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Abstract

Emergence is easy to exhibit, but very hard to formally explain. This paper
deals with square sand grains moving around on nicely stacked columns in one di-
mension (the physical sandpile is two dimensional, but the support of sand columns
is one dimensional). The Kadanoff sandpile model is a discrete dynamical system
describing the evolution of finitely many sand grains falling from an hourglass (or
equivalently from a finite stack of sand grains) to a stable configuration. The re-
peated application of a simple local rule let grains move until reaching a fixed point.
The difficulty of understanding its behavior, despite the simplicity of its rule, is the
main interest of the model. In this paper we prove the emergence of exact wave pat-
terns periodically repeated on fixed points. Remarkably, those regular patterns do
not cover the entire fixed point, but eventually emerge from a seemingly disordered
segment: grains are added on the left, triggering avalanches that become regular as
they fall down the sandpile. The proof technique we set up associated arguments of
linear algebra and combinatorics, which interestingly allow to formally demonstrate
the emergence of regular patterns without requiring a precise understanding of the
non-regular initial segment’s dynamic.

1 Introduction

Understanding and explaining regularity properties on discrete dynamical systems (DDS)
rapidly becomes a puzzling problem, and formally proving the global behavior of a DDS

∗An extended abstract [32] of this work has been presented at the conference MFCS’15. This work
is partially supported by IXXI (Complex System Institute, Lyon), ANR projects Subtile, Dynamite and
QuasiCool (ANR-12-JS02-011-01), Modmad Federation of U. St-Etienne, Fondecyt Postdoctoral Project
3140527, and Núcleo Milenio Información y Coordinación en Redes (ACGO).
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defined with local rules is at the heart of our comprehension of natural phenomena [21, 35].
A lot of simply stated conjectures, often issued from simulations, remain open (among
the famous examples is the Langton’s Ant [14, 15]). Sandpile models are a class of DDS
describing how grains move according to local rules in discrete space and time. We start
from a finite number of grains stacked on a single column (the analogy with an hourglass
is formally presented in Subsection 2.4), and try to predict the asymptotic shape of the
stable configurations reached at the end of the dynamical evolution.

Bak, Tang and Wiesenfeld introduced sandpile models as simple examples of systems
presenting self-organized criticality (SOC), a property of dynamical systems having critical
points as attractors [1]. Informally, they considered a discretized flat surface on which
grains are added one by one. Each addition possibly triggers an avalanche, consisting in
grains falling from column to column according to one elementary local rule, and after a
while a heap of sand has formed. SOC is related to the fact that a single grain addition
on a stabilized sandpile has a hardly predictable consequence on the system, on which
surprising fractal structures appear [5]. This model can naturally be extended to any
number of dimensions.

A one-dimensional sandpile configuration can be represented as a sequence (hi)i∈N
of non-negative integers, hi being the number of sand grains stacked on column i. The
initial configuration is composed of a finite number of stacked grains on column 0: the
configuration h where h0 = N and hi = 0 for i > 0, and in the classical sandpile model one
grain can fall from column i to column i+1 if and only if the height difference hi−hi+1 > 1.
Different update policies may be applied: sequential, parallel, block-sequential, etc. One-
dimensional sandpile models were well studied in recent years [8, 10, 12, 17, 18, 29, 34].

In this paper, we study the Kadanoff sandpile model (KSM) which generalizes classical
sandpile models. A fixed parameter, denoted p, indicates the number of grains falling at
each rule application. The results we develop in this paper present an interesting feature:
we asymptotically completely describe the form of stable configurations: they are made
out of exact wave patterns, though there is a part of asymptotically null relative size (and
asymptotically infinite absolute size) on the left of fixed points, apparently complicated
and non-regular, which remains unexplained. Furthermore, proven regularities are directly
issued from this unordered initial segment, which precise understanding is bypassed by
the proof technic. Indeed, the fixed point can be reached by adding grains one by one,
each grain addition triggering an avalanche letting grains fall down the sandpile until they
eventually create and maintain very regular wave shapes. This point is discuted in the
conclusion.

We formally define the model in Subsection 1.1, and Subsection 1.2 introduces the
results we expound in the rest of the paper. We present useful folklore in Section 2: in
particular an interesting and useful way of computing fixed points in Subsection 2.4. The
proof of the main result is presented in Section 3, and at the light of those developments,
Section 4 discusses that sandpile models exhibit a behavior at the edge between discrete
and continuous phenomena.
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1.1 Definition of the Kadanoff sandpile model

In 1989, Kadanoff et al proposed a generalization of classical models in which a fixed
parameter p denotes the number of grains falling at each step [23]. Starting from the
initial configuration composed of N stacked grains on column 0, we iterate the following
rule: if the difference of height (the slope) between columns i and i + 1 is greater than
p, then p grains can fall from column i, and one grain reaches each of the p columns
i+ 1, i+ 2, . . . , i+ p. Note that when p = 1 we get the classical sandpile model. The rule

> p

Figure 1: KSM(p) rule. When p
grains leave column i, the slope bi−1
is increased by p, bi is decreased by
p+1 and bi+p is increased by 1. The
slope of other columns are not af-
fected.

is applied once (non-deterministically) during each
time step. The words column and index are syn-
onyms, and for the sake of imagery we always con-
sider indices (column numbers) to be increasing on
the right as it is presented on Figure 1.

Formally, the rule is defined on the space of ulti-
mately null decreasing integer sequences, where each
integer represents a column of stacked sand grains.
A configuration is denoted h = (hi)i∈N, and hi is
the number of grains on column i. It is very con-
venient to consider only the relative height between
columns, so we will mainly represent configurations
as sequences of slopes b = (bi)i∈N, where for all
i > 0, bi = hi − hi+1, within the space of ultimately null non-negative integer sequences
(also called partitions in the litterature). We use 0ω to denote the infinite sequence of
zeros at the end of a configuration.

Let us now give two definitions of the model, obviously isomorphic. Definition 1 is
more natural and uses heights, but Definition 2 is more convenient and uses slopes, this
latter is the main one we will use throughout the paper.

Definition 1. The Kadanoff sandpile model with parameter p > 0, KSM(p), is defined
by two sets:

• height configurations. Ultimately null non-negative and decreasing integer sequences.

• transition rules. We have a transition from a configuration h to a configuration h′

on column i, and we note h
i→ h′ when

◦ h′i = hi − p
◦ h′i+k = hi+k + 1 for 0 < k 6 p

◦ h′j = hj
for j 6∈ {i, i+ 1, . . . , i+ p}.

In this case we say that i is fired. Remark that according to the definition of the
transition rules, i may be fired if and only if hi− hi+1 > p, otherwise h′i is negative or the
sequence h′ is not decreasing.
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Figure 2: A possible evolution in KSM(2) from the initial configuration for N = 24
to π(24). π(24) = (2, 1, 2, 1, 2, 0ω) and its shot vector (defined in Subsection 3.1) is
(8, 1, 2, 0ω).

Definition 2. The Kadanoff sandpile model with parameter p > 0, KSM(p), is defined
by two sets:

• slope configurations. Ultimately null non-negative integer sequences.

• transition rules. We have a transition from a configuration b to a configuration b′

on column i, and we note b
i→ b′ when

◦ b′i−1 = bi−1 + p (for i 6= 0)

◦ b′i = bi − (p+ 1)

◦ b′i+p = bi+p + 1

◦ b′j = bj for j 6∈ {i− 1, i, i+ p}.

Again, remark that according to the definition of the transition rules, i may be fired
if and only if bi > p, otherwise b′i is negative.

b

b′ b′′

b′′′

i j

j i

We denote b → b′ when there exists an integer i such that b
i→ b′.

