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Abstract

A k-plex in a latin square of order n is a selection of kn entries that includes
k representatives from each row and column and k occurrences of each symbol. A
1-plex is also known as a transversal.

It is well known that if n is even then Bn, the addition table for the integers
modulo n, possesses no transversals. We show that there are a great many latin
squares that are similar to Bn and have no transversal. As a consequence, the num-
ber of species of transversal-free latin squares is shown to be at least nn3/2(1/2−o(1))

for even n→∞.
We also produce various constructions for latin squares that have no transversal

but do have a k-plex for some odd k > 1. We prove a 2002 conjecture of the second
author that for all even orders n > 4 there is a latin square of order n that contains
a 3-plex but no transversal. We also show that for odd k and m > 2, there exists a
latin square of order 2km with a k-plex but no k′-plex for odd k′ < k.

Keywords: latin square; transversal; plex; triplex;

1 Introduction

A k × n latin rectangle is an array containing n symbols such that each symbol occurs
once in each row and at most once in each column. A latin square of order n is an n× n
latin rectangle. We index rows and columns by the set Nn = {0, 1, . . . , n − 1} and also
use Nn for our symbols. A latin square may then be specified as a set of ordered (row,
column, symbol) triples called entries. Each entry is an element of Nn ×Nn ×Nn. This
viewpoint allows a natural action of the wreath product Sn o S3 on the latin squares of
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order n, where Sn denotes the symmetric group of degree n. Orbits under this action are
known as species (sometimes also called main classes).

A k-plex of a latin square of order n is a selection of kn entries such that exactly k
entries are chosen from each row and each column, and each symbol is chosen k times.
A 1-plex is also known as a transversal and a 3-plex is known as a triplex. A k-plex is
said to be an odd plex if k is odd. See [7] for a survey on transversals and plexes more
generally.

One of our goals is to show that there are very many transversal-free Latin squares
for each even order. We do this in the next section. Our second major goal is to prove
the following conjecture from [6], which we do in §4.

Conjecture 1. For all even n > 4 there is a latin square of order n that contains a triplex
but no transversal.

It is clear that this conjecture cannot extend to n = 4, since the complement of a
transversal is always an (n − 1)-plex. Part of the motivation for studying plexes comes
from their use in creating orthogonal partitions in experiment design. Basic existence
questions for plexes seem to be very difficult. It has been conjectured in [6] that every
latin square of order n has a k-plex for every even k 6 n. There seems to be more diversity
regarding existence of odd plexes, and our result adds to the possibilities that are known
to occur.

The following lemma will be crucial to our work. It is one variant of a result known
as the Delta lemma which has been employed in several papers including [2, 3]. See [7]
for a discussion of other applications.

Lemma 1. Let L be a latin square of even order n indexed by Nn. Suppose that m is
an odd divisor of n. We define a function ∆m on the entries of L by specifying that
∆m(r, c, s) is the integer of least absolute value that satisfies

∆m(r, c, s) ≡
⌊ s
m

⌋
−
⌊ r
m

⌋
−
⌊ c
m

⌋
mod

n

m
.

Let k be an odd positive integer. If K is a k-plex of L then,∑
(r,c,s)∈K

∆m(r, c, s) ≡ n

2m
mod

n

m
.

Proof. By definition,∑
(r,c,s)∈K

∆m(r, c, s) ≡ k
n−1∑
s=0

⌊ s
m

⌋
− k

n−1∑
r=0

⌊ r
m

⌋
− k

n−1∑
c=0

⌊ c
m

⌋

≡ −km
n/m−1∑
i=0

i = −km
( n
m
− 1
) n

2m

≡ n

2m
mod

n

m
,

since km is odd and n/m is even.
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Most applications simply use m = 1, but we will need the more general version in the
next section. Also, the requirement that ∆m has the least absolute value in its residue
class will be vital in inequalities throughout the paper.

The number of transversals is invariant within a species. We call a latin square
transversal-free if it possesses no transversals. Define Bn to be the addition table for the
integers modulo n. It is immediate from Lemma 1 (using m = 1) that Bn is transversal-
free when n is even. In turns out that many latin squares that resemble Bn are also
transversal-free. We will use two results on this theme. One is a new result that we prove
in the next section. The other is the following classical result due to Maillet [5], which
was generalised from transversals to all odd plexes in [6].

Lemma 2. Let n = bm where b is even and m is odd. Let L = [Lij] be a latin square
indexed by Nn. If

bLij/mc ≡ bi/mc+ bj/mc mod b (1)

for all i, j ∈ Nn, then L has no odd plexes.

Lemma 2 is an immediate consequence of Lemma 1. Latin squares that satisfy (1)
for all i, j ∈ Nn are sometimes said to be of “step-type”. Part of the original motivation
for Conjecture 1 was to find a family of latin squares that are transversal-free but are
structurally different to step-type latin squares. That goal was achieved in [2], but without
proving the original conjecture. It was shown that there are latin squares that have
k-plexes for some odd k but not for any small odd k. By proving Conjecture 1, we
demonstrate yet another possible structure.

