
Graph realizations constrained by skeleton graphs∗

Péter L. Erdős†

MTA Rényi Institute of Mathematics,
Reáltanoda u 13-15

Budapest, 1053 Hungary

erdos.peter@renyi.mta.hu

Stephen G. Hartke‡

Dept. Mathematical and Statistical Sciences,
University of Colorado Denver,

Colorado, Denver, USA

stephen.hartke@ucdenver.edu

Leo van Iersel§

Delft Institute of Applied Mathematics,
Delft University of Technology,

PO-box 5, 2600AA, Delft, Netherlands

l.j.j.v.iersel@gmail.com

István Miklós†

MTA Rényi Institute of Mathematics,
Reáltanoda u 13-15

Budapest, 1053 Hungary

miklos.istvan@renyi.mta.hu

Submitted: Jul 31, 2015; Accepted: Jun 19, 2017; Published: Jun 30, 2017

Mathematics Subject Classifications: 05C07

Abstract

In 2008 Amanatidis, Green and Mihail introduced the Joint Degree Matrix
(JDM) model to capture the fundamental difference in assortativity of networks
in nature studied by the physical and life sciences and social networks studied in
the social sciences. In 2014 Czabarka proposed a direct generalization of the JDM
model, the Partition Adjacency Matrix (PAM) model. In the PAM model the ver-
tices have specified degrees, and the vertex set itself is partitioned into classes. For
each pair of vertex classes the number of edges between the classes in a graph re-
alization is prescribed. In this paper we apply the new skeleton graph model to
describe the same information as the PAM model. Our model is more convenient
for handling problems with low number of partition classes or with special topolog-
ical restrictions among the classes. We investigate two particular cases in detail: (i)
when there are only two vertex classes and (ii) when the skeleton graph contains at
most one cycle.

Keywords: degree sequences; Joint Degree Matrix; Partition Adjacency Matrix;
skeleton graph; forbidden edges; Tutte gadget; Edmonds’s blossom algorithm

∗This research started when SGH and LvI visited the MTA A. Rényi Institute of Mathematics, Bu-
dapest in the Fall of 2013.
†Partly by the Hungarian National Research, Development and Innovation Office NKFIH, under the

grants K 116769 and SNN 116095.
‡Partly supported by a U.S. Fulbright Scholar Fellowship and by a grant from the Simons Foundation

(#316262 to Stephen Hartke).
§Partly funded by the Netherlands Organisation for Scientific Research (NWO), including Veni grant

639.071.106 and Vidi grant 639.072.602 and by the 4TU Applied Mathematics Institute.

the electronic journal of combinatorics 24(2) (2017), #P2.47 1

1 Introduction

In the last fifteen years, the exponential development of network theory has raised the
practical problem of realizing and sampling large graphs with given degree sequences.
Finding a realization of a given degree sequence (among simple graphs or graphs with a
given maximum number of parallel edges or/and loops) has long been shown to be an easy
problem. Havel [12] first solved the problem in 1957, and his algorithm was reinvented
by Hakimi [11] in 1962. An even older but less efficient way to find realizations can be
derived from Tutte’s f -factor results [25, 26]. Another method was due to Paul Erdős
and Gallai [7] in 1960, but the resulting algorithm was derived from Havel’s approach.
All these methods lack the ability of generating all (or even a large number of different)
realizations. The problem of determining if there exists a graph with given degree sequence
and satisfying other specified conditions will be called in this paper the realization
problem.

In many situations, it is not feasible to generate all realizations, as the number of
possible realizations can be exponential or larger in the length of the degree sequence. In
this case, practical applications may require reasonable sampling methods of the “typical”
realizations. A common approach is to use Markov Chain Monte Carlo methods, which
require some simple operations that transform one realization into another, slightly differ-
ent realization. Additionally, it must be possible to transform any given realization into
any other using these operations. This particular subproblem of the sampling procedure
will be called in this paper the connectivity problem (also known as the irreducibility
problem in the context of Markov Chain Monte Carlo processes for sampling random
realizations).

In modern graph theory the first such manipulation was Havel’s swap operation from
[12]. (The terminology and notation used in this paper will be introduced in detail in
Section 2.) It is interesting to remark that his method was applied already by Petersen [18]
in 1891, who essentially showed that any realization of a given degree sequence can be
transformed into any other realization of the same degree sequence by a series of such swap
operations. In 1951 Senior [20] also used this approach to construct possible hydrocarbon
molecules with given atomic composition. For bipartite graphs it was done by Ryser [19]
in 1963, and all these results have been invented again and again.

Recently a large number of real-world social and biological networks were studied in
detail. One important distinction between these two types of networks lies in their overall
structure: social networks typically have a few very high degree vertices and many low
degree vertices with high assortativity (where a vertex is likely to be adjacent to vertices
of similar degree), while biological networks are generally disassortative (in which low
degree vertices tend to attach to those of high degree). It is easy to see that the degree
sequence alone cannot capture these differences. There are several approaches to address
this problem. See the paper of Stanton and Pinar [22] for a detailed description of the
current state-of-the-art.

