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Abstract

Lots of research focuses on the combinatorics behind various bases of cluster
algebras. This paper studies the natural basis of a type A cluster algebra, which
consists of all cluster monomials. We introduce a new kind of combinatorial formula
for the cluster monomials in terms of the so-called globally compatible collections.
We give bijective proofs of these formulas by comparing with the well-known com-
binatorial models of the T -paths and of the perfect matchings in a snake diagram.
For cluster variables of a type A cluster algebra, we give a bijection that relates
our new formula with the theta functions constructed by Gross, Hacking, Keel and
Kontsevich.
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1 Introduction

Cluster algebras were first introduced by S. Fomin and A. Zelevinsky in [8] to design
an algebraic framework for understanding total positivity and canonical bases for quan-
tum groups. A cluster algebra is a subring of a rational function field generated by a
distinguished set of Laurent polynomials called cluster variables. The long-standing Posi-
tivity Conjecture, now proved in [15] and [10], asserts that the coefficients in the Laurent
expansion of any cluster variable with respect to any fixed cluster are positive integers.
From the combinatorial point of view, the Positivity Conjecture suggests that these co-
efficients should count some combinatorial objects. Lots of research focuses on building
such combinatorial models. We give a brief summary of the pros and cons of four such
models.

• T -paths: In [19], Schiffler (independently Carroll–Price and Fomin–Zelevinsky in
their unpublished work) obtained a formula for the cluster variables of a cluster algebra
of finite type A (see §2 for the definition) in terms of T -paths. This formula has been
modified and generalized to cluster algebras coming from surfaces [16, 17, 20, 21, 11].
The formula is computation-friendly, but it does not seem to generalize to cluster
algebras not coming from surfaces.

• Perfect matchings of a snake diagram: A description that is similar to the T -
path model but has a more graph-theoretic flavor [16]. Interesting combinatorics, for
example the snake graph calculus [4, 5], arises in the study of this model. This formula
is simply bijective to the T -path formula, but uses more classical graph-theoretical
notion “perfect matching” and is easier to compute; like the T -path formula, it is also
restricted to cluster algebras coming from surfaces.

• Compatible pairs in a Dyck path: In [14], the cluster variables of rank 2 quivers
are described in terms of Dyck paths. A more general construction of the so-called
compatible pairs is used in the study of greedy bases in [13], and another generalization
called GCC is used in [1, 12]. This formula is computation-friendly and easy to
implement, and it applies to rank 2 cluster algebras that do not necessarily come from
surfaces. Meanwhile, the main drawback is that we could not yet find a generalization
that gives the cluster variables for higher rank non-type-A cluster algebras. The
combinatorics is quite different than the T -paths and perfect matchings, but we shall
give a bijection in this paper showing that they indeed coincide in the type A case
(Theorem 4.4 and Theorem 8.3).

• Broken lines and Theta functions: Discovered in [10], they are the most general
combinatorial models so far. They are so powerful that can be used to proved several
well-known conjectures including the positivity conjecture. On the other hand, they
are mainly of theoretical importance but do not yet give a satisfying combinatorial
model (at least not in the sense of the previous three models): for example, the
finiteness of the number of broken lines is not immediate from the definition, and it
is difficult to implement even for rank 2 cluster algebras.
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Our ultimate goal is to find a combinatorial model that is both general and effective
in computation. Even though this goal appears out of reach for now, we feel that the
model of maximal Dyck paths and compatible pairs has the potential to be generalized.
This motivates the main goal of this paper:

For a type A quiver, give a new formula for the cluster monomials using a combina-
torial model similar to compatible pairs, and find the bijections to other known models.

We reach this goal by proving three equivalent formulas.
– In Theorem 3.1, we give a formula using a sequence of 0-1 sequences called a GCS

(globally compatible sequence), where each vertex of the quiver is assigned a 0-1 sequence
satisfying a certain compatibility condition.

– In Theorem 3.5, we give a formula using globally compatible collections (GCCs) in
Dyck paths. This formula has a similar flavor to the combinatorial formula for greedy
bases in [13].

– In §2, we first use a combinatorial gadget called pipelines to decompose the d-vector
of a cluster monomial into the ones of cluster variables, then give a formula for cluster
variables using GCCs in Theorem 3.6.

We would like to point that that the above results are extending the results on the
equioriented type A quivers given in [1].

Moreover, for cluster variables of a type A quiver, we construct a bijection between
GCSs (which is equivalent to GCCs) and broken lines in Theorem 6.10 (the even rank
case) and 6.13 (the general case), which relates our new formula with the theta functions
constructed in [10]. The simplicity of this bijection came as a surprise for us: namely,
under our setting, the i-th number in a GCS (which is a 0-1 sequence) is 0 if and only if
the corresponding broken line bends at the i-th coordinate hyperplane e⊥i . This suggests
that there could be further connections between our new combinatorial formulas and theta
functions, and thus could provide a new approach to understanding broken lines (which
are difficult to describe explicitly in general); however, as explained in Remark 6.4, right
now we are only able to construct a bijection for cluster variables of a type A quiver
because the broken lines are special in this case.

The paper is organized as follows. In §2 we recall the definition of cluster algebra and
some facts about type A quivers. In §3 we define the d-vector of a cluster monomial and
introduce its decomposition using pipelines. §4 consists of the statements of the main
results of the paper. In §5 we prove the GCC formula for cluster variables (Theorem 3.6)
by establishing a bijection from GCCs to perfect matchings. Then in §6 we give the proof
of the other main results of §4. In §7 we give the bijection between GCSs and broken lines.
Then we give some examples in §8. In the appendix, we give another proof of Theorem
3.6 using T -paths.
Acknowledgement. We are grateful to Ralf Schiffler for valuable correspondences, and to
Man Wai Cheung, Mark Gross and Greg Muller for very helpful discussion on scattering
diagrams and broken lines. We are grateful to the anonymous referees for carefully read-
ing through the manuscript and giving us many constructive suggestions to improve the
presentation.

In this section, we recall some definitions and fix notations about quivers and skew-
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symmetric cluster algebras (§2.1) and some special type A quivers (§2.2).

1.1 Quivers and skew-symmetric cluster algebras

Recall that a finite oriented graph is a quadruple Q = (Q0, Q1, h, t) formed by a finite
set of vertices Q0, a finite set of arrows Q1 and two maps h and t from Q1 to Q0 which send
an arrow α respectively to its head h(α) and its tail t(α). An arrow α whose head and
tail coincide is a loop; a 2-cycle is a pair of distinct arrows β and γ such that h(β) = t(γ)
and t(β) = h(γ). Similarly, it is clear how to define n-cycles for n > 3. A vertex is a
source (respectively a sink) if it is not the head (resp. the tail) of any arrow.

In this paper, a quiver is a finite oriented graph without loops or 2-cycles.
Given a quiver Q and a vertex v ∈ Q0, the mutation µv(Q) is the new quiver Q′

obtained as follows:

1. For every path of the form u→ v → w, add a new arrow from u to w.

2. Reverse all arrows incident to v.

3. Remove all 2-cycles.

Let Q = (Q0, Q1, h, t) be a quiver. Let Q0 = {v1, . . . , vn} = {1, . . . , n} (for simplicity,
we denote vi by i in this paper if no confusion arises; and later we also use notation
I = Iuf = Q0 to denote the same set). Let F = Q(x1, . . . , xn) be the field of rational
functions in x1, x2, . . . , xn with rational coefficients. A seed is a pair (u, Q) where u =
{u1, u2, . . . , un} is a set of elements of F which freely generate the field F . For any vertex
i ∈ Q0, we denote∏

j→i

uj =
∏

α∈Q1,h(α)=i

ut(α),
∏
i→j

uj =
∏

α∈Q1,t(α)=i

uh(α).

The mutation µi(u, Q) is the seed (u′, Q′) where Q′ = µi(Q) and u′ is obtained from u
by replacing ui by

u′i =

∏
j→i

uj +
∏
i→j

uj

ui
.

Let ({x1 . . . , xn}, Q) be the initial seed. A cluster is a set u′ which appears in a seed
(u′, Q′) obtained from the initial seed by iterated mutations. An element in a cluster is
called a cluster variable. A cluster monomial is a product of cluster variables in the same
cluster. The (coefficient-free) cluster algebra A(Q) associated with Q is the subring of F
generated by all cluster variables.

Next we recall the definition of the cluster algebra Aprin with principal coefficient
corresponding to the coefficient-free cluster algebraA = A(Q). Let Iuf = Q0 = {1, . . . , n},
I = {1, . . . , 2n}. Define a quiver Q̃ with the vertex set Q̃0 := I and the edge set

Q̃1 := Q1 ∪ {(n+ i, i)|i = 1, . . . , n}.
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In other words, Q̃ is obtained from Q by adding an arrow from n + i to i for each
i = 1, . . . , n. We call i ∈ Iuf unfrozen vertices and i ∈ I \ Iuf frozen vertices. Starting
with the initial seed ({x1, . . . , x2n}, Q̃), we mutate it iteratively similar as above, with the
restriction that we only use the mutations µi for 1 6 i 6 n (that is, only mutate at the
unfrozen vertices). For each new seed ({x′1, . . . , x′2n}, Q̃′), the first n rational functions
x′1, . . . , x

′
n form a cluster. (Note that the frozen variables do not change after mutation,

that is, x′i = xi for n+ 1 6 i 6 2n; and we do not consider them to be cluster variables.)
The union of all clusters gives the set of cluster variables. The cluster algebra Aprin is the
subring of Q(x1, . . . , x2n) generated over QP := Q[x±1

n+1, . . . , x
±1
2n ] by all cluster variables.

Let Q′ = (Q′0, Q
′
1, h
′, t′) be another quiver. We say that Q is a subquiver of Q′ if

Q0 ⊆ Q′0 and Q1 ⊆ Q′1

and h(e) = h′(e) and t(e) = t′(e) for any arrow e ∈ Q1. We say that Q is a full subquiver
of Q′ if Q can be obtained from Q′ by removing vertices Q′0 \Q0 and their incident arrows.

1.2 Special classes of type A quivers

Here we define type A, linear, completely extended linear, and extended linear quivers.
The relation among the four classes can be described as follows:

{type A} ⊃ {extended linear} ⊃ {completely extended linear}
⊃
{linear}

1.2.1 Type A quivers

By definition, type A quivers are those that are mutation equivalent to quivers of the
form • → • → · · · → •. In [3], A. Buan and D. Vatne showed that a type A quiver is a
connected quiver such that

• all nontrivial simple cycles in the underlying graph have length 3, and the correspond-
ing directed subgraphs are oriented (3-cycles);

• the vertex degrees of the underlying graph are at most 4; moreover, a degree-4 vertex
belongs to two 3-cycles, a degree-3 vertex belongs to one 3-cycle.

1.2.2 Linear quivers

For two integers a and b, we denote [a, b] = {a, a + 1, . . . , b} if a 6 b, and [a, b] = ∅ if
a > b.

A linear quiver is a quiver with n vertices {v1, v2, . . . , vn} and n − 1 arrows in which
any two consecutive vertices vi and vi+1 (i ∈ [1, n − 1]) are connected by a single arrow
in either direction and there are no others arrows.

In order to have a convenient description for a linear quiver Q, we construct a sequence
{δi}16i6n−1 such that δi = 0 if there is an arrow going from the vertex vi to the vertex
vi+1, and δi = 1 otherwise. For example, for the quiver 1 → 2 → 3 → 4 ← 5, we have
(δ1, . . . , δ4) = (0, 0, 0, 1).
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1.2.3 Completely extended linear quiver

We define a completely extended linear quiver Q′ as obtained from a linear quiver Q
by attaching a 3-cycle to every edge, a 3-cycle to v1, and a 3-cycle to vn. (So Q′ has 2n+3
vertices.) By abuse of terminology, we also call the pair (Q,Q′) a completely extended
linear quiver, whenever we need to specify the linear quiver Q.

Let (Q,Q′) be a completely extended linear quiver with Q0 = {v1, . . . , vn} and Q′0 =
{v1, . . . , v2n+3}. If vi ∈ Q′0 \ Q0 is adjacent to both vj and vj+1 then we also denote
vj,j+1 = vi. For the 3-cycle attached to v1, the head (resp. tail) of the outgoing (resp.
incoming) arrow is denoted v1,0 (resp. v1,1). We define vn,0 and vn,1 similarly.