The other background result that we need is the following, from [4, p.186]:

Lemma 3. Let R be a k× n latin rectangle. The number of n× n latin squares obtained
by adding rows to R is at least

n−1∏
i=k

n!(1− i/n)n = n!n−k(n− k)!n/nn(n−k).

2 Number of latin squares with no transversals

It was famously conjectured by Ryser (see [7] for the history of this conjecture) that all
latin squares of odd order have transversals. Our aim in this section is to show that there
are a great many different species of latin squares of even order that have no transversals.

Theorem 1. Let n = 2am for positive integers a and m, where m is odd. There are at
least (m/e2)n

2
latin squares of order n that have no odd plexes.

Proof. By Lemma 2, we can construct an order n latin square with no odd plexes by
patching together 22a latin subsquares of order m. For each subsquare we have at least
m! 2m/mm2

choices, by Lemma 3, and these choices can be made independently. The result
now follows from Stirling’s approximation, given that m! > (m/e)m for all m > 1.
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Corollary 2. For m→∞ with fixed a > 1, the number of species of transversal-free latin
squares of order n = 2am is at least nn2(1−o(1)).

Proof. The number of transversal-free latin squares is at least (cn)n
2

for the constant
c = 2−ae−2 > 0. The result now follows, since the number of latin squares in each species
is at most 6(n!)3 = nO(n).

Of course, Theorem 1 does not tell us much for orders that are powers of 2. This is
unavoidable because Lemma 2 only applies to one species of such an order, namely the
species containing Bn. Our next result will allow us to show that there are many species
of transversal-free latin squares for all even orders.

Theorem 3. Let n = bm where b is even and m is odd. Let r be a nonnegative integer
and k an odd positive integer. Suppose L is any latin square of order n indexed by Nn,
which satisfies (1) for all j ∈ Nn and 0 6 i < n−mr. If km2r(r − 1) < n then L has no
k-plexes.

Proof. Suppose that K is a k-plex of L. For 0 6 i < n, let {ei,a : 0 6 a < k} be
the set of entries in K from the i-th row of L. By assumption, ∆m(ei,a) = 0 whenever
0 6 i < n−mr. Now consider some ei,a = (i, c, s) where i > n−mr. Given that s cannot
match any of the symbols which are used in the first n−mr rows of column c, we know
that b− r − bi/mc 6 ∆m(ei,a) 6 b− 1− bi/mc. It follows that∣∣∣∣∣

n−1∑
i=0

k−1∑
a=0

∆m(ei,a)

∣∣∣∣∣ 6
k−1∑
a=0

∣∣∣∣∣
n−1∑

i=n−mr

∆m(ei,a)

∣∣∣∣∣ 6 km
r−1∑
j=0

j = kmr(r − 1)/2.

The result now follows from Lemma 1.

In particular, when a step-type latin square of order n is transversal-free, this property
is quite robust in the sense that no transversal will be introduced by arbitrarily changing
any (roughly)

√
n consecutive rows. Putting k = m = 1 in Theorem 3, we see that:

Corollary 4. For even n there are no transversals in any latin square which agrees with
Bn outside of some set of b

√
nc consecutive rows.

Corollary 5. For even n→∞, there are at least nn3/2(1/2−o(1)) species of transversal-free
latin squares of order n.

Proof. Let s = b
√
nc. By Lemma 3 and Stirling’s approximation, there are at least

(s!)n(n!)s/nsn = nn3/2(1/2−o(1)) ways to complete the first n − s rows of Bn to a latin
square. Again, when we divide by nO(n), the maximum number of latin squares in a
species, this factor gets absorbed in the error term.

For m = 1 and r 6 2, Theorem 3 is not useful since in this case the only way to change
r consecutive rows is to permute them, which does not change the species. Hence the
smallest case when Theorem 3 is interesting is when n = 8 and r = 3. There are 264 latin
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squares that agree with B8 in the first 5 rows, and these fall in 9 distinct transversal-free
species. Representatives of the 8 species other than B8 may be defined by specifying the
non-zero values of the ∆1 function in the last three rows: · 2 · 2 · 2 · 2

· · · · · · · ·
· −2 · −2 · −2 · −2

 · 2 · 2 · 2 · 2
· · · · · · 1 −1
· −2 · −2 · −2 −1 −1


 · 2 · 2 · 2 · 2
· · 1 −1 · · 1 −1
· −2 −1 −1 · −2 −1 −1

 · 2 · 1 2 · 1 2
· · · 1 −1 · 1 −1
· −2 · −2 −1 · −2 −1


 · 2 · 1 2 · 1 2
· · · 1 −1 1 −1 ·
· −2 · −2 −1 −1 · −2

 · 2 · 1 2 · 1 2
· · 1 −1 · · 1 −1
· −2 −1 · −2 · −2 −1


 · 2 · 1 1 1 1 2
· · · 1 −1 1 −1 ·
· −2 · −2 · −2 · −2

 · 2 · 1 1 2 · 2
· · · 1 −1 · 1 −1
· −2 · −2 · −2 −1 −1


It is clear from Theorem 3 that there are a great many species of transversal-free latin

squares of even order. The true number is still far from known, but we would expect it
to be negligible compared to the number of all latin squares.

