Anti-van der Waerden numbers of 3-term arithmetic progressions

Zhanar Berikkyzy Alex Schulte Michael Young
Department of Mathematics Iowa State University
Ames, Iowa, U.S.A.
\{zhanarb, aschulte, myoung\}@iastate.edu

Submitted: Apr 27, 2016; Accepted: Jun 2, 2017; Published: Jun 16, 2017
Mathematics Subject Classifications: 11B25, 05D10, 11B50

Abstract

The anti-van der Waerden number, denoted by aw $([n], k)$, is the smallest r such that every exact r-coloring of $[n]$ contains a rainbow k-term arithmetic progression. Butler et al. showed that $\left\lceil\log _{3} n\right\rceil+2 \leqslant \operatorname{aw}([n\rceil, 3) \leqslant\left\lceil\log _{2} n\right\rceil+1$, and conjectured that there exists a constant C such that aw $([n], 3) \leqslant\left\lceil\log _{3} n\right\rceil+C$. In this paper, we show this conjecture is true by determining $\operatorname{aw}([n], 3)$ for all n. We prove that for $7 \cdot 3^{m-2}+1 \leqslant n \leqslant 21 \cdot 3^{m-2}$, $$
\operatorname{aw}([n], 3)= \begin{cases}m+2, & \text { if } n=3^{m} \\ m+3, & \text { otherwise. }\end{cases}
$$

Keywords: arithmetic progression; rainbow coloring; Behrend construction; unitary coloring

1 Introduction

Let n be a positive integer and let $G \in\left\{[n], \mathbb{Z}_{n}\right\}$, where $[n]=\{1, \ldots, n\}$. A k-term arithmetic progression ($k-\mathrm{AP}$) of G is a sequence in G of the form

$$
a, a+d, a+2 d, \ldots, a+(k-1) d,
$$

where $d \geqslant 1$. For the purposes of this paper, an arithmetic progression is referred to as a set of the form $\{a, a+d, a+2 d, \ldots, a+(k-1) d\}$. An r-coloring of G is a function $c: G \rightarrow[r]$, and such a coloring is called exact if c is surjective. Given $c: G \rightarrow[r]$, an arithmetic progression is called rainbow (under c) if $c(a+i d) \neq c(a+j d)$ for all $0 \leqslant i<j \leqslant k-1$.

The anti-van der Waerden number, denoted by $\operatorname{aw}(G, k)$, is the smallest r such that every exact r-coloring of G contains a rainbow k-AP. If G contains no k-AP, then aw $(G, k)=$ $|G|+1$; this is consistent with the property that there is a coloring of G with aw $(G, k)-1$ colors that has no rainbow k-AP.

An r-coloring of G is unitary if there is an element of G that is uniquely colored. The smallest r such that every exact unitary r-coloring of G contains a rainbow k-AP is denoted by $\operatorname{aw}_{u}(G, k)$. Similar to the anti-van der Waerden number, $\operatorname{aw}_{u}(G, k)=|G|+1$ if G has no k-AP.

Problems involving counting and the existence of rainbow arithmetic progressions have been well-studied. The main results of Axenovich and Fon-Der-Flaass [1] and Axenovich and Martin [2] deal with the existence of 3-APs in colorings that have uniformly sized color classes. Fox, Jungić, Mahdian, Nes̆etril, and Radoičić also studied anti-Ramsey results of arithmetic progressions in [6]. In particular, they showed that every 3-coloring of $[n]$ for which each color class has density more than $1 / 6$, contains a rainbow 3-AP. Fox et al. also determined all values of n for which aw $\left(\mathbb{Z}_{n}, 3\right)=3$.

The specific problem of determining anti-van der Waerden numbers for $[n]$ and \mathbb{Z}_{n} was studied by Butler et al. in [4]. It is proved in [4] that for $k \geqslant 4, \mathrm{aw}([n], k)=n^{1-o(1)}$ and $\operatorname{aw}\left(\mathbb{Z}_{n}, k\right)=n^{1-o(1)}$. These results are obtained using results of Behrend [3] and Gowers [5] on the size of a subset of $[n]$ with no k-AP. Butler et al. also expand upon the results of [6] by determining $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)$ for all values of n. These results were generalized to all finite abelian groups in [7]. Butler et al. also provides bounds for $\operatorname{aw}([n], 3)$, as well as many exact values (see Table 1).

In this paper, we determine the exact value of $\operatorname{aw}([n], 3)$, which answers questions posed in [4] and confirms the following conjecture:

Conjecture 1. [4] There exists a constant C such that aw $([n], 3) \leqslant\left\lceil\log _{3} n\right\rceil+C$, for all $n \geqslant 3$.

Our main result, Theorem 2, also determines $\operatorname{aw}_{u}([n], 3)$ which shows the existence of extremal colorings of $[n]$ that are unitary.