The reflexive transitive closure of→ is denoted by
∗→, and we say that b′

is reachable from b when b
∗→ b′. KSM model has the diamond property :

if there exists i and j such that b
i→ b′ and b

j→ b′′, then there exists a

configuration b′′′ such that b′
j→ b′′′ and b′′

i→ b′′′.
A configuration b is stable, or a fixed point, if no transition is possible from b. As a

consequence of the diamond property, for each configuration b there exists a unique stable
configuration, denoted by π(b), such that b

∗→ π(b). Moreover, for any configuration

b′ such that b
∗→ b′, we have π(b′) = π(b) (see [20] for details). Figure 2 pictures an

example of evolution. For convenience, we abusively denote by N the initial configuration
(N, 0ω), such that π(N) is the sequence of slopes of the fixed point associated to the initial
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(24, 0ω)

(21, 0, 1, 0ω)

(18, 0, 2, 0ω)

(15, 0, 3, 0ω)

(12, 0, 4, 0ω) (15, 2, 0, 0, 1, 0ω)

(9, 0, 5, 0ω) (12, 2, 1, 0, 1, 0ω)

(6, 0, 6, 0ω) (9, 2, 2, 0, 1, 0ω)

(3, 0, 7, 0ω) (6, 2, 3, 0, 1, 0ω)

(0, 0, 8, 0ω) (3, 2, 4, 0, 1, 0ω) (6, 4, 0, 0, 2, 0ω)

(0, 2, 5, 0, 1, 0ω) (3, 4, 1, 0, 2, 0ω) (8, 1, 0, 1, 2, 0ω)

(0, 4, 2, 0, 2, 0ω) (5, 1, 1, 1, 2, 0ω)

(2, 1, 2, 1, 2, 0ω)

Figure 3: The set of reachable configurations for p = 2 and N = 24 represented as
sequences of slopes. The initial configuration is on the top, and the unique fixed on the
bottom.

configuration composed of N stacked grains on column 0 (see Figure 3 for an illustration).
This paper is devoted to the study of π(N) according to N and the fixed parameter p.

1.2 Objective of the paper

Let us briefly recall classical notations and state the main result of this paper. Regard-
ing regular expressions, let ε denote the empty word, and · (respectively +) denote the
concatenation (respectively or) operator. + is to the or what Σ is to the sum1, and ∗

is the Kleene star denoting finite repetitions of a regular expression (see for example [22]
for details). Finally, for a configuration b we denote b[n ,∞[ the infinite subsequence of b
starting from index n to ∞.

In this paper we prove the following precise asymptotic form of fixed points (expressed
in terms of slope configuration). Importantly, note that the support of π(N) is in Θ(

√
N),

as it is a non-degenerated rectangular triangle whose area is N (details in Subsection 2.2).

Theorem 3. For a fixed p > 1, the smallest n such that

π(N)[n ,∞[ ∈ (p · . . . · 2 · 1)∗ 0 (p · . . . · 2 · 1)∗ 0ω

is in Θ(logN).

1
k

+
i=0

0i = ε+ 0 + 00 + · · ·+ 0 . . . 0︸ ︷︷ ︸
k

.
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1

2

p

..
.

(a) We call wave the pattern
p · . . . · 2 · 1 in a sandpile con-
figuration.

Θ(log N) Θ(
√
N)

(b) From an index in Θ(logN) the fixed point
π(N) consists of waves all consecutive to each
other, except at at most one place where two
waves may be separated by two columns of same
height.

Figure 4: A wave (4a), and a graphical representation of Theorem 26 (4b).

A graphical representation of our main result providing an exact bound for wave
appearance (Theorem 26) is given on Figure 4. The asymptotic form of fixed points
shows a very regular structure made out of wave, emerging from a seemingly complex
initial segment. Again, since we can see this fixed point as the configuration reached after
all the grains have been added one by one on the leftmost column, any single grain part
of a wave pattern (on the right part of the fixed point) has travelled through the left part
until it adopts, together with the sandpile upper layer it walks on, a regular behavior
leading to perfect wave patterns.

The result above and the proof technics exposed thereafter present a promising feature:
we asymptotically completely describe the form of stable configurations, though there is a
part of asymptotically null relative size (but asymptotically infinite absolute size) which
remains unknown. This part, on the left of fixed points, does not seem to have a highly
ordered structure. It may look like a drawback that we can’t explain any single column of
the fixed point, but this remark can also be seen in a reversed way: the proof technic we
develop does not require to understand precisely this complex initial segment to formally
explain the emergence of very regular patterns periodically repeated on fixed points. As
it has been argued above, we think it is natural to qualify the wave patterns as emergent
regularities; and this paper will explain how to prove that those regularities emerge from
a transitional less ordered phase, without requiring a fully accurate understanding of the
dynamic.
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A series of previous works ([30, 31, 33]) lead us to a similar result, but only for the
smallest “new” parameter p = 2 (the case p = 1 is the well known sandpile model), using
exclusively arguments of combinatorics. However, for the general case, we introduce a
completely different approach. The proof of the tight Θ(logN) bound is decomposed into
two parts:

• in a first part (Subsections 3.1, 3.2, 3.3 and 3.4) we prove the O(logN) bound,
stated in Theorem 22 (upper bound theorem);

• in a second part (Subsection 3.5) we prove the Ω(logN) bound, stated in Corollary
25 and leading to the exact bound theorem (Theorem 26).

The main ideas are the following: we establish a relation between different representations
of a sandpile configuration (Subsection 3.1), leading to a recurrence relation of the form

ai+1 =
1

p
ai−p +

p+ 1

p
ai +

1

p
π(N)i

where ai is the number of times the column i is fired to reach π(N) from (N, 0ω).

• During the first step, the term π(N)i is in some sens neglected. The recurrence is
rewritten in term of the discrete derivative yi = ai−ai−1. It appears that the recur-
rence describes an averaging process on p successive yi such that in O(log(N)) itera-
tions the difference between the maximal and minimal value among (yi−p+1, . . . , yi)
becomes lower than a constant α (Lemma 10). This upper bounds result requires
linear algebra and a study of eigenvalues of a related matrix.

• During the second step, the arithmetic properties of the π(N)i are considered to
show that in a linear time with respect to the constant α, the recurrence leads to p
consecutive equal values yi−p+1 = yi−p+2 = · · · = yi (Lemmas 12 and 13). We say
that the sequence (yi)i∈N is p-uniform at i.

• The third step requires to identify some regular patterns modulo p in the exact
analysis in all possible cases of the arithmetic properties of the π(N)i starting from
the step n where (yi)i∈N is p-uniform. It appears that either one reads π(N)i = 0 and
(yi)i∈N is also p-uniform at n+ 1 or π(N)i = p, π(N)i+1 = p− 1, . . . , π(N)i+p−1 = 1
and then (yi)i∈N is p-uniform at n+p (Lemma 16). This observation is at the origin
of the wave pattern.

• The fourth step relies explicitly on fine properties of the Kadanoff sandpile model
to show that π(N)i = 0 is chosen at most once before the last occurrence of the
pattern p · p−1 · . . . · 1 in (π(N)i)i∈N (Lemma 20). At this stage, the upper bounds
part of Theorem 26 is proved (Theorem 22).

• The fifth step discusses the lower bounds. The origin of these bounds is the averaging
process in step 1 which can not be too quick (Lemma 23) and the additional fact that
if the final wave patterns appear at i it conversely implies that (yi)i∈N is p-uniform
at i (Lemma 24).
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1.3 The context

Finding and formally proving global regularity properties suggested by numerical simula-
tions, for models defined by elementary local rules, is a present challenge for physicists,
mathematicians, and computer scientists. A lot of conjecture have been proposed on
such discrete dynamical systems (sandpile models [6] or chip firing games, but also rotor
router [26], the famous Langton’s ant [14, 15], etc) but very few results have actually been
proved.

Regarding KSM(1), the prediction problem (the computational complexity of com-
puting the fixed point π(k)), has been proven in [28] to be in NC2 ⊆ AC2 for the one
dimensional case (NC is Nick’s class, of problems efficiently computable in parallel), the
model of our purpose (improved to LOGCFL ⊆ AC1 in [27]), and P-complete when the
dimension is > 3.

