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Abstract

Waiter – Client and Client – Waiter games are two–player, perfect information
games, with no chance moves, played on a finite set (board) with special subsets
known as the winning sets. Each round of the biased (1 : q) Waiter–Client game
begins with Waiter offering q + 1 previously unclaimed elements of the board to
Client, who claims one and leaves the remaining q elements to be claimed by Waiter
immediately afterwards. In a (1 : q) Client–Waiter game, play occurs in the same
way except in each round, Waiter offers t elements for any t in the range 1 6 t 6 q+1.
If Client fully claims a winning set by the time all board elements have been offered,
he wins in the Client–Waiter game and loses in the Waiter–Client game. We give
an estimate for the threshold bias (i.e. the unique value of q at which the winner
of a (1 : q) game changes) of the (1 : q) Waiter–Client and Client–Waiter versions
of two different games: the non–2–colourability game, played on the edge set of
a complete k–uniform hypergraph, and the k–SAT game. More precisely, we show
that the threshold bias for the Waiter–Client and Client–Waiter versions of the non–
2–colourability game is 1

n

(
n
k

)
2Ok(k) and 1

n

(
n
k

)
2−k(1+ok(1)) respectively. Additionally,

we show that the threshold bias for the Waiter–Client and Client–Waiter versions
of the k–SAT game is 1

n

(
n
k

)
up to a factor that is exponential and polynomial in k

respectively. This shows that these games exhibit the probabilistic intuition.

Keywords: Positional games; k-SAT; graph theory; colouring

1 Introduction

A positional game is a two–player perfect information game where each player takes turns
to claim previously unclaimed (free) elements of a finite set (board) X until all members
of X have been claimed, at which point the game ends. The winner is determined by the
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winning criteria of the specific type of positional game in play. Such criteria are defined
by a set F ⊆ 2X of so–called winning sets which are known to both players before the
game begins. A game with board X and set F of winning sets is often denoted by the pair
(X,F). Popular examples of positional games include Tic–Tac–Toe and Hex [28]. For an
extensive survey on positional games, the interested reader may refer to the monographs
of Beck [11] and Hefetz, Krivelevich, Stojaković and Szabó [30].

In biased (1 : q) Waiter–Client and Client–Waiter games, where q is a positive integer,
the two players, Waiter and Client, play in the following way. At the beginning of each
round of the (1 : q) Waiter–Client game (X,F), Waiter offers exactly q + 1 free elements
of X to Client. Client claims one of these, and the remaining q elements are then claimed
by Waiter. If, in the last round, only 1 6 s < q + 1 free elements remain, Waiter claims
all of them. Waiter wins the game if he can force Client to fully claim a winning set in
F , otherwise Client wins. In the (1 : q) Client–Waiter game (X,F), each round begins
with Waiter offering 1 6 t 6 q + 1 free elements of X to Client. Client then claims one
of these elements, and the remainder of the offering (if any) is claimed by Waiter. In this
game, Client wins if he can fully claim a winning set in F , otherwise Waiter wins.

Since these games are finite, perfect information, two–player games with no chance
moves and no possibility of a draw, a classical result from Game Theory guarantees a
winning strategy (i.e. a strategy that, if followed, ensures a win regardless of how the
opponent plays). Also, both games are bias monotone in Waiter’s bias q. This means
that, if Client has a winning strategy for a (1 : q) Waiter–Client game then Client also
has a winning strategy for the same game with bias (1 : q+1). The analogous implication
is true when Waiter has a strategy to win a (1 : q) Client–Waiter game. Thus, for each
(non–trivial) (1 : q) Waiter–Client or Client–Waiter game (X,F), there exists a unique
value of q at which the winner of the game changes. This value is known as the threshold
bias of the game.