Theorem 2. For all integers $n \geqslant 2$,

$$
\operatorname{aw}_{u}([n], 3)=\operatorname{aw}([n], 3)= \begin{cases}m+2, & \text { if } n=3^{m} \\ m+3, & \text { if } n \neq 3^{m} \text { and } 7 \cdot 3^{m-2}+1 \leqslant n \leqslant 21 \cdot 3^{m-2} .\end{cases}
$$

In Section 2, we provide lemmas that are useful in proving Theorem 2 and Section 3 contains the proof of Theorem 2.

2 Main Tools

In [4, Theorem 1.6] it is shown that $3 \leqslant \operatorname{aw}\left(\mathbb{Z}_{p}, 3\right) \leqslant 4$ for every prime number p and that if $\operatorname{aw}\left(\mathbb{Z}_{p}, 3\right)=4$ then $p \geqslant 17$. Furthermore, it is shown that the value of $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)$ is determined by the values of $\operatorname{aw}\left(\mathbb{Z}_{p}, 3\right)$ for the prime factors p of n. We have included this theorem below with some notation change.

$n \backslash k$	3	4	5	6	7	8	9	10	11	12	13	14
3	3											
4	4											
5	4	5										
6	4	6										
7	4	6	7									
8	5	6	8									
9	4	7	8	9								
10	5	8	9	10								
11	5	8	9	10	11							
12	5	8	10	11	12							
13	5	8	11	11	12	13						
14	5	8	11	12	13	14						
15	5	9	11	13	14	14	15					
16	5	9	12	13	15	15	16					
17	5	9	13	13	15	16	16	17				
18	5	10	14	14	16	17	17	18				
19	5	10	14	15	17	17	18	18	19			
20	5	10	14	16	17	18	19	19	20			
21	5	11	14	16	17	19	20	20	20	21		
22	6	12	14	17	18	20	21	21	21	22		
23	6	12	14	17	19	20	21	22	22	22	23	
24	6	12	15	18	20	20	22	23	23	23	24	
25	6	12	15	19	21	21	23	23	24	24	24	25

Table 1: Values of $\operatorname{aw}([n], k)$ for $3 \leqslant k \leqslant \frac{n+3}{2}$.
Theorem 3 ([4]). Let n be a positive integer with prime decomposition

$$
n=2^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}}
$$

for $e_{i} \geqslant 0, i=0, \ldots, s$, where primes are ordered so that $\operatorname{aw}\left(\mathbb{Z}_{p_{i}}, 3\right)=3$ for $1 \leqslant i \leqslant \ell$ and $\operatorname{aw}\left(\mathbb{Z}_{p_{i}}, 3\right)=4$ for $\ell+1 \leqslant i \leqslant s$. Then

$$
\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)= \begin{cases}2+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j}, & \text { if } n \text { is odd } \\ 3+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j}, & \text { if } n \text { is even }\end{cases}
$$

We use Theorem 3 to prove the following lemma.
Lemma 4. Let $n \geqslant 3$, then $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right) \leqslant\left\lceil\log _{3} n\right\rceil+2$ with equality if and only if $n=3^{j}$ or $2 \cdot 3^{j}$ for $j \geqslant 1$.
Proof. Suppose $n=2^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ with $e_{i} \geqslant 0$ for $i=0, \ldots, s$, where primes $p_{1}, p_{2}, \ldots, p_{s}$ are ordered so that $\operatorname{aw}\left(\mathbb{Z}_{p_{i}}, 3\right)=3$ for $1 \leqslant i \leqslant \ell$ and $\operatorname{aw}\left(\mathbb{Z}_{p_{i}}, 3\right)=4$ for $\ell+1 \leqslant i \leqslant s$. We consider two cases depending on parity of n.

Case 1. Suppose n is odd, that is $e_{0}=0$. Then $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)=2+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j}$ by Theorem 3. Since aw $\left(\mathbb{Z}_{p}, 3\right)=3$ for odd primes $p \leqslant 13$, we have $p_{i} \geqslant 17$ for $i \geqslant \ell+1$,
and clearly $p_{i} \geqslant 3$ for $i \leqslant \ell$, therefore

$$
3^{\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)}=3^{2+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j}}=9 \cdot 3^{e_{1}} \cdots 3^{e_{\ell}} \cdot 9^{e_{\ell+1}} \cdots 9^{e_{s}} \leqslant 9 \cdot p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}=9 n .
$$

Note that the equality holds if and only if n is a power of 3 , that is $e_{j}=0$ for $2 \leqslant j \leqslant s$. Therefore, $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right) \leqslant\left\lceil\log _{3} n\right\rceil+2$ for odd n, with equality if and only if $n=p_{1}^{e_{1}}$.