One way to address this problem is the joint degree matrix model (or JDM for
short). This model is more restrictive than the degree distribution, but it provides a

the electronic journal of combinatorics 24(2) (2017), #P2.47 2

way to enhance results based on degree distribution. It was introduced by Amanatidis,
Green and Mihail [1] and Stanton and Pinar [22]. In essence, the JDM specifies the exact
number of edges between vertices of degrees i and j. More precisely, a joint degree matrix
J (G) = [Jij] of the graph G = (V,E) is a ∆×∆ matrix (∆ is the maximum degree of G)
where Jij = |{xy ∈ E(G) : d(x) = i and d(y) = j}|. It is clear that the degree sequence
of the graph is determined by its JDM:

(the number of vertices of degree i) =
1

i

(
Jii +

∆∑
`=1

Ji`

)
. (1)

The novelty of this definition is that values Jij are exact numbers, and not expectations,
like in earlier approaches, see for example [16].

The existence problem for the JDM model is not hard: already Patrinos and Hakimi [17]
presented in 1976 an Erdős-Gallai-type theorem for joint degree matrices, essentially char-
acterizing precisely those matrices which are the joint degree matrix for some graph,
though using different terminology. Another proof for this result was given in [1], see also
[2]. Stanton and Pinar [22] gave a separate, constructive proof for this theorem, which
builds a particular graph that has a given matrix as its JDM. Czabarka, Dutle, Erdős and
Miklós [3] presented a simpler proof using a construction algorithm that can create every
graph with a given JDM. See also [10].

The connectivity problem for the JDM model proved to be more complicated. Stanton
and Pinar [22] solved it for the space of all multigraph realizations. For simple graphs it
was resolved affirmatively by Czabarka, Dutle, Erdős and Miklós [3].

The JDM model suggests a more general restricted degree sequence problem: the
partition adjacency matrix model (or PAM for short). In this generality, it was
introduced by É. Czabarka [4]. Let Π = (P1, · · ·Pk) be a partition of the vertex set V of
the graph G. Let d be the degree sequence of G, and let M be the following k×k matrix:
if i 6= j then the entry Mi,j is the number of edges in the bipartite subgraph G[Pi, Pj],
while Mi,i is the number of edges within the induced subgraph G[Pi]. The matrix M is
called the partition adjacency matrix of the graph G for the partition Π. Clearly the PAM-
problem is: we are given a positive integer sequence on the partitioned V and a matrix
M and we want to decide whether there is a graph G with the given degree sequence and
with the given PAM.

The joint degree matrix determines the degree sequence itself by equation (1). There-
fore the JDM is clearly an instance of the PAM-problem. The PAM problem in full
generality is probably quite complicated: when we have, say,

√
|V | partition classes, then

the problem is conjectured to be NP-complete.

In this paper we will consider an auxiliary structure to describe the PAM problem. This
is a more convenient description when there are only a small, say, linear number of items
in M which are not zero. This object also provides structural properties of the edges
among the vertex partitions. This description is based on the notion of a skeleton graph,
and it is described in detail in Section 2.

the electronic journal of combinatorics 24(2) (2017), #P2.47 3

We study two particular skeleton graphs in detail: the first one consists of two partition
classes with edges inside the classes allowed, while in the second one each of its components
contains at most one cycle while the classes have no edges inside. In both cases we show
how to quickly construct graphical realizations in all feasible cases. We also consider
whether the space of all realizations are connected. The answers in both cases are almost
affirmative: the space is connected if we use swaps as well as an additional operation
called double swaps.

2 Definitions and tools

Let G = (V,E) be a simple graph with vertex set V = {v1, . . . , vn} and edge set E (no
multiple edges or loops). Denote d(G) = (d(v1), . . . , d(vn)) its degree sequence. This
sequence is not ordered in any way. The graph G is called a realization of the previous
sequence. A sequence d = (d1, . . . , dn) of nonnegative integers is graphical if it has at
least one realization. The set of all realizations of a graphical degree sequence d is denoted
by G(d).

We consider realizations of a degree sequence d = (d1, . . . , dn) that are restricted by a
“skeleton” graph S in the following way. We fix a partition Π = {U,W, . . .} of V.

A skeleton graph is an edge-weighted graph S = (Π;B, w) on the partition classes
in Π with possible loops. We will refer to a vertex of S as a class and the edges of
the skeleton graph S are referred to as bones. We will use the following, very natural,
notation: for U,W ∈ Π, if the pair UW is a bone in B, then w(UW) is its weight (in S).
If U = W then it is a loop. If UW is not a bone in B then w(UW) = 0. Furthermore,
G[U,W] is the induced bipartite subgraph in G while G[U,U] = G[U] is the induced
simple graph within U. The graphs G[U,W] are the component graphs of G. When the
partition classes in Π consist of all vertices with the same degrees, then all the introduced
notions are equivalent to the notions used for the Joint Degree Matrix model in [3].