3 Latin squares with an odd plex but no transversal

The remainder of the paper is devoted to constructions of latin squares that have no
transversal but do have k-plexes for at least one odd value of k. Our strategy will always
be to start with Bn (which has no odd plexes by Lemma 1). In Bn we will locate a structure
J which is close to being a k-plex. Then we will alter Bn slightly and in the process relocate
a few entries from J in order to make it into a k-plex. Since we always begin with Bn

it is convenient to define a notation (x; y) to be the triple (x, y, z) ∈ Nn × Nn × Nn for
which z ≡ x+ y mod n. We also adopt the convention that the result of all calculations
for indices will be reduced mod n to an element of Nn.

Our method for changing Bn will be to use the well known theory of latin trades (see,
for example, the survey [1]). A latin trade in Bn is a subset Q of the entries of Bn that can
be removed and replaced by a disjoint set Q′ of entries to produce a new latin square. The
set Q′ is known as the disjoint mate for Q. The sets Q,Q′ are sets of entries (triples) with
the property that π(Q) = π(Q′) for any of the three projections π onto two coordinates.
Checking that our latin trades and their mates have this property will be left as a routine
exercise to the reader.

For the remainder of this section, k is odd and n = 2km for some integer m > 2. Our
aim is to establish the existence of latin squares of order n which contain a k-plex but no
smaller odd plexes.
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We start by identifying a set of entries inside Bn, which we denote by J . We let
J = J0 ∪ J1 ∪ J2 ∪ J3 where:

J0 =
{

(i; 2jm+ i− 1) : 1 6 i 6 m, 0 6 j 6 k − 1
}

J1 =
{

(i; 2jm+ i) : m 6 i 6 2m− 1, 0 6 j 6 k − 1
}

J2 =
{

(2m(2`− 1) + i; 2jm+ i) : 0 6 i 6 2m− 1, 0 6 j 6 k − 1, 1 6 ` 6 (k − 1)/2
}

J3 =
{

(4m`+ i; 2jm+ i+ 1) : 0 6 i 6 2m− 1, 0 6 j 6 k − 1, 1 6 ` 6 (k − 1)/2
}
.

Below we exhibit J when k = m = 3.

1 7 13
3 9 15

5 6 11 12 17 0
8 14 2

10 16 4
6 12 0

8 14 2
10 16 4

12 0 6
14 2 8

16 4 10
13 1 7

15 3 9
17 5 11

1 7 13
3 9 15

17 5 11

Lemma 4. Each column of Bn contains precisely k elements of J . Each symbol in Nn

appears in precisely k elements of J . Each row of Bn contains precisely k elements of J ,
except for the first row which contains no elements and row m which contains 2k elements.

Proof. The claim about rows is straightforward to check. Each column appears once in
J0 ∪ J1, (k− 1)/2 times in J2 (once for each choice of `) and (k− 1)/2 times in J3 (again,
once for each choice of `). Each even symbol occurs once in J1 and k − 1 times in J2
(twice for each choice of `). Each odd symbol occurs once in J0 and k − 1 times in J3
(twice for each choice of `).

Our aim is to find a latin trade in Bn which allows us to shift precisely k elements of
J from row m to row 0 without making further changes to J . This will allow us to show:

Theorem 6. Let k be odd and m > 2. Then there exists a latin square of order n = 2km
with a k-plex but no k′-plex for odd k′ < k.
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Proof. Observe that
{

(0; jm), (m; jm) : 0 6 j < 2k
}

defines a latin trade T in Bn.
The disjoint mate T ′ of T is formed by swapping the two symbols in each column of T .
Moreover, T ∩ J =

{
(m;m+ 2mj) : 0 6 j 6 k − 1

}
since m > 2.

Thus replacing T with T ′ in Bn has the effect of shifting k entries of J from row m to
row 0. From Lemma 4, L′ := (Bn \ T ) ∪ T ′ contains a k-plex.

Suppose that L′ contains a k′-plex K for some odd k′ such that k′ < k. For each
(r, c, s) ∈ T ′, ∆1(r, c, s) = m if r = 0 and ∆1(r, c, s) = −m if r = m. Thus∣∣∣∣∣ ∑

(r,c,s)∈K

∆1(r, c, s)

∣∣∣∣∣ 6 mk′ < n/2.

Hence by Lemma 1, there is no k′-plex in L′.

In the extreme case m = 2, the previous theorem implies the existence of a latin square
of order 4k with a k-plex but no smaller odd plexes; such a structure was first shown to
exist in [2]. Note that the k-plex constructed in Theorem 6 is necessarily indivisible in
the sense that it cannot be partitioned into two or more smaller plexes. In [3], it was
shown that for all n /∈ 2, 6, if k is any proper divisor of n then there exists a latin square
of order n that can be partitioned into indivisible k-plexes. That result is in the spirit of
Theorem 6, though neither implies the other.