We give bounds on the threshold bias of two specific types of Waiter–Client and
Client–Waiter games and show that they exhibit the probabilistic intuition (see Section

1.2). The first game of interest is the non–2–colourability game (E(K
(k)
n ),NC2) played

on the edge set E(K
(k)
n ) of the complete n–vertex k–uniform hypergraph K

(k)
n , for some

positive integer k. In this, the set NC2 of winning sets is defined to be

NC2 = {F ⊆ E(K(k)
n ) : χ(F ) > 2},

where χ denotes the weak chromatic number (see Section 1.3). The second game we

consider is the k–SAT game (C(k)n ,FSAT ), where k is a positive integer. This is played on

the set C(k)n of all
(
2n
k

)
possible k–clauses, where each k–clause is the disjunction of exactly

k literals taken from n fixed boolean variables x1, . . . , xn. By literal, we mean a boolean
variable xi or its negation ¬xi. The set FSAT of winning sets is defined to be

FSAT = {S ⊆ C(k)n :
∧
S is not satisfiable},

where
∧
S denotes the conjunction of all k–clauses in S.
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1.1 The Results

1.1.1 The non–2–colourability game

We prove that the threshold bias for the (1 : q) Waiter–Client and Client–Waiter versions

of (E(K
(k)
n ),NC2) is 1

n

(
n
k

)
2Ok(k) and 1

n

(
n
k

)
2−k(1+ok(1)) respectively.

Theorem 1. Let k, q and n be positive integers, with n sufficiently large and k > 2 fixed,
and consider the (1 : q) Waiter–Client game (E(K

(k)
n ),NC2). If q 6

(dn/2e
k

)
ln 2

2((1+ln 2)n+ln 2)
,

then Waiter can force Client to build a non–2–colourable hypergraph. Also, Client can
keep his hypergraph 2–colourable throughout the game whenever q > 2k/2ek/2+1k

(
n
k

)
/n.

Theorem 2. Let k, q and n be positive integers, with n sufficiently large and k > 2
fixed, and consider the (1 : q) Client–Waiter game (E(K

(k)
n ),NC2). If q 6

(dn/2e
k

)
ln 2

(1+ln 2)n
,

then Client can build a non–2–colourable hypergraph. However, when q > k32−k+5
(
n
k

)
/n,

Waiter can ensure that Client has a 2–colourable hypergraph at the end of the game.

Thus, we have a multiplicative gap of (1 + o(1))(1 + 1/ ln 2)23k/2+1ek/2+1k and (1 +
o(1))(1 + 1/ ln 2)25k3 between the upper and lower bounds of q for the Waiter–Client and
Client–Waiter versions respectively.

Remark 3. Our proofs of Theorems 1 and 2 generalise easily to the Waiter–Client and
Client–Waiter non–r–colourability game (E(K

(k)
n ),NCr), for any fixed r, k > 2, where

NCr = {F ⊆ E(K(k)
n ) : χ(F ) > r}.

In particular, their generalisation shows that the threshold bias for the (1 : q) Waiter–

Client and Client–Waiter versions of (E(K
(k)
n ),NCr) is 1

n

(
n
k

)
rOk(k) and 1

n

(
n
k

)
r−k(1+ok(1))

respectively. Since this generalisation is straightforward, we only include our proofs for
the case r = 2 in this paper.

1.1.2 The k–SAT game

We prove that the threshold bias for the (1 : q) Waiter–Client and Client–Waiter versions

of (C(k)n ,FSAT ) is 1
n

(
n
k

)
up to a factor that is exponential and polynomial in k respectively.

Theorem 4. Let k, q and n be positive integers, with n sufficiently large and k > 2 fixed,
and consider the (1 : q) Waiter–Client game (C(k)n ,FSAT ). When q 6

(
n
k

)
/(2(n + 1)),

Waiter can ensure that the conjunction of all k–clauses claimed by Client by the end of
the game is not satisfiable. However, when q > 23k/2ek/2+1k

(
n
k

)
/n, Client can ensure that

the conjunction of all k–clauses he claims remains satisfiable throughout the game.

Theorem 5. Let k, q and n be positive integers, with n sufficiently large and k > 2
fixed, and consider the (1 : q) Client–Waiter game (C(k)n ,FSAT ). When q <

(
n
k

)
/n, Client

can ensure that the conjunction of all k–clauses he claims by the end of the game is not
satisfiable. However, when q > 29k3

(
n
k

)
/n, Waiter can ensure that the conjunction of all

k–clauses claimed by Client is satisfiable throughout the game.