We will say that the realization G of degree sequence d is consistent with the skeleton
graph S if

∀U,W ∈ Π w(UW) =
∣∣E (G[U,W])

∣∣. (2)

We say that the pair (d,S) is graphical if there exists a realization G of d which is
consistent with S. See for example in Figure 1 a skeleton graph S and a realization
G that is consistent with S. We will consider several different realizations of a degree
sequence, even ones that are not consistent with the skeleton graph. However we will
not consider realizations which have edges in a component graph without a corresponding
bone. Therefore, we call a pair of vertices within a component graph with a corresponding
bone a chord, and each other pair of vertices a non-chord. So a chord is a pair of vertices
which may form an edge in a consistent realization. A realization G of a degree sequence
d is weakly consistent with S if all of the edges of G are chords. Here property (2)
may not hold. Although the existence problem of weakly consistent realizations is not
interesting in itself, we will use it as a tool. Before we discuss this, we recall some details
about Tutte’s f -factor theorem and its applications.

the electronic journal of combinatorics 24(2) (2017), #P2.47 4

a
b

c
d e

f
g

3

1

1

2

1

Figure 1 The dashed circles illustrate the classes of a skeleton graph S, while its bones
are indicated by gray dashed tubes. The dots and solid lines show a graph G that is
consistent with S.

In 1947 Tutte completely characterized the graphs with perfect matchings (see [24]). In
1952 he generalized this result for the so called f -factor problem. Two years later, in
1954, Tutte found the following brilliant way to reduce the problem of finding an f -factor
in a given graph to finding a perfect matching (a 1-factor) in an auxiliary graph ([26]).
Let G be a simple graph and let f(v) be a non-negative integer for each v ∈ V . Then a
subgraph F of G in which each vertex v ∈ V has degree f(v) is an f -factor of G. Any
f -factor in G can be represented as a perfect matching in the auxiliary graph T(G, f):

V (T) =
{
v1, . . . , vd(v)−f(v)

∣∣v ∈ V (G)
}⋃{

ev, eu
∣∣vu = e ∈ E(G)

}
(3)

E(T) =
{
viev

∣∣ i = 1, . . . , d(v)− f(v); e = vu ∈ E(G)
}⋃

(4)⋃{
eveu

∣∣ e = vu ∈ E(G)
}
.

It is easy to see that there is a natural bijection between the f -factors in G on one hand
and the perfect matchings in T(G, f) on the other hand. More precisely, given the perfect
matching M in T(G, f), the requested subgraph in G is{

e ∈ E
∣∣ e = vu, eveu ∈M

}
.

In 1965, Edmonds described an effective algorithm to find a maximum matching in G
([5]). Then, in the same year, he extended his approach for edge-weighted graphs ([6]):
his blossom algorithm finds a maximum-weight perfect matching in strongly polynomial
time. We will use this result extensively in this paper. The classical existence problem
for degree sequences can be easily solved by Tutte’s f -factor theorem and Edmonds’
algorithm: take as graph G the complete graph on n vertices and for the function f the

the electronic journal of combinatorics 24(2) (2017), #P2.47 5

degree sequence. (See for example [13] for an outstanding application.) However, this
method is less efficient than the methods based on Havel’s observation, and it cannot
be used to find all possible realizations (see for example [14]). Nevertheless, Edmonds’
blossom algorithm is excellent to find weakly consistent realization to any skeleton graph:

Observation 2.1. For any degree sequence d and any skeleton graph S = (Π;B, w), one
can decide in strongly polynomial time whether there exists a realization of d that is weakly
consistent with S.

Proof. The graph G in the f -factor problem consists of all chords defined by the skeleton
graph, while the f -function is equal to the given degree sequence.

It is clear that the f -factor approach cannot directly find consistent realizations for any
“reasonable” skeleton graph problem: it has no control over the exact number of edges in
the component graphs. We even cannot enforce that all bones contain at least one edge
in the derived realization. We need additional ideas to find consistent realizations. For
that end we will extensively use some restricted versions of Havel’s swap operation.

Definition 2.2 (unrestricted / restricted / S-preserving swap operations).

(R1) Let G be a realization of the graphical sequence d, if a, b, c and d are vertices of
G satisfying ab, cd ∈ E and bc, ad /∈ E, then the graph G′ = (V,E ′) with E ′ =
E ∪ {bc, ad} \ {ab, cd} is another realization of d. This swap operation, denoted
by ab, cd ⇒ bc, ad, was introduced by Havel [12]. It is also known, for example, as
switch or rewiring or infusion operation.

(R2) Let S be a skeleton graph, and let G be a realization of d that is weakly consistent
with S. If all vertex pairs in