 17$, and so $3 \cdot 9^{e_i} < 2^{e_0} p_i^{e_i}$ for all $e_0 \ge 1$ and $e_i \ge 1$. Then by the previous case

$$3^{\operatorname{aw}(\mathbb{Z}_n,3)} = 3 \cdot 9^{e_i} \cdot 3^{\operatorname{aw}(\mathbb{Z}_h,3)} \leqslant 3 \cdot 9^{e_i} \cdot 9h < 2^{e_0} p_i^{e_i} \cdot 9h = 9n.$$

A set of consecutive integers I in [n] is called an *interval* and $\ell(I)$ is the number of integers in I. Given a coloring c of some finite nonempty subset S of [n], a *color class* of a color i under c in S is denoted $c_i(S) := \{x \in S : c(x) = i\}$. A coloring c of [n]is *special* if n = 7q + 1 for some positive integer q, c(1) and c(n) are both uniquely colored, and there are two colors α and β such that $c_{\alpha}([n]) = \{q + 1, 2q + 1, 4q + 1\}$ and $c_{\beta}([n]) = \{3q + 1, 5q + 1, 6q + 1\}$.

Lemma 5. Let N be an integer and c be an exact r-coloring of [N] with no rainbow 3-AP, where 1 and N are colored uniquely. Then either the coloring c is special or $|\{c(x) : x \equiv i \pmod{3} \text{ and } x \in [N]\}| \ge r-1$ for i = 1 or i = N.

Proof. Observe that N is even, otherwise $\{1, (N+1)/2, N\}$ is a rainbow 3-AP. We partition the interval [N] into four subintervals $I_1 = \{1, \ldots, \lceil N/4 \rceil\}, I_2 = \{\lceil N/4 \rceil + 1, \ldots, N/2\}, I_3 = \{N/2+1, \ldots, \lfloor 3N/4 \rfloor\}$, and $I_4 = \{\lfloor 3N/4 \rfloor + 1, \ldots, N\}$. Notice that every color other than c(1) and c(N) must be used in the subinterval I_2 . To see this, assume i is the missing color in I_2 distinct from c(1) and c(N). Let x be the largest integer in $c_i(I_1)$. Since Nis even, we have $2x - 1 \leq 2\lceil N/4 \rceil - 1 \leq N/2$, and so $2x - 1 \in I_1 \cup I_2$. If $2x - 1 \in I_1$, then $c(2x - 1) \neq i$ since x is the largest integer in I_1 with color i; hence, $\{1, x, 2x - 1\}$ is a rainbow 3-AP. If $2x - 1 \in I_2$, then $c(2x - 1) \neq i$ since color i is missing in I_2 ; hence, the 3-AP $\{1, x, 2x - 1\}$ is a rainbow. If there is no such integer x in I_1 , then the integers colored with i must be in the second half of the interval [N], so we choose the smallest such integer y in $c_i(I_3 \cup I_4)$. Then $\{2y - N, y, N\}$ is a rainbow 3-AP since $c(2y - N) \neq i$, because $2y - N \in I_1 \cup I_2$. Similarly, every color other than c(1) and c(N) must be used in the subinterval I_3 .

Throughout the proof we mostly drop (mod 3) and just say congruent even though we mean congruent modulo 3. We consider the following three cases.

Case 1: $N \equiv 0 \pmod{3}$. Assume $|\{c(x) : x \equiv i \pmod{3} \text{ and } x \in [N]\}| < r-1$ for both i = 1 and i = N. So there are two colors, say *red* and *blue*, such that no integer in [N] colored with *red* is congruent to 1, and no integer in [N] colored with *blue* is congruent to 0. We further partition the interval I_2 into subintervals $I_{2(i)}$ and $I_{2(ii)}$ so that $\ell(I_{2(i)}) \leq \ell(I_{2(i)}) \leq \ell(I_{2(i)}) + 1$, and partition the interval I_3 into subintervals $I_{3(i)}$ and $I_{3(ii)}$ so that $\ell(I_{3(ii)}) \leq \ell(I_{3(i)}) \leq \ell(I_{3(ii)}) + 1$. Then we have the following observations:

(i) $x \equiv 0$ for all $x \in c_{red}(I_3 \cup I_4)$ and $y \equiv 1$ for all $y \in c_{blue}(I_1 \cup I_2)$.