Example 1.1. The quiver (Q,Q′) in Figure 1 is a completely extended linear quiver,
where Q is the linear part 1 → 2 → 3 ← 4. In there, v1,0 := 5, v1,1 := 6, v1,2 := 7,
v2,3 := 8, v3,4 := 9, v4,0 := 10 and v4,1 := 11.

1 2 3 4

5

6

7 8 9

10

11

δ1 = 0 δ2 = 0 δ3 = 1

Figure 1: A completely extended linear quiver

For convenience, if vj,k = vi, then we denote the variable xj,k = xi.

1.2.4 Extended linear quivers

An extended linear quiver (Q,P ) is obtained from a completely extended linear quiver
(Q,Q′) by removing some vertices (or none) in Q′0 \ Q0 and the arrows incident with
them. Equivalently, we can characterize P as a quiver obtained from Q by adding some
(or none) of the following:

• a 3-cycle or an edge hung on v1, or

• a 3-cycle or an edge hung on vn, or

• 3-cycles attached to some edges of Q.

There is an obvious way to obtain a completely extended linear quiver (Q,Q′) from
an extended linear quiver (Q,P ) (up to relabeling vertices in Q′0 \ P0). An example is
shown in Figure 2.
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1 2 3

4
5

1 2 3

4
5

6

7

8

9

Figure 2: An extended linear quiver before and after being completed

2 Parametrization of Cluster Monomials by d-vectors

2.1 Cluster monomials and d-vectors

It is well known that any cluster algebra associated to a type A quiver with n vertices
can be constructed from a triangulation on a (n + 3)-gon P . A diagonal on the (n + 3)-
gon P is a line segment connecting two non-adjacent vertices. Two diagonals are said
to be crossing if they intersect in the interior of P . A triangulation is a maximal set of
non-crossing diagonals together with the boundary edges of P . A connected curve on the
polygon is called a pseudo-diagonal if it is isotopic to a diagonal (and its endpoints are
the same as those of the diagonal) and if its interior is in the interior of the polygon. Two
pseudo-diagonals are said to be crossing if they intersect in the interior of the polygon.
Note that if two pseudo-diagonals are not crossing, then the corresponding diagonals
either coincide or do not cross in the interior of the polygon.

Given a triangulation of P , assume the non-crossing diagonals are T1, . . . , Tn and the
boundary edges are Tn+1, . . . , T2n+3. Then it induces a type A quiver Q with n vertices
labeled by T1, . . . , Tn, such that there is an arrow from Ti to Tj if and only if there is a
triangle with Ti and Tj being its two sides, and Tj is obtained from Ti by rotating (< 180◦)
counterclockwisely about their common endpoint. (For example, for the triangulation in
Figure 14, the corresponding quiver is T1 → T2 → T3 ← T4.) The triangulation also
induces a larger quiver Q′ with 2n+3 vertices labeled by T1, . . . , T2n+3 following the same
rule as above. We call Tn+1, . . . , T2n+3 the frozen vertices of Q′.

Take P and Q as above. It is also known that the cluster variables of A(Q) are in
natural bijection with all the diagonals of P . Using this bijection, a cluster monomial
of A(Q) can be identified with a finite set of pairwise non-crossing (and non-identical)
pseudo-diagonals, or equivalently with

{(D1, d1), . . . , (Dm, dm)},

where m is a non-negative integer, D1, . . . , Dm are pairwise non-crossing diagonals, and
d1, . . . , dm are positive integers. It is easy to see that given {(D1, d1), . . . , (Dm, dm)}, we
can always find a finite set of pairwise non-crossing (and non-identical) pseudo-diagonals,
such that di of these pseudo-diagonals are isotopic to Di for 1 6 i 6 m.

The following definition uses a natural intersection number, which was already con-
sidered in [7, 16, 20, 21, 17].
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Definition 2.1. For two diagonals D,E on the (n + 3)-gon, we define the intersection
number i(D,E) of D and E as follows:

i(D,E) :=


1, if D and E cross each other;
−1, if D and E are the same;
0, otherwise.

Then the d-vector of the cluster monomial {(D1, d1), . . . , (Dm, dm)} is defined by

(a1, . . . , an) = (
m∑
j=1

dji(Dj, T1), . . . ,
m∑
j=1

dji(Dj, Tn)).

It is easy to see that the d-vector (a1, . . . , an) of any cluster monomial satisfies the
following:
Property A. For any 3-cycle i → j → k → i in Q such that ai, aj, ak are positive and
satisfy the triangle inequalities (i.e., the sum of any two numbers is strictly greater than
the third), the sum ai + aj + ak is even.
Proof. Assume i→ j → k → i is a 3 cycle in Q such that ai, aj, ak are positive and satisfy
the triangle inequalities. Correspondingly, the three diagonals Ti, Tj, Tk form a triangle.
Since ai > 0, Ti is not in {D1, . . . , Dm}. Similar conclusion holds for Tj and Tk. There
are two cases to consider:

Ti Tj

Tk

Ti Tj

Tk

σjkiσkij σjkiσkij

σijk

Figure 3: Two cases.

Case 1: there is at least one diagonal in {D1, . . . , Dm} that crosses an edge and shares
a vertex with the triangle formed by Ti, Tj, Tk. Without loss of generality, assume D`

crosses Tk and shares a vertex with Ti and Tj (see Figure 3 Left, where we draw pseudo-
diagonals to illustrate the multiplicity). In this case all the ai diagonals (with multiplicity)
crossing Ti must cross Tk (otherwise they will cross D`). Similarly, all the aj diagonals
(with multiplicity) crossing Tj must cross Tk. Thus the total number of diagonals crossing
Tk is ak = ai + aj + a`, contradicting the triangle inequality assumption.

Case 2: each diagonal in {D1, . . . , Dm} either cross two of Ti, Tj, Tk, or none (see Figure
3 Right). In this case, assume σijk is the number of diagonals (with multiplicity) crossing
Ti and Tj, etc. (So σijk = σjik.) Then ai = σijk + σkij, aj = σijk + σjki, ak = σjki + σkij,
therefore ai + aj + ak = 2(σijk + σjki + σkij) is even.
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2.2 Construction of pipelines

In this subsection, the notion of pipelines will be introduced (which we do not claim
any originality1) to help us understanding d-vectors of cluster monomials.

Let W be the set of all integer vectors (a1, . . . , an) satisfying Property A, that is,
ai + aj + ak is even when both of the following conditions are satisfied:

(i) i→ j → k → i is a 3-cycle, and
(ii) ai, aj, ak are positive and satisfy the triangle inequalities.

(In particular, if Q has no 3-cycles, then W = Zn.)
In this subsection we prove that the cluster monomials of A(Q) are in bijection with

W . We will define a map fromW to the cluster monomials, which would then induce the
immediate bijection. Let [x]+ = max(x, 0) for any real number x. Let a = (a1, . . . , an) ∈
W . We define a function σ : R3

>0 → R>0 as follows:

σ(x, y, z) =
[x+ y − z]+ − [x− y − z]+ − [y − x− z]+

2
=


x, if y > x+ z;

y, if x > y + z;

0, if z > x+ y;
x+ y − z

2
, otherwise.

(1)
For convenience, we denote

σa
ijk = σ(ai, aj, ak).

(If no confusion shall arise, we denote σijk = σa
ijk. Note that it coincides with σijk appeared

in the proof of Property A, Case 2.)

Remark 2.2. By case-by-case analysis for the cases shown in Figure 3, it is obvious that
the equality σkij + σjki 6 [ak]+ (and similar inequalities obtained by permuting i, j, k)
holds for any 3-cycle i→ j → k → i.

Proposition 2.3. Let Q be a type A quiver. Then

1. a ∈ Zn is the d-vector of some cluster monomial of A(Q) if and only if a ∈ W.

2. Two distinct cluster monomials have different d-vectors.

Proof. Let M be the set of monomials of A(Q). An element in M can be identified with a
set {(D1, d1), . . . , (Dm, dm)}. Let f : M →W be the map that sends a cluster monomial
to its d-vector. It follows from Property A that the image of f is indeed in W .

1A set of pipelines (to be defined in Proposition 2.3) are, in many aspects, similar to a lamination as
in [6], and a pipeline is similar to a curve in a lamination (we thank one of the referees to pointing it
out to us). For example, our construction of the set of pipelines given in Proposition 2.3 is essentially
the same as the “Reconstruction” of the lamination given in [6, page 11]. The main difference is the
following: the two ends of our pipelines are marked points, and that two pipelines may meet at marked
points; in contrast, two curves of a lamination do not end at marked points, and two curves do not meet
at endpoints. Moreover, we do not discuss homotopy equivalence of pipelines in this paper.
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Next we construct a map g : W → M . Given a ∈ W , we construct the set of
pipelines associated to a in three steps. We consider the triangulation of the (n+ 3)-gon
corresponding to Q, and Ti, Tj, Tk appeared below are diagonals or boundary edges; in
other words, 1 6 i, j, k 6 2n+ 3.
Step 1: If ai > 0 then draw ai marked points on Ti to separate it into ai + 1 segments. If
ai < 0 then draw −ai pipes so that these pipes are pairwise non-crossing pseudo-diagonals
isotopic to Ti and that they do not cross any other Tj (j 6= i).
Step 2: If Ti and Tj are two sides of a triangle with the third side Tk, then for 1 6 r 6 σijk,
we join the two r-th marked points on Ti and Tj (ordering in the increasing distance from
the common endpoint of Ti and Tj) by a pipe inside the triangle. Draw these pipes so
that they are disjoint from each other and from the pipes constructed in Step 1.
Step 3: Suppose that Ti, Tj, Tk form a triangle. Then for each marked point on Tk that
is not connected by a pipe to any marked point on Ti or Tj (see Figure 3 Right), we draw
a pipe from the marked point to the common endpoint of Ti and Tj. Draw these pipes
inside the triangle in such a way that they are non-crossing with each other and with the
pipes constructed in Step 1,2.

A pipeline is a union of pipes connected consecutively through the marked points
(but not through the vertices of the (n + 3)-gon). Then the pipelines are pairwise non-
crossing. Since the endpoints of each pipeline are non-adjacent vertices of the polygon,
every pipeline is a pseudo-diagonal. Hence the set of pipelines corresponds to a cluster
monomial, which we define as the image g(a).

It follows immediately from the above construction that g is the inverse of f . So f is
bijective. The surjectivity of f implies (1) and the injectivity of f implies (2).

The above propostion allows us to denote the (unique) cluster monomial with d-vector
(a1, . . . , an) by x[a1, . . . , an] or x[a].

Each pipeline Λ corresponds to a 0-1 sequence b = bΛ = (b1, . . . , bn) such that

bi =

{
0, if the pipeline Λ is disjoint from Ti;

1, otherwise.
(2)

Note that Λ corresponds to a linear full subquiver of Q. Two pipelines sharing the same
endpoints correspond to the same 0-1 sequence. Let S be the multiset of 0-1 sequences
corresponding to all the pipelines in the set of pipelines associated to a. Then

x[a] =
∏
b∈S

x[b]. (3)

Example 2.4. The first two pictures in Figure 4 are a type A quiver with 7 vertices
and its corresponding triangulation on the 10-gon. For a clearer illustration, the 10-gon
is drawn as a concave polygon. The bottom illustrates the construction of pipelines for
a = (3, 3, 3, 2, 4, 3, 1).

The set of pipelines associated to a consists of 5 pipelines, namely those passing
through edges sets {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 5, 7}, {3, 4, 5, 6}, {3, 5, 6}, respectively.
So the cluster monomial x[a] is decomposed as x[3, 3, 3, 2, 4, 3, 1] = x[1, 1, 1, 1, 0, 0, 0] ·
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1

2 3

4

5

6 7

Q

1 2 3
5

67

4

G

2 3

4

5

67

1

21 2 3

5

3

4

5

67

Figure 4: The construction of pipelines

x[1, 1, 0, 0, 1, 1, 0] ·x[1, 1, 0, 0, 1, 0, 1] ·x[0, 0, 1, 1, 1, 1, 0] ·x[0, 0, 1, 0, 1, 1, 0], and the multiset
S (which is indeed a set in this example) consists of the five 0-1 sequences appeared above.

Lemma 2.5. For a ∈ Zn, assume that [a]+ := [[a1]+, . . . , [an]+] satisfies Property A and
x[[a]+] =

∏
x[b] is a factorization into cluster variables in the same cluster. Then

x[a] = x[[a]+]
∏
i

x
[−ai]+
i =

∏
x[b]

∏
i

x
[−ai]+
i ,

and that x[b] and xi (ai < 0) are in the same cluster.