4 Latin squares with a triplex but no transversal

In this section we prove Conjecture 1. Our proof splits into several subcases. Recall that
Bn has no odd plexes, by Lemma 1. In each of several cases we will show that it is possible
to change a small number of the entries of Bn so that a triplex is created and yet there
are still no transverals.

First we construct transversal-free latin squares that have a triplex, for certain small
orders that are missed by the general constructions that we will subsequently give. The
examples were found by asking a computer to complete a partial triplex in a specific latin
square Ln. The construction of Ln is as follows. Let n = 4m+2. For i, j ∈ {0, 1, . . . , n−1},
define

Ln[i, j] mod n ≡



i+ j + 1 if n− 1−m 6 i 6 n− 2 and j ∈ {m, 3m+ 1},
i+ j − 1 if n−m 6 i < n and j ∈ {m+ 1, 3m+ 2},
i+ j +m if i = n− 1−m and j ∈ {0,m+ 1, 2m+ 1, 3m+ 2},
i+ j −m if i = n− 1 and j ∈ {0,m, 2m+ 1, 3m+ 1},
i+ j otherwise.

Theorem 7. For n ∈ {10, 14, 18, 22, 26, 34, 38, 46, 50, 62}, there is a triplex but no trans-
versal in Ln.

Proof. Let h = n/2 and m = (n − 2)/4. Suppose that T is a transversal of Ln. By
Lemma 1 the sum, S, of the ∆1 function over T must be h mod n. However T can have
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at most one entry in row n− 1−m and at most one entry in each of columns m, 3m+ 1.
It follows that S 6 m+ 2 < 2m+ 1 = h. Similarly, T can have at most one entry in row
n− 1 and at most one entry in each of columns m+ 1, 3m+ 2, so S > −h. It follows that
S 6≡ h mod n, so Ln has no transversal.

Next, we specify a triplex P in Ln as follows. We start by choosing the cells in
columns i, i + h − 1, i + h of row i for 0 6 i < h. Next we choose the cells in columns
3(i− h), 3(i− h) + 1, 3(i− h) + 2 of row i for h 6 i < h+ bn/6c. For the rows with index
h+ bn/6c to n− 1 (in that order) we list the column indices of the cells to choose in En,
where En is as follows:

E10 = [[6, 7, 9], [0, 5, 8], [1, 2, 3], [3, 4, 9]],

E14 = [[6, 10, 11], [0, 4, 13], [7, 8, 13], [3, 5, 9], [1, 2, 12]],

E18 = [[1, 13, 14], [0, 5, 10], [11, 15, 16], [6, 9, 12], [4, 7, 17], [2, 3, 17]],

E22 = [[17, 18, 21], [14, 15, 16], [12, 20, 21], [0, 8, 9], [1, 7, 9], [4, 6, 10], [2, 3, 13], [5, 11, 19]],

E26 = [[19, 20, 25], [13, 16, 21], [14, 18, 22], [9, 15, 23], [2, 11, 17], [8, 24, 25],

[1, 10, 12], [3, 4, 5], [0, 6, 7]],

E34 = [[2, 25, 26], [27, 28, 32], [23, 29, 33], [20, 21, 24], [13, 17, 19], [12, 14, 15],

[10, 15, 16], [3, 6, 11], [1, 7, 33], [18, 30, 31], [4, 5, 22], [0, 8, 9]],

E38 = [[18, 19, 20], [21, 23, 25], [26, 28, 29], [0, 10, 27], [30, 31, 32], [33, 34, 35],

[2, 36, 37], [3, 22, 37], [1, 6, 24], [4, 7, 14], [8, 9, 11], [15, 16, 17], [5, 12, 13]],

E46 = [[1, 34, 35], [36, 37, 38], [31, 33, 39], [29, 40, 42], [26, 27, 45], [19, 20, 28],

[21, 23, 25], [16, 18, 21], [13, 14, 43], [2, 3, 4], [17, 44, 45], [5, 6, 8], [9, 30, 41],

[7, 10, 24], [15, 22, 32], [0, 11, 12]],

E50 = [[2, 37, 38], [39, 40, 49], [32, 36, 44], [33, 41, 42], [30, 31, 35], [25, 27, 43],

[23, 24, 47], [20, 21, 29], [16, 17, 48], [3, 22, 49], [1, 4, 5], [7, 15, 46], [8, 10, 14],

[6, 11, 19], [9, 26, 28], [18, 34, 45], [0, 12, 13]],

E62 = [[30, 31, 32], [1, 46, 47], [48, 49, 50], [39, 40, 42], [51, 52, 54], [41, 45, 55], [43, 53, 56],

[35, 37, 59], [33, 38, 60], [3, 5, 61], [6, 34, 61], [7, 27, 28], [24, 25, 26], [4, 9, 21],

[10, 12, 58], [17, 18, 19], [13, 14, 20], [8, 11, 23], [22, 36, 57], [2, 29, 44], [0, 15, 16]].

