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Abstract

Let X be a finite collection of sets. We count the number of ways a disjoint
union of n− 1 subsets in X is a set in X, and estimate this number from above by
|X|c(n) where

c(n) =

(
1− (n− 1) ln(n− 1)

n lnn

)−1

.

This extends the recent result of Kane–Tao, corresponding to the case n = 3 where
c(3) ≈ 1.725, to an arbitrary finite number of disjoint n− 1 partitions.

1 Introduction

Let {0, 1}m be the Hamming cube of dimension m > 1. Set 1m := (1, 1, . . . , 1) to be the
corner of {0, 1}m. Take a finite number of functions f1, . . . , fn : {0, 1}m → R, and define
the convolution at the corner 1m as

f1 ∗ f2 ∗ . . . ∗ fn(1m) :=
∑

xj∈{0,1}m :x1+···+xn=1m

f1(x1) · · · fn(xn).

Given f : {0, 1}m → R define its Lp norm (p > 1) in a standard way

‖f‖p :=

 ∑
x∈{0,1}m

|f(x)|p
1/p

.

∗This paper is based upon work supported by the National Science Foundation under Grant No. DMS-
1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley,
California, during the Spring 2017 semester.
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For n ∈ N we set

pn :=
ln nn

(n−1)n−1

lnn
.

Our main result is the following theorem

Theorem 1. For any n,m > 1, and any f1, . . . , fn : {0, 1}m → R we have

f1 ∗ f2 ∗ . . . ∗ fn(1m) 6
n∏

j=1

‖fj‖pn . (1)

Moreover, for each fixed n exponent pn is the best possible in the sense that it cannot be
replaced by any larger number.

As an immediate application we obtain the following corollary (see Section 2.3 below).

Corollary 2. Let X be a finite collection of sets. Then∣∣∣∣∣
{

(A1, . . . , An−1, A) ∈ X × · · · ×X︸ ︷︷ ︸
n

: A =
n−1⊔
j=1

Aj

}∣∣∣∣∣ 6 |X| npn , (2)

where
⊔

denotes the disjoint union, and |X| denotes cardinality of the set.

The corollary extends a recent result of Kane–Tao [1], corresponding to the case n = 3
where 3

p3
≈ 1.725, to an arbitrary finite number n > 3 disjoint partitions.

2 The proof of the theorem

Following [1] the proof goes by induction on the dimension of the cube {0, 1}m. The case
m = 1, which is the most difficult, is the main contribution of the current paper.

2.1 Basis: m = 1

In this case, set fj(0) = uj and fj(1) = vj for j = 1, . . . , n. Then the inequality (1) takes
the form

n∑
j=1

uj

n∏
i=1
i 6=j

vi 6
n∏

j=1

(|uj|pn + |vj|pn)1/pn . (3)

We do encourage the reader first to try to prove (3) in the case n = 3, or visit [1], to
see what is the obstacle. For example, when n = 3 equality in (3) is attained at several
points. Besides, direct differentiation of (3) reveals many “bad” critical points at which
finding the values of (3) would require numerical computations [1]. The number of critical
points together with equality cases increases as n becomes larger, therefore one is forced
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to come up with a different idea. We will overcome this obstacle by looking at (3) in dual
coordinates.

Without loss of generality we can assume that uj and vj are nonnegative for j =
1, . . . , n. Moreover, we can assume that vj 6= 0 for all j otherwise the inequality (3) is
trivial.

Let us divide (3) by
∏n

j=1 vj. Denoting xj := (uj/vj)
pn we see that it is enough to

prove the following lemma.

Lemma 3. For any n > 2 and all x1, . . . , xn > 0 we have(
n∑

i=1

x
1/pn
i

)pn

6
n∏

i=1

(1 + xi), (4)

where pn =
ln nn

(n−1)n−1

lnn

Proof. For n = 2 the lemma is trivial. By induction on n, monotonicity of the map

p→

(
n∑

i=1

x
1/p
i

)p

,

and the fact that pn is decreasing, we can assume that all xi are strictly positive. For
convenience we set p := pn. Introducing new variables we rewrite (4) as follows

p ln
(∑

xi

)
6
∑

ln(1 + xp
i ).

Concavity of the function ln(x) provides us with a simple representation of the logarithmic
function

ln(x) = min
b∈R

(b + e−bx− 1).

Therefore we are left to show that for all xi > 0 and all bi ∈ R we have

B(x, b) :=
∑

(bi + (1 + xp
i )e
−bi − 1)− p ln

(∑
xi

)
> 0,

where x = (x1, . . . , xn) and b = (b1, . . . , bn). Notice that given a vector b ∈ Rn, the
infimum of B(x, b) in x cannot be reached at infinity because of the slow growth of the
logarithmic function. Therefore, we look at critical points of B in x

x∗k =
e

bk
p−1(∑

i e
bi

p−1

) 1
p

for k = 1, . . . , n.