Case 2. Suppose n is even, that is $e_{0} \geqslant 1$. Then aw $\left(\mathbb{Z}_{n}, 3\right)=3+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j}$ by Theorem 3. If $n=2^{e_{0}} \cdot 3^{j}$ for $j \geqslant 1$, then by direct computation aw $\left(\mathbb{Z}_{n}, 3\right)=3+j \leqslant$ $2+\left\lceil\log _{3} n\right\rceil$, with equality if and only if $e_{0}=1$. So suppose there is i such that $p_{i} \neq 3$, and let $h=\frac{n}{2^{e 0_{p} p_{i}}}$.

If $i \leqslant \ell$ then $p_{i} \geqslant 5$, and so $3 \cdot 3^{e_{i}}<2^{e_{0}} p_{i}^{e_{i}}$ for all $e_{0} \geqslant 1$ and $e_{i} \geqslant 1$. Therefore, since h is odd, by the previous case

$$
3^{\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)}=3 \cdot 3^{e_{i}} \cdot 3^{\mathrm{aw}\left(\mathbb{Z}_{h}, 3\right)} \leqslant 3 \cdot 3^{e_{i}} \cdot 9 h<2^{e_{0}} p_{i}^{e_{i}} \cdot 9 h=9 n .
$$

If $i \geqslant \ell+1$ then $p_{i} \geqslant 17$, and so $3 \cdot 9^{e_{i}}<2^{e_{0}} p_{i}^{e_{i}}$ for all $e_{0} \geqslant 1$ and $e_{i} \geqslant 1$. Then by the previous case

$$
3^{\operatorname{awv}\left(\mathbb{Z}_{n}, 3\right)}=3 \cdot 9^{e_{i}} \cdot 3^{\operatorname{aw}\left(\mathbb{Z}_{h}, 3\right)} \leqslant 3 \cdot 9^{e_{i}} \cdot 9 h<2^{e_{0}} p_{i}^{e_{i}} \cdot 9 h=9 n .
$$

A set of consecutive integers I in $[n]$ is called an interval and $\ell(I)$ is the number of integers in I. Given a coloring c of some finite nonempty subset S of $[n]$, a color class of a color i under c in S is denoted $c_{i}(S):=\{x \in S: c(x)=i\}$. A coloring c of $[n]$ is special if $n=7 q+1$ for some positive integer $q, c(1)$ and $c(n)$ are both uniquely colored, and there are two colors α and β such that $c_{\alpha}([n])=\{q+1,2 q+1,4 q+1\}$ and $c_{\beta}([n])=\{3 q+1,5 q+1,6 q+1\}$.

Lemma 5. Let N be an integer and c be an exact r-coloring of $[N]$ with no rainbow 3-AP, where 1 and N are colored uniquely. Then either the coloring c is special or $\mid\{c(x): x \equiv i$ $(\bmod 3)$ and $x \in[N]\} \mid \geqslant r-1$ for $i=1$ or $i=N$.

Proof. Observe that N is even, otherwise $\{1,(N+1) / 2, N\}$ is a rainbow 3-AP. We partition the interval $[N]$ into four subintervals $I_{1}=\{1, \ldots,\lceil N / 4\rceil\}, I_{2}=\{\lceil N / 4\rceil+1, \ldots, N / 2\}$, $I_{3}=\{N / 2+1, \ldots,\lfloor 3 N / 4\rfloor\}$, and $I_{4}=\{\lfloor 3 N / 4\rfloor+1, \ldots, N\}$. Notice that every color other than $c(1)$ and $c(N)$ must be used in the subinterval I_{2}. To see this, assume i is the missing color in I_{2} distinct from $c(1)$ and $c(N)$. Let x be the largest integer in $c_{i}\left(I_{1}\right)$. Since N is even, we have $2 x-1 \leqslant 2\lceil N / 4\rceil-1 \leqslant N / 2$, and so $2 x-1 \in I_{1} \cup I_{2}$. If $2 x-1 \in I_{1}$, then $c(2 x-1) \neq i$ since x is the largest integer in I_{1} with color i; hence, $\{1, x, 2 x-1\}$ is a rainbow 3 -AP. If $2 x-1 \in I_{2}$, then $c(2 x-1) \neq i$ since color i is missing in I_{2}; hence, the 3 - $\mathrm{AP}\{1, x, 2 x-1\}$ is a rainbow. If there is no such integer x in I_{1}, then the integers colored with i must be in the second half of the interval [N], so we choose the smallest such integer y in $c_{i}\left(I_{3} \cup I_{4}\right)$. Then $\{2 y-N, y, N\}$ is a rainbow 3-AP since $c(2 y-N) \neq i$,
because $2 y-N \in I_{1} \cup I_{2}$. Similarly, every color other than $c(1)$ and $c(N)$ must be used in the subinterval I_{3}.

Throughout the proof we mostly drop $(\bmod 3)$ and just say congruent even though we mean congruent modulo 3 . We consider the following three cases.