Proof. If ai < 0, then there is no b satisfying bi > 0. Thus no pseudo-diagonals corre-
sponding to pipelines for [a]+ will cross the diagonal Ti. Therefore, after adding Ti we
still get a set of non-crossing pseudo-diagonals, which means that x[b] and xi (ai < 0) are

in the same cluster. It then follows that x[a] = x[[a]+]
∏

i x
[−ai]+
i .

Remark 2.6. Assume that Q is a full subquiver of Q′. We compare cluster variables in
various cluster algebras.

For simplicity, we denote the vertex sets Q0 = {1, . . . , n} and Q′0 = {1, . . . , n′}. By
definition, the cluster algebra with coefficients, denoted A(Q,Q′), is generated by only
those cluster variables in A(Q′) obtained from iteratively mutating the initial cluster
variables x1, . . . , xn only at vertices in {1, . . . , n}. (Vertices in {n + 1, . . . , n′} are called
frozen vertices. The coefficients are in Z[x±1

n+1, . . . , x
±1
n′ ].) Thus, there is a natural bijection

sending a cluster variable in A(Q,Q′) of the form x[d1, . . . , dn] to the cluster variable
x[d1, . . . , dn, 0, . . . , 0] ∈ A(Q′) of the same expression.
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There is also a natural bijection sending a cluster variable x[d1, . . . , dn] ∈ A(Q,Q′) to
the cluster variable x[d1, . . . , dn] ∈ A(Q), given by substituting xi by 1 for i ∈ [n+ 1, n′].
More generally, if Q is a full subquiver of P , and P is a full subquiver of Q′, then there
is a natural bijection sending a cluster variable x[d1, . . . , dn] ∈ A(Q,Q′) to x[d1, . . . , dn] ∈
A(Q,P ) given by substituting xi by 1 for i ∈ Q′0 \ P0.

If Q is a full subquiver of Q′′, and Q′ is the vertex-induced subquiver of Q′′ whose
vertex set consists of vertices in Q0 and those adjacent to Q0, then the cluster variables
in A(Q,Q′) have the same expressions as those in A(Q,Q′′).

3 Globally Compatible Collections

In this section, we give three formulas for the cluster monomial x[a] for a ∈ W . All
results here will be proved in §6. These formulas extend the results on the equioriented
type A quivers given in [1]. For general type A quivers, a new situation we need to handle
is the appearance of 3-cycles.

First we reduce to a special case. We can replace a by [a]+, thus can assume ai > 0,
because of Lemma 2.5. Moreover, for any edge i → j of Q that is not in a 3-cycle, we
can add a vertex k and two arrows j → k and k → i (the vertex k is a frozen vertex).
Indeed, assume the modified quiver is Q′. Then by Remark 2.6, once we have a formula
for cluster monomials for Q′, we can set xi = 1 for all i ∈ Q′0 \ Q0 and obtain a formula
for cluster monomials for Q. In the rest of the paper, we assume that a = [a]+ and

Q is of type A with more than one vertex, and every edge of Q is in a 3-cycle. (4)

3.1 A formula using 0-1 sequences

Fix a deg-2 vertex i0 of Q (which exists because of (4)). For i ∈ Q0, denote by
d(i) be the distance (i.e., the length of the shortest directed path) from i0 to i. Let
si = (si,1, si,2, . . . , si,ai) ∈ {0, 1}ai be a 0-1 sequence, and define

|si| =
ai∑
r=1

si,r , |s̄i| =
ai∑
r=1

(1− si,r) = ai − |si|.

We say that a sequence of 0-1 sequences s := (s1, . . . , sn) is a globally compatible sequence
(abbreviated GCS) if the following holds for any 3-cycle i→ j → k → i:

• If d(i) < d(j) < d(k), then (si,t, sj,t) 6= (1, 0) for 1 6 t 6 σijk;

• If d(j) < d(k) < d(i), then (si,ai+1−t, sj,aj+1−t) 6= (1, 0) for 1 6 t 6 σijk;

• If d(k) < d(i) < d(j), then (si,ai+1−t, sj,t) 6= (1, 0) for 1 6 t 6 σijk.

Theorem 3.1. For any d-vector a = (a1, . . . , an) ∈ Zn>0 (i.e., a ∈ W ∩Zn>0), we have the
following formula for the corresponding cluster monomial:

x[a] =

(
n∏
l=1

x−all

)∑
s

(∏
i

xeii

)
, where ei =

∑
i→j

| s̄j |+
∑
k→i

|sk| −
∑

i→j→k→i

σjki, (5)
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and s runs through all GCSs.

This formula specializes to the formula given in [1] for a linear quiver.

3.2 A formula using Dyck paths

We recall the following definition from [12].
Let (a1, a2) be a pair of nonnegative integers. Let c = min(a1, a2). The maximal Dyck

path of type a1 × a2, denoted by D = Da1×a2 , is a lattice path from (0, 0) to (a1, a2) that
is as close as possible to the diagonal joining (0, 0) and (a1, a2), but never goes above it.
A corner is a subpath consisting of a horizontal edge followed by a vertical edge.

Definition 3.2. Let D1 (resp. D2) be the set of horizontal (resp. vertical) edges of a
maximal Dyck path D = Da1×a2 . We label D with the corner-first index in the following
sense:

(a) edges in D1 are indexed as u1, . . . , ua1 such that ui is the horizontal edge of the
i-th corner for i ∈ [1, c] and uc+i is the i-th of the remaining horizontal ones for
i ∈ [1, a1 − c],

(b) edges inD2 are indexed as v1, . . . , va2 such that vi is the vertical edge of the i-th corner
for i ∈ [1, c] and vc+i is the i-th of the remaining vertical ones for i ∈ [1, a2 − c].

(Here we count corners from bottom left to top right, count vertical edges from bottom
to top, and count horizontal edges from left to right.)

u5 u1

v1

u2

v2

u6 u3

v3

u4

v4

Figure 5: A maximal Dyck path

Definition 3.3. Let S1 ⊆ D1, S2 ⊆ D2, s ∈ Z>0. We say that S1 and S2 are s-compatible
if for every 1 6 r 6 s, either ur /∈ S1 or vr /∈ S2. In other words, neither of the first s
corners are in the subpath S1 ∪ S2.

Note that the following definition of global compatibility is different from [12].

Definition 3.4. Let a = (a1, . . . , an) ∈ Zn>0 be a d-vector. For each pair i→ j in Q, let
D(i,j) be a maximal Dyck pathDai×aj . We labelD(i,j) with the corner-first index (described
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in Definition 3.2), whose horizontal edges are denoted u
(i,j)
1 , . . . , u

(i,j)
ai and vertical edges

are denoted by v
(i,j)
1 , . . . , v

(i,j)
aj . We say that the collection{

S
(i,j)
` ⊆ D(i,j)

`

∣∣∣ i→ j is an arrow, ` ∈ {1, 2}
}

is a globally compatible collection (abbreviated GCC) if and only if for any k → i → j in
Q:

• if j → k is also an arrow in Q, then S
(i,j)
1 and S

(i,j)
2 are σijk-compatible, and

v(k,i)
r ∈ S(k,i)

2 ⇐⇒ u
(i,j)
ai+1−r 6∈ S

(i,j)
1 , for all r ∈ [1, ai];

• otherwise,
v(k,i)
r ∈ S(k,i)

2 ⇐⇒ u(i,j)
r 6∈ S(i,j)

1 , for all r ∈ [1, ai].

Theorem 3.5. Assume n > 1. For any d-vector a = (a1, . . . , an) ∈ Zn>0, we have the
following formula for the corresponding cluster monomial:

x[a] =

(
n∏
l=1

x−all

)∑(∏
i→j

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j

)
·
∏

i→j→k→i

x
−σjki
i , (6)

where the sum runs over all GCCs. (Note that because of the rotational symmetry, each
3-cycle contributes three terms to the last product.)

3.3 A more explicit formula for cluster variables

The third method of computing the cluster monomial with given d-vector is to first
decompose the cluster monomial into a product of cluster variables using pipelines and
then use a formula for cluster variables using GCCs.

For given d-vector, we construct pipelines as in the subsection 2.2. Then each pipeline
corresponds to a cluster variable. We give the GCC formula of the cluster variable x[a]
in a completely extended linear quiver (Q,Q′), where a = (a1, . . . , an′) such that ai = 1 if
i ∈ Q, and ai = 0 otherwise. For any arrow (i+ δi)→ (i+ 1− δi) of Q we attach a Dyck
path D(i) = D1×1, which consists of one horizontal edge and one vertical edge. (Recall
that δi is defined in §1.2.2.) Then Definition 3.4 specializes to the following:

Let Si,r ⊆ D(i)
r for i ∈ [1, n− 1], r ∈ [1, 2]. We say that the collection {Si,r} is a GCC

if

(|Si,1|, |Si,2|) 6= (1, 1) for i ∈ [1, n− 1], and the following holds for i ∈ [2, n− 1]: (7)

(a) if (δi−1, δi) = (0, 0), then |Si−1,2| 6= |Si,1|;

(b) if (δi−1, δi) = (1, 1), then |Si−1,1| 6= |Si,2|;

(c) if (δi−1, δi) = (0, 1), then |Si−1,2| = |Si,2|;

the electronic journal of combinatorics 24(2) (2017), #P2.42 14



(d) if (δi−1, δi) = (1, 0), then |Si−1,1| = |Si,1|.

Theorem 3.6. Let (Q,Q′) be a completely extended linear quiver, and n = |Q0| > 1,
n′ = |Q′0|. Define aQ = (a1, . . . , an′) such that ai = 1 if i ∈ Q, and ai = 0 otherwise.
Then the cluster variable with d-vector aQ is

x[aQ] =

(
n∏
i=1

x−1
i

)∑(
n∏
i=0

yi

)
, (8)

where the sum runs over all GCCs {Si,r},

yi := x
|Si,2|
i+δi

x
|Si,1|
i+1−δix

1−|Si,1|−|Si,2|
i,i+1 =


xi, if (|Si,1|, |Si,2|) = (δi, 1− δi)
xi+1, if (|Si,1|, |Si,2|) = (1− δi, δi)
xi,i+1, if (|Si,1|, |Si,2|) = (0, 0)

for i ∈ [1, n− 1], and

y0 :=

{
x1,0, if |S1,1+δ1| = 1− δ1,

x1,1, otherwise,
yn :=

{
xn,0, if |Sn−1,2−δn−1| = δn−1,

xn,1, otherwise.

Remark 3.7. Note that the above theorem induces a formula for the cluster variables of
any type A quiver, that is, any mutation-equivalent type A quiver (possibly including some
3-cycles). Indeed, let Q̃ be any type A quiver and x[a] be a non-initial cluster variable
(the formulas for initial cluster variables are trivial) with d-vector a = (a1, . . . , an′), with
n′ = |Q̃0|. Then the subset of vertices {i | ai = 1} is equal to the set of vertices Q0 of a
linear full subquiver Q. By relabeling vertices if necessary, we assume Q0 = {1, . . . , n}
(thus a1 = · · · = an = 1 and an+1 = · · · = an′ = 0 and for convenience we denote
a = 1n0n

′−n. By removing vertices in Q̃0 but not in or adjacent to Q0, we get an extended
linear quiver (Q,P ); from this extended linear quiver we can obtain a completely extended
linear quiver Q′. Define n′ = |Q′0|, m = |P0|. Thanks to Remark 2.6, a formula for cluster
variable x[1n0n

′−n] ∈ A(Q,Q′) induces a formula for x[1n0m−n] ∈ A(Q,P ) by substituting
xi = 1 for i ∈ Q′0\P0, which is also a formula for x[a] = x[1n0n

′−n] ∈ A(Q̃). (See Example
7.2.)

Remark 3.8. We also give a formula for cluster variables of any type A quiver in terms
of GCS as follows. Let Q̃ be a type A quiver and Q be a linear full subquiver of Q̃, as in
Remark 3.7. Define

aQ = (ai), where ai =

{
1, if i ∈ Q0;
0, if i /∈ Q0.

(9)

Relabelling vertices if necessary, we assume that Q is 1←→ 2←→ · · · ←→ n where each
arrow can go either direction. We will give a formula of the cluster variable x[aQ].
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Let s = (si) ∈ {0, 1}n
′
, 0 6 si 6 ai for every 1 6 i 6 n′. We say that s is a GCS

if (si, sj) 6= (1, 0) for every arrow i → j in Q1. Because si = 0 for i > n, by abuse of
notation we also view s as an element in {0, 1}n.