It is immediate from our construction that P contains exactly 3 entries in each row. It
is routine to check that P also has exactly 3 entries in each column, and 3 copies of each
symbol in Nn.

Next we consider the case when n is divisible by 4.
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We start by identifying a subset of Bn which we denote by J . We let J = J0 ∪ J1 ∪
J2 ∪ J3 ∪ J4 where:

J0 =
{

(0; 0), (0; 1), (0; 2), (0; 3), (0; 4)
}

J1 =
{

(i; 3i+ 2), (i; 3i+ 3), (i; 3i+ 4) : 1 6 i 6 n/4− 1
}

J2 =
{

(n/4; 3n/4 + 2)
}

J3 =
{

(i; 3i), (i; 3i+ 1), (i; 3i+ 2) : n/4 + 1 6 i 6 n/2− 1
}

J4 =
{

(i; i− n/2 + 1), (i; i), (i; i+ 1) : n/2 6 i 6 n− 1
}
.

We exhibit J when n = 12:

0 1 2 3 4
6 7 8

10 11 0
2

4 5 6
8 9 10

7 0 1
9 2 3

11 4 5
1 6 7

3 8 9
11 5 10

Lemma 5. Each column of Bn contains precisely 3 elements of J . Each symbol in Nn

appears in precisely 3 elements of J . Each row of J contains precisely 3 elements of J ,
except for the first row which contains 5 elements and row n/4 which contains 1 element.

Proof. First observe that |J | = |J0|+|J1|+|J2|+|J3|+|J4| = 5+3(n/4−1)+1+3(n/4−1)+
3(n/2) = 3n. The statements about rows are easy to check. Next consider the columns.
Columns 0 through to 4 appear once each in J0; columns 5 through to 3n/4 + 1 appear
once each in J1; column 3n/4 + 2 appears once in J2; columns 3n/4 + 3 through to n− 1
and 0 through to n/2−1 appear in J3. Including elements of J4 on the main diagonal, we
have each column appearing exactly twice. The set {i+1, i−n/2+1 : n/2 6 i < n} = Nn

so each column of J has exactly 3 filled cells.
Next, consider symbols. Observe that J4 contains each odd symbol exactly twice and

each even symbol exactly once. Meanwhile, J1 contains exactly one copy of the symbols
from 6 to n − 1 (and 0) except for those congruent to 1 modulo 4. Also, J3 contains
exactly one copy of the symbols from 4 to n−2 except for those congruent to 3 modulo 4.
Since 1, 3 ∈ J0, each odd symbol occurs thrice in J . Finally, since 0, 2, 4 ∈ J0 and 2 ∈ J2
each even symbol also occurs thrice in J .

We next describe how to change Bn to obtain a latin square with a triplex but no
transversal. For each i ∈ {0, 1}, let Ti ⊂ Bn be the latin trade of cardinality 8 consisting
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of all symbols in rows 0 and n/4 which are congruent to i modulo n/4. The (unique)
disjoint mates T ′i are obtained by swapping the two symbols in each column of T . In each
case we will show that one of the following latin squares will have the desired properties:

L1 := (Bn \ T0) ∪ T ′0,
L2 := (Bn \ T1) ∪ T ′1,
L3 := (Bn \ (T0 ∪ T1)) ∪ T ′0 ∪ T ′1.

Lemma 6. Let n be divisible by 4 and let n > 8. For each i ∈ {1, 2, 3}, the latin square
Li does not contain a transversal. If n = 8, L2 contains a triplex. If n ∈ {12, 16}, L1

contains a triplex. If n > 20, L3 contains a triplex.

Proof. In each case, only rows 0 and n/4 contain entries distinct from those in Bn. Thus
∆1(r, c, s) = 0 if r 6∈ {0, n/4}; ∆1(r, c, s) ∈ {0, n/4} if r = 0 and ∆1(r, c, s) ∈ {0,−n/4} if
r = n/4. Since a transversal contains exactly one entry in each row, if K is a transversal,∣∣∣∣∣ ∑

(r,c,s)∈K

∆1(r, c, s)

∣∣∣∣∣ 6 n/4,

contradicting Lemma 1. The remaining claims follow from Lemma 5, by observing that
in each case we have shifted precisely 2 entries from row 0 of J to row n/4 (and have
made no other changes to J).

Corollary 8. Let n be divisible by 4 and let n > 8. There exists a latin square of order
n which contains a triplex but no transversal.

It remains to consider the case when n ≡ 2 mod 4. This splits into subcases according
to the value of n mod 3.

The n ≡ 6 mod 12 case is easiest. Let m = n/6. The m = 1 case is well known (for
an explicit example, see [6]). The case m = 3 is done in Theorem 7. For odd m > 5, we
may apply Theorem 6.

Next we consider the case when n ≡ 10 mod 12. Let n = 12m− 2. By Theorem 7 we
may assume that m > 5.