The two-dimensional case has been recently studied in [19], where the authors have
shown that the avalanche problem (given a configuration and two columns i and j, does
adding one grain on column i have an influence on column j?) is P-complete for KSM(p)
with p > 1, which points out an inherently sequential behavior. It is also shown in [11]
that the avalanche problem of KSM(p) is in NC1 (computable in logarithmic time on a
polynomial number of processors, i.e. efficiently computable in parallel) for all p > 1 in
one dimension. The two dimensional case for p = 1 is still open, though we know from
[13] that simple wires cannot cross.

2 Useful folklore

This section is devoted to the presentation of useful pieces of folklore, simple extensions
of known results. We begin with two straightforward results concerning the KSM model
(Subsections 2.1 and 2.2), included for the sake of self-containedness. We then present
how KSM can be seen as a Chip Firing Game in Subsection 2.3, and Subsection 2.4 gives
an inductive way of computing fixed points, via avalanches, which will be used to complete
the proof of the upper bound theorem (Theorem 22).

2.1 There is no plateau of length larger than p+ 1

A plateau is a set of at least two non-empty and consecutive columns of equal height in
terms of height configuration, or a set of at least two consecutive slope values equal to 0 in
terms of slope configuration. The length of a plateau is the number of columns composing
it.

Proposition 4. For any N and any configuration σ such that (N, 0ω)
∗→ σ, in σ there is

no plateau of length strictly greater than p+ 1.

Proof. This proof proceeds by contradiction, using the fact that configurations are se-
quences of non-negative integers (H1). Suppose there exists a slope configuration σ reach-
able from (N, 0ω) for some N , such that there is a plateau of length at least p + 2 in σ.
Since there is no plateau in the initial configuration (N, 0ω), and there is a finite number
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of steps to reach σ, there exists two slope configurations ρ and τ such that ρ → τ and
such that there is a plateau of length at least p+ 2 in τ , and none in ρ (H2). Let k be the
leftmost column of the plateau of length at least p+ 2 in τ , i.e. for all column j between

k and k + p, τj = 0 (H3). We will now see that there is no i such that ρ
i→ τ , which

completes the proof.

• if i < k− p or i > k+ p+ 1 then a firing at i has no influence on columns between k
and k + p+ 1 and there is a plateau of length at least p+ 2 in ρ, contradicting H2.

• if k− p 6 i 6 k then according to the rule definition we have τi+p = ρi+p−1− 1, and
from H3 ρi+p = 0 therefore τi+p < 0 which is not possible from H1.

• if k < i 6 k + p + 1 then according to the rule definition we have τi−1 = ρi−1 − p
and from H3 ρi−1 = 0 therefore τi−1 < 0 which again is not possible from H1.

2.2 The support of π(N) is in Θ(
√
N)

We give bounds for the maximal index of a non-empty column in the fixed point π(N)
according to the number N of grains, denoted w(N). w(N) can be interpreted as
the support or width or size of π(N). We consider a general model KSM(p) with p
a constant integer greater or equal to 1. A formal definition of w(N) is for example
w(N) = w(π(N)) = min{i | ∀ j > i, π(N)j = 0}. See Figure 5.

p

p + 1

N

N

inf sup
w(N)

Figure 5: The support of π(N) is in Θ(
√
N). It is lower bounded by the fact that each

slope on a stable configuration is at most p, and upper bounded by the fact that there is
no plateau of length larger than p+ 1.

Proposition 5. The support of π(N) is in Θ(
√
N).

Proof. The support of π(N) is denoted w(N).
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Lower bound: π(N) is a fixed point, therefore by definition for all index i we have
π(N)i 6 p. Then,

N 6
w(N)∑
i=0

p · i = p
w(N) · (w(N) + 1)

2
< p2(w(N) + 1)2

hence 1
p

√
N − 1 < w(N).

Upper bound: From Proposition 4, there is no plateau of length greater than p + 1.
Therefore, for w(N) > p we have

N >

bw(N)
p+1
c∑

i=0

(p+ 1) · i > (p+ 1)


(
w(N)
p+1
− 1
)
w(N)
p+1

2

 >

(
w(N)

p+ 1
− 1

)2

hence (p+ 1)
√
N + p+ 1 > w(N).

2.3 KSM is a Chip Firing Game

Chip Firing Games (CFG) are sandpile models on arbitrary graphs ([2, 3]) (or just sandpile
models as Dhar defined them in [7]). A CFG is played on a directed graph in which each
vertex v has a load l(v) and a threshold t(v) = deg+(v) where deg+(v) denotes the out-
degree of v, and the iteration rule is: if l(v) > t(v) then v gives one unit to each of its
neighbors (we say v is fired). As a consequence, we inherit all properties of CFGs.

Kadanoff sandpile is referred to as a linear chip firing game in [20]. The authors show
that the set of reachable configurations endowed with the order induced by the successor
relation has a lattice structure, in particular it has a unique fixed point. Since the model
is non-deterministic, they also prove strong convergence i.e. the number of iterations to
reach the fixed point is the same whatever the evolution strategy is. The morphism from
KSM(2) to CFG is depicted on Figure 6.

Nsink 0 0 0 0 0

Figure 6: The initial configuration of KSM(2) is presented as a CFG where each vertex cor-
responds to a column (except the sink, vertices from left to right corresponds to columns
0, 1, 2, 3, . . . ) with a load equal to the slope at i (the height difference bi = hi−hi+1). For
example the vertex with load N is the difference of height between column 0 (N grains)
and column 1 (0 grain). The content of the sink is ignored.

When reasoning and writing formal developments about KSM, it is convenient to think
about its CFG representation where local rules let units of slope move between columns.
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2.4 Hourglass, inductive computation and avalanches

In order to compute π(N), the basic procedure is to start from the initial configuration
(N, 0ω) and perform all the possible transitions. However, it also possible to start from
the configuration (0ω), add one grain on column 0 and perform all the possible transitions,
leading to π(1), then add another grain on column 0 and perform all the possible transi-
tions, leading to π(2), etc. . . And repeat this process until reaching π(N). This inductive
definition of fixed points will play a role in Subsection 3.4.

Formally, let b be a slope configuration, b↓0 denotes the configuration obtained by
adding one grain on column 0. In other words, if b = (b0, b1, . . . ) then b↓0 = (b0+1, b1, . . . ).
The correctness of the process described above relies on the fact that

(k, 0ω)
∗→ π(k − 1)↓0

Indeed, there exists a sequence of firings, named a strategy, (si)
i=l
i=1 such that (k−1, 0ω)

s1→
. . .

sl→ π(k−1). It is obvious that using the same strategy we have (k, 0ω) = (k−1, 0ω)↓0
s1→

. . .
sl→ π(k−1)↓0 since we only drag one more grain on column 0 along the evolution, which

does not prevent any firing to occur (see Figure 7). Thus, with the uniqueness of the fixed
point reachable from (k, 0ω), we have the recurrence formula

π(π(k − 1)↓0) = π(k)

with the initial condition π(0) = 0ω, enabling an inductive computation of π(k).

(k − 1, 0ω) π(k − 1)
∗

(k, 0ω)

↓0

π(k − 1)↓0
↓0

∗
π(k)

∗

Figure 7: Inductive computation of π(k) from π(k − 1). The bold arrow represents an
avalanche.

The strategy from π(k − 1)↓0 to π(k) is called an avalanche. Note that from the
non-determinacy of the model, this strategy is not unique. To overcome this issue, it is
natural to distinguish a particular one which we think is the simplest: the kth avalanche
sk is the leftmost strategy from π(k− 1)↓0 to π(k), where leftmost is the minimal strategy
according to the lexicographic order. This means that at each step, the leftmost possible
firing is performed (example on Figure 8). We reproduce below a preliminary result of
[30], which allows to write without ambiguity for an index i: i ∈ sk or i /∈ sk.