If there is an integer r in $I_3 \cup I_4$ colored with red and congruent to 2, then $2r - N \equiv 1$, and so c(2r - N) is not red by our assumption. Therefore the 3-AP $\{2r - N, r, N\}$ is rainbow. Similarly, if there is an integer b in $I_1 \cup I_2$ colored with *blue* and congruent to 2, then $2b - 1 \equiv 0$, and so c(2b - 1) is not *blue*, forming a rainbow 3-AP $\{1, b, 2b - 1\}$.

(ii)
$$x \equiv 2$$
 for all $x \in c_{red}(I_2)$ and $y \equiv 2$ for all $y \in c_{blue}(I_3)$.

If there is an integer r in $c_{red}(I_2)$ congruent to 0, then $2r - 1 \equiv 2$ and $2r - 1 \in I_3 \cup I_4$ since $2r - 1 \geq N/2 + 1$. Therefore, 2r - 1 is not colored with red by the previous observation, and so the 3-AP $\{1, r, 2r - 1\}$ is a rainbow. Similarly, if there is an integer b in $c_{blue}(I_3)$ congruent to 1, then using N we obtain the rainbow 3-AP $\{2b - N, b, N\}$, because $2b - N \equiv 2$ and $2b - N \leq N/2$.

(*iii*) $c_{red}(I_{3(ii)}) = c_{blue}(I_{2(i)}) = \emptyset$.

If there is an integer r in $I_{3(i)}$ colored with red, then $2r - N \equiv 0$, by observation (i). Furthermore, $2r - N \leq N/2$ and $2r - N \geq 2(N/2 + \ell(I_{3(i)}) + 1) - N \geq (2\ell(I_{3(i)}) + 1) + 1 \geq \lceil N/4 \rceil + 1$. So $2r - N \in I_2$ and hence it is not colored with red by observation (ii). Therefore, $\{2r - N, r, N\}$ is a rainbow 3-AP. Similarly, if there is an integer b in $I_{2(i)}$ colored with *blue*, then $2b - 1 \equiv 1$ and $N/2 + 1 \leq 2b - 1 \leq \lfloor 3N/4 \rfloor$. So $2b - 1 \in I_3$ and hence it is not colored with *blue* by observation (ii). Therefore, $\{1, b, 2b - 1\}$ is a rainbow 3-AP.

(*iv*) $c_{red}(I_{2(ii)}) = c_{blue}(I_{3(i)}) = \emptyset$.

Suppose there is an integer r in $I_{2(ii)}$ colored with *red*. Since the coloring of I_2 contains both *red* and *blue* and there is no integer in $I_{2(i)}$ colored with *blue*, by (*iii*), there must be an integer b in $I_{2(ii)}$ colored with *blue*. By (*i*) and (*ii*), $b \equiv 1$ and $r \equiv 2$. Without loss of generality, suppose b > r. Then $2r - b \equiv 0$ and $2r - b \in I_2$ since $\ell(I_{2(ii)}) \leq \ell(I_{2(i)}) + 1$. So 2r - b is not colored *red* or *blue* and hence the 3-AP $\{2r - b, r, b\}$ is rainbow. Therefore, there is no integer in $I_{2(ii)}$ that is colored with *red*. Similarly, there is no integer in $I_{3(i)}$ that is colored with *blue*.