We start by identifying a subset of Bn which we denote by J . We let J = J0∪J1∪J2∪J3
where:

J0 =
{

(i; 3i− 2), (i; 3i− 1), (i; 3i) : 1 6 i 6 2m− 1
}

J1 =
{

(2m− 1; 6m+ 1), (2m; 6m− 2), (2m; 6m− 1)
}

J2 =
{

(i; 3i+ 2), (i; 3i+ 3), (i; 3i+ 4) : 2m 6 i 6 n/2− 1
}

J3 =
{

(i; i− n/2), (i; i), (i; i+ 1) : n/2 6 i 6 n− 1
}
.

Observe the following lemma. We omit the proof, which is elementary and similar to
that of Lemma 5.
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Lemma 7. Each column of Bn contains precisely 3 elements of J . Each symbol in Nn

appears in precisely 3 elements of J . Each row of Bn contains precisely 3 elements of J ,
except for the first row which contains no elements, row 2m−1 which contains 4 elements
and row 2m which contains 5 elements of J .

As in previous cases we wish to use latin trades in Bn to create a triplex without
introducing a transversal. To this end we describe the following latin trades T0 and T1
within the first 2m (respectively, 2m+ 1) rows of Bn.

T0 =
{

(i; 2jm), (i; 2jm+ 1) : 1 6 j 6 4, 0 6 i 6 2m− 1
}

∪
{

(0; 1), (2m− 1; 1), (0; 10m), (2m− 1; 10m)
}
.

T1 =
{

(0; 2jm− 2), (2m; 2jm− 2) : 1 6 j 6 4
}

∪
{

(0; 10m− 2), (2m; 12m− 4)
}

∪
{

(2i; 12m− 4− 2i), (2i+ 2; 12m− 4− 2i) : 0 6 i 6 m− 1
}
.

To verify that T0 and T1 each give latin trades in Bn we exhibit their respective
(unique) disjoint mates T ′0 and T ′1.

T ′0 =
{

(i, 2jm, i+ 2jm+ 1), (i, 2jm+ 1, i+ 2jm) : 1 6 j 6 4, 0 < i < 2m− 1
}

∪
{

(0, 2jm, 2jm+ 1), (0, 2jm+ 1, 2(j + 1)m), (2m− 1, 2jm, 2jm),

(2m− 1, 2jm+ 1, 2(j + 1)m− 1) : 1 6 j 6 4
}

∪
{

(0, 1, 2m), (2m− 1, 1, 1), (0, 10m, 1), (2m− 1, 10m, 10m)
}
.

T ′1 =
{

(0, 2jm− 2, 2(j + 1)m− 2), (2m, 2jm− 2, 2jm− 2) : 1 6 j 6 4
}

∪
{

(0, 10m− 2, 12m− 4), (0, 12m− 4, 2m− 2)
}

∪
{

(2m, 10m− 2, 10m− 2), (2m, 12m− 4, 0)
}

∪
{

(2i, 12m− 4− 2i, 0), (2i, 12m− 2− 2i, 12m− 4) : 1 6 i 6 m− 1
}
.

Lastly we define T2 =
{

(r, c+ 5, s+ 5) : (r, c, s) ∈ T1
}

which is clearly a latin trade in
Bn with disjoint mate T ′2 =

{
(r, c+ 5, s+ 5) : (r, c, s) ∈ T ′1

}
.

Since m > 5, the latin trades T0, T1 and T2 are pairwise disjoint. Moreover, (T1∪T2)∩
J =

{
(2m; 6m− 2), (2m; 6m+ 3)

}
. Next, J intersects T0 at

{
(2m− 1; 6m+ 1)

}
and{

(dx/3e;x) : x ∈ {2m, 2m+ 1, 4m, 4m+ 1}
}
. (2)

It follows that L′ =
(
Bn \ (T0 ∪ T1 ∪ T2)

)
∪ (T ′0 ∪ T ′1 ∪ T ′2) contains a triplex. To see this,

adjust J by replacing (2m, 6m−2, 8m−2), (2m, 6m+3, 8m+3) and (2m−1, 6m+1, 8m)
with (0, 6m − 2, 8m − 2), (0, 6m + 3, 8m + 3) and (0, 6m + 1, 8m), respectively. Finally,
replace (2) with the triples of L′ associated with the following cells:{

(d2m/3e, 2m+ 1), (d(2m+ 1)/3e, 2m), (d4m/3e, 4m+ 1), (d(4m+ 1)/3e, 4m)
}

The resultant structure is a triplex in L′.
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Suppose, for the sake of contradiction, L′ has a transversal K. Recall in the following
that K intersects each row, column and symbol exactly once. If (r, c, s) ∈ T ′0∪T ′1∪T ′2, 1 6
∆1(0, c, s) 6 2m, ∆1(2m−1, c, s) ∈

{
−1,−(2m−1)

}
and ∆1(2m, c, s) ∈ {−2m,−2m+2}.

Summing over (r, c, s) ∈ K with r ∈ {0, 2m− 1, 2m}:∣∣∣∑∆1(r, c, s)
∣∣∣ 6 4m− 1.