Lemma 6 ([30]). During an avalanche each column is fired at most once.

Proof. We prove the result by induction on the number of iterations of the avalanche. At
each time step, in order to be fired twice a column must have received at least p+ 2 units
of slope, since:

• it has initially a slope at most p on the fixed point,
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0 2 1 4 3

Figure 8: An example of avalanche: starting from π(24), we add one grain on column 0
(darkened on the leftmost configuration) and apply the iteration rule until reaching π(25).
Arrows are labelled by the index of the fired column (the leftmost unstable column is fired
at each step). The 25th avalanche s25 = (0, 2, 1, 4, 3).

• it looses p+ 1 units the first time it is fired,

• and it needs to have a slope at least equal to p+ 1 to fire again.

However, if every other column has been fired only once (by induction hypothesis), any
column i received at most p units of slope: 1 unit from the firing at i − p, and p units
from the firing at i+ 1. The case i = 0 is slightly different: it receives the additional sand
grain, but cannot receive a unit of slope from i− p.

3 Analysis

Upper bounding the column from which waves appear on fixed points is the major diffi-
culty this paper overcomes. This section mainly concentrates on this issue, expressed in
the upper bound theorem (Theorem 22) (providing an index n in O(logN)). The last
Subsection 3.5 is devoted to lower bounding it (showing that n is in Ω(logN)). Let us
remark that the known results about the case p = 1 matches the upper bound result we
develop, but not the lower bound result [17].

We consider the parameter p > 1 to be fixed, and static constraints on fixed points:
the possible sand content on a column has important relations (restrictions) according to
its local neighborhood. We therefore study the “internal dynamic” of fixed points, via
the construction of a DDS in Zp+1, such that the orbit of a well chosen point according
to the number of grains N describes the fixed point π(N) (Subsection 3.1). The aim is
then to prove the convergence of this orbit in O(logN) steps, such that the values it takes
involve regular wave patterns, as described in the exact bound theorem (Theorem 26).

The reader can refer to Subsection 3.6 and Figure 10 for an illustration of the repre-
sentations that will be used along the Analysis section.

3.1 Internal dynamic of fixed points

A useful representation of a configuration reachable from (N, 0ω) is its shot vector (ai)i∈N,
where ai is the number of times that the rule has been applied on column i from the
initial configuration [9] (see Figure 2 for an example). In the following, (ai)i∈N and
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(π(N)i)i∈N respectively denote the shot vector and sequence of slopes of the unique fixed
point reached from (N, 0ω). Those two representations are obviously linked in various
ways. In particular for any i we can compute the slope at index i provided the number
of firings at i− p, i and i+ 1, because the slope at i is initially equal to 0 (the case i = 0
is discussed below), and

• a firing at i− p increases the slope at i by 1;

• a firing at i decreases the slope at i by p+ 1;

• a firing at i+ 1 increases the slope at i by p;

• any other firing has no consequence on the slope at i.

Therefore, π(N)i = ai−p − (p + 1) ai + p ai+1, with 0 6 π(N)i 6 p since π(N) is a fixed
point, and thus

ai+1 = −1

p
ai−p +

p+ 1

p
ai +

1

p
π(N)i (1)

This equation expresses the value of the shot vector at position i+1 according to its
values at positions i−p and i, and a bounded perturbation 0 6 π(N)i

p
6 1. As an initial

condition, we consider a virtual column of index −p that has been fired N times: a−p = N
and ai = 0 for −p < i < 0, representing the fact that column 0 is the only one receiving
N times 1 unit of slope.

The following lemma states that the value of π(N)i is nearly determined.

Lemma 7. Given ai−p and ai, there is only one possible value of π(N)i, except when
−ai−p + (p+ 1) ai ≡ 0 mod p in which case π(N)i equals 0 or p.

Proof. Note that ai+1 ∈ N, thus −ai−p + (p + 1) ai + π(N)i ≡ 0 mod p. The Lemma
holds since on fixed points we have 0 6 π(N)i 6 p.

For example, consider π(2000) for p = 4 (see Figure 10). We have a8 = 120 and
a4 = 189, so −a4 + 5a8 = 411 ≡ 3 mod 4. From this knowledge, π(N)8 is determined to
be equal to 1, so that a9 = −1

4
a4 + 5

4
a8 + 1

4
π(N)8 = 103 is an integer.

Let us first manipulate Equation 1 so that the resulting recurrence relation is suitable
for a study of the convergence. Adding zero sum terms to Equation 1 gives

ai+1 − ai =
1

p
(ai − ai−1) +

1

p
(ai−1 − ai−2) + · · ·+ 1

p
(ai−p+1 − ai−p) +

π(N)i
p

(2)

We rewrite this relation as a linear system we can manipulate easily. Let yi = ai−ai−1,
and Yi = t(yi−p+1, . . . , yi), with tv the transpose of v, be vectors in Zp. Note that we
consider only finite configurations, so there always exists an integer i0 such that ai = 0
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for i0 6 i, and therefore Yi = ~0 for i0 + p 6 i, with ~0 = t(0, . . . , 0). Given Yi and π(N)i
we can compute Yi+1 with the relation

Yi+1 = M Yi +
π(N)i
p

K with M =


0 1 0

. . .

0 0 1
1
p

1
p

. . . 1
p

 K =


0
...
0
1

 . (3)

M is a square matrix2 of size p, and we call this partially defined recurrence relation
(the sequence (π(N)i)i∈N is not known) the averaging system. This system expresses the
difference of shot vector around position i+1 (via Yi+1) in terms of the shot vector around
position i (via Yi) and the slope at i (via π(N)i). Thus there exists an orbit of the point
Y0 = (−N, 0, . . . , 0, a0) of Zp, i.e. a sequence of non-deterministic iterations (since π(N)i
may take two possible values as stated in Lemma 9, of which only one corresponds to the
real value of π(N)i) starting from Y0, which describes the sequence of differences of shot
vector of the fixed point composed of N grains.

The system we get is a linear map plus a perturbation induced by the discreteness
of values of the slope. Note that it may look odd to study the sequence (π(N)i)i∈N
using a DDS whose iterations presuppose the knowledge of (π(N)i)i∈N. It is actually
helpful because of the underlined fact that values π(N)i are nearly determined (Lemma
7): in a first phase we will make no assumption on the sequence (π(N)i)i∈N (except that
0 6 π(N)i 6 p for all i) and prove that the system converges exponentially quickly in N ;
and in a second phase we will see that from an n in O(logN) such that the system has
converged, the sequence (π(N)i)i>n is determined to have a regular wavy shape.

Now that we have the averaging system, the proof of the upper bound theorem (The-
orem 22) is done in two steps:

1. first prove that it converges exponentially quickly (in O(logN) steps) to a uniform
vector (Subsection 3.2);

2. then prove that as soon as the vector is uniform, then the wavy shape of the upper
bound theorem (Theorem 22) takes place (Subsections 3.3 and 3.4).

3.2 Convergence of the averaging system

The averaging system is understandable in simple terms. From Yi in Zp, we obtain Yi+1

by:

1. shifting all the values one row upward;

2. for the bottom component, computing the mean of values of Yi, and adding a small
perturbation (a multiple of 1

p
between 0 and 1) to it.

2As a convention, blank spaces are 0s and dotted spaces are filled by the sequence induced by its
endpoints.
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Notation 8. Let mi (respectively mi, mi) denote the mean (respectively maximal, mini-
mal) of values of Yi.

Lemma 9. If mi is not an integer then π(N)i equals p (dmie − mi), otherwise π(N)i
equals 0 or p.

Proof. (Yi)i∈N are integer vectors, hence the perturbation added to the last component is

again nearly determined (see Lemma 7), we have (mi +
π(N)i
p

) ∈ Z and 0 6 π(N)i
p

6 1.