Case 1: $N \equiv 0(\bmod 3)$. Assume $\mid\{c(x): x \equiv i(\bmod 3)$ and $x \in[N]\} \mid<r-1$ for both $i=1$ and $i=N$. So there are two colors, say red and blue, such that no integer in $[N]$ colored with red is congruent to 1 , and no integer in $[N]$ colored with blue is congruent to 0 . We further partition the interval I_{2} into subintervals $I_{2(i)}$ and $I_{2(i)}$ so that $\ell\left(I_{2(i)}\right) \leqslant \ell\left(I_{2(i i)}\right) \leqslant \ell\left(I_{2(i)}\right)+1$, and partition the interval I_{3} into subintervals $I_{3(i)}$ and $I_{3(i i)}$ so that $\ell\left(I_{3(i i)}\right) \leqslant \ell\left(I_{3(i)}\right) \leqslant \ell\left(I_{3(i i)}\right)+1$. Then we have the following observations:
(i) $x \equiv 0$ for all $x \in c_{\text {red }}\left(I_{3} \cup I_{4}\right)$ and $y \equiv 1$ for all $y \in c_{\text {blue }}\left(I_{1} \cup I_{2}\right)$.

If there is an integer r in $I_{3} \cup I_{4}$ colored with red and congruent to 2 , then $2 r-N \equiv 1$, and so $c(2 r-N)$ is not red by our assumption. Therefore the 3-AP $\{2 r-N, r, N\}$ is rainbow. Similarly, if there is an integer b in $I_{1} \cup I_{2}$ colored with blue and congruent to 2 , then $2 b-1 \equiv 0$, and so $c(2 b-1)$ is not blue, forming a rainbow 3-AP $\{1, b, 2 b-1\}$.
(ii) $x \equiv 2$ for all $x \in c_{\text {red }}\left(I_{2}\right)$ and $y \equiv 2$ for all $y \in c_{\text {blue }}\left(I_{3}\right)$.

If there is an integer r in $c_{r e d}\left(I_{2}\right)$ congruent to 0 , then $2 r-1 \equiv 2$ and $2 r-1 \in I_{3} \cup I_{4}$ since $2 r-1 \geqslant N / 2+1$. Therefore, $2 r-1$ is not colored with red by the previous observation, and so the 3 -AP $\{1, r, 2 r-1\}$ is a rainbow. Similarly, if there is an integer b in $c_{\text {blue }}\left(I_{3}\right)$ congruent to 1 , then using N we obtain the rainbow 3 -AP $\{2 b-N, b, N\}$, because $2 b-N \equiv 2$ and $2 b-N \leqslant N / 2$.
(iii) $c_{\text {red }}\left(I_{3(i i)}\right)=c_{\text {blue }}\left(I_{2(i)}\right)=\emptyset$.

If there is an integer r in $I_{3(i i)}$ colored with red, then $2 r-N \equiv 0$, by observation (i). Furthermore, $2 r-N \leqslant N / 2$ and $2 r-N \geqslant 2\left(N / 2+\ell\left(I_{3(i)}\right)+1\right)-N \geqslant\left(2 \ell\left(I_{3(i)}\right)+1\right)+1 \geqslant$ $\lceil N / 4\rceil+1$. So $2 r-N \in I_{2}$ and hence it is not colored with red by observation (ii). Therefore, $\{2 r-N, r, N\}$ is a rainbow 3-AP. Similarly, if there is an integer b in $I_{2(i)}$ colored with blue, then $2 b-1 \equiv 1$ and $N / 2+1 \leqslant 2 b-1 \leqslant\lfloor 3 N / 4\rfloor$. So $2 b-1 \in I_{3}$ and hence it is not colored with blue by observation (ii). Therefore, $\{1, b, 2 b-1\}$ is a rainbow 3-AP.
(iv) $c_{\text {red }}\left(I_{2(i i)}\right)=c_{\text {blue }}\left(I_{3(i)}\right)=\emptyset$.

Suppose there is an integer r in $I_{2(i i)}$ colored with red. Since the coloring of I_{2} contains both red and blue and there is no integer in $I_{2(i)}$ colored with blue, by (iii), there must be an integer b in $I_{2(i i)}$ colored with blue. By (i) and $(i i), b \equiv 1$ and $r \equiv 2$. Without loss of generality, suppose $b>r$. Then $2 r-b \equiv 0$ and $2 r-b \in I_{2}$ since $\ell\left(I_{2(i i)}\right) \leqslant \ell\left(I_{2(i)}\right)+1$. So $2 r-b$ is not colored red or blue and hence the 3-AP $\{2 r-b, r, b\}$ is rainbow. Therefore, there is no integer in $I_{2(i i)}$ that is colored with red. Similarly, there is no integer in $I_{3(i)}$ that is colored with blue.