Recall that every color other than c(1) and c(N) is used in both intervals I_2 and I_3 . Therefore, sets $c_{red}(I_{2(i)})$, $c_{blue}(I_{2(ii)})$, $c_{red}(I_{3(i)})$, and $c_{blue}(I_{3(ii)})$ are nonempty. Using the above observations we next show that in fact these integers colored with *blue* and *red* in each subinterval are unique. Let $B = \{b_1, \ldots, b_2\}$ be the shortest interval in $I_{2(ii)}$ which contains all integers colored with *blue* and let $R = \{r_1, \ldots, r_2\}$ be the shortest interval in $I_{3(i)}$ which contains all integers colored with *red*. Choose the largest integer x in $c_{red}(I_{2(i)})$ and consider two 3-APs $\{x, b_1, 2b_1 - x\}$ and $\{x, b_2, 2b_2 - x\}$. Since x is congruent to 2 and both b_1 and b_2 are congruent to 1, we have that both $2b_1 - x$ and $2b_2 - x$ are congruent to 0 and are contained in I_3 , otherwise the 3-APs are rainbow. Since all integers colored with *blue* in I_3 are congruent to 2 by *(ii)*, we have that $2b_1 - x$ and $2b_2 - x$ are both colored with *red* and so contained in R. Therefore, $2\ell(B) - 1 \leq \ell(R)$. Now using the smallest integer in $c_{blue}(I_{3(ii)})$, we similarly have that $2\ell(R) - 1 \leq \ell(B)$. Since $\ell(B) \ge 1$ and $\ell(R) \ge 1$, we have that $\ell(R) = \ell(B) = 1$, i.e. there are unique integers b in $c_{blue}(I_{2(ii)})$ and r in $c_{red}(I_{3(i)})$.

Now for any integer \tilde{r} from $c_{red}(I_{2(i)})$ the integer $2\tilde{r}-1$ must be colored with red, otherwise the 3-AP $\{1, \tilde{r}, 2\tilde{r}-1\}$ is rainbow. Since $2\tilde{r}-1 \in I_3$, it must be equal to the unique red colored integer r of I_3 . Therefore, there is exactly one such \tilde{r} in $I_{2(i)}$, i.e. $c_{red}(I_{2(i)}) = \{\tilde{r}\}$. Similarly, using N there is a unique integer \tilde{b} in $I_{3(ii)}$ colored with blue. Since $\{1, \tilde{r}, r\}, \{\tilde{r}, b, r\}, \{b, r, \tilde{b}\}, \text{ and } \{b, \tilde{b}, N\}$ are all 3-APs, $N = 7(\ell(\{b, \ldots, r\})-1)+1 = 7(r-b)+1$.

Observe that if \tilde{r} is even, the integer $(\tilde{r} + N)/2$ in 3-AP $\{\tilde{r}, (\tilde{r} + N)/2, N\}$ must be red and congruent to 1 since $\tilde{r} \equiv 2$ by (ii), contradicting our assumption. So \tilde{r} is odd, and hence the integer $r' = (\tilde{r} + 1)/2$ in I_1 must be colored with red. Notice that there cannot be another integer x larger than r' in $c_{red}(I_1)$, otherwise 2x - 1 will be another integer colored with red in I_2 distinct from \tilde{r} . Now, since $\ell(\{r', \ldots, \tilde{r}\}) = \ell(\{b, \ldots, r\})$ we have that $\{r', r, N\}$ is a 3-AP, and so r' must be even. Suppose there are integers smaller than r' in $c_{red}(I_1)$, and let z be the largest of them. Then 2z - 1 is also in $c_{red}(I_1)$ and must be equal to or larger than r' in I_1 . However, that is impossible because r' is even and there is no integer in $c_{red}(I_1)$ larger than r'. So r' is a unique integer in I_1 colored with red. Similarly, there is a unique integer b' in I_4 colored with blue. Therefore the 8-AP can be formed using integers $1, r', \tilde{r}, b, r, \tilde{b}, b', N$ since $\ell(\{1, \ldots, r'\}) = \ell(\{r', \ldots, \tilde{r}\}) = \ell(\{\tilde{r}, \ldots, \tilde{r}\})$

In order for this coloring to be special, it remains to show that $c_{blue}(I_1) = c_{red}(I_4) = \emptyset$. If $c_{blue}(I_1) \neq \emptyset$, then choose the largest integer y in it and consider the 3-AP $\{1, y, 2y - 1\}$. Since 2y - 1 must be in $c_{blue}(I_2)$ and the only integer in this set is b, we have 2y - 1 = b. However, we know that b is even because $b = 2\tilde{b} - N$, a contradiction. Similarly, if $c_{red}(I_4) \neq \emptyset$ choose the smallest integer x in it and consider the 3-AP $\{2x - N, x, N\}$. Since 2x - N must be in $c_{red}(I_3)$ and the only integer in this set is r, we have 2x - N = r. However, we know that r is odd because $r = 2\tilde{r} - 1$, a contradiction. This implies that $c_{red}([N]) = \{r', \tilde{r}, r\}$ and $c_{blue}([N]) = \{b, \tilde{b}, b'\}$, so the coloring is special.