Thus, we have a multiplicative gap of (1 + o(1))23k/2+1ek/2+1k and 29k3 between the
upper and lower bounds of q for the Waiter–Client and Client–Waiter versions respectively.
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1.2 Motivation and Related Work

Waiter–Client and Client–Waiter games were first introduced by Beck (see e.g. [10]) under
the names Picker–Chooser and Chooser–Picker. Since their introduction, much work has
gone into finding their threshold bias, particularly when the winning sets are defined by
various graph properties (see e.g. [31, 13]), and recent research (see e.g. [10, 20, 12, 33])
has revealed interesting connections with the highly popular Maker–Breaker games. The
(1 : q) Waiter–Client and Client–Waiter non–r–colourability games (E(K

(k)
n ),NCr) have

been considered before in the case k = 2. Hefetz, Krivelevich and Tan [31] found that the
threshold bias of these games has order Θn,k (n/(k log k)), and it was by generalising the
techniques used in their paper that we obtained our results stated in Section 1.1. To our
knowledge, the k–SAT game has not yet been considered in the literature. However, the
closely related Achlioptas process for k–SAT has been studied (see e.g. [35, 34, 21]).

1.2.1 The Probabilistic Intuition.

The main motivation behind our results was to investigate a heuristic known as the
probabilistic intuition. First employed by Chvátal and Erdős [15], it suggests that the
player with the highest chance of winning a game (X,F) when both players play randomly
is the player with the winning strategy. Thus, given a threshold mF for the number of
board elements Client needs to contain some A ∈ F whp (with probability tending to 1
as |X| → ∞) when Waiter and Client play randomly, we say the (1 : q) game exhibits the
probabilistic intuition if the threshold bias qF has the same order of magnitude as |X|/mF .
Surprisingly, this occurs for many Waiter–Client and Client–Waiter games played on
graphs (see e.g. [31, 13, 14, 19]).

Since extensive work has gone into understanding r–colourable hypergraphs and satis-
fiable k–CNF boolean formulae (i.e. the conjunction of k–clauses) in the random setting,
these games are perfect candidates for developing our understanding of this phenomenon.
Denoting the random n–vertex k–uniform hypergraph with cn edges by Hk(n, cn), the
threshold cr,k (although only conjectured to exist) for c regarding the r–colourability of
Hk(n, cn) currently stands at rk−1 ln r + ok(k) when r = 2 (see [7, 1, 3, 18]) and when r
is sufficiently large (see [5, 23, 9]). Therefore, the probabilistic intuition predicts that the

threshold bias for the (1 : q) non–r–colourability game (E(K
(k)
n ),NCr) is 1

n

(
n
k

)
r−k(1+ok(1))

for such r. This matches the threshold bias (up to the error term in the exponent) given
by Theorems 1 and 2 when r = 2, and in Remark 3 when r is large. Additionally,
Coja–Oghlan and Panagiotou [17] found that the threshold number of clauses regard-

ing satisfiability of the conjunction of random k–clauses in C(k)n is (2k ln 2 − ok(k))n (see
[25, 16, 27, 2, 26, 4, 6, 22] for related work), thereby showing that the probabilistic intuition

predicts a threshold bias of 1
n

(
n
k

)
(ln 2− ok(1))−1 for the (1 : q) k–SAT game (C(k)n ,FSAT ).

This has the same order of magnitude as the threshold bias given in Theorem 4 and 5. In
conclusion, each game we study in this paper exhibits the probabilistic intuition.
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1.3 Preliminaries

Whenever necessary, we assume that the number n of vertices or boolean variables is
sufficiently large. We use the following notation in our proofs.