Recall that every color other than $c(1)$ and $c(N)$ is used in both intervals I_{2} and I_{3}. Therefore, sets $c_{\text {red }}\left(I_{2(i)}\right), c_{\text {blue }}\left(I_{2(i i)}\right), c_{\text {red }}\left(I_{3(i)}\right)$, and $c_{\text {blue }}\left(I_{3(i i)}\right)$ are nonempty. Using the above observations we next show that in fact these integers colored with blue and red in each subinterval are unique. Let $B=\left\{b_{1}, \ldots, b_{2}\right\}$ be the shortest interval in $I_{2(i i)}$ which
contains all integers colored with blue and let $R=\left\{r_{1}, \ldots, r_{2}\right\}$ be the shortest interval in $I_{3(i)}$ which contains all integers colored with red. Choose the largest integer x in $c_{\text {red }}\left(I_{2(i)}\right)$ and consider two 3 -APs $\left\{x, b_{1}, 2 b_{1}-x\right\}$ and $\left\{x, b_{2}, 2 b_{2}-x\right\}$. Since x is congruent to 2 and both b_{1} and b_{2} are congruent to 1 , we have that both $2 b_{1}-x$ and $2 b_{2}-x$ are congruent to 0 and are contained in I_{3}, otherwise the 3 -APs are rainbow. Since all integers colored with blue in I_{3} are congruent to 2 by (ii), we have that $2 b_{1}-x$ and $2 b_{2}-x$ are both colored with red and so contained in R. Therefore, $2 \ell(B)-1 \leqslant \ell(R)$. Now using the smallest integer in $c_{\text {blue }}\left(I_{3(i i)}\right)$, we similarly have that $2 \ell(R)-1 \leqslant \ell(B)$. Since $\ell(B) \geqslant 1$ and $\ell(R) \geqslant 1$, we have that $\ell(R)=\ell(B)=1$, i.e. there are unique integers b in $c_{b l u e}\left(I_{2(i i)}\right)$ and r in $c_{\text {red }}\left(I_{3(i)}\right)$.

Now for any integer \tilde{r} from $c_{\text {red }}\left(I_{2(i)}\right)$ the integer $2 \tilde{r}-1$ must be colored with red, otherwise the 3 -AP $\{1, \tilde{r}, 2 \tilde{r}-1\}$ is rainbow. Since $2 \tilde{r}-1 \in I_{3}$, it must be equal to the unique red colored integer r of I_{3}. Therefore, there is exactly one such \tilde{r} in $I_{2(i)}$, i.e. $c_{\text {red }}\left(I_{2(i)}\right)=\{\tilde{r}\}$. Similarly, using N there is a unique integer \tilde{b} in $I_{3(i i)}$ colored with blue. Since $\{1, \tilde{r}, r\},\{\tilde{r}, b, r\},\{b, r, \tilde{b}\}$, and $\{b, \tilde{b}, N\}$ are all 3 -APs, $N=7(\ell(\{b, \ldots, r\})-1)+1=$ $7(r-b)+1$.

Observe that if \tilde{r} is even, the integer $(\tilde{r}+N) / 2$ in 3-AP $\{\tilde{r},(\tilde{r}+N) / 2, N\}$ must be red and congruent to 1 since $\tilde{r} \equiv 2$ by (ii), contradicting our assumption. So \tilde{r} is odd, and hence the integer $r^{\prime}=(\tilde{r}+1) / 2$ in I_{1} must be colored with red. Notice that there cannot be another integer x larger than r^{\prime} in $c_{\text {red }}\left(I_{1}\right)$, otherwise $2 x-1$ will be another integer colored with red in I_{2} distinct from \tilde{r}. Now, since $\ell\left(\left\{r^{\prime}, \ldots, \tilde{r}\right\}\right)=\ell(\{b, \ldots, r\})$ we have that $\left\{r^{\prime}, r, N\right\}$ is a 3 -AP, and so r^{\prime} must be even. Suppose there are integers smaller than r^{\prime} in $c_{\text {red }}\left(I_{1}\right)$, and let z be the largest of them. Then $2 z-1$ is also in $c_{\text {red }}\left(I_{1}\right)$ and must be equal to or larger than r^{\prime} in I_{1}. However, that is impossible because r^{\prime} is even and there is no integer in $c_{r e d}\left(I_{1}\right)$ larger than r^{\prime}. So r^{\prime} is a unique integer in I_{1} colored with red. Similarly, there is a unique integer b^{\prime} in I_{4} colored with blue. Therefore the 8AP can be formed using integers $1, r^{\prime}, \tilde{r}, b, r, \tilde{b}, b^{\prime}, N$ since $\ell\left(\left\{1, \ldots, r^{\prime}\right\}\right)=\ell\left(\left\{r^{\prime}, \ldots, \tilde{r}\right\}\right)=$ $\ell(\{\tilde{r}, \ldots, b\})=\ell(\{b, \ldots, r\})=\ell(\{r, \ldots, \tilde{b}\})=\ell\left(\left\{\tilde{b}, \ldots, b^{\prime}\right\}\right)=\ell\left(\left\{b^{\prime}, \ldots, N\right\}\right)$.