Let deg−Q(i) be the number of arrows in Q̃1 whose tails are in Q0 and heads are the

vertex i, let deg+
Q(i) be the number of arrows in Q̃1 whose heads are in Q0 and tails are

the vertex i. Let K be the set of vertices k ∈ Q̃0 \ Q0 such that there exists a 3-cycle
k → i→ j → k with si = sj = 1; or equivalently,

K = {k ∈ Q̃0 \Q0 | deg−Q(k) = deg+
Q(k) = 1}.

Denote s̄i = ai − si. We have the following formula, where arrows i→ j are in Q̃:

x[aQ] =

(∏
r∈Q0

x−1
r

)∑
s

(∏
i→j x

s̄j
i x

si
j

)
∏

k∈K xk
=
∑
s

zs, where zs =

∏
i→j x

s̄j
i x

si
j∏

r∈Q0∪K xr
(10)

and s runs through all GCSs.

4 A bijection between perfect matchings and GCCs

In this section, we first recall the construction of snake diagram and the formula of
cluster variables using perfect matching as in [16], then give a bijective proof of Theorem
3.6 via perfect matchings.

Associated to a completely extended linear quiver (Q,Q′), we recursively construct
the snake diagram by gluing n-tiles together as follows: we first put the 2nd-tile to the
right side of the 1st-tile; suppose the ith-tile is placed, we add the (i+ 1)th-tile to the right
side or on top of the ith-tile such that the (i− 1)th, (i)th and (i+ 1)th-tiles are in the same
row or column if and only if δi−1 6= δi.

Next, we label the edges as follows.

• The common edge of the ith-tile and the (i+ 1)th-tile is labeled Ti,i+1.

• Denote by Pl(i) the parallelogram bounded by the main diagonals of the ith-tile
and the (i + 1)th-tile and two boundary edges. Any edge forming an angle of 135◦

with the main diagonal of the ith-tile will be labeled T
(j)
i (where j indicates the

parallelogram to which the edge belongs).

• For convenience, we let Pl(0) be the right triangle with legs T1,0 and T1,1, and let
Pl(n) the right triangle with legs Tn,0 and Tn,1.

• The edges of the first and the last tiles are labeled as in Figure 7.

A perfect matching of the snake diagram is a set of edges such that each vertex is
incident to exactly one edge in the set.

For the fixed completely extended linear quiver (Q,Q′), letM be the set of all perfect
matchings in the associated snake diagram, and G be the set of all GCCs. We shall
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(i−2)
i−2
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i−

1
,i
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(i−1)
i

i− 1

T
(i−1)
i−1

T
(i)
i+1

Ti,i+1

i

T
(i+1)
i+2

T
(i)
i

i + 1

δi−1 = δi
T
i−

1
,i

T
(i−1)
i

i− 1

T
(i−1)
i−1

T
i
,i
+

1

T
(i)
i+1

i

T
(i)
i

i + 1

δi−1 6= δi

Figure 6: Labels of edges in (i− 1)th, ith and (i+ 1)th-tiles in two cases

T1,δ1

T1,2

T
(1)
2

T1,1−δ1 1

First tile Last tile

or

T
(n−1)
n−1

Tn,δn−1

Tn,1−δn−1

Tn−1,n n

Tn−1,n

Tn,1−δn−1

Tn,δn−1

T
(n−1)
n−1

n

Figure 7: Labels of edges in the first and last tiles

Figure 8: The associated snake diagram of the quiver 1→ 2→ 3 with a perfect matching.

construct a bijective map ψM,G : M→ G and its inverse ψG,M. First we prove a simple
lemma.

Lemma 4.1. For any perfect matching γ and i ∈ [0, n], there is exactly one edge of γ lies
in Pl(i).

Proof. The statement is obviously true for i = 0 and i = n. Suppose the statement is
false for some i ∈ [1, n− 1]. Since γ is a perfect matching, we are in one of the following
two cases.

Case 1: both T
(i)
i , T

(i)
i+1 are in γ. If we remove Pl(i) (4 vertices and 3 edges), then

the rest graph has two components which have odd number of vertices and have perfect
matchings. This is a contradiction.
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Case 2: none of the three edges T
(i)
i , T

(i)
i+1, Ti,i+1 lies in γ. Then we remove the three

edges (but do not remove the vertices) and apply the same argument as in Case 1.

Remark 4.2. Thanks to Lemma 4.1, we can write a perfect matching γ as {γ1, . . . , γn}
where γi ∈ Pl(i).

Definition 4.3. - (i) We define a map ψM,G :M→ G by sending γ ∈ M to {Si,r} ∈ G
such that for i ∈ [1, n− 1],

(|Si,1|, |Si,2|) =


(δi, 1− δi), if T

(i)
i ∈ γ,

(1− δi, δi), if T
(i)
i+1 ∈ γ,

(0, 0), if Ti,i+1 ∈ γ.

(By Lemma 4.1, exactly one of the three cases occurs.)
(ii) We define a map ψG,M : G → M by sending {Si,r} ∈ G to the set of edges

γ = {γ0, γ1, . . . , γn} such that

γi =


T

(i)
i , if (|Si,1|, |Si,2|) = (δi, 1− δi)

T
(i)
i+1, if (|Si,1|, |Si,2|) = (1− δi, δi)
Ti,i+1, if (|Si,1|, |Si,2|) = (0, 0)

for i ∈ [1, n− 1], and

γ0 =

{
T1,0 if |S1,1+δ1| = 1− δ1,
T1,1 otherwise,

γn =

{
Tn,0 if |Sn−1,2−δn−1| = δn−1,
Tn,1 otherwise.

We assign a weight w(u) for each edge u of the snake diagram as follows for all i, j:

w(T
(i)
j ) = xj, w(Tj,j+1) = xj,j+1 (11)

For a perfect matching γ = (γ0, . . . , γn), define its weight w(γ) =
∏n

i=0w(γi). In [16] it is
proved that the cluster variable with d-vector a is

x[a] =

(
n∏
i=1

x−1
i

)∑
γ

w(γ). (12)

Theorem 4.4. The maps ψM,G and ψG,M are well-defined and are inverses of each other.
Moreover, w(γi) = yi, thus ψM,G induces a bijective proof of Theorem 3.6 using (12).

Proof. (i) We show that ψM,G is well-defined, that is, ψM,G(γ) = {Si,r} satisfies the
condition (7). It’s clear from the construction that for every i ∈ [1, n− 1], (|Si,1|, |Si,2|) 6=
(1, 1). Next, we prove (a) and (c) of (7), since (b) and (d) can be proved similarly.

For (a), we suppose (δi−1, δi) = (0, 0) and need to show that T
(i−1)
i−1 ∈ γ ⇔ T

(i)
i+1 /∈ γ.

This is true because the two edges T
(i−1)
i−1 and T

(i)
i+1 are incident to the same deg-2 vertex,

thus exactly one of them is in γ. (See the left diagram in Figure 6.)
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For (c), we suppose (δi−1, δi) = (0, 1) and need to show that T
(i−1)
i−1 ∈ γ ⇔ T

(i)
i+1 ∈ γ.

These two edges are opposite edges of a tile which is the middle of three tiles in a row or
a column. Deleting these two edges will separate the snake diagram into two graphs with
even number of vertices each. Thus the two edges must be both in γ or not in γ. (See
the right diagram in Figure 6.)
(ii) We show that ψG,M is well-defined, that is, ψG,M({Si,r}) = γ is a perfect matching.
Since the snake diagram has 2n+ 2 vertices and γ has n+ 1 edges, it suffices to show that
all edges in γ are disjoint. We assume the contrary that γc shares a vertex with γd for
some 0 6 c < d 6 n. Since γc ∈ Pl(c) and γd ∈ Pl(d), Pl(c) and Pl(d) much be consecutive,
thus d = c+ 1.

We first assume 1 6 c 6 n−2. We shall discuss two cases (δc, δc+1) = (0, 0) and (0, 1),
and omit the other two cases (1, 0) and (1, 1) since the proof is similar.
Case (δc, δc+1) = (0, 0): since {Si,r} is a GCC, we must have

(|Sc,1|, |Sc,2|, |Sc+1,1|, |Sc+1,2|) = (0, 1, 0, 1), (0, 1, 0, 0), (1, 0, 1, 0), or (0, 0, 1, 0).

Correspondingly,

(γc, γc+1) = (T (c)
c , T

(c+1)
c+1 ), (T (c)

c , Tc+1,c+2), (T
(c)
c+1, T

(c+1)
c+2 ), or (Tc,c+1, T

(c+1)
c+2 ).

It is obvious from Figure 9 that γc and γc+1 are disjoint, a contradiction as expected.

T
c
,c

+
1

T
(c)
c+1

c

T
(c)
c

T
(c+1)
c+2

Tc+1,c+2

c + 1

T
(c+1)
c+1

c + 2

T
c
,c

+
1

T
(c)
c+1

c

T
(c)
c

T
c
+

1
,c

+
2

T
(c+1)
c+2

c + 1

T
(c+1)
c+1

c + 2

Figure 9: Left: (δc, δc+1) = (0, 0) and Right: (δc, δc+1) = (0, 1)

Case (δc, δc+1) = (0, 1): similar as the above case,

(γc, γc+1) = (T (c)
c , T

(c+1)
c+2 ), (T

(c)
c+1, T

(c+1)
c+1 ), (T

(c)
c+1, Tc+1,c+2), (Tc,c+1, T

(c+1)
c+1 ) or (Tc,c+1, Tc+1,c+2).

We get the expected contradiction by observing Figure 9.
The cases of c = 0 and c = n− 1 are proved by a similar argument.

(iii) The fact that ψM,G and ψG,M are inverse of each other, and w(γi) = yi, follows easily
from their definitions.

Example 4.5. If γ = {T1, T3, T6, T8, T10} then ψM,G(γ) = ((0, 1), (0, 0), (1, 0)) as shown
in Figure 10.
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Figure 10: An example of the map ψM,G

5 Proof of Main Theorems 3.1 and 3.5

We have explained in §3.3 that, in order to compute cluster variables, it suffices to
have the formula for a completely extended linear quiver, namely Theorem 3.6. This
theorem follows from Theorem 4.4. In this section, we show how to derive Theorem 3.1
and Theorem 3.5 from Theorem 3.6.

5.1 Proof of Theorem 3.5

Let x′[a] be the right hand side of the formula in Theorem 3.5. We shall show that
(i) the GCCs for the d-vector a are in one-to-one correspondence with the collections of
GCCs for the d-vectors b’s described in (2); (ii) x′[a] =

∏
b x
′[b]; and (iii) x′[b] = x[b]

using Theorem 3.6. It then follows that x′[a] = x[a].

(i) Let {S(i,j)
` } be any GCC for the d-vector a. For each pipeline Λ, let b = bΛ, we

construct a GCC {S(i,j),Λ
` } for the d-vector b by requiring the following for each arrow

i→ j:
– if Λ intersects the edge i at the r-th marked point, then |S(i,j),Λ

1 | = 1 if and only if

u
(i,j)
r ∈ S(i,j)

1 ,

– if Λ intersects the edge j at the r-th marked point, then |S(i,j),Λ
2 | = 1 if and only if

v
(i,j)
r ∈ S(i,j)

2 ,
(in both case the marked points are ordered in the increasing distance from the common
endpoint of i and j).

To verify that {S(i,j),Λ
` } is a GCC for the d-vector b, we need to check the conditions in

Definition 3.4. The only nontrivial condition to check is that for a 3-cycle k → i→ j → k,
S

(i,j),Λ
1 and S

(i,j),Λ
2 are σb

ijk-compatible. That reduces to showing that (|S(i,j),Λ
1 |, |S(i,j),Λ

1 |) 6=
(1, 1) in the case (bi, bj, bk) = (1, 1, 0). In this case, Λ intersects edges i and j at the r-th

marked points for some r 6 σa
ijk. Then either u

(i,j)
r /∈ S(i,j)

1 or v
(i,j)
r /∈ S(i,j)

2 . In the former

case, |S(i,j),Λ
1 | = 0; in the latter case, |S(i,j),Λ

2 | = 0. Therefore (|S(i,j),Λ
1 |, |S(i,j),Λ

2 |) 6= (1, 1).