Let H be any k–uniform hypergraph with vertex set V (H) and edge set E(H) ⊆ 2V (H),
where each edge consists of exactly k vertices. For a subset S ⊆ V (H), let EH(S) denote
the set of edges of H that contain exactly one vertex in S and let dH(S) = |EH(S)|.
When S = {v} for some v ∈ V (H), we abuse notation slightly and write dH(v) instead of
dH({v}). Let H[S] denote the hypergraph with vertex set S and edge set {e ∈ E(H) : e ⊆
S}. The maximum degree of H is defined by ∆(H) = max{dH(v) : v ∈ V (H)} and the
minimum degree of H is δ(H) = min{dH(v) : v ∈ V (H)}. We say that S is independent
in H if {e ∈ E(H) : e ⊆ S} = ∅. The independence number of H, denoted by α(H), is
the maximum size of an independent set of vertices in H. A subhypergraph H′ ⊆ H (i.e.
a hypergraph H′ with V (H′) ⊆ V (H) and E(H′) ⊆ E(H)) is a clique in H if every set of
k vertices in V (H′) is an edge of H′. We sometimes refer to a clique with t vertices as a
t–clique. The clique number of H, denoted by ω(H), is the largest t such that H contains
a t–clique. The weak chromatic number of H, denoted by χ(H), is the smallest integer
r for which V (H) can be partitioned into r independent sets. For a set F ⊆ E(H), we
abuse notation slightly by using χ(F ) to denote the chromatic number of the hypergraph
with vertex set V (H) and edge set F . Given some partition P = {V1, . . . , VP} of V (H)
and an edge e ∈ E(H), we define P(e) = {Vi ∈ P : e ∩ Vi 6= ∅}. We define a linear forest
in H with respect to partition P to be a sequence (e1, . . . , em) of edges in E(H) such that
P(ei)∩P(ej) 6= ∅ only if j ∈ {i−1, i, i+1}. Two distinct edges e, e′ ∈ E(H) with vertices
in parts Vi1 , . . . , Vik of P are complementary if e ∩ e′ = ∅.

Let us denote the complete n–vertex k–uniform hypergraph by K
(k)
n (i.e. K

(k)
n is

an n–clique). At any given moment in a Waiter–Client or Client–Waiter game, played

on E(K
(k)
n ), let EC denote the set of edges currently owned by Client. We denote the

hypergraph with vertex set V (K
(k)
n ) and edge set EC by HC . Moreover, let HF be the

hypergraph consisting of all edges of K
(k)
n that are free at a given moment.

1.3.1 Useful Tools

We will use the following two lemmas which follow as immediate corollaries of the Lovász
Local Lemma ([24], see also e.g. Chapter 5 in [8], [29],[30]).

Lemma 6 (Corollary 1 in [24]). Let H be a k–uniform hypergraph with maximum degree
∆(H) 6 2k/(8k). Then H is 2–colourable.

Lemma 7 (see Theorem 1 in [29]). Let k > 2 be an integer. Any k–CNF boolean formula
in which no variable appears in more than 2k−4/k k–clauses is satisfiable.

We will also use the following game theoretic tools. The first two apply to the
transversal game (X,F∗). For a finite set X and F ⊆ 2X , the transversal family of
F is F∗ := {A ⊆ X : A ∩B 6= ∅ for every B ∈ F}.
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Theorem 8 ([32]). Let q be a positive integer, let X be a finite set and let F be a family
of subsets of X. If ∑

A∈F

(
q

q + 1

)|A|
< 1,

then Client has a winning strategy for the (1 : q) Client–Waiter game (X,F∗).

Theorem 9 ([12]). Let q be a positive integer, let X be a finite set and let F be a family
of subsets of X. If ∑

A∈F

2−|A|/(2q−1) <
1

2
,

then Waiter has a winning strategy for the (1 : q) Waiter–Client game (X,F∗).

Theorem 10 (implicit in [11], see Theorem 2.1 in [31] for an explicit proof). Let q be a
positive integer, let X be a finite set, let F be a family of (not necessarily distinct) subsets
of X and let Φ(F) =

∑
A∈F(q + 1)−|A|. Then, when playing the (1 : q) Waiter–Client

game (X,F), Client has a strategy to avoid fully claiming more than Φ(F) sets in F .

The rest of this paper is organised as follows: in Section 2.1 we prove Theorems 1 and
2. In Section 2.2 we prove Theorems 4 and 5. Finally, in Section 3 we present some open
problems.

2 Proofs

We begin with some core lemmas that will be useful in both the non–2–colourability
game and the k–SAT game. In these, let HP denote some k–uniform hypergraph with a
partition P = {V1, . . . , Vn} of its vertex set such that each part has size ` ∈ {1, 2} and
contains at most one vertex from any edge in E(HP). In each round i of a game played
by Waiter and Client on E(HP), we denote the edge claimed by Client by ei and the parts
of P in which ei has a vertex by Vi1 , . . . , Vik (ordered arbitrarily).

Lemma 11. Let S denote some set of dn/2e–cliques in K
(k)
n . In a (1 : q) game on

E(K
(k)
n ), a strategy to ensure that HC contains an edge in every member of S at the end

of the game exists for Waiter in the Waiter–Client version if q 6
(dn/2e

k

)
ln 2

2 ln(2|S|) and for

Client in the Client–Waiter version if q <
(dn/2e

k

)
ln 2/ ln(|S|).