Case 2: $N \equiv 2 \pmod{3}$. This case is analogous to Case 1.

Case 3: $N \equiv 1 \pmod{3}$. Assume $|\{c(x) : x \equiv i \pmod{3} \text{ and } x \in [N]\}| < r-1$ i.e. there are two colors, say *red* and *blue*, such that no integer in [N] colored with *red* or *blue* is congruent to 1. Recall that every color other than c(1) and c(N) appears in I_2 and I_3 . First, notice that all integers colored with *red* or *blue* in I_2 must be congruent modulo 3. Otherwise, choosing a *red* colored integer and a *blue* colored integer, we obtain a 3-AP whose third term is colored with *red* or *blue* and is congruent to 1 contradicting our assumption. Similarly, this is also the case for I_3 . So suppose all integers in $c_{red}(I_2) \cup c_{blue}(I_2)$ and $c_{red}(I_3) \cup c_{blue}(I_3)$ are congruent modulo 3 to integers $p \neq 1$ and $q \neq 1$, respectively. Pick the largest integers from $c_{red}(I_2)$ and $c_{blue}(I_2)$ and form a 3-AP whose third term is in I_3 . Then the third term is colored with *red* or *blue* and is congruent to p. Therefore, $p \equiv q \neq 1$.

We further partition the interval I_2 into subintervals $I_{2(i)}$ and $I_{2(ii)}$, so that $\ell(I_{2(i)}) \leq \ell(I_{2(i)}) + 1$. If there exists $x \in c_{red}(I_{2(i)}) \cup c_{blue}(I_{2(i)})$, the integer 2x - 1 must be colored with c(x) and contained in I_3 , so $2x - 1 \equiv p$ while $x \equiv p \neq 1$, a contradiction. So $c_{red}(I_{2(i)}) \cup c_{blue}(I_{2(i)}) = \emptyset$. However, then the smallest integers of $c_{red}(I_{2(ii)})$ and $c_{blue}(I_{2(ii)})$ form a 3-AP whose first term is contained in $I_{2(i)}$ and is colored with red or blue, a contradiction. This completes the proof of the lemma.

3 Proof of the main result

Given a positive integer n, define the function f as follows:

$$f(n) = \begin{cases} m+2, & \text{if } n = 3^m \\ m+3, & \text{if } n \neq 3^m \text{ and } 7 \cdot 3^{m-2} + 1 \leqslant n \leqslant 21 \cdot 3^{m-2}. \end{cases}$$

In this section, we prove Theorem 2 by showing that aw([n], 3) = f(n) for all n. Throughout the proof we mostly drop (mod 3), although all equivalences will happen modulo 3.

First, we show that $f(n) \leq aw_u([n], 3)$ by inductively constructing a unitary coloring of [n] with f(n) - 1 colors and no rainbow 3-AP. The result is true for n = 1, 2, 3, by definition. Suppose n > 3 and that the result holds for all positive integers less than n. Let n = 3h - s, where $s \in \{0, 1, 2\}$ and $2 \leq h < n$.

Let $r = aw_u([h], 3)$. So there is an exact unitary (r - 1)-coloring c of [h] with no rainbow 3-AP. Let *red* be a color not used in c. Define the coloring c_1 of [n] such that if $x \equiv 1 \pmod{3}$, then $c_1(x) = c((x+2)/3)$, otherwise color x with *red*. When $s \neq 0$, define the coloring c_2 of [n] as follows:

- if $x \not\equiv 0 \pmod{3}$, then $c_2(x) = red$,
- if $x \equiv 0 \pmod{3}$, then
 - $c_2(x) = c(x/3+1)$, if c(h) is the only unique color in c, • $c_2(x) = c(x/3)$, otherwise.