For example, consider π(2000) for p = 4 (see Figure 10a, be careful that it pictures
ai− ai+1 at position i). We have Y13 = t(−3,−5,−7,−7), then m13 = −11

2
and π(N)13 is

forced to be equal to 2 so that y14 = −5 and Y14 = t(−5,−7,−7,−5) is an integer vector.
We can foresee what happens as we iterate this dynamical system and new values are

computed: on a large scale (when values are large compared to p) the system evolves
roughly toward the mean of values of the initial vector Y0, and on a small scale (when
values are small compared to p) the perturbation lets the vector wander a little around.

The study of the convergence of the averaging system works in three steps:

(i). state a linear convergence of the whole system; then express Yn in terms of Y0 and
(π(N)i)06i6n;

(ii). isolate the perturbations induced by (π(N)i)06i6n and bound them;

(iii). prove that the other part (corresponding to the linear map M) converges exponen-
tially quickly.

From (ii) and (iii), a point converges exponentially quickly into a ball of constant radius,
then from (i) this point needs a constant number of extra iterations in order to reach the
center of the ball, that is, a uniform vector.

Recall notations 8, we will prove thatmi−mi converges exponentially quickly to 0 (N is
fixed and i runs). For p > 1 we start with Y0 = t(−N, 0, . . . , 0, a0), thus m0−m0 = N+a0.
Furthermore

N

p+ 1
6 a0 6

N

p
.

Indeed, recall that a0 is the number of times column 0 has been fired: we can begin the
evolution from (N, 0ω) by firing it N

p+1
times, and after N

p
firings there are no more grains

on column 0. Consequently m0 −m0 is in Θ(N).
Firstly, we prove that the system converges exponentially quickly on a large scale.

Intuitively, when mi−mi is large compared to p, the perturbation induced by (π(N)i)i∈N
is negligible.

Lemma 10. There exists a constant α and a n0 in O(logN) s.t. mn0 −mn0
< α.

Proof. The relation linking Yi to Yi+1 is (M and K are defined in Equation 3)

Yi+1 = M Yi +
π(N)i
p

K
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Let Mi = t(mi, . . . ,mi) in Zp. Since Yi converges roughly towards the mean of its
values, we consider the evolution of Zi = Yi −Mi which tends to ~0. We have

Zi+1 = OZi +
π(N)i
p

L where

{
O = DM
L = DK

with D =

1 0
. . .

0 1

− 1

p

1 . . . 1
...

. . .
...

1 . . . 1


because DM Yi = DM DYi.

The aim is thus to prove that there exists an n0 in O(logN) such that the norm of
Zn0 is bounded by a constant.

We express Zn in terms of Z0 and (π(N)i)06i6n:

Zn = OnZ0 +
1

p

n−1∑
i=0

π(N)iO
n−1−iL

The main argument for the proof of the lemma is in the following fact.

Fact 11. The matrix O is diagonalizable, and the spectral radius r (the maximal modulus
of an eigenvalue of O) is such that r 6 p−1

p
< 1.

Let us postpone the demonstration of Fact 11. The rest of the proof is straightforward,
using the infinity norm induced by a basis of proper vectors. With such a norm, we have:

‖Zn‖ 6 rn‖Z0‖+
1

p

n−1∑
i=0

π(N)ir
n−1−i‖L‖ 6 rn‖Z0‖+

n−1∑
i=0

rn−1−i‖L‖ 6 rn‖Z0‖+
‖L‖
1− r .

A classical theorem of linear algebra (see for example [4]) claims that, in finite dimen-
sion, all norms are equivalent. In particular, there exists a positive constant c such that,
for each vector Z, we have: ‖Z‖∞ 6 c ‖Z‖. Using it, we get:

mn −mn 6 2 ‖Zn‖∞ 6 2 c ‖Zn‖ 6 2 c

(
rn ‖Z0‖+

‖L‖
1− r

)
.

Now, if we take α = 2 c
(

1 + ‖L‖
1−r

)
, and n0 the lowest integer such that rn0 ‖Z0‖ < 1,

i.e. n0 >− ln(‖Z0‖)
ln(r)

, then we have the result (note that ‖Z0‖∞ is in O(N) because Y0 =
t(−N, 0, 0, . . . , 0, a0) with a0 <

N
p

, so this also holds for ‖Z0‖ since all norms are equiva-

lent).

To complete the proof, we now have to prove Fact 11 above. M is a companion matrix
and its characteristic polynomial is

xp −
p−1∑
k=0

1

p
xk = (x− 1)R(x)
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with R(x) = 1
p

(
p xp−1 + (p− 1)xp−2 + · · ·+ 2x+ 1

)
.

Consider S(x) = pxp−1R( 1
x
) = xp−1 + 2xp−2 + · · ·+ (p− 1)x+ p. We have the Bezout

equality: aS + b S ′ = 1, with a(x) = −p+1
p(p+1)

x + 1
p

and b(x) = 1
p(p+1)

x2 − 1
p(p+1)

x. Thus, S

and S ′ are co-prime, which ensures that S has p− 1 distinct roots. Therefore, R also has
p− 1 distinct roots.

Moreover, a classical result due to Eneström and Kakeya (see for example [16]) states
that, if λ is a root of a polynomial P such that P (x) =

∑n
i=0 αi x

i with each αi > 0, then
we have min{ αi

αi+1
| 0 6 i < n} 6 |λ| 6 max{ αi

αi+1
| 0 6 i < n}. Applying this result to

R(x), we obtain that all roots of R(x) have a modulus between 1
2

and p−1
p

.
As a consequence M is diagonalizable, and the set of eigenvalues of M is Mλ =

{1, λ1, . . . , λp−1}, with all λi pairwise distinct. Now, let v0, . . . , vp−1 be non null eigenvec-
tors respectively associated to the eigenvalues 1, λ1, . . . , λp−1 of M .

• We have DM v0 = D v0 by definition of v0. Moreover, if M v0 = v0, then, by an
easy computation, we obtain that all components of v0 are equal. This fact enforces
D v0 = ~0. In other words, 0 is an eigenvalue of DM .

• For the other eigenvectors, that is, for 1 6 i 6 p − 1, let ci be the uniform vector
with all its components equal to 1

p

∑p−1
k=0 vik , with vik the kth component of the vector

vi. Notice that M ci = ci, which ensures that vi − ci 6= ~0. We have

DM (vi − ci) = D (M vi −M ci)
= D (λi vi − ci)
= λiD vi −D ci
= λi(vi − ci)−~0

where the last equality is obtained from the fact that by definition of D, we have
D vi = vi − ci. As a consequence, λi is an eigenvalue of DM .

Finally, the set DMλ of eigenvalues of DM is DMλ = {0, λ1, . . . , λp−1}, and the
spectral radius of DM is at most p−1

p
.

Secondly, on a small scale, the system converges linearly. Note that the convergence
is not “stable”, in the sense that once a uniform vector is reached (mi = mi), the next
yi+1 may be incremented so that after one more iteration the vector may not be uniform
anymore (as can be seen on the example of Figure 10a).

Lemma 12. When distinct from 0, the value of mi −mi decreases linearly: if mi 6= mi,
then there is an integer c, with 1 6 c 6 p such that mi+c −mi+c < mi −mi.

Proof. If mi 6= mi, that is, if the vector Yi is not uniform, the mean value is strictly
between the greatest and smallest values: mi < mi < mi. Consequently mi < yi+p =

mi +
π(N)i
p

6 mi (since the perturbation added is at most one and the resulting number is

an integer, we cannot reach a greater integer). Therefore, we get mi 6 mi+1 6 mi+1 6 mi.
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This reasoning applies while mi+j 6= mi+j, from which we get mi+j < yi+p+j 6 mi+j

and mi+j 6 mi+j+1 6 mi+j+1 6 mi+j.
If there exists c 6 p such that mi+c = mi+c, then, we are done. Otherwise, for

0 6 j < p, we have, mi 6 mi+j < yi+j+p 6 mi+j 6 mi), thus mi < mi+p 6 mi+p 6 mi.