Otherwise the only non-zero values for ∆1 occur strictly between rows 0 and 2m−1 of
T ′0 ∪ T ′1 ∪ T ′2, so we consider only when 0 < r < 2m− 1. In this case ∆1(r, c, s) = 1 if c ∈
C = {2m, 4m, 6m, 8m} and ∆1(r, c, s) = −1 if c ∈ C ′ = {2m+ 1, 4m+ 1, 6m+ 1, 8m+ 1}.
Summing over (r, c, s) ∈ K with r 6∈ {0, 2m− 1, 2m} and c ∈ C ∪ C ′:∣∣∣∑∆1(r, c, s)

∣∣∣ 6 4.

Similarly, the most the ∆1 function can accrue from T ′1 ∪ T ′2 in rows strictly between
0 and 2m− 1 is 4 (in absolute terms). Thus:∣∣∣∣∣ ∑

(r,c,s)∈K

∆1(r, c, s)

∣∣∣∣∣ 6 4m+ 7 < n/2,

a contradiction.

Finally, we consider the case when n ≡ 2 mod 12. Let n = 12m + 2. By Theorem 7
we may assume that m > 6.

We start by identifying a subset of Bn which we denote by J . We let J = J0∪J1∪J2∪J3
where:

J0 =
{

(i; 3i− 2), (i; 3i− 1), (i; 3i) : 1 6 i 6 2m
}

J1 =
{

(2m; 6m+ 3), (2m; 6m+ 4), (2m+ 1; 6m+ 1)
}

J2 =
{

(i; 3i+ 2), (i; 3i+ 3), (i; 3i+ 4) : 2m+ 1 6 i 6 n/2− 1
}

J3 =
{

(i; i− n/2), (i; i), (i; i+ 1) : n/2 6 i 6 n− 1
}
.

Observe the following lemma. We omit the proof, which is elementary and similar to
that of Lemma 5.

Lemma 8. Each column of Bn contains precisely 3 elements of J . Each symbol in Nn

appears in precisely 3 elements of J . Each row of Bn contains precisely 3 elements of J ,
except for the first row which contains no elements, row 2m which contains 5 elements
and row 2m+ 1 which contains 4 elements of J .

As in previous cases we wish to use latin trades in Bn to introduce a triplex but not a
transversal. To this end we describe the following latin trades T0 and T1 within the first
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2m (respectively, 2m+ 1) rows of Bn.

T0 =
{

(0; 2jm− 2), (2m; 2jm− 2) : 3 6 j 6 6
}

∪
{

(i; 2m− 4), (i; 2m− 3), (i; 4m− 3), (i; 4m− 2) : 0 6 i 6 2m
}
,

T1 =
{

(0; (2m+ 1)j − 2), (2m+ 1; (2m+ 1)j − 2) : 0 6 j 6 4
}

∪
{

(0; 10m+ 1), (1; 10m), (1; 10m+ 1), (2; 10m), (2; 10m+ 1)
}

∪
{

(2m+ 1; 10m+ 1), (1; 12m− 1), (1; 12m), (2; 12m− 1), (2; 12m)
}

∪
{

(2i+ 3; 10m− 2i− 2), (2i+ 3; 10m− 2i),

(2i+ 3; 12m− 2i− 3), (2i+ 3; 12m− 2i− 1) : 0 6 i 6 m− 2
}
.

To verify that T0 and T1 each give latin trades in Bn we exhibit their respective
(unique) disjoint mates T ′0 and T ′1.

T ′0 =
{

(0, 2jm− 2, 2(j + 1)m− 2), (2m, 2jm− 2, 2jm− 2) : 3 6 j 6 6
}

∪
{

(0, 2m− 4, 2m− 3), (0, 2m− 3, 4m− 3), (2m, 2m− 4, 2m− 4)
}

∪
{

(2m, 2m− 3, 4m− 4), (0, 4m− 3, 4m− 2), (0, 4m− 2, 6m− 2)
}

∪
{

(2m, 4m− 3, 4m− 3), (2m, 4m− 2, 6m− 3)
}

∪
{

(i, 2m− 4, 2m+ i− 3), (i, 2m− 3, 2m+ i− 4), (i, 4m− 3, 4m+ i− 2),

(i, 4m− 2, 4m+ i− 3) : 0 < i < 2m
}
.

T ′1 =
{

(0, (2m+ 1)j − 2, (2m+ 1)(j + 1)− 2),

(2m+ 1, (2m+ 1)j − 2, (2m+ 1)j − 2) : 1 6 j 6 3
}

∪
{

(0, 12m, 2m− 1), (2m+ 1, 12m, 0), (0, 8m+ 2, 10m+ 1)
}

∪
{

(2m+ 1, 8m+ 2, 8m+ 2), (0, 10m+ 1, 12m), (1, 10m, 10m+ 2)
}

∪
{

(1, 10m+ 1, 10m+ 1), (2, 10m, 10m+ 3), (2, 10m+ 1, 10m+ 2)
}

∪
{

(2m+ 1, 10m+ 1, 10m+ 3), (1, 12m− 1, 12m+ 1), (1, 12m, 12m)
}

∪
{

(2, 12m− 1, 0), (2, 12m, 12m+ 1)
}

∪
{

(2i+ 3, 10m− 2i− 2, 10m+ 3), (2i+ 3, 10m− 2i, 10m+ 1),

(2i+ 3, 12m− 2i− 3, 0), (2i+ 3, 12m− 2i− 1, 12m) : 0 6 i 6 m− 2
}
.