It is easy to see that a unique GCC {S(i,j)
` } is determined if we take any collection of

GCCs {S(i,j),Λ
` } for all pipelines Λ. So we have the desired one-to-one correspondence.

the electronic journal of combinatorics 24(2) (2017), #P2.42 20



(ii) We show that
∏

b x
′[b] = x′[a]. Since

∑
b = a, it suffices to show that, for each

GCC {S(i,j)
` }, letting {S(i,j),Λ

` } be defined as in (i), the following holds (recall that b = bΛ

depends on Λ):∏
Λ

(∏
i→j

x

∣∣S(i,j),Λ
2

∣∣
i x

∣∣S(i,j),Λ
1

∣∣
j ·

∏
i→j→k→i

x
−σb

jki

i

)
=
∏
i→j

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j ·

∏
i→j→k→i

x
−σa

jki

i .

Since the left hand side is equal to∏
i→j

x
∑

Λ

∣∣S(i,j),Λ
2

∣∣
i x

∑
Λ

∣∣S(i,j),Λ
1

∣∣
j ·

∏
i→j→k→i

x
−

∑
Λ σ

b
jki

i ,

it suffices to show that
∑

Λ |S
(i,j),Λ
2 | = |S(i,j)

2 |,
∑

Λ |S
(i,j),Λ
1 | = |S(i,j)

1 |, and
∑

Λ σ
b
jki = σa

jki.
The first two are clear. To show the last equality: first note that if Λ is disjoint from
the edge j, then bj = 0 and thus σb

jki = 0. So we only need to consider those Λ’s that
intersect j. Let Λr (1 6 r 6 aj) be the pipeline that intersects j at the r-th marked point
(ordered in the increasing distance to the common endpoint of j and k). If r 6 σa

jki, then

(bj, bk, bi) = (1, 1, 0), thus σb
ijk = 1; otherwise, either bj = 0 or bk = 0, thus σb

ijk = 0.

Therefore
∑

Λ σ
b
jki = σa

jki.
(iii) We show that x′[b] = x[b]. By Remark 2.6, it suffices to show that, in the setting

of Theorem 3.6, the right hand side of (8) is equal to x′[a]. It breaks down to show that,
for i′ ∈ [0, n], the following equality holds for the i′-th 3-cycle i → j → k → i in Q′ (for
i′ ∈ [1, n− 1], the i′-th 3-cycle is the one that contains vertices vi, vi+1 and vi,i+1; the 0-th
3-cycle is v1 → v1,0 → v1,1 → v1; the n-th 3-cycle is vn → vn,0 → vn,1 → vn):(

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j

)(
x

∣∣S(j,k)
2

∣∣
j x

∣∣S(j,k)
1

∣∣
k

)(
x

∣∣S(k,i)
2

∣∣
k x

∣∣S(k,i)
1

∣∣
i

)
· x−σjkii x

−σkij
j x

−σijk
k = yi′ (13)

We shall only prove the case when i′ ∈ [1, n− 1] and δi′ = 0, because other cases can be
proved in a similar way. In this case, the i′-th 3-cycle is vi → vi+1 → vi,i+1 → vi (where
i = i′), and the left hand side of (13) is equal to(

x

∣∣Si,2∣∣
i x

∣∣Si,1∣∣
j

)(
x0
jx

1−
∣∣Si,2∣∣

k

)(
x

1−
∣∣Si,1∣∣

k x0
i

)
· x−1

k = x

∣∣Si,2∣∣
i x

∣∣Si,1∣∣
j x

1−
∣∣Si,1∣∣−∣∣Si,2∣∣

k = yi′ .

So (13) holds.

5.2 Proof that Theorem 3.5 implies Theorem 3.1

We give a bijection between GCSs and GCCs. Let s be a GCS. Consider a 3-cycle
i→ j → k → i, labeled in the way that d(k) < d(i) < d(j). Then we define

S
(k,i)
1 = {ur ∈ D(k,i)

1

∣∣sk,r = 1}, S
(k,i)
2 = {vr ∈ D(k,i)

2

∣∣si,r = 0}
S

(i,j)
1 = {ur ∈ D(i,j)

1

∣∣si,ai+1−r = 1}, S
(i,j)
2 = {vr ∈ D(i,j)

2

∣∣sj,r = 0}
S

(j,k)
1 = {ur ∈ D(j,k)

1

∣∣sj,aj+1−r = 1}, S
(j,k)
2 = {vr ∈ D(j,k)

2

∣∣sk,ak+1−r = 0}
It is then easy to check that the conditions of GCSs and GCCs, as well as the two theorems,
are equivalent under this bijection.
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6 A bijection between GCSs and broken lines

This section is devoted to the construction of a bijection between GCSs and broken
lines in the even rank case (Theorem 6.10) and the general case (Theorem 6.13). In §6.1,
we give a description of the g-vector of a cluster variable, which will determine the initial
direction of the broken lines. In §6.2, we recall the necessary facts on scattering diagrams,
broken lines, and theta functions. The rest of the section is to state and prove Theorem
6.10 and 6.13.

In this section, we let Q̃ be a type A quiver and Q be a linear full subquiver of Q̃.
Relabelling vertices if necessary, we assume that Q is

Q: 1←→ 2←→ · · · ←→ n (each arrow can go either direction). (14)

6.1 g-vectors

It is shown in [10, Theorem 7.5 (4)] that, if m is the g-vector of a cluster variable,
then the cluster variable is exactly ϑm. So we first study g-vectors.

Lemma 6.1. Let aQ be defined as in (9). Then the g-vector m0 = (gr) of the cluster
variable x[aQ] is given by

gr =


deg−Q(r)− 1, if r ∈ Q0;
1, if r /∈ Q0 and (deg+

Q(r), deg−Q(r)) = (0, 1);
0, if r /∈ Q0 and (deg+

Q(r), deg−Q(r)) 6= (0, 1).

Proof. We use the description of g-vectors in [17, §13.1]:

gγ = deg
x(P−)

cross(T ◦, γ)

It is easy to verify that P− corresponds to the GCS s = (si) where si = 1 if and only if
i ∈ Q (this is the unique GCS satisfying s̄i = 0). Thus

x(P−) =

(∏
i→j x

s̄j
i x

si
j

)
∏

k∈K xk
=

∏
i→j x

si
j∏

k∈K xk
(15)

Meanwhile, cross(T ◦, γ) =
∏n

l=1 x
−al
l . So we can compute the g-vector case by case:

If r ∈ Q: the power of xr in (15) is equal to the number of arrows i→ r with sr = 1,
which is deg−Q(r). Since ar = 1, gr = deg−Q(r).

If r /∈ Q and (deg+
Q(r), deg−Q(r)) = (0, 1): then r /∈ K, thus the power of xr in (15) is

deg−Q(r) = 1.

If r /∈ Q and (deg+
Q(r), deg−Q(r)) 6= (0, 1): then (deg+

Q(r), deg−Q(r)) = (1, 1), (1, 0) or

(0, 0). If it is (1, 1), then r ∈ K, thus the power of xr in (15) is deg−Q(r) − 1 = 0; if it is

(1, 0) or (0, 0), then deg−Q = 0 and r /∈ K, thus xr does not appear in (15). In all cases,
we get gr = 0.
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Remark 6.2. The above is equivalent to the following description of the g-vector of x[aQ]:

gr =


−1, if r ∈ Q is not the head of any arrow in Q;
1, if “r ∈ Q is the head of two arrows in Q”, or “r /∈ Q is adjacent to only

one vertex in Q, either 1→ r or n→ r”;
0, otherwise.

6.2 Scattering diagrams and broken lines

We only recall the necessary facts needed in our paper, specialized in our setting. For
more reference, see [10].

Recall that in §1.1 we defined I = Iuf = {1, . . . , n} for a coefficient free cluster algebra
A of rank n, and I = {1, . . . , 2n} and Iuf = {1, . . . , n} for a principal coefficient cluster
algebra Aprin of rank n.

Let M ∼= Zn′ , N = Hom(M,Z) with a basis (ei)i∈I , MR := M ⊗ R with dual basis
(fi)i∈I . N is equipped with a skew-symmetric form {·, ·}. Let Nuf be a sublattice of N
with basis (ei)i∈Iuf

. Define

N+ :=
{∑
i∈Iuf

aiei|ai > 0,
∑

ai > 0
}
.

We assume the Fundamental Assumption: the map p∗1 : Nuf →M given by n 7→ {n, ·}
is injective.

Choose a strictly convex top-dimensional cone σ ⊆MR, with associated monoid P :=

σ ∩M , such that p∗1(ei) ∈ P \ {0} for all i ∈ Iuf . Let Ẑ[P ] be the completion of Z[P ] at
the maximal monomial ideal m generated by {xm|m ∈ P \ {0}}.

A wall is a pair (d, fd) where σ ∈ MR is a (rankN − 1)-dimensional convex rational
polyhedral cone contained in n⊥0 for some primitive vector n0 ∈ N+, and fd = 1 +∑

k>0 ckz
kp∗1(n0).

A scattering diagram D is a collection of walls such that there are only finite many
walls (d, fd) ∈ D satisfying fd 6≡ 1 mod mk for each k > 0.

Given a scattering diagram D, define its support to be

Supp(D) :=
⋃

d,

and define its singular locus to be

Sing(D) :=
⋃

∂d ∪
⋃

dim d1∩d2=n−2

d1 ∩ d2.

For a smooth path γ : [0, 1]→MR \Sing(D) whose endpoints are not in Supp(D) and

that it is transversal to each wall that it crosses, we define an automorphism θγ,D of Ẑ[P ]
as follows: for each k > 0, we can find numbers 0 < t1 6 t2 6 · · · 6 ts < 1 such that
γ(ti) ∈ di, with (di, fdi) ∈ D, fdi 6≡ 1 mod mk, and di 6= dj if ti = tj, and s taken as large
as possible. For each i, define an automorphism θi to be

θi(x
m) := xmfm·nidi
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where ni is the primitive vector annihilating di and satisfying γ′(ti) · ni < 0. Define

θ
(k)
γ,D = θsθs−1 · · · θ1, and θγ,D = lim

k→∞
θ

(k)
γ,D.

A consistent scattering diagram D is a scattering diagram such that θγ,D only depends
on the endpoints of γ.

Two scattering diagrams D, D′ are equivalent if θγ,D = θγ,D′ for all paths γ for which
both sides are defined. Let p∗ : N → M be given by n 7→ {n, ·}. A wall d is incoming if
p∗(n0) ∈ d, where n0 ⊥ d and n0 ∈ N+; otherwise, the wall is outgoing. Define the initial
scattering diagram

Din := {(e⊥i , 1 + zvi)|i ∈ Iuf}, where vi := p∗1(ei). (16)

Note that all walls in Din are incoming.

Definition 6.3. Let D ⊃ Din be a consistent scattering diagram such that D\Din consists
only of outgoing walls.

(It is proved in [10, Theorem 1.7] that D exists and is unique up to equivalence.)

Let D be as defined in Definition 6.3, m0 ∈M \{0} and Q ∈MR \Supp(D). A broken
line for m0 with endpoint Q is a piecewise linear continuous proper path γ : (−∞, 0] →
Rn \ Sing(D) with a finite number of domains of linearity. This path comes along with
the data of, for each domain of linearity L ⊆ (−∞, 0] of γ, a monomial cLz

mL ∈ Z[M ].
This data satisfies the following properties:

1. γ(0) = Q.

2. If L is the first (and therefore unbounded) domain of linearity of γ, then cLz
mL =

zm0 .

3. For t in a domain of linearity L, γ′(t) = −mL.

4. Let t ∈ (−∞, 0) be a point at which γ is not linear, passing from domain of linearity
L to L′. Let Dt = {(d, fd) ∈ D|γ(t) ∈ d}. Then cL′z

mL′ is a term in the formal
power series

cLz
mL

∏
(d,fd)∈Dt

f
|〈n0,mL〉|
d .

We denote the monomial attached to the final domain of linearity of γ by Mono(γ).
For given m0 ∈M \ {0} and Q ∈MR \ Supp(D), the theta function is defined to be

ϑQ,m0 =
∑
γ

Mono(γ),

where γ runs over all broken lines for m0 with endpoint Q.
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Remark 6.4. The broken lines that we shall construct in this paper will not bend on
walls that are not in the initial scattering diagram Din defined in (16). A priori, there
may exist broken lines that do bend on walls in D\Din (i.e., outgoing walls); but we shall
argue that there are no such broken lines in our setting (where we only consider those
appearing in the theta function corresponding to cluster variables; see §6.4.2). In general,
broken lines can also bend on outgoing walls if we consider those appearing in the theta
function corresponding to cluster monomials. Because of this obstacle, we could not yet
extend the cluster variable formulas Theorem 6.10 and 6.13 (which explicitly decribe the
broken lines using GCSs) to cluster monomials.