Lemmas 10 and 12 allow to conclude the exponential convergence of Zn to a uniform
vector, stated in the following convergence lemma.

Lemma 13. There exists an n in O(logN) such that Yn is a uniform vector.

Proof. We start with m0−m0 in O(N), we have a constant α and a n0 in O(logN) such
that mn0−mn0

< α thanks to the exponential decrease on a large scale (Lemma 10). Then
after p iterations the value of mn0+p−mn0+p

is decreased by at least 1 (Lemma 12), hence
there exists β with β 6 pα such that after β extra iterations we have mn0+β−mn0+β

= 0.
Thus Yn0+β is a uniform vector, and n0 + β is in O(logN).

In this proof, neither the continuous (Lemma 10) nor the discrete (Lemma 12) studies
is conclusive by itself. On one hand, the discrete study (combinatorial arguments) gives a
linear convergence to a precise pattern, but not an exponential convergence. On the other
hand, the continuous study (arguments of linear algebra) gives an exponential convergence
towards an almost uniform vector, but in itself the continuous part never reaches a uniform
vector (because of the uncertainties in the values of (π(N)i)i∈N). Furthermore the uniform
vector towards which the averaging system tends are not stable: once a uniform vector
is reached, one more iteration may lead to a non-uniform vector. The combination of
results on those two modalities (discrete and continuous) appears as an important step
for proving the convergence lemma (Lemma 13).

Remark 14. Note that for p = 1, the averaging system has a trivial dynamics. For p = 2,
the behavior is a bit more complex, but major simplifications are found: the computed
value is equal to the mean of two values, hence in this case the difference mi−mi decreases
by a factor of two at each time step.

Remark 15. Yi is uniform implies that Yj is almost uniform for all j > i. Indeed, the

mean mi is an integer, consequently yi+1 = mi + π(N)i
p

is either equal to yi, or equal to
yi + 1. In the latter case yi+1 = yi+2 = · · · = yi+p, as it is detailed in Subsection 3.3.

3.3 Emergence of a loosely wavy shape

We call wave the pattern p · . . . · 2 · 1 in the sequence of slopes. The convergence lemma
(Lemma 13) shows that there exists an n in O(logN) such that Yn is a uniform vector.
In this subsection, we prove that if Yn is a uniform vector, then from index n the shape
of the sandpile configuration is exclusively composed of waves and 0s.

Lemma 16. Yn is a uniform vector of Zp implies

π(N)[n ,∞[ ∈
(
0 + (p · p−1 · . . . · 1)

)∗
0ω
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Proof. The idea of this proof follows Lemma 9. If Yi is a uniform vector, we notice that
the value of π(N)i is 0 or p. If it is 0, then Yi+1 is still a uniform vector; if it is p, then the
sequence (π(N)j)i6j<i+p is determined to be equal to p · p− 1 · . . . · 1, and Yi+p is again a

uniform vector (recall that yi+1 = mi + π(N)i
p
∈ Z). The following diagram illustrates this

observation: the grey node corresponds to a uniform vector Yi, and at each iteration we
follow an arc whose label gives the value for π(N)i. If we start from the grey node, any
path’s labels verify the statement of the lemma.

0
p p−1 2

1

We concentrate on the sequence of values of Yi. The fact that its components are
integers, and especially the last one, will play a crucial role in the determination of the
value of π(N)i because 0 6 π(N)i 6 p.

We start from the hypothesis of uniformity: that Yi = t(γ, . . . , γ) for some γ, thus

from the averaging system’s Equation 3 we have Yi+1 = t(γ, . . . , γ, γ + π(N)i
p

). Yi+1 is an

integer vector and γ is an integer, hence π(N)i equals 0 or p.

• If π(N)i = 0 then Yi+1 = t(γ, . . . , γ) and we are back to the same situation, the
dilemma goes on: the value of π(N)i+1 is not determined, it can be 0 or p.

• If π(N)i = p then Yi+1 = t(γ, . . . , γ, γ + 1) from the relation above. A regular
pattern then emerges:

– if Yi+1 = t(γ, . . . , γ, γ + 1), then Yi+2 = t(γ, . . . , γ, γ + 1, p γ+1+π(N)i+1

p
) and it

determines π(N)i+1 = p− 1 so that Yi+2 = (γ, . . . , γ, γ + 1, γ + 1) is an integer
vector (Lemma 9);

– if Yi+2 = t(γ, . . . , γ, γ+1, γ+1), then Yi+3 = t(γ, . . . , γ, γ+1, γ+1, p γ+2+π(N)i+2

p
)

and it determines π(N)i+2 = p− 2 so that Yi+3 = t(γ, . . . , γ, γ+ 1, γ+ 1, γ+ 1)
is an integer vector (Lemma 9);

– et cetera we have π(N)i+j = p − j for 0 6 j < p, and eventually Yi+p =
t(γ+ 1, . . . , γ+ 1) is a uniform vector (note that Y0 has a negative mean, hence
γ is negative, which is consistent with the γ + 1 we obtain).

Therefore we are back to the initial grey node, after one complete wave pattern has
formed.

This process goes on until Yi = ~0.

Composing the convergence lemma (Lemma 13) and Lemma 16, we can show the
exponentially quick emergence of loosely wavy patterns:

Corollary 17. Let p be fixed. There exists a column n in O(logN) such that

π(N)[n ,∞[ ∈
(
0 + (p · p− 1 · . . . · 1)

)∗
0ω
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Figure 9: Emergence of loosely wavy shapes (Corollary 18).

Note that Proposition 4 of Subsection 2.1, stating the impossibility of having more
than p + 1 consecutive columns with the same height in a configuration reachable from
(N, 0ω), allows to refine the corollary above to get:

Corollary 18. Let p be fixed. There exists a column n in O(logN) such that

π(N)[n ,∞[ ∈
(
p · . . . · 2 · 1 ·

( p

+
i=0

0i
))∗

0ω

This corollary is illustrated on Figure 9.

3.4 Avalanches to complete the proof

In order to prove the upper bound theorem (Theorem 22), we refine Corollary 18 to
show that there is at most one set of two non-empty and consecutive columns of equal
height, called a plateau of size two, and corresponding to a slope equal to 0. It seems
necessary to overcome the static study -(or a given fixed point) presented above, and
consider the dynamic of sand grains from π(0) to π(N). These developments use the
notion of avalanche introduced in Subsection 2.4: from the relation

for all k > 0, π(π(k − 1)↓0) = π(k)

the kth avalanche is the minimal strategy from π(k− 1)↓0 to π(k) according to the lexico-
graphic order. We will use the fact that the structure of an avalanche on a wave pattern
is very constrained.

We say that there is a hole at position i in an avalanche sk if and only if i /∈ sk and
(i+1) ∈ sk. An interesting property of an avalanche is the absence of hole from an index
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l, which tells that

there exists an m such that
{

for all i with l 6 i 6 m, we have i ∈ sk
for all i with m < i, we have i /∈ sk

namely, from column l, a set of consecutive columns is fired, and nothing else. We say
that an avalanche sk is dense starting from an index l when sk contains no hole i with
i > l. We studied the structure of avalanches in [30, 31, 33], and saw that this property
leads to important regularities in successive fixed points. It induces a kind of “pseudo
linearity” on avalanches, it somehow “breaks” the criticality of avalanche’s behavior and
let them flow smoothly along the sandpile. Let us introduce a formal notation:

Definition 19. L′(p, k) is the minimal column such that the kth avalanche is dense start-
ing at L′(p, k):

L′(p, k) = min{l ∈ N | ∃m ∈ N such that ∀ l 6 i 6 m, i ∈ sk and ∀ i > m, i /∈ sk}

Then, the global density column L(p,N) is defined as:

L(p,N) = max{L′(p, k) | k 6 N}

The global density column L(p,N) is the smallest column number starting from which
the N first avalanches are dense (i.e. contain no hole). A conjecture of [30], proven only
for p = 2, is solved by Corollary 21 of the following lemma. This latter shows how
constrained the avalanche is on wave patterns: it is forced to stop on the first slope of
value 0 it encounters. The column on which the avalanche stops is the maximal index
fired within the N+1th avalanche, and is denoted max sN+1.