Proof. Let F = {E(H) : H ∈ S} and let us first suppose that q 6
(dn/2e

k

)
ln 2

2 ln(2|S|) . Observe
that ∑

A∈F

2−|A|/(2q−1) < |S|2−(dn/2e
k )/(2q) 6

1

2
,

where the final inequality follows from our choice of q. Thus, by Theorem 9, Waiter can
force Client to claim an edge in every member of S as stated.
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Now suppose that q <
(dn/2e

k

)
ln 2/ ln(|S|) and observe that∑

A∈F

(
q

q + 1

)|A|
6
∑
A∈F

2−|A|/q 6 |S|2−(dn/2e
k )/q < 1,

where the final inequality follows from our choice of q. Thus, by Theorem 8, Client can
claim an edge in every member of S by the end of the game as stated.

Corollary 12. In a (1 : q) game on E(K
(k)
n ), a strategy to ensure that χ(HC) > 2 at the

end of the game exists for Waiter in the Waiter–Client version if q 6
(dn/2e

k

)
ln 2

2((1+ln 2)n+ln 2)

and for Client in the Client–Waiter version if q <
(dn/2e

k

)
ln 2

(1+ln 2)n
.

Proof. By taking S to be the set of all dn/2e–cliques in K
(k)
n , Lemma 11 provides strategies

for Waiter and Client to ensure that α(HC) < dn/2e at the end of the game. Since
χ(HC)α(HC) > n, the result follows.

Lemma 13. Consider a (1 : q) Waiter–Client game on E(HP) and let n be sufficiently
large. If q > (2`2)k/2ek/2+1k

(
n
k

)
/n, then Client can ensure that, for every S ⊆ P, there

exists some A ∈ S such that dHC [∪S](A) 6 1 at the end of the game.

Proof. Let F = {F : ∃S ⊆ P s.t. S 6= ∅, F ⊆ E(HP [∪S]) and |F | = d2|S|/ke}. Observe
that

Φ(F) =
∑
A∈F

(q + 1)−|A| 6
n∑

t=k+`−1

(
n

t

)( (
`t
k

)
d2t/ke

)
q−d2t/ke 6

n∑
t=k+`−1

(en
t

)t( e
(
`t
k

)
d2t/keq

)d2t/ke

6
n∑

t=k+`−1

(en
t

)t(ek(`t
k

)
2tq

)d2t/ke
6

n∑
t=k+`−1

en
t

(
ek
(
`t
k

)
2tq

)2/k
t

6
n∑

t=1

[
en

t

(
e`ktk−1

2q(k − 1)!

)2/k
]t

6
n∑

t=1

en
t

(
1

(2e)k/2

(
t

n

)k−1
)2/k

t

=
n∑

t=1

[
1

2

(
t

n

) 2
k
(k−1)−1

]t
<
∞∑
t=1

[
1

2

]t
= 1,

where the fourth and sixth inequalities follow from our choice of q and since n is sufficiently
large. Thus, by Theorem 10, Client can avoid claiming any member of F . In particular,
this means that, for every S ⊆ P , Client must have strictly less than 2|S|/k edges in
HP [∪S] at the end of the game. Hence, in every S ⊆ P there exists some A ∈ S for which
dHC [∪S](A) 6 1, as stated.

Lemma 14. Consider a (1 : q) Client–Waiter game on E(HP) where q > 4k−2. Waiter
has a strategy to ensure that

dHC
(Vj) 6

2kdHP (Vj)

q
+ 2

for every j ∈ [n] at the end of the game.
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Proof. In the first round, Waiter offers q + 1 arbitrary free edges. In each round i, let
us denote the edge claimed by Client by ei and the parts of P in which ei has a vertex
Vi1 , . . . , Vik ordered arbitrarily. In round i+1, Waiter responds to Client’s claim of ei in the
following way. With Sij = {e ∈ E(HF ) : Vij∩e 6= ∅} for each j ∈ [k], let Fi1 ⊆ Si1 with size
|F1| = min{dHF