In order for this coloring to be special, it remains to show that $c_{b l u e}\left(I_{1}\right)=c_{\text {red }}\left(I_{4}\right)=\emptyset$. If $c_{\text {blue }}\left(I_{1}\right) \neq \emptyset$, then choose the largest integer y in it and consider the 3 -AP $\{1, y, 2 y-1\}$. Since $2 y-1$ must be in $c_{b l u e}\left(I_{2}\right)$ and the only integer in this set is b, we have $2 y-1=b$. However, we know that b is even because $b=2 \tilde{b}-N$, a contradiction. Similarly, if $c_{\text {red }}\left(I_{4}\right) \neq \emptyset$ choose the smallest integer x in it and consider the 3 -AP $\{2 x-N, x, N\}$. Since $2 x-N$ must be in $c_{\text {red }}\left(I_{3}\right)$ and the only integer in this set is r, we have $2 x-N=r$. However, we know that r is odd because $r=2 \tilde{r}-1$, a contradiction. This implies that $c_{\text {red }}([N])=\left\{r^{\prime}, \tilde{r}, r\right\}$ and $c_{\text {blue }}([N])=\left\{b, \tilde{b}, b^{\prime}\right\}$, so the coloring is special.

Case 2: $N \equiv 2(\bmod 3)$. This case is analogous to Case 1.
Case 3: $N \equiv 1(\bmod 3)$. Assume $\mid\{c(x): x \equiv i(\bmod 3)$ and $x \in[N]\} \mid<r-1$ i.e. there are two colors, say red and blue, such that no integer in $[N]$ colored with red or blue is congruent to 1 . Recall that every color other than $c(1)$ and $c(N)$ appears in I_{2} and I_{3}. First, notice that all integers colored with red or blue in I_{2} must be congruent modulo 3. Otherwise, choosing a red colored integer and a blue colored integer, we obtain a 3-AP whose third term is colored with red or blue and is congruent to 1 contradicting
our assumption. Similarly, this is also the case for I_{3}. So suppose all integers in $c_{r e d}\left(I_{2}\right) \cup$ $c_{\text {blue }}\left(I_{2}\right)$ and $c_{\text {red }}\left(I_{3}\right) \cup c_{\text {blue }}\left(I_{3}\right)$ are congruent modulo 3 to integers $p \not \equiv 1$ and $q \not \equiv 1$, respectively. Pick the largest integers from $c_{\text {red }}\left(I_{2}\right)$ and $c_{b l u e}\left(I_{2}\right)$ and form a 3 -AP whose third term is in I_{3}. Then the third term is colored with red or blue and is congruent to p. Therefore, $p \equiv q \not \equiv 1$.

We further partition the interval I_{2} into subintervals $I_{2(i)}$ and $I_{2(i i)}$, so that $\ell\left(I_{2(i)}\right) \leqslant$ $\ell\left(I_{2(i i)}\right) \leqslant \ell\left(I_{2(i)}\right)+1$. If there exists $x \in c_{\text {red }}\left(I_{2(i)}\right) \cup c_{\text {blue }}\left(I_{2(i)}\right)$, the integer $2 x-1$ must be colored with $c(x)$ and contained in I_{3}, so $2 x-1 \equiv p$ while $x \equiv p \not \equiv 1$, a contradiction. So $c_{\text {red }}\left(I_{2(i)}\right) \cup c_{\text {blue }}\left(I_{2(i)}\right)=\emptyset$. However, then the smallest integers of $c_{\text {red }}\left(I_{2(i i)}\right)$ and $c_{\text {blue }}\left(I_{2(i i)}\right)$ form a 3-AP whose first term is contained in $I_{2(i)}$ and is colored with red or blue, a contradiction. This completes the proof of the lemma.

3 Proof of the main result

Given a positive integer n, define the function f as follows:

$$
f(n)=\left\{\begin{array}{ll}
m+2, & \text { if } n=3^{m} \\
m+3, & \text { if } n \neq 3^{m}
\end{array} \text { and } 7 \cdot 3^{m-2}+1 \leqslant n \leqslant 21 \cdot 3^{m-2} .\right.
$$

In this section, we prove Theorem 2 by showing that $\mathrm{aw}([n], 3)=f(n)$ for all n. Throughout the proof we mostly drop $(\bmod 3)$, although all equivalences will happen modulo 3 .

First, we show that $f(n) \leqslant \mathrm{aw}_{u}([n], 3)$ by inductively constructing a unitary coloring of [n] with $f(n)-1$ colors and no rainbow 3 -AP. The result is true for $n=1,2,3$, by definition. Suppose $n>3$ and that the result holds for all positive integers less than n. Let $n=3 h-s$, where $s \in\{0,1,2\}$ and $2 \leqslant h<n$.