Notice that c_2 is a unitary $\operatorname{aw}_u([h-1], 3)$ -coloring when $s \neq 0$ and c_1 is a unitary r-coloring of [n]. Now consider a 3-AP $\{a, b, 2b - a\}$ in [n]. If $a \equiv b \not\equiv 1$, then a and b are colored with red, and so the 3-AP is not a rainbow. If $a \equiv b \equiv 1$, then $2b - a \equiv 1$, so this set corresponds to a 3-AP in [h] with coloring c, and hence the 3-AP is not rainbow. If $a \not\equiv b$, then 2b - a is not congruent to a or b, so two of the terms of the 3-AP are colored with red, and hence the 3-AP is not rainbow under c_1 . Similarly, this 3-AP is not rainbow under c_2 . Therefore, c_1 and c_2 are unitary colorings of [n] with no rainbow 3-AP.

Also note that $\operatorname{aw}_u([n], 3) \ge \operatorname{aw}_u([h], 3) + 1$ under c_1 and $\operatorname{aw}_u([n], 3) \ge \operatorname{aw}_u([h-1], 3) + 1$ under c_2 . We proceed with three cases determined by $\frac{n}{3}$.

Case 1. First suppose $7 \cdot 3^{m-2} + 1 \leq n \leq 3^m - 3$ or $3^m \leq n \leq 21 \cdot 3^{m-2}$. By the induction hypothesis and using the coloring c_1 ,

$$\operatorname{aw}_{u}([n], 3) \ge \operatorname{aw}_{u}([h], 3) + 1 \ge f(h) + 1 = f(n).$$

Case 2. Suppose $n = 3^m - t$ where $t \in \{1, 2\}$. Notice that $h = 3^{m-1}$, so by induction and using coloring c_2 ,

 $\operatorname{aw}_{u}([n],3) \ge \operatorname{aw}_{u}([h-1],3) + 1 \ge f(h-1) + 1 = f(3^{m-1}-1) + 1 = (m+2) + 1 = f(n).$

The upper bound, $\operatorname{aw}([n],3) \leq f(n)$, is also proved by induction on n. For small n, the result follows from Table 1. Assume the statement is true for all values less than n, and let $7 \cdot 3^{m-2} + 1 \leq n \leq 21 \cdot 3^{m-2}$ for some m. Let $\operatorname{aw}([n],3) = r + 1$, so there is an exact r-coloring \hat{c} of [n] with no rainbow 3-AP. We need to show that $r \leq f(n) - 1$. Let $[n_1, n_2, \ldots, n_N]$ be the shortest interval in [n] containing all r colors under \hat{c} . Define c to be an r-coloring of [N] so that $c(j) = \hat{c}(n_j)$ for $j \in \{1, \ldots, N\}$. By minimality of N the colors of 1 and N are unique. If [N] has at least r - 1 colors congruent to 1 or N, then [n] has at least r - 1 colors congruent to n_1 or n_N , respectively, so $r \leq \operatorname{aw}(\lfloor n/3 \rfloor, 3)$ and by induction $r \leq f(\lfloor n/3 \rfloor) \leq f(n) - 1$. So suppose that is not the case, then by Lemma 5 we have that the coloring c is special.

Let N = 7q + 1 for some $q \ge 1$, and let the 8-AP in this special coloring be $\{1, r_1, r_2, b_1, r_3, b_2, b_3, N\}$, where r_1, r_2, r_3 are the only integers colored red, b_1, b_2, b_3 are the only integers colored blue and $q = r_1 - 1$. If $n \ge 9q$, then the 8-AP can be extended to a 9-AP in n by adding the 9th element to either the beginning or the ending. Without loss of generality, suppose $\{1, r_1, r_2, b_1, r_3, b_2, b_3, N, 2N - b_3\}$ correspond to a 9-AP in [n]. Since the coloring has no rainbow 3-AP, the color of $2N - b_3$ is blue or c(N), so we have a 4-coloring of this 9-AP. However, aw([9], 3) = 4 and hence there is a rainbow 3-AP in this 9-AP which is in turn a rainbow 3-AP in [n]. Therefore, $n \le 9q - 1$.