(Vi1), b(q+1)/kc} and, for each 2 6 j 6 k, let Fij ⊆ Sij\∪{Fi` : 1 6 ` < j}
with size |Fj| = min{|Sij \ ∪{Fi` : 1 6 ` < j}|, b(q + 1)/kc}. Immediately after Client
has claimed ei, Waiter offers all edges in ∪{Fij : j ∈ [k]}. Recall that, in any round of
a Client–Waiter game, Waiter may offer less than q + 1 edges if he desires. If no free
edge contains a vertex from ∪{Vi1 , . . . , Vik}, Waiter performs his response on an edge
that Client claimed earlier on in the game. If this is not possible, Waiter simply offers
min{q+1, |E(HF )|} arbitrary free edges. It is clear that, by responding to each of Client’s
moves in this way, Waiter offers every edge of HP in the game.

Consider an arbitrary part Vj from P . Every time Client claims an edge containing
a vertex from Vj, Waiter offers at least b(q + 1)/kc free edges containing a vertex from
Vj in the next round, except for perhaps the last time he offers edges touching Vj when
there may be less than b(q + 1)/kc such edges available. Every time Waiter offers edges
touching Vj, Client may claim at most one of these. Hence, at the end of the game,

dHC
(Vj) 6

⌈
dHP (Vj)− 1

b(q + 1)/kc

⌉
+ 1 <

2kdHP (Vj)

q
+ 2,

for every j ∈ [n], by our choice of q, as stated.

Lemma 15. Consider a (1 : q) Client–Waiter game on E(HP). If q > k2`k
(
n
k

)
/n, then

Waiter can ensure that HC is a linear forest with respect to partition P, that does not
contain a pair of complementary edges, at the end of the game.

Proof. In each round i > 1, Waiter identifies an inclusion maximal set Ai ⊆ P such that
the number of free edges with at least one vertex in ∪Ai is at most q + 1. Waiter offers
all such free edges in round i. When i > 2, ∪Ai must also contain ei−1. Note that for
each edge ei there are at most k`k

(
n−1
k−1

)
other edges in HP with at least one vertex in

∪{Vi1 , . . . , Vik}. Therefore, by our choice of q, Waiter always offers at least one edge in
each round when following the described strategy.

Observe that this strategy ensures that, at the end of round i + 1 for every i > 1,
dHF

(Vij) = 0 for every j ∈ [k] and Client has claimed at most one edge with at least one
vertex in ∪{Vi1 , . . . , Vik}. Also, any edge of HP complementary to edge ei was offered
with ei in round i and therefore cannot be claimed by Client in any subsequent round.
Hence, at the end of the game, HC forms a linear forest with respect to partition P and
does not contain a pair of complementary edges.

2.1 The non–2–colourability game

2.1.1 The Waiter–Client non–2–colourability game

Proof of Theorem 1. Fix k > 2. Waiter’s strategy follows immediately from Corollary 12.
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Client’s Strategy: Suppose that q > 2k/2ek/2+1k
(
n
k

)
/n. Then, by choosing partition

P = {{v} : v ∈ V (K
(k)
n )} and ` = 1 in Lemma 13, Client can ensure that, for every

S ⊆ V (HC), there exists a vertex v ∈ S with dHC [S](v) 6 1 at the end of the game. Thus,
χ(HC) 6 1 + maxH′⊆HC

δ(H′) 6 2.

2.1.2 The Client–Waiter non–2–colourability game

Proof of Theorem 2. Fix k > 2. Client’s strategy follows immediately from Corollary 12.

Waiter’s Strategy: Suppose that q > k32−k+5
(
n
k

)
/n and let us first consider the case

k > 8. By Lemma 6, it suffices for Waiter to ensure that ∆(HC) 6 2k/(8k) at the end

of the game. Indeed, with partition P = {{v} : v ∈ V (K
(k)
n )}, Lemma 14 tells us that

Waiter can ensure that

dHC
(u) 6

2k
(
n−1
k−1

)
q

+ 2 6
2k

8k
,

for each u ∈ V (K
(k)
n ), where the final inequality follows from our choice of k and q.

Now consider the case 2 6 k 6 7. Using the same partition P as above, setting ` = 1
and noting that q > k32−k+5

(
n
k

)
/n > k2`k

(
n
k

)
/n for our choice of q and k, Lemma 15 gives

Waiter a strategy to ensure that HC is a linear forest with respect to P at the end of the
game. In particular, δ(H′) 6 1 for eachH′ ⊆ HC and thus, χ(HC) 6 1+maxH′⊆H δ(H′) 6
2.