Lemma 20. Let n and N be such that

π(N)Jn ,∞J ∈ (p · p−1 · . . . · 1)
(

0 + (p · p−1 · . . . · 1)
)∗

0ω.

sN+1 is the (N + 1)th avalanche, and we have

• L′(p,N + 1) 6 n ;

• and if max sN+1 > n then max sN+1 = min {i > n : π(N)i = 0} − p.

Proof. If max sN+1 < n, the two parts of the lemma are straightforwardly true. Let us
consider the case where max sN+1 > n.

We prove the two parts of the lemma by induction on the number of consecutive
(without column of slope 0 in-between) wave patterns. Considering an avalanche, it is
easy to observe that (one can refer to [30] for details):

1. if there is a set of p consecutive columns with slopes all strictly smaller than p then
the avalanche stops before it;
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2. the greatest fired column, max sN+1 has slope value p in π(N).

From the two remarks above it is now straightforward to conclude: n has value p
and is fired (since max sN+1 > n), and then by induction if the next wave is consecutive
(without symbol 0) then the avalanche goes on one wave further, otherwise is stops, and
in both cases the two parts of the lemma are verified. More precisely, let π(N)q = p with
q > n be a fired column, we will prove one induction step (initialization is done with n).

• If q + p 6= 0, that is if there is a wave on columns q + p to q + 2 p− 1, then q + p is
fired since π(N)q+p = p and receives one unit of slope when column q is fired. We
can now notice that a chain reaction fires columns q + p− 1 to q + 1:

. . . (p
↑
q

· . . . · 2 · 1)(p
↑

q+p

· . . . · 2 · 1) . . .

– the tumbling of q + p gives p units of slope to q + p − 1, but π(N)q+p−1 = 1
therefore it becomes unstable and will be fired ;

– the tumbling of q+ p− 1 gives p units of slope to q+ p− 2, but π(N)q+p−2 = 2
therefore it becomes unstable and will be fired ;

– . . .

– the tumbling of q + 2 gives p units of slope to q + 1, but π(N)q+1 = p − 1
therefore it becomes unstable and will be fired.

Columns q + 1 to q + p− 1 are all fired, and q + p is the next column considered in
the induction (recall Lemma 6, each column is fired at most once).

• If q + p = 0,
. . . (p

↑
q

· . . . · 2 · 1) 0
↑

q+p

. . .

from observation 1 the avalanche stops at q + p and the lemma holds.

From Corollary 17, this lemma applies for a column n in O(logN). We therefore have
L′(p,N) in O(logN), i.e., the N th avalanche is dense starting from a logarithmic index in
N , and we deduce the following corollary on the emergence of regularities in the structure
of avalanches.

Corollary 21. Let p be fixed, L(p,N) is in O(logN).

We are now able to conclude the proof of the first part of our main theorem.

Theorem 22. For a fixed p, there exists an n in O(logN) such that

π(N)[n ,∞[ ∈ (p · . . . · 2 · 1)∗ 0 (p · . . . · 2 · 1)∗ 0ω.
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Proof. We prove the result by induction on the number of grains N . From Corollary 18,
for all N ′ 6 N there exists a column n′ in O(logN ′) such that π(N ′)[n′ ,∞[ has the form(

p · p−1 · . . . · 1 ·
( p

+
i=0

0i
))∗

0ω.

Let N be the set of such indices n′ (for N ′ from 0 to N). We will consider the column
` = maxN + p, which is in O(logN), and prove that π(N)[` ,∞[ has at most one symbol
0.

We prove the result by induction, supposing that for a N ′ with N ′ < N we have at
most one value 0 within π(N ′)[` ,∞[ (apart from the final 0ω), and showing that this fact
still holds for N ′ + 1. Let q = min {i > ` : π(N ′)i = 0} be the index of slope 0 among the
wave patterns, or the first in the infinite sequence of 0. We depict π(N ′) as follows

. . . (p
↑

q−p
· p− 1 · . . . · 1) 0

↑
q

(p · p− 1 · . . . · 1)∗ 0ω

with ` 6 q.

• If max sN
′+1 + p < ` then this avalanche does not modify the slopes on the right of

` (included), thus π(N ′ + 1)[` ,∞[ still has at most one value 0.

• If max sN
′+1 + p > ` then by definition of ` we can apply Lemma 20 for a column

smaller of equal to `− p, which gives

– L′(p,N ′ + 1) 6 `− p (hypothesis Hdense)

– max sN
′+1 = min {i > `− p : π(N ′)i = 0} − p

Since max sN
′+1 + p > `, we have

min {i > `− p : π(N ′)i = 0} > `

which means according to the induction hypothesis that max sN
′+1 = q − p.

Thanks to the density of avalanches before column ` − p (hypothesis Hdense), we
know all the fired columns (max sN

′+1 = q − p), and we can simply compute the
values of π(N ′ + 1) on the right of column ` by summing the gain and loss of units
of slope:

– π(N ′ + 1)q−p = 0 ;

– π(N ′ + 1)q−p+i = π(N ′)q−p+i + 1 for i ∈ [1 , p] ;

– π(N ′ + 1)i = π(N ′)i for i > ` and i /∈ [q − p , q].

Consequently, the value of slope 0 has “climbed” one wave on the left, which con-
cludes the proof.
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3.5 Lower bounding the wave appearance

Few more developments allow us to prove a tight asymptotic bound of Θ(logN) for the
wave appearance. This subsection is devoted to it. We first prove an Ω(logN) bound on
the n such that Yn is uniform, and then that it is not possible to get wave patterns as
described in the upper bound theorem (Theorem 22) if Yn is not uniform.

Lemma 23. For a fixed p > 1, the smallest n such that Yn is a uniform vector is in
Ω(logN).

Proof. This lemma follows from rough bounds on the difference between the greatest and
smallest value of Yi+1 compared to that of Yi, respectively denoted mi+1, mi+1, mi and
mi. From Yi = t(yi−p+1, . . . , yi) to Yi+1 = t(yi−p+2, . . . , yi+1) in the averaging system, the

value yi−p+1 is “forgotten” and the value yi+1 = mi + π(N)i
p

is “appended”, where mi is
the mean of the values of Yi. Let us do a case disjunction.

• If neither mi nor mi equals yi−p+1 (the value that is forgotten) then nothing moves:
mi+1 = mi and mi+1 = mi since the new value yi+1 verifies mi < yi+1 6 mi (when
mi 6= mi, with the same argument as in the proof of Lemma 12).

• If yi+p−1 = mi, that is, when the maximal value of Yi is forgotten, then mi+1 = mi

and

mi+1 > yi+1 = mi +
π(N)i
p

>
p− 1

p
mi +

1

p
mi

where the left inequality comes from the fact that the greatest value of Yi+1 is at
least the newly appended yi+1, and the right inequality is the worst case if all the
other values yi−p+2, . . . , yi equal the smallest mi. We can conclude that

mi+1 −mi+1 >
p− 1

p
mi +

1

p
mi −mi =

1

p
(mi −mi).

• If yi−p+1 = mi, that is, when the minimal value of Yi is forgotten, then mi+1 = mi

and

mi+1 6 yi+1 = mi +
π(N)i
p

6
1

p
mi +

p− 1

p
mi + 1

where the left inequality comes from the fact that the smallest value of Yi+1 is at
least the newly appended yi+1, and the right inequality is the worst case if all the
other values yi−p+2, . . . , yi equal the greatest mi. We can conclude that

mi+1 −mi+1 > mi −
1

p
mi +

p− 1

p
mi − 1 =

1

p
(mi −mi)− 1.