Let $r=\mathrm{aw}_{u}([h], 3)$. So there is an exact unitary $(r-1)$-coloring c of $[h]$ with no rainbow 3-AP. Let red be a color not used in c. Define the coloring c_{1} of $[n]$ such that if $x \equiv 1(\bmod 3)$, then $c_{1}(x)=c((x+2) / 3)$, otherwise color x with red. When $s \neq 0$, define the coloring c_{2} of $[n]$ as follows:

- if $x \not \equiv 0(\bmod 3)$, then $c_{2}(x)=$ red,
- if $x \equiv 0(\bmod 3)$, then
- $c_{2}(x)=c(x / 3+1)$, if $c(h)$ is the only unique color in c,
- $c_{2}(x)=c(x / 3)$, otherwise.

Notice that c_{2} is a unitary $\operatorname{aw}_{u}([h-1], 3)$-coloring when $s \neq 0$ and c_{1} is a unitary r-coloring of $[n]$. Now consider a 3 -AP $\{a, b, 2 b-a\}$ in $[n]$. If $a \equiv b \not \equiv 1$, then a and b are colored with red, and so the 3-AP is not a rainbow. If $a \equiv b \equiv 1$, then $2 b-a \equiv 1$, so this set corresponds to a 3-AP in $[h]$ with coloring c, and hence the 3-AP is not rainbow. If $a \not \equiv b$, then $2 b-a$ is not congruent to a or b, so two of the terms of the 3 - AP are colored with red, and hence the 3-AP is not rainbow under c_{1}. Similarly, this 3-AP is not rainbow under c_{2}. Therefore, c_{1} and c_{2} are unitary colorings of $[n]$ with no rainbow 3-AP.

Also note that $\mathrm{aw}_{u}([n], 3) \geqslant \operatorname{aw}_{u}([h], 3)+1$ under c_{1} and $\operatorname{aw}_{u}([n], 3) \geqslant \mathrm{aw}_{u}([h-1], 3)+1$ under c_{2}. We proceed with three cases determined by $\frac{n}{3}$.

Case 1. First suppose $7 \cdot 3^{m-2}+1 \leqslant n \leqslant 3^{m}-3$ or $3^{m} \leqslant n \leqslant 21 \cdot 3^{m-2}$. By the induction hypothesis and using the coloring c_{1},

$$
\operatorname{aw}_{u}([n], 3) \geqslant \operatorname{aw}_{u}([h], 3)+1 \geqslant f(h)+1=f(n) .
$$

Case 2. Suppose $n=3^{m}-t$ where $t \in\{1,2\}$. Notice that $h=3^{m-1}$, so by induction and using coloring c_{2},
$\mathrm{aw}_{u}([n], 3) \geqslant \operatorname{aw}_{u}([h-1], 3)+1 \geqslant f(h-1)+1=f\left(3^{m-1}-1\right)+1=(m+2)+1=f(n)$.
The upper bound, $\operatorname{aw}([n], 3) \leqslant f(n)$, is also proved by induction on n. For small n, the result follows from Table 1. Assume the statement is true for all values less than n, and let $7 \cdot 3^{m-2}+1 \leqslant n \leqslant 21 \cdot 3^{m-2}$ for some m. Let $\operatorname{aw}([n], 3)=r+1$, so there is an exact r-coloring \hat{c} of $[n]$ with no rainbow 3 -AP. We need to show that $r \leqslant f(n)-1$. Let [$n_{1}, n_{2}, \ldots, n_{N}$] be the shortest interval in $[n]$ containing all r colors under \hat{c}. Define c to be an r-coloring of $[N]$ so that $c(j)=\hat{c}\left(n_{j}\right)$ for $j \in\{1, \ldots, N\}$. By minimality of N the colors of 1 and N are unique. If $[N]$ has at least $r-1$ colors congruent to 1 or N, then $[n]$ has at least $r-1$ colors congruent to n_{1} or n_{N}, respectively, so $r \leqslant \operatorname{aw}(\lfloor n / 3\rfloor, 3)$ and by induction $r \leqslant f(\lfloor n / 3\rfloor) \leqslant f(n)-1$. So suppose that is not the case, then by Lemma 5 we have that the coloring c is special.

Let $N=7 q+1$ for some $q \geqslant 1$, and let the 8 -AP in this special coloring be $\left\{1, r_{1}, r_{2}, b_{1}, r_{3}, b_{2}, b_{3}, N\right\}$, where r_{1}, r_{2}, r_{3} are the only integers colored red, b_{1}, b_{2}, b_{3} are the only integers colored blue and $q=r_{1}-1$. If $n \geqslant 9 q$, then the 8 -AP can be extended to a 9 -AP in n by adding the 9 th element to either the beginning or the ending. Without loss of generality, suppose $\left\{1, r_{1}, r_{2}, b_{1}, r_{3}, b_{2}, b_{3}, N, 2 N-b_{3}\right\}$ correspond to a 9-AP in $[n]$. Since the coloring has no rainbow $3-\mathrm{AP}$, the color of $2 N-b_{3}$ is blue or $c(N)$, so we have a 4 -coloring of this 9 -AP. However, $\mathrm{aw}([9], 3)=4$ and hence there is a rainbow 3 -AP in this 9 -AP which is in turn a rainbow 3 - AP in $[n]$. Therefore, $n \leqslant 9 q-1$.