6.3 A bijection between GCSs and broken lines (in the even rank case)

In this subsection, we give a bijection between GCSs and broken lines for the cluster
variable x[aQ] when n′ (the rank of the cluster algebra A) is even. This is exactly the
case when the exchange matrix B is of full rank, which guarantees that the Fundamental
Assumption in [10] is satisfied. (Indeed, since [2, Lemma 3.2] asserts that the rank is
invariant under mutation, it is suffices to consider the linear quiver 1→ 2→ · · · → n′, in
which case the determinant of B is 1 if n′ is even, 0 if n′ is odd.)

Definition 6.5. For a given GCS s, we say that r ∈ [1, n] is an adjustable position if
(a) the r-th coordinate of s is 0, and
(b) the sequence obtained from s by replacing the r-th coordinate by 1 is still a GCS.

Remark 6.6. An adjustable position always exists as long as some coordinate of s = (sj)
is 0. This follows from the following equivalent definition: let Qs be the full subquiver of
Q with vertex set {j ∈ Q0 | sj = 0}. Then r is an adjustable position if and only if r is a
sink of Qs. Since Q is acyclic, Qs is also acyclic, thus Qs has at least one sink.

Definition 6.7. For a given GCS s, let ` = n − |s|. Define s(`) = s, and define wi
(1 6 i 6 `) and si (0 6 i 6 `− 1) backward recursively as follows. Assume s(i) is defined
for some i satisfying 1 6 i 6 `. Define wi ∈ [1, n] to be the smallest adjustable position,
and the corresponding new GCS by s(i−1). (It is clear that w1, . . . , w` are mutually distinct,
and the set {w1, . . . , w`} = {j ∈ Q0 | sj = 0}.)

Definition 6.8. (i) Define a function gQ : {0, 1}n → {0,±1}n′ sending s to (gr)16r6n′

where

gr =

{
deg1→

Q,s(r) + deg0←
Q,s(r)− 1, if r ∈ Q0, or r and two vertices in Q0 form a 3-cycle;

deg1→
Q,s(r) + deg0←

Q,s(r), otherwise.
(17)

Here deg1→
Q,s(i) is the number of arrows j → i in Q′1 such that j ∈ Q0 and sj = 1, and

deg0←
Q,s(i) is the number of arrows j ← i in Q′1 such that j ∈ Q0 and sj = 0. (Remark

6.9(2) explains why gr ∈ {0,±1}.)
(ii) Define mi = (mi,r) := gQ(s(i)) ∈ {0,±1}n′ for 0 6 i 6 `.
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Remark 6.9. (1) Note that s(0) = [1, . . . , 1] ∈ {0, 1}n. We claim that m0 = (gr) co-
incides with the definition given in Lemma 6.1. Indeed, note that deg0←

Q,s(r) = 0. If
r ∈ Q0, nothing needs to be proved. We assume r /∈ Q0 in the rest of the paragraph.
If (deg+

Q(r), deg−Q(r)) = (0, 1), then we are in the second case of (17), gr = deg1→
Q,s(r) =

deg−Q(r) = 1; if (deg+
Q(r), deg−Q(r)) = (0, 0) or (1, 0), then we are in the second case of

(17), thus gr = deg1→
Q,s(r) = deg−Q(r) = 0; if (deg+

Q(r), deg−Q(r)) = (1, 1), then we are in the

first case of (17), thus gr = deg1→
Q,s(r)− 1 = deg−Q(r)− 1 = 0.

(2) It is easy to check that every coordinate of mi = (gr) satisfies −1 6 gr 6 1. Indeed,
gr > −1 is obvious; to check gr 6 1, note that every vertex r is adjacent to at most two
vertices in Q0, so we only need to show that in the second case of (17), it is impossible to
have deg1→

Q,s(r) + deg0←
Q,s(r) > 2. But this equality implies that r is adjacent to at least two

vertices in Q0; it follows from the description of type A quivers that r and two vertices in
Q0 form a 3-cycle, which contradicts the condition of the second case.

The following main theorem gives a bijective construction of ϑQ,m0 = x[aQ].

Theorem 6.10. Assume the rank n′ of the cluster algebra is even, and Q = (q1, q2, . . . , qn′)
such that

0 < qi � q1 � q2 � · · · � qn, for each i = n+ 1, . . . n′. (18)

(Here x� y means 0 < x/y 6 ε, where ε > 0 is a fixed real number satisfying (1 + ε)n <
2.) Let m0 be defined as in Lemma 6.1. Then there is a bijection ϕ between the set of
GCS and the set of broken lines for m0 with endpoint Q, such that each GCS s is sent
to a broken line γ = ϕ(s) satisfying Mono(γ) = zs (defined in (10)): using notation in
Definition 6.7, the broken line γ can be explicitly described as follows:

(i) it has `+ 1 domains of linearity L0, L1, . . . , L` (where L0 is unbounded);
(ii) it bends from the domain of linearity Li−1 to Li at a point on the wall dwi;
(iii) γ′(t) = −mi for t ∈ Li;
(iv) the monomial attached to Li is zmi.

6.4 Proof of Theorem 6.10

6.4.1 We show that (i)–(iv) determine a valid broken line.

The setting of [10] for a type A cluster algebra is specialized as follows: the lattice
Nuf = N = Zn′ is equipped with a basis e1, . . . , en′ and with a skew-symmetric bilinear
form {·, ·} : N×N → Q satisfying {ei, ej} = εij = −bij. (Since type A is skew-symmetric,
all the multipliers d1 = · · · = dn′ = 1 as noted in [10, p114]). The dual lattice M has a
basis f1, . . . , fn′ dual to e1, . . . , en′ . The vector vj defined in [10, p29] is

vi := {ei, ·} =
n′∑
j=1

bjifj.

Step 1: check zmi−1f
〈n0,mi−1〉
dwi

contains a term zmi , for 1 6 i 6 `. (Here n0 is the primitive

vector annihilating the tangent space to dwi and that 〈n0,mi−1〉 is positive.) Since n0 =
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±ewi , and by Remark 6.9(2), all coordinates of mi−1 take value in {−1, 0, 1}, we must
have 〈n0,mi−1〉 = 1. Meanwhile, by the initial scattering diagram described [10, p31],
fdwi = 1 + zvwi . So

zmi−1f
〈n0,mi−1〉
dwi

= zmi−1 + zmi−1+vwi ,

and we are left to show that vwi = mi − mi−1, or equivalently brwi = mi,r − mi−1,r, or
equivalently

brwi = X + Y (19)

where X = deg1→
Q,s(i)(r) − deg1→

Q,s(i−1)(r), Y = deg0←
Q,s(i−1)(r) − deg0←

Q,s(r−1)(r). Since s(i) and

s(i−1) only differ in the wi-th coordinate (where the former has coordinate 0 and the latter
has coordinate 1), we have

X =

{
−1, if there is an arrow wi → r;
0, otherwise.

and Y =

{
1, if there is an arrow r → wi;
0, otherwise.

Then (19) can be shown case by case: (1) if brwi = 0, then r = wi or r is not adjacent to
wi, in either situation we have X = Y = 0, thus (19) holds; (2) if brwi = 1: then X = 0,
Y = 1, and (19) holds; (3) if brwi = −1, then X = −1, Y = 0 and (19) still holds.

Step 2: denoting by Qi ∈ dwi the point where γ bends from the domain of linearity Li−1

to Li, check that Qi −Qi+1 ∈ R+mi for i = 1, . . . , ` (assume Q`+1 = Q).

Note that Qi = (q
(i)
j ) are determined by the following conditions:

Q`+1 = Q, q(i)
wi

= 0, Qi −Qi+1 ∈ Rmi.

For convenience, we introduce the following definition: for x, y, r ∈ R, y > 0 and
1 6 r < 2, define

x ≈r y ⇐⇒ 2− r 6 x

y
6 r

(
⇐⇒

∣∣∣x
y
− 1
∣∣∣ 6 r − 1

)
.

Note that x ≈r y implies x > 0.

Lemma 6.11. (i) The wi-th coordinate of mi is −1.

(ii) Qi −Qi+1 = q
(i+1)
wi mi.

(iii) q
(i′)
wi ≈(1+ε)`+1−i′ qwi for 1 6 i < i′ 6 `+ 1. As a consequence, for all 1 6 i 6 `, we

must have q
(i+1)
wi > 0, hence Qi −Qi+1 ∈ R+mi.

Proof. (i) By (17),
mi,wi = deg1→

Q,s(i)(wi) + deg0←
Q,s(i)(wi)− 1

So to show mi,wi = −1, it is equivalent to show that the above degrees are both 0.

Since s
(i)
wi = 0, we must have s

(i)
j = 0 for any arrow j → wi, otherwise it contradicts

the assumption that s(i) is a GCS. Thus deg1→
Q,s(i)(wi) = 0.
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Similarly, since s
(i−1)
wi = 1, we must have s

(i−1)
j = 1 for any arrow wi → j, otherwise

it contradicts the assumption that s(i−1) is a GCS. Thus deg0←
Q,s(i−1)(wi) = 0. Since s(i−1)

and s(i) only differ in the wi-th coordinate, we have deg0←
Q,s(i)(wi) = deg0←

Q,s(i−1)(wi) = 0.
(ii) Assume that Qi −Qi+1 = λmi. To determine λ, it suffices to consider the wi-th

coordinate on both sides:
q(i)
wi
− q(i+1)

wi
= λmi,wi = −λ

Then (ii) holds since q
(i)
wi = 0.

(iii) We prove it by fixing i and using downward induction on i′. For i′ = ` + 1,

q
(i′)
wi = qwi , hence the statement holds. For i′ < `+ 1, using (ii) we have

q(i′)
wi
− q(i′+1)

wi
= q(i′+1)

wi′
mi′,wi . (20)

Note that wi′ 6= wi since i′ 6= i. We argue in two cases:

Case 1: wi′ < wi. We have q
(i′+1)
wi ≈(1+ε)`−i′ qwi and q

(i′+1)
wi′ ≈(1+ε)`−i′ qwi′ by inductive

assumption. Since mi′,wi ∈ {0,±1}, (20) implies

∣∣∣q(i′)
wi

qwi
− 1
∣∣∣ =

∣∣∣q(i′+1)
wi + q

(i′+1)
wi′ mi′,wi − qwi
qwi

∣∣∣ 6 ∣∣∣q(i′+1)
wi − qwi

qwi

∣∣∣+
∣∣∣q(i′+1)
wi′

qwi

∣∣∣
=
∣∣∣q(i′+1)
wi

qwi
− 1
∣∣∣+
∣∣∣q(i′+1)
wi′

qwi′

∣∣∣ · ∣∣∣qwi′
qwi

∣∣∣ 6 (1 + ε)`−i
′ − 1 + (1 + ε)`−i

′
ε = (1 + ε)`+1−i′ − 1.

Case 2: wi′ > wi. We shall show that mi′,wi = 0 (which implies q
(i′)
wi = q

(i′+1)
wi ≈`+1−(i′+1)

qwi , therefore q
(i′)
wi ≈`+1−i′ qwi ,). It suffices to show that the two degrees in the following

expression are 0 and 1, respectively:

mi′,wi = deg1→
Q,s(i′)(wi) + deg0←

Q,s(i′)(wi)− 1

Since s(i′) is GCS and s
(i′)
wi = 0 by the construction of s(i′), there is no arrow j → wi in

Q satisfying s
(i′)
j = 1. Thus deg1→

Q,s(i′)(wi) = 0.

Next, we prove deg0←
Q,s(i′)(wi) = 1 by contradiction:

If deg0←
Q,s(i′)(wi) = 0, then there is no arrow wi → j in Q satisfying s

(i′)
j = 0. But then

wi is also an adjustable position in s(i′), which contradicts the property of being “smallest”
in the definition of wi′ (Definition 6.7).

If deg0←
Q,s(i′)(wi) > 2, then by our assumption on Q (see (14)), there must be two arrows

wi → (wi − 1) and wi → (wi + 1) in Q satisfying s
(i′)
wi−1 = s

(i′)
wi+1 = 0. Consider the longest

path starting from wi and going left: j ← (j+1)← · · · ← (wi−1)← wi in Q s(i′)
(defined

in Remark 6.6). Then j is a sink in Q s(i′)
, hence adjustable and satisfying j < wi < wi′ ,

again contradicts the property of being “smallest” in the definition of wi′ .
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6.4.2 The map ϕ is bijective

It is easy to see that ϕ injective, since different GCS determine different sets of wi ( i.e.,
the sets of walls where the broken line bend), thus determine different broken lines. Thus
to show the bijectivity of ϕ, it suffices to show that the number of GCC is not less than
the number of broken lines. To show the latter, we use [10, Theorem 7.5 (4)] which asserts
that the cluster variable x[aQ] is equal to the theta function ϑQ,m0 . Since the number of
GCS is equal to x[aQ]|x1=···=xn′=1, on the other hand each broken line contributes at least
1 to x[aQ]|x1=···=xn′=1, we conclude that the number of GCS is not less than the number
of broken lines. Therefore ϕ is bijective. This completes the proof of Theorem 6.10.