In any case, we have mi+1 −mi+1 >
1
p

(mi −mi)− 1. This can be rewritten as

mi+1 −mi+1 +
p

p− 1
>

1

p

(
mi −mi +

p

p− 1

)
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A straightforward induction on the above inequality gives that, for each non-negative
integer i,

mi −mi +
p

p− 1
>

1

pi

(
m0 −m0 +

p

p− 1

)
.

Consequently, for i such that 1
pi

(
m0 −m0 + p

p−1

)
− p

p−1 > 0, i.e., for

i <
1

ln p

(
ln

(
m0 −m0 +

p

p− 1

)
− ln

(
p− 1

p

))
,

we have mi −mi > 0. The fact that m0 −m0 is in Θ(N) gives the result.

The proof of the necessity for uniform vectors in order to get wave patterns is very
similar to the proof of its reciprocal, Lemma 16, which told that uniform vectors imply
wave pattern. We will use the contrapositive of the following statement.

Lemma 24. π(N)[n ,∞[ ∈ (p · . . . · 2 · 1)∗ 0 (p · . . . · 2 · 1)∗ 0ω implies that Yn is a uniform
vector.

Proof. On the left end of the configuration, for a column i inside the 0ω part, we have
Yi+p = t(0, . . . , 0). From right to left, let us see what happens when we encounter wave

patterns. We have Yi = M Yi−1 + π(N)i−1

p
K (Equation 3), hence

Yi−1 = M−1 Yi −
π(N)i−1

p
L with M−1 =


−1 . . . −1 p
1 0 0

. . .

0 1 0

 and L = M−1K =


0
...
0
p

 .

Let us immediately present the general case: we start from a uniform Yi = t(γ, . . . , γ) for
some γ.

• If π(N)i−1 = 0 then Yi−1 = t(γ, . . . , γ) and we are back to the same situation, this
is the case when we encounter a 0 between two wave patterns.

• If (π(N)i−1, π(N)i−2, . . . , π(N)i−p) = (1 · . . . ·p), i.e. we encounter a wave, then from
the relation above:

– Yi−1 = t(γ − 1, γ, . . . , γ);

– Yi−2 = t(γ − 1, γ − 1, γ, . . . , γ);

– Yi−3 = t(γ − 1, γ − 1, γ − 1, γ, . . . , γ);

– et cetera, and eventually Yi−p = t(γ − 1, . . . , γ − 1) is a uniform vector.

This process goes on while we are on wave patterns: we always get back to uniform
vectors.
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Combining Lemmas 23 and 24 we get the corollary below.

Corollary 25. For a fixed p > 1, the smallest n such that

π(N)[n ,∞[ ∈ (p · . . . · 2 · 1)∗ 0 (p · . . . · 2 · 1)∗ 0ω

is in Ω(logN).

The upper bound theorem (Theorem 22) and Corollary 25 give the final result.

Theorem 26. For a fixed p, the smallest n such that

π(N)[n ,∞[ ∈ (p · . . . · 2 · 1)∗ 0 (p · . . . · 2 · 1)∗ 0ω

is in Θ(logN).

3.6 An illustrative example

Figure 10 presents some representations of π(2000) for p = 4 used in the developments
of the paper: differences of shot vector (Figure 10a), shot vector (Figure 10b) and height
(Figure 10c).

π(2000) = (4, 0, 4, 1, 3, 2, 4, 1, 1, 3, 4, 3, 4, 2, 0, 1, 4, 2, 2, 1,
4, 3, 2, 1, 0, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 0ω)

We can notice on Figure 10a that the shot vector differences contract towards some “steps”
of length p, which corresponds to the statement of the convergence lemma (Lemma 13)
that the vector Yn becomes uniform exponentially quickly (note that this graphic plots
the opposite of the values of the components of Yn). Figure 10c pictures the sandpile
configuration on which the wavy shape appears starting from column 20 over the 40
non-empty columns.

To see that wave patterns cover asymptotically completely the fixed point, let us briefly
present the fixed point for p = 4 and N = 20000:

π(20000) = (3, 0, 0, 4, 2, 4, 3, 3, 4, 2, 1, 4, 4, 3, 4, 3, 2, 2, 4, 0, 2, 4, 4, 3, 1, 0,
4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1,
4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 0,
4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1,
4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 0ω)

where the wavy shape appears starting from column 26 over the 126 non-empty columns.

4 Concluding Discussion

The proof technic we set up in this paper allowed to prove the emergence of regular
patterns periodically repeated on fixed points, stemming from an initial segment present-
ing a disordered structure. The absolute size of this segment tends to infinity, and its
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Figure 10: Representations of π(2000) for p = 4.

relative size (compared to the width of the fixed point) tends to zero. Consequently,
the result asymptotically completely describes the fixed point. Arguments of linear al-
gebra allowed to prove a rough convergence of the system (in an imprecise but coarsely
bounded representation), completed with the use of combinatorial arguments exploiting
the discrete nature of the model, leading to the description and explanation of precise
and regular wave patterns. Interestingly, this main result is proved without requiring a
precise understanding of the initial segment’s dynamic.

Let us argue again that the word emergence, though not formally defined, feels right
to describe the phenomenon captured in the exact bound theorem (Theorem 26). As
presented in Subsection 2.4, the fixed point configuration can be reached by adding sand
grains one by one on the leftmost column: each grain addition triggers an avalanche (that
may involve more grains in its way) traveling along the upper layer of the sandpile. Dur-
ing their movements, as they go rightward and downward, they self-organize into regular
structures that do not appear immediately, but only after a transient of asymptotically
unbounded size (though, relatively, very small). Since all the grains creating and main-
taining the regular wave patterns on the right cross the left and weakly ordered part, it
feels natural to say that the regularities emerge from the dynamic of sand grains: naively,
some kind of order is destroyed (the initial column may be seen as extremely regular) and
recreated in this process.

Trying to extend the proof technics of Theorem 26 (especially the upper bound) to
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other models is a promising track of research. It is easy to construct such models from
the CFG representation of KSM. An example where similar regularities experimentally
emerge is to apply the KSM rule for all k 6 p when the height difference between two
columns is strictly greater than

∑p
k=1 k. It would shade some light on the concept of

emergence to find families of models of increasing expressiveness on which the technics
allow to understand the asymptotic shape of fixed point, or the asymptotic dynamic.

It seems that an alternative proof can be derived from the developments of [24, 25],
using others tools like harmonic functions and the least action principle. We think that the
technic presented here is nonetheless of interest, as it clearly separates two ingredients:
the continuous one linked to linear algebra arguments, and the discrete one linked to
combinatorial arguments.

This result stresses the idea that sandpile models are on the edge between discrete
and continuous systems. As we pour grains one by one, they start to self-organize and
create regular wave structures. Hypothetically, the result suggests a separation of the
discrete and continuous parts of the system. On one hand, there is a seemingly unordered
initial segment, interpreted as reflecting the discrete behavior. On the other hand, the
asymptotic and ordered part, interpreted as reflecting the continuous behavior, lets a
regular and smooth pattern emerge. Can we interpret the continuous part as a liquid
limit of the discrete part?

There is a slight bias appearing on the continuous part: it is not fully homogeneous
(that is, with exactly the same slope at each index) which would have been expected for
a continuous system, but a (very small) pattern is repeated. It looks like this bias does
not come from the unicity of the initial column, because we still observe the appearance
of wave patterns starting from variations of the initial configuration (for example starting
from p consecutive columns of height N , thus pN grains, or starting with a whole sandpile
of wave patterns and adding grains one by one on the leftmost column). Rather, we think
that this bias comes from the gap between the unicity of the border column on the left
side (at index −1) compared to the rule which affects p columns.

Finally, the emergence of regularities in this system hints at a clear qualitative dis-
tinction between some sand grains and a heap of sand, providing a solution to the sorite
paradox in the Kadanoff sandpile model: we have a heap as soon as a wave pattern appears.
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