By uniqueness of the red colored integer r_{1} in interval $\left\{1, \ldots, r_{2}-1\right\}$, the colors of integers in interval $\left\{r_{1}+1, \ldots, r_{2}-1\right\}$ is the same as the reversed colors of integers in $\left\{2, \ldots, r_{1}-1\right\}$, i.e. $c\left(r_{1}+i\right)=c\left(r_{1}-i\right)$ for $i=1, \ldots, q-1$. Similarly, coloring of integers in interval $\left\{r_{2}+1, \ldots, b_{1}-1\right\}$ is the reversed of the coloring of integers in interval $\left\{r_{1}+1, \ldots, r_{2}-1\right\}$, and so on. This gives a rainbow 3-AP-free $(r-2)$-coloring of $\mathbb{Z}_{2 q}$. Therefore, $r-2 \leqslant \operatorname{aw}\left(\mathbb{Z}_{2 q}, 3\right)-1$.

If $q=3^{i}$ for some i, then n can not be a power of 3 because $7 \cdot 3^{i}+1 \leqslant n \leqslant 9 \cdot 3^{i}-1$. Suppose $n=3^{m}$, then $2 q$ is not twice a power of 3 and clearly $2 q$ is not a power of 3 . Therefore, by Lemma 4 we have

$$
\begin{aligned}
r & \leqslant \operatorname{aw}\left(\mathbb{Z}_{2 q}, 3\right)+1 \leqslant\left\lceil\log _{3}(2 q)\right\rceil+2 \leqslant\left\lceil\log _{3}(2 n / 7)\right\rceil+2 \\
& =\left\lceil\log _{3}\left(2 \cdot 3^{m} / 7\right)\right\rceil+2=m+1 \leqslant f(n)-1 .
\end{aligned}
$$

Suppose now that $n \neq 3^{m}$. If $q=3^{i}$ for some i then $i \leqslant m-2$. Otherwise, if $i \geqslant m-1$ then $q \geqslant 3^{m-1} \geqslant \frac{n}{7}$ which contradicts the fact that $q<\frac{n}{7}$. Therefore, $2 q \leqslant 2 \cdot 3^{m-2}=18 \cdot 3^{m-4}$ and so by induction and Lemma 4,

$$
r \leqslant \operatorname{aw}\left(\mathbb{Z}_{2 q}, 3\right)+1=\operatorname{aw}([2 q], 3)+1 \leqslant m+2 \leqslant f(n)-1
$$

If q is not a power of 3 , then again using Lemma $4, r \leqslant \operatorname{aw}\left(\mathbb{Z}_{2 q}, 3\right)+1 \leqslant \operatorname{aw}([2 q], 3)$. Notice that $6 \cdot 3^{m-3}+\frac{2}{7} \leqslant \frac{2}{7} n \leqslant 18 \cdot 3^{m-3}$, and so aw $([2 q], 3) \leqslant m+2$ by induction. Therefore, $r \leqslant m+2 \leqslant f(n)-1$. This completes the proof of the main theorem.

4 Concluding Remarks

We have determined the exact value of the anti-van der Waerden number aw $([n], 3)$ for all n, which confirms a conjecture in [4]. Bounds on aw $([n], k$,$) for k \geqslant 4$ are given in [4], however the exact values are not known in general. These bounds can be improved and it would be interesting to know exact values aw $([n], k)$ for $k \geqslant 4$.

The values of $\operatorname{aw}(G, k)$ has been recently studied for finite abelian groups [7]. It would be interesting to investigate this number for other groups.

References

[1] M. Axenovich, D. Fon-Der-Flaass, On rainbow arithmetic progressions. Electronic Journal of Combinatorics 11(1) (2004), \#R1.
[2] M. Axenovich and R.R. Martin, Sub-Ramsey numbers for arithmetic progressions. Graphs Comb. 22 (2006), no. 1, 297-309.
[3] F.A. Behrend, On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. USA 32 (1946), 331-332.
[4] S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. Kramer, J. Lin, R. Martin, D. Stolee, N. Warnberg, Michael Young. Rainbow arithmetic progressions. Journal of Combinatorics 7 (2016), no. 4, 595-626.
[5] W.T. Gowers, A new proof of Szemerédi's theorem. Geom. Funct. Anal. 11 (2001), no. 3, 465-588.
[6] V. Jungić, J. Licht (Fox), M. Mahdian, J. Nes̆etril, and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results. Comb. Probab. Comput. 12 (2003), no 5-6, 599-620.
[7] M. Young, Rainbow arithmetic progressions in finite abelian groups. Manuscript available at arXiv:1603.08153.