We also define T2 =
{

(r, c + 6, s + 6) : (r, c, s) ∈ T0
}

which is clearly a latin trade in
Bn with disjoint mate T ′2 =

{
(r, c+ 6, s+ 6) : (r, c, s) ∈ T ′0

}
.

Let m > 6. Observe that the latin trades T0, T1 and T2 are pairwise disjoint. Moreover,
T0 ∪ T2 intersects J at (2m; 6m− 2), (2m; 6m+ 4) and{

(dx/3e;x) : x ∈ {2m− 4, 2m− 3, 2m+ 2, 2m+ 3, 4m− 3, 4m− 2, 4m+ 3, 4m+ 4}
}

(3)

Also, J intersects T1 at
{

(2m+ 1; 6m+ 1)
}

.
It follows that L′ =

(
Bn \ (T0∪T1∪T2)

)
∪ (T ′0∪T ′1∪T ′2) contains a triplex. To see this,

adjust J by replacing (2m, 6m−2, 8m−2), (2m, 6m+4, 8m+4) and (2m+1, 6m+1, 8m+2)
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with (0, 6m−2, 8m−2), (0, 6m+ 4, 8m+ 4) and (0, 6m+ 1, 8m+ 2), respectively. Finally,
replace (3) with the triples of L′ associated with the following cells:{

(d(2m− 4)/3e, 2m− 3), (d(2m− 3)/3e, 2m− 4),

(d(2m+ 2)/3e, 2m+ 3), (d(2m+ 3)/3e, 2m+ 2),

(d(4m− 3)/3e, 4m− 2), (d(4m− 2)/3e, 4m− 3),

(d(4m+ 3)/3e, 4m+ 4), (d(4m+ 4)/3e, 4m+ 3)
}
.

The resultant structure is a triplex in L′.
Suppose, for the sake of contradiction, L′ has a transversal K. If (r, c, s) ∈ T ′0∪T ′1∪T ′2,

1 6 ∆1(0, c, s) 6 2m + 1, ∆1(2m, c, s) ∈ {−1,−2m} and ∆1(2m + 1, c, s) ∈ {−2m −
1,−2m+ 1}. Summing over (r, c, s) ∈ K with r ∈ {0, 2m, 2m+ 1}:∣∣∣∑∆1(r, c, s)

∣∣∣ 6 4m+ 1.

Otherwise the only non-zero values for ∆1 occur strictly between rows 0 and 2m of
T ′0 ∪ T ′1 ∪ T ′2, so we consider only when 0 < r < 2m. In this case ∆1(r, c, s) = 1 if
c ∈ C = {2m− 4, 2m+ 2, 4m− 3, 4m+ 3} and ∆1(r, c, s) = −1 if c ∈ C ′ = {2m− 3, 2m+
3, 4m− 2, 4m+ 4}. Summing over (r, c, s) ∈ K with r 6∈ {0, 2m, 2m+ 1} and c ∈ C ∪C ′:∣∣∣∑∆1(r, c, s)

∣∣∣ 6 4.

Similarly, the most the ∆1 function can accrue from T ′1 in rows strictly between 0 and 2m
is 6 (in absolute terms). Thus:∣∣∣∣∣ ∑

(r,c,s)∈K

∆1(r, c, s)

∣∣∣∣∣ 6 4m+ 11 < n/2,

a contradiction.

5 Conclusion

It has been known since the 19th century that there are no transversals in step-type
Latin squares of even order composed of odd ordered subsquares. This family includes
the Cayley table of the cyclic group of any even order. We showed in §2 that the absence
of transversals in these squares is a surprisingly robust property. Specifically, the entries
in up to

√
n consecutive rows may be rearranged in any way and there will still be no

transversal. A consequence is that there are at least nn3/2(1/2−o(1)) species of transversal-
free latin squares of each even order n.

Our other main result was to prove Conjecture 1, that for all even n > 4 there is a
latin square of order n that contains a triplex but no transversal. It would be interesting
to know how far this result generalises. We propose:
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Conjecture 2. For each odd k there exists N such that for all even n > N there exists
a latin square of order n that contains a k-plex but no k′-plex for odd k′ < k.

In [2], examples were constructed where the smallest odd k-plexes have k = n/4−O(1),
where n is the order of the latin square. This raises the interesting question of whether
n/4−O(1) is as large as possible in a result of this type.

Another unsolved question from [2] is whether there exists any latin square that has
an a-plex and a c-plex but no b-plex, for odd integers a < b < c.
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