Notice that
∑

x∗i =
(∑

i e
bi

p−1

) p−1
p

. Therefore

B(x∗, b) =
∑
k

(bk + e−bk) + 1− n− (p− 1) ln

(∑
k

e
bk
p−1

)
.
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Setting r := p− 1 > 0, and introducing new variables again we are left to show that

f(y) := 1− n +
∑

ln yri +
∑ 1

yri
− r ln

(∑
yi

)
> 0

for all yi > 0. It is straightforward to check that f(y) > 0 on the diagonal, i.e., when
y1 = y2 = . . . = yn.

In general, we notice that critical points of f(y) satisfy the equation

1

yi
− 1

yr+1
i

=
1

yj
− 1

yr+1
j

=
1∑
yk

. (5)

Equation (5) gives the identity
∑

y−ri = n − 1, and so at critical points (5) we are only
left to show ∑

ln yi − ln
(∑

yi

)
> 0. (6)

Since the mapping

s→ 1

s
− 1

sr+1
, s > 0,

is increasing on (0, (1 + r)1/r) and decreasing on the remaining part of the ray, we can
assume without loss of generality that k numbers of xi equal to u > (1 + r)1/r, and the
remaining n − k numbers of xi equal to v 6 (1 + r)1/r. Moreover, we can assume that
0 < k < n otherwise the statement is already proved. From (5), we have

1

u
− 1

ur+1
=

1

v
− 1

vr+1
=

1

ku + (n− k)v
. (7)

From the equality of the first and the third expressions in (7) it follows that

v =
ur+1(1− k) + ku

(ur − 1)(n− k)
. (8)

In order v to be positive we assume that the numerator of (8) is non negative. If we plug
the expression for v from (8) into the first equality of (7) then after some simplifications
we obtain the following equation in the variable z := ur > 1 + r

(z − 1)r(n− k)r+1

(z(1− k) + k)r
= (n− 1)z − k. (9)

It follows from (7) that (ku + (n− k)v)r =
(

z
z−1

)r
z, and so using (9) we obtain

vr =
z(n− k)

(n− 1)z − k
.
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Therefore at critical points (6) simplifies as follows

(n− 1) ln z + (n− k) ln
n− k

(n− 1)z − k
− r ln

z

z − 1
> 0. (10)

Now it is pretty straightforward to show that (10) is non negative even under the as-

sumption z > 1 + r for r = p − 1 =
(n−1) ln n

n−1

lnn
. Indeed, notice that z > n

n−1
, and the

map

k → (n− k) ln
n− k

(n− 1)z − k

is increasing on [1, n − 1]. Therefore it is enough to check nonnegativity of (10) when
k = 1, in which case the inequality follows again using z > n

n−1
, and the fact that the

map

z →
ln
(

1 + 1
z(n−1)−1

)
ln
(
1 + 1

z−1

)
is increasing for z > n

n−1
.

Remark 4. Choice x1 = . . . = xn = 1
n−1

gives equality in (4), and this confirms the fact
that pn is the best possible in Theorem 1.

2.2 Inductive step

Inductive step is the same as in [1] without any modifications. This is a standard argument
for obtaining estimates on the Hamming cube (see for example [2]). In order to make the
paper self contained we decided to repeat the argument.

Suppose (1) is true on the Hamming cube of dimension m. Without loss of generality
assume fj > 0, and set gj := fp

j for all j. Define

Bn(y1, . . . , yn) := y
1/pn
1 · · · y1/pn

n .

For xj ∈ {0, 1}m+1, let xj = (x̄j, x
′
j) where x̄j is the vector consisting of the first m

coordinates of xj, and number x′j denotes the last m + 1 coordinate of xj. Set

g̃j(x
′
j) :=

∑
x̄j∈{0,1}m

gj(x̄j, x
′
j) j = 1, . . . , n.

We have ∑
xj∈{0,1}m+1 : x1+···+xn=1m+1.

B(g1(x1), . . . , gn(xn)) =

∑
x′j∈{0,1} : x′1+···+x′n=1.

∑
x̄j∈{0,1}m : x̄1+···+x̄n=1m.

B(g1(x1), . . . , gn(xn))
induction

6
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∑
x′j∈{0,1} : x′1+···+x′n=1.

B(g̃1(x′1), . . . , g̃n(x′n))
basis

6

B

 ∑
x1∈{0,1}m+1

g1(x1), . . . ,
∑

xn∈{0,1}m+1

gn(xn)

 .

2.3 The proof of Corollary 2

Without loss of generality we may assume that all the sets A in X are subsets of {1, . . . ,m}
with some natural m > 1 (see [1]). For j = 1, . . . , n define functions

fj : {0, 1}m → {0, 1}

as follows:

f1(a1, . . . , am) = . . . = fn−1(a1, . . . , am) = 1

if the set {1 6 i 6 m : ai = 1} lies in X, and fj = 0 otherwise. Finally we define

fn(a1, . . . , am) = 1

if the set {1 6 i 6 m : ai = 0} lies in X, and fn = 0 otherwise. Notice that in this case
inequality (1) becomes (2).
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