By uniqueness of the *red* colored integer r_1 in interval $\{1, \ldots, r_2 - 1\}$, the colors of integers in interval $\{r_1 + 1, \ldots, r_2 - 1\}$ is the same as the reversed colors of integers in $\{2, \ldots, r_1 - 1\}$, i.e. $c(r_1 + i) = c(r_1 - i)$ for $i = 1, \ldots, q - 1$. Similarly, coloring of integers in interval $\{r_2 + 1, \ldots, b_1 - 1\}$ is the reversed of the coloring of integers in interval $\{r_1 + 1, \ldots, r_2 - 1\}$, and so on. This gives a rainbow 3-AP-free (r - 2)-coloring of \mathbb{Z}_{2q} . Therefore, $r - 2 \leq \operatorname{aw}(\mathbb{Z}_{2q}, 3) - 1$.

If $q = 3^i$ for some *i*, then *n* can not be a power of 3 because $7 \cdot 3^i + 1 \leq n \leq 9 \cdot 3^i - 1$. Suppose $n = 3^m$, then 2q is not twice a power of 3 and clearly 2q is not a power of 3. Therefore, by Lemma 4 we have

$$r \leq \operatorname{aw}(\mathbb{Z}_{2q}, 3) + 1 \leq \lceil \log_3(2q) \rceil + 2 \leq \lceil \log_3(2n/7) \rceil + 2$$

= $\lceil \log_3(2 \cdot 3^m/7) \rceil + 2 = m + 1 \leq f(n) - 1.$

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(2) (2017), #P2.39

Suppose now that $n \neq 3^m$. If $q = 3^i$ for some *i* then $i \leq m-2$. Otherwise, if $i \geq m-1$ then $q \geq 3^{m-1} \geq \frac{n}{7}$ which contradicts the fact that $q < \frac{n}{7}$. Therefore, $2q \leq 2 \cdot 3^{m-2} = 18 \cdot 3^{m-4}$ and so by induction and Lemma 4,

 $r \leq \operatorname{aw}(\mathbb{Z}_{2q}, 3) + 1 = \operatorname{aw}([2q], 3) + 1 \leq m + 2 \leq f(n) - 1.$

If q is not a power of 3, then again using Lemma 4, $r \leq \operatorname{aw}(\mathbb{Z}_{2q}, 3) + 1 \leq \operatorname{aw}([2q], 3)$. Notice that $6 \cdot 3^{m-3} + \frac{2}{7} \leq \frac{2}{7}n \leq 18 \cdot 3^{m-3}$, and so $\operatorname{aw}([2q], 3) \leq m + 2$ by induction. Therefore, $r \leq m + 2 \leq f(n) - 1$. This completes the proof of the main theorem. \Box

4 Concluding Remarks

We have determined the exact value of the anti-van der Waerden number $\operatorname{aw}([n], 3)$ for all n, which confirms a conjecture in [4]. Bounds on $\operatorname{aw}([n,], k)$ for $k \ge 4$ are given in [4], however the exact values are not known in general. These bounds can be improved and it would be interesting to know exact values $\operatorname{aw}([n], k)$ for $k \ge 4$.

The values of aw(G, k) has been recently studied for finite abelian groups [7]. It would be interesting to investigate this number for other groups.

References

- M. Axenovich, D. Fon-Der-Flaass, On rainbow arithmetic progressions. *Electronic Journal of Combinatorics* 11(1) (2004), #R1.
- [2] M. Axenovich and R.R. Martin, Sub-Ramsey numbers for arithmetic progressions. *Graphs Comb.* 22 (2006), no. 1, 297–309.
- [3] F.A. Behrend, On sets of integers which contain no three terms in arithmetical progression. *Proc. Nat. Acad. Sci. USA* **32** (1946), 331–332.
- [4] S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. Kramer, J. Lin, R. Martin, D. Stolee, N. Warnberg, Michael Young. Rainbow arithmetic progressions. *Journal of Combinatorics* 7 (2016), no. 4, 595–626.
- [5] W.T. Gowers, A new proof of Szemerédi's theorem. Geom. Funct. Anal. 11 (2001), no. 3, 465–588.
- [6] V. Jungić, J. Licht (Fox), M. Mahdian, J. Nešetril, and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results. *Comb. Probab. Comput.* **12** (2003), no 5-6, 599–620.
- [7] M. Young, Rainbow arithmetic progressions in finite abelian groups. Manuscript available at arXiv:1603.08153.