2.2 The k–SAT game

For the sake of clarity, in both of the following proofs we analyse a game that is analogous
to the k–SAT game; namely (E(K

(k)
2n ),F ′SAT ). In this, each vertex of V (K

(k)
2n ) is labeled

with a unique literal in ∪i∈[n]{xi,¬xi} over the set {xi : i ∈ [n]} of boolean variables and

PSAT = {Bi : i ∈ [n]} denotes a fixed partition of V (K
(k)
2n ), where Bi = {xi,¬xi} for each

i ∈ [n]. An edge containing a pair of vertices that lie within the same part Bi will be

referred to as a satisfied edge. The winning sets are defined by F ′SAT = {F ⊆ E(K
(k)
2n ) :

∧{∨e : e ∈ F} is not satisfiable}. We will use the following corollary of Lemma 11 in our
proofs.

Corollary 16. In a (1 : q) game on E(K
(k)
2n ), a strategy to ensure that E(HC) /∈ F ′SAT at

the end of the game exists for Waiter in the Waiter–Client version if q 6
(
n
k

)
/(2(n+ 1))

and for Client in the Client–Waiter version if q <
(
n
k

)
/n.

Proof. By taking S = {H ⊆ K
(k)
2n : H is an n–clique without a satisfied edge}, Lemma

11 provides strategies for Waiter and Client to ensure that HC contains an edge in every
n–clique of S by the end of the game. Since every {0, 1}–assignment to the boolean

variables x1, . . . , xn defines a 2–colouring of V (K
(k)
2n ) where each colour class contains a

member of S, Client always has an edge that is monochromatic in colour 0 under every
possible assignment. Hence, the k–CNF boolean formula corresponding to Client’s edges
at the end of the game cannot be satisfiable.
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2.2.1 The Waiter–Client k–SAT game

Proof of Theorem 4. Fix k > 2. Waiter’s strategy follows immediately from Corollary 16.

Client’s Strategy: Let q > 23k/2ek/2+1k
(
n
k

)
/n. Since a k–clause corresponding to a

satisfied edge of K
(k)
2n is satisfiable under every {0, 1}–assignment to the boolean variables

xi, its conjunction with any k–CNF boolean formula φ does not affect the satisfiability
of φ. Hence, whenever Client is offered a satisfied edge, he takes it. In rounds where no
such edge is offered, Client follows the strategy dictated by Lemma 13 using partition
PSAT , ` = 2, and hypergraph H ⊆ K

(k)
2n whose edge set consists of all unsatisfied edges

of K
(k)
2n . Doing so ensures that, for every S ⊆ PSAT there exists some B ∈ S in which at

most one unsatisfied edge of Client’s has a vertex. Consequently, there exists an ordering
Bi1 , . . . , Bin of the elements of PSAT such that, for each j ∈ [n], Client has at most one
unsatisfied edge contained in ∪{Bit : t 6 j} with a vertex vij ∈ Bij . Assigning the value,
0 or 1, to the variable xij such that the literal labeling vij has value 1 for every j ∈ [n], and
assigning arbitrary values to any remaining variables, provides a satisfying assignment for
the formula corresponding to HC at the end of the game.

2.2.2 The Client–Waiter k–SAT game

Proof of Theorem 5. Fix k > 2. Client’s strategy follows immediately from Corollary 16.

Waiter’s Strategy: Let q > 29k3
(
n
k

)
/n. Waiter’s strategy consists of two stages. In

Stage 1, Waiter only offers satisfied edges until no more are left, at which point Stage 2
begins. We denote Client’s hypergraph built during Stage 1 and Stage 2 by H1 and H2

respectively. Stage 2 depends on the following two cases.
We first consider the case k > 10. By Lemma 7, E(H2) ∈ F ′SAT if Waiter can ensure

that every Bi ∈ PSAT has non–empty intersection with at most 2k−4/k edges in H2 at the
end of the game. Indeed, with partition PSAT , Lemma 14 tells us that Waiter can force

dH2(Bi) 6
2k+1k

(
n−1
k−1

)
q

+ 2 6
2k−4

k
,

for each i ∈ [n], where the final inequality follows from our choice of k and q. Thus, in
Stage 2, Waiter follows the strategy given by Lemma 14.

Now consider the case 2 6 k 6 9. By using partition PSAT , setting ` = 2 and
noting that q > 29k3

(
n
k

)
/n > k2`k

(
n
k

)
/n for our choice of q and k, Lemma 15 gives

Waiter a strategy to ensure that H2 is a linear forest with respect to PSAT , that does not
contain a pair of complementary edges, at the end of the game. Hence, there exists an
ordering e1, . . . , em of the edges in E(H2) such that PSAT (ei) ∩ PSAT (ej) 6= ∅ only when
j ∈ {i− 1, i, i+ 1}. By assigning values from {0, 1} to the boolean variables such that the
literals labelling vertices in ei∩∪(PSAT (ei)∩PSAT (ei+1)) when PSAT (ei)∩PSAT (ei+1) 6= ∅
and those labelling vertices in ej\∪(PSAT (ej−1)∩PSAT (ej)) when PSAT (ej)∩PSAT (ej+1) =
∅ or j = m have value 1, we obtain a satisfying assignment for the formula corresponding
to H2.
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Since any k–clause corresponding to a satisfied edge of K
(k)
2n is satisfiable under every

{0, 1}–assignment to the boolean variables xi, the conjunction of the formula correspond-
ing to H1 with that corresponding to H2 is also satisfiable in both of our considered cases.
Hence, Waiter can ensure that E(HC) = E(H1)∪E(H2) /∈ FSAT at the end of the game.

3 Concluding remarks and open problems

There is room to improve the bounds on the threshold bias for all of the games we
consider in this paper, especially in the Waiter–Client versions where the multiplicative
gap is exponential in k. In particular, we believe that the threshold bias of these games is
asymptotically equivalent to that predicted by the probabilistic intuition in the following
sense.

Conjecture 17. Let the threshold bias for the (1 : q) Waiter–Client and Client–Waiter

non–2–colourability games (E(K
(k)
n ),NC2) be denoted by bWC

NC2 and bCW
NC2 respectively and

let

f(x) := lim
k→∞

{
lim
n→∞

1

n

(
n

k

)
1

x · 2k−1 ln 2

}
.

Then f(bWC
NC2) = f(bCW

NC2) = 1.

Conjecture 18. Let the threshold bias for the (1 : q) Waiter–Client and Client–Waiter

k–SAT games (C(k)n ,FSAT ) be denoted by bWC
FSAT

and bCW
FSAT

respectively and let

g(x) := lim
k→∞

{
lim
n→∞

1

n

(
n

k

)
1

x ln 2

}
.

Then g(bWC
FSAT

) = g(bCW
FSAT

) = 1.

Such similarity between the threshold bias and the probabilistic intuition has been
observed before in other games such as the Waiter–Client Kt–minor game, played on the
edge set E(Kn) of the complete graph Kn (see [31]).
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Birkhäuser, 2014.

[31] D. Hefetz, M. Krivelevich, and W. E. Tan. Waiter–Client and Client–Waiter pla-
narity, colorability and minor games. Discrete Mathematics, 339(5):1525–1536, 2016.

[32] D. Hefetz, M. Krivelevich, and W. E. Tan. Waiter–Client and Client–Waiter Hamil-
tonicity games on random graphs. European J. Combinatorics, 63:26–43, 2017.

[33] F. Knox. Two constructions relating to conjectures of Beck on positional games.
Manuscript, arXiv:1212.3345.

[34] W. Perkins. Random k–SAT and the power of two choices. Random Structures and
Algorithms, 47(1):163–173, 2015.

[35] A. Sinclair and D. Vilenchik. Delaying satisfiability for random 2SAT. Random
Structures and Algorithms, 43(2):251–263, 2013.

the electronic journal of combinatorics 24(2) (2017), #P2.46 13

http://arxiv.org/abs/1212.3345

	Introduction
	The Results
	The non–2–colourability game
	The k–SAT game

	Motivation and Related Work
	The Probabilistic Intuition.

	Preliminaries
	Useful Tools


	Proofs
	The non–2–colourability game
	The Waiter–Client non–2–colourability game
	The Client–Waiter non–2–colourability game

	The k–SAT game
	The Waiter–Client k–SAT game
	The Client–Waiter k–SAT game


	Concluding remarks and open problems