Note that the above argument implies that each broken line that contributes to ϑQ,m0

will not bend on any outgoing walls.

6.5 A bijection between GCSs and broken lines (in the general case)

To extend Theorem 6.10 to odd ranks, we need to consider principal coefficients. We
denote by x̃[a] the cluster variable in Aprin that corresponds to the cluster variable x[a]
in A.

Lemma 6.12. Let A be a (coefficient-free) cluster algebra of rank n, and Aprin the cor-
responding cluster algebra with principal coefficients. Let x[a] be a cluster variable in A
with g-vector g ∈ Zn. Then the corresponding cluster variable x̃[a] in Aprin has g-vector[

g
0

]
∈ Zn × 0n ⊂ Z2n.

Proof. Recall that the g-vector of x[a] ∈ A is the multidegree of the corresponding cluster

variable in principal coefficients. More precisely, start with matrix B̃t0 =

[
B
I

]
, and for

each mutation t
k

—— t′, B̃t and B̃t′ are related by the rule

bt
′

ij =

{
−btij, if i = k or j = k;

btij + sgn(btik)[b
t
ikb

t
kj]+, otherwise.

(21)

the new cluster variable is determined by

xk;t′xk;t =
2n∏
i=1

x
[btik]+
i;t +

2n∏
i=1

x
[−btik]+
i;t . (22)

Each cluster variable is homogeneous with the assignment that, for 1 6 i 6 n, deg(xi) =
ei ∈ Zn, deg(xn+i) = −bi ∈ Zn, where bi is the i-th column of B. This multidegree is the
g-vector of the cluster variable.

The g-vector of x̃[a] ∈ Aprin is defined similarly as above, with B and B̃t0 being
replaced by

B̄ =

[
B −I
I 0

]
and ˜̄Bt0 =


B −I
I 0
I 0
0 I

 , respectively.
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Using (21), it can be proved by a simple induction that,

˜̄Bt =


Bt −Ct
Ct Dt

Ct Dt

0 I

 , if B̃t =

[
Bt

Ct

]
.

(In fact, Dt = 0 if the sign-coherence conjecture is true [18, Conjecture 8.8]; in particular,
it is true if B is skew-symmetric, but we do not need this fact in this paper.) Using
(22), it can be proved by a simple induction that x̃[a] can be obtained from x[a] by the
substitution xi 7→ x̃i and xn+i 7→ x̃n+ix̃2n+i, for 1 6 i 6 n. Since

deg x̃i =

[
ei
0

]
=

[
deg xi

0

]
,

deg(x̃n+ix̃2n+i) =

[
0
ei

]
− (the i-th column of B̄) =

[
0
ei

]
−
[
bi
ei

]
=

[
−bi

0

]
=

[
deg xn+i

0

]
,

the multidegree (i.e., the g-vector) of x̃[a] must be

[
g
0

]
where g is the multidegree (i.e.,

the g-vector) of x[a].
In the rest we show that Theorem 6.10 can be adapted to Aprin.

Theorem 6.13. Assume Q̃ = (q1, q2, . . . , q2n′) such that

0 < qi � q1 � q2 � · · · � qn, for each i = n+ 1, . . . n′.

(Here x� y means 0 < x/y 6 ε, where ε > 0 is a fixed real number satisfying (1+ε)n < 2.
There is no condition on qn′+1, . . . , q2n′.) Let

m̃0 =

[
m0

0

]
,

where m0 is defined in Lemma 6.1. Then there is a bijection ϕ between the set of GCS and
the set of broken lines for m̃0 with endpoints Q̃, such that each GCS s is sent to a broken
line γ = ϕ(s) satisfying Mono(γ)

∣∣
xn′+1=···=x2n′=1

= zs (defined in (10)): using notation in

Definition 6.7, the broken line γ can be explicitly described as follows:
(i) it has `+ 1 domains of linearity L0, L1, . . . , L` (L0 is unbounded);
(ii) it bends from the domain of linearity Li−1 to Li at a point on the wall dwi;

(iii) γ′(t) = −m̃i for t ∈ Li, where m̃i =

[
mi∑i
r=1 ewr

]
.

(iv) the monomial attached to Li is zm̃i.

Proof. Since B̄ is full rank, the Fundamental Assumption in [10] is satisfied, thus the
proof in §6.4 works with little change; we point out the nontrivial revision change.

Because of Lemma 6.12, the g-vector of x̃[a] is indeed m̃0. Thus x̃[a] is equal to the
theta function ϑQ̃,m̃0

by [10, Theorem 7.5 (4)].
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In Step 1, n0 is replaced by ñ0 =

[
n
0

]
∈ R2n′ . Since the first n′ coordinates of m̃i−1

form the vector mi−1, we have 〈ñ0, m̃i〉 = 〈n0,mi〉 = 1. The function attached to the wall

di is f̃di = 1 + zṽi where ṽi =

[
vi
ei

]
. Thus

ṽwi =

[
vwi
ewi

]
=

[
mi −mi−1

ewi

]
= m̃i − m̃i−1.

In Step 2, since π(Q̃i) = Qi, we have Q̃i − Q̃i+1 = q
(i+1)
wi m̃i with the same q

(i+1)
wi > 0

as in Lemma 6.11.

7 Examples

In this section, we give several examples to illustrate the computation of cluster vari-
ables and cluster monomials using methods introduced in previous sections.

Example 7.1. We compute x[2, 2, 2], the cluster monomial with d-vector (2, 2, 2) for the
quiver Q = 1→ 2→ 3→ 1 (a 3-cycle).

– Using formula (5): choose i0 = 1. Then d(1) = 0, d(2) = 1, d(3) = 2, σ123 = σ231 =
σ312 = 1. A GCS s = (s1, s2, s3) satisfies

(s1,1, s2,1), (s3,2, s1,2), and (s2,2, s3,1) 6= (1, 0).

A tedious computation using (5) gives x[2, 2, 2] = x−2
1 x−2

2 x−2
3 (x1 + x2 + x3)3. (But at

least it is easy to see that there are 27 terms; indeed, since each pair has 3 choices
(0, 0), (1, 1), (0, 1), the total number of GCSs is 3× 3× 3 = 27.)

– Using formula (6): there are three Dyck paths of size 2 × 2 corresponding to the
three arrows 1→ 2, 2→ 3, 3→ 1: such that (i) we do not choose both u1 and v1 in each

u1

v1

u2

v2

x1

x2

x1

x2

x1

x3

Figure 11: Left: the 2× 2 maximal Dyck path Right: An example of GCC.

Dyck path, and (ii) we choose vr in the i-th Dyck path if and only if we do not choose
u3−r in the (i+ 1)-th Dyck path for r = 1, 2 (by convention, the 4th Dyck path is the 1st
one). In the example of GCC in Figure 11 (Right), the corresponding product(∏

i→j

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j

)
·
∏

i→j→k→i

x
−σjki
i = (x3

1x
2
2x3) · x−1

1 x−1
2 x−1

3 = x2
1x2.

Computing all possible GCCs gives x[2, 2, 2] = x−2
1 x−2

2 x−2
3 (x1 + x2 + x3)3.
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1 2

3

Figure 12: Pipelines

– Using formula (8): first observe that there are 3 pipelines as shown in Figure 12.
According to §3.3, x[2, 2, 2] = x[1, 1, 0]x[0, 1, 1]x[1, 0, 1]. Now we compute x[1, 1, 0]

using Theorem 3.6. The pair (|S1,1|, |S1,2|) can be (1, 0), (0, 1), (0, 0). Correspondingly, we
have (y1, y0, y2) = (x1, x1,0, x2,0), (x2, x1,1, x2,1), (x1,2, x1,1, x2,0). Then

x[1, 1, 0] = (x−1
1 x−1

2 )
∑

y0y1y2 = (x−1
1 x−1

2 )(x1x1,0x2,0 + x2x1,1x2,1 + x1,2x1,1x2,0)

= (x−1
1 x−1

2 )(x1 + x2 + x3)

where the last equality is obtained by substituting x1,2 = x3, and x1,0 = x1,1 = x2,0 =
x2,1 = 1. Similarly, x[0, 1, 1] = (x−1

2 x−1
3 )(x1 + x2 + x3), x[1, 0, 1] = (x−1

1 x−1
3 )(x1 + x2 + x3).

Thus x[2, 2, 2] = x−2
1 x−2

2 x−2
3 (x1 + x2 + x3)3.

Example 7.2. We compute some cluster variables of A(Q) where Q is the following type
A quiver:

2

1

5

6

3 4

7

As observed in Remark 3.7, the set of non-initial cluster variables is in one-to-one
correspondence with the set of d-vectors a = (a1, . . . , an), where ai ∈ {0, 1} and {i | ai =
1} is the vertex set of a linear full subquiver of Q. So we can compute all cluster variables
using Theorem 3.6.

For example, we consider the d-vector a = (1, 1, 1, 0, 0, 0, 0). Then the subset of
vertices {i|ai = 1} is equal to the set of vertices Q0 of the full linear subquiver Q = 1→
2 ← 3. It is a subquiver of an extended linear subquiver P and after completing P , we
get a completely extended linear quiver Q′ as shown in Figure 13.
In P , we have v1,2 = 5, v2,3 = 6, v3,0 = 4. Two 3-cycles are added and the new vertices
are v1,0 = 8, v1,1 = 9 and v3,1 = 10. All GCCs are described as follows.

β1 =
x2

x1 x3

x2

, x(β1) = (x5x6x9x10)/(x1x2x3)

β2 =
x2

x1 x3

x2

, x(β2) = (x2x4x5x9)/(x1x2x3)
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1

5

2 3

6

4

1

8

9
5

2 3

6

4

10

Figure 13: P and its completed version Q′

β3 =
x2

x1 x3

x2

, x(β3) = (x2x6x8x10)/(x1x2x3)

β4 =
x2

x1 x3

x2

, x(β4) = (x2
2x4x8)/(x1x2x3)

β5 =
x2

x1 x3

x2

, x(β5) = (x1x3x9x10)/(x1x2x3)

The cluster variable with d-vector (1, 1, 1, 0, 0, 0, 0) is

x[1, 1, 1, 0, 0, 0, 0] =
5∑
i=1

x(βi) =
x5x6x9x10 + x2x4x5x9 + x2x6x8x10 + x2

2x4x8 + x1x3x9x10

x1x2x3

.

Setting x8 = x9 = x10 = 1, we get the following cluster variable of A(Q):

x[1, 1, 1, 0, 0, 0, 0] =
x5x6 + x2x4x5 + x2x6 + x2

2x4 + x1x3

x1x2x3

.

The table below shows some d-vectors and their corresponding cluster variables of
A(Q).

(1,0,0,0,0,0,0)
x2 + x5

x1

(1,1,0,0,0,0,0)
x1x3 + x2x6 + x5x6

x1x2

(0,1,0,0,0,0,0)
x1x3 + x5x6

x2

(0,1,1,0,0,0,0)
x1x3 + x2x4x5 + x5x6

x2x3

(0,0,1,0,0,0,0)
x2x4 + x6

x3

(0,0,1,1,0,0,0)
x2x4 + x3x6 + x6

x3x4

(0,0,0,1,0,0,0)
1 + x3

x4

(1,0,0,0,1,0,0)
x1 + x2 + x5

x1x5

(0,0,1,0,0,1,0)
x2x4 + x6 + x3x4x7

x3x6
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(1,1,1,0,0,0,0)
x5x6 + x2x4x5 + x2x6 + x2

2x4 + x1x3

x1x2x3

(0,1,1,0,1,0,0)
x1x3 + x2x3 + x2x4x5 + x5x6

x2x3x5

(0,1,1,1,0,0,0)
x1x3 + x1x

2
3 + x2x4x5 + x5x6 + x3x5x6

x2x3x4

(0,0,1,1,0,1,0)
x2x4 + x6 + x3x6 + x3x4x7

x3x4x6

(1,1,1,1,0,0,0)
x1x3 + x1x

2
3 + x2

2x4 + x2x4x5 + x2x6 + x2x3x6 + x5x6 + x3x5x6

x1x2x3x4

Example 7.3. Here we give an example to illustrate statements in §6. Let Q′ be the
following type A quiver:

1

4

2 3

Let Q be the full linear subquiver 1← 2→ 3, and correspondingly aQ = (1, 1, 1, 0).
There are 5 GCS s = (s1, s2, s3):

(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)

By Lemma 6.1, m0 =


0
−1
0
0

.

Consider s = (0, 0, 0). By Definition 6.7, ` = 3,

s(3) = (0, 0, 0), s(2) = (1, 0, 0), s(1) = (1, 0, 1), s(0) = (1, 1, 1), w3 = 1, w2 = 3, w1 = 2.

By Definition 6.8, m0 is as above,

m1 =


−1
−1
−1
1

 , m2 =


−1
0
−1
1

 , m3 =


−1
1
−1
0

 .
The broken line γ = ϕ(s) described in Theorem 6.10 has 4 domains of linearity

L0, . . . , L3, bends on walls d2, d3, d1 in that order. The direction vector of γ on Li is −mi

for i = 0, . . . , 3. The monomials attached to L0, . . . , L3 are x−1
2 , x−1

1 x−1
2 x−1

3 x4, x−1
1 x−1

3 x4,
x−1

1 x2x
−1
3 , respectively. Thus Mono(γ) = x−1

1 x2x
−1
3 .
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Follow the proof in Step 2 of §6.4, we compute the coordinates of Qi as follows:

Q4 = Q =


q1

q2

q3

q4

 , Q3 = Q4 + q1m3 =


0

q2 + q1

q3 − q1

q4

 ,

Q2 = Q3 + (q3 − q1)m2 =


−q3 + q1

q2 + q1

0
q4 + q3 − q1

 , Q1 = Q2 + (q2 + q1)m1 =


−q3 − q2

0
q3 − q2 − q1

q4 + q3 + q2

 .
Since q4 � q3 � q2 � q1, it is clear in this example that Qi − Qi+1 ∈ R+mi for all
i = 1, 2, 3.

8 Appendix: a bijection between T -paths and GCCs

In this section, we first recall the construction of T -paths and the formula of cluster
variables using T -paths as in [19], then give a bijective proof of Theorem 3.6 via T -paths.

Let P be a convex polygon with n + 3 vertices. Our initial triangulation of P will
consist of the set T = {T1, . . . , Tn} ∪ {T1,0, T1,1, Tn,0, Tn,1} ∪ {Ti,i+1 : i ∈ [1, n− 1]}, where
the first set is the set of diagonals and the last two sets are the set of boundary edges.

T1,0 = T5

T1,2 = T7

T2,3 = T8

T4,1 = T11

T4,0 = T10

T3,4 = T9

T1,1 = T6T1

T2

T3

T4

Figure 14: The initial triangulation of the quiver (Q,Q′) in Example 1.1.

The process of constructing the initial triangulation starts with choosing any vertex
v of P , labeling its two incident boundary edges as T1,0 and T1,1 and letting T1 be the
diagonal such that T1,0, T1,1 and T1 form a triangle in the orientation as shown in Figure
15 (the upper-left triangle).

Suppose that the diagonal Ti (i ∈ [1, n− 1]) is drawn. The diagonal Ti+1 is obtained
by rotating Ti in the counterclockwise direction if δi = 0, in the clockwise direction if
δi = 1. The boundary edge between Ti and Ti+1 is labeled Ti,i+1.

When i = n then Tn,1 is the boundary edge clockwise from Tn and Tn,0 is the boundary
edge counterclockwise from Tn. Denote the common vertex of Tn,0 and Tn,1 by w.
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v

T1,0
T

1,1

T1
w

Tn
T
n,1 Tn,

0

Ti

Ti,i+1

Ti+1

δi = 0

Ti

Ti+1
Ti,i+1

δi = 1

Figure 15: Boundary edges and diagonals of an initial triangulation

We can view both the snake diagram and the triangulation T as graphs. Then there
is a natural graph homomorphism p between them satisfying

p(T
(i)
j ) = Tj, p(Ti,j) = Ti,j (23)

(for any i, j that the equalities make sense). It is easy to check that the image of each
vertex is uniquely determined using the requirement that a triangle in the snake diagram
(with all the main diagonals added) must send to a triangle in T ; so if the images of
the three sides of a triangle are determined, the images of the three vertices are also
determined (see Figures 6 and 7).

In [9], Fomin and Zelevinsky showed that the cluster variables of A(Q) are in bijection
with the diagonals of the polygon P where the set of initial cluster variables {x1, . . . , xn}
corresponds to {T1, . . . , Tn}.

Let Mv,w be the diagonal connecting v and w, thus crossing the diagonals T1, . . . , Tn.
For i ∈ [1, n], let pi be the intersection of Mv,w and Ti.

Definition 8.1. [19] A T -path α from v to w is the sequence

α = w0

Ti1−→ w1

Ti2−→ · · ·
Til(α)−→ wl(α)

such that
1) v = w0, w1, . . . , wl(α) = w are vertices of P .
2) ik ∈ {0, 1, . . . , 2n + 2} such that Tik connects the vertices wk−1 and wk for each

k = 1, 2, . . . , l(α).
3) ij 6= ik if j 6= k.
4) l(α) is odd.
5) Tik crosses Mv,w if k is even.
6) If j < k and both Tij and Tik cross M then pij is closer to v than pik is to v.
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Let P be the set of all T -path from v to w. For any α ∈ P , let

x(α) =
∏
k odd

xik
∏
k even

x−1
ik
. (24)

Let a = (a1, . . . , an′) ∈ {0, 1}n
′

such that ai = 1 if and only if i ∈ Q. The following
formula of the cluster variable x[a] is proved in [19]:

x[a] =
∑
α∈P

x(α) (25)

Definition 8.2. We define a map ψG,P : G → P by sending {Si,r} ∈ G to the T -path
α obtained by first constructing a path α′1α

′
2 . . . α

′
2n+1 from v to w where α′2i = Ti for

i ∈ [1, n],

α′2i+1 =


Ti, if (|Si,1|, |Si,2|) = (δi, 1− δi)
Ti+1, if (|Si,1|, |Si,2|) = (1− δi, δi)
Ti,i+1, if (|Si,1|, |Si,2|) = (0, 0)

for i ∈ [1, n− 1], and

α′1 =

{
T1,0 if |S1,1+δ1| = 1− δ1,
T1,1 otherwise,

α′2n+1 =

{
Tn,0 if |Sn−1,2−δn−1| = δn−1,
Tn,1 otherwise,

then define α to be the path obtained from α′ by canceling duplicate pairs.
We define ψP,G := ψ−1

G,P : P → G. (As shown in the theorem below, ψG,P is a bijection.)

Theorem 8.3. The maps ψG,P is a well-defined bijection. Moreover, for α = ψG,P({Si,r}),

n∏
i=1

x−1
i

n∏
i=0

yi = x(α),

thus ψG,P induces a bijective proof of Theorem 3.6 using (25).

Proof. In order to prove Theorem 8.3, we shall show that all maps below are bijective,
and that their composition is ψG,P :

G
ψG,M−→ M L−→ {complete T -paths from v to w} π−→ P .

(i) We first define L, which is exactly the folding map in [16, §4.3]. As defined in
[16, 21], a complete T -path α from v to w is similar to a T -path from v to w defined in
Definition 8.1, in the sense that we require 1), 2), and

5’) the 2j-th edge Ti2j = Tj (i.e., i2j = j),

6’) Ti1 6 Ti2 6 · · · ,
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where we use the order

T1,0 < T1,1 < T1 < T1,2 < T2 < T2,3 < · · · < Tn < Tn,0 < Tn,1. (26)

Note that we do not require edges in α to be distinct. It is easy to see that a complete
T -path has length 2n+1. For simplicity, we denote α using its edge sequence. For γ ∈M,
we define (recall that p is defined in (23)):

L(γ) = L1L2 · · ·L2n+1, where L2j = Tj for j ∈ [1, n], L2j+1 = p(γj) for j ∈ [0, n].
(27)

Note that the starting point of each Li is determined by L1 · · ·Li−1. The union of a
perfect matching γ with all the diagonals of tiles form a path α′γ in the snake diagram.
If we consider the quotient map from the snake diagram to the triangulation of P , by
identifying the diagonal edge i with T (i) and identifying diagonal edge i + 1 with T

(i)
i+1,

then the image of α′γ is the complete T -path L(γ).
(ii) We show that L has a well-defined inverse map L−1 (which is the unfolding map

in [16, §4.5]), thus L is bijective. Indeed, L−1 sends a complete T -path θ = L1 · · ·L2n+1

to γ = {γ1, γ2, . . . , γn}, where γj is the unique edge in Pl(j)∩ p−1(L2j+1), that is, γ1 = L1,

γn = L2n+1, and γj = T
(j)
j (resp. T

(j)
j+1, Tj,j+1) if L2j+1 is Tj (resp. Tj+1, Tj,j+1) for

j ∈ [1, n− 1].
Next we show that γ is indeed a perfect matching, it suffices to prove that the edges

in γ are disjoint, because it has the correct number (= n+ 1) of edges.
For j, j′ ∈ [0, n− 2] with j < j′, γj and γj′ are disjoint if j′ > j + 1 because Pl(j) and

PL(j′) are disjoint. So we assume j′ = j + 1. We shall only discuss the case δj = δj+1 = 0
since other cases can be proved similarly. The subpath L2j+1L2j+2L2j+3L2j+4 of L(α) is

Tj

Tj+1

Tj+2

Tj,j+1

Tj+1,j+2

T
j
,j

+
1

T
(j)
j+1

j

T
(j)
j

T
(j+1)
j+2

Tj+1,j+2

j + 1

T
(j+1)
j+1

j + 2

Figure 16: Parts of the polygon and the snake diagram corresponding to the subquiver
j → j + 1→ j + 2

one of the following:

TjTj+1Tj+1Tj+2, TjTj+1Tj+1,j+2Tj+2, Tj,j+1Tj+1Tj+2Tj+2, Tj+1Tj+1Tj+2Tj+2.

By looking at Figure 16, we see that γj and γj+1 are disjoint in each case.
(iii) We show π is bijective by giving its inverse π−1. Suppose that α = Ti1Ti2 · · ·Til(α)

is a T -path from v to w. If n = 1, then α is already a complete T -path, so we define
π−1(α) = α. Now assume n > 1. The sequence π−1(α) = L = L1L2 · · ·L2n+1 is obtained
as a result of the following algorithm.
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1. Initialize L := α.

2. Let j run from 1 to n: if L2j 6= Tj, then insert TjTj to L so that the resulting L is
nondecreasing with the order given in (26).

3. Define π−1(α) := L.

We claim that L is a complete T -path. Conditions 1) 2) 6’) are obviously satisfied, and
5’) can be proved by induction.

Combining (i)(ii)(iii) and Theorem 4.4, we have proved that ψG,P is bijective.
Finally, we show that

∏n
i=1 x

−1
i

∏n
i=0 yi = x(α). By the construction of π−1(α) in (iii),

x(α) remains unchanged if we replace α by the complete T -path π−1(α) = Ti1Ti2 · · ·Ti2n+1 ;
this is because each time we insert the pair TjTj, the extra contribution to the product
(24) is xjx

−1
j = 1. So it suffices to show

n∏
i=1

x−1
i

n∏
i=0

yi =
∏
k even

x−1
ik

∏
k odd

xik .

By 5’),
∏

k even x
−1
ik

=
∏n

i=1 x
−1
i , so it suffices to show

∏n
i=0 yi =

∏
k odd xik , or to show that

yj = xi2j+1
for j ∈ [0, n]. Indeed, Ti2j+1

= L2j+1 = p(γj) by (27), thus xi2j+1
= w(γj) by

the definition of the weight w in (11). Moreover, Theorem 4.4 asserts that w(γj) = yj.
Thus yj = xi2j+1

.

Example 8.4. With the T -path α = T5T1T9T4T11, the complete T -path is π−1(α) =
T5T1T2T2T3T3T9T4T11. Then ψP,G(α) = ((1, 0), (1, 0), (0, 0)) as you can see in Figure 17.

T5

T7

T8

T11

T10

T9

T6
T1

T2

T3

T4

ψP,G

x2

x1

x3

x2 x4

x3

Figure 17: An example of the map ψP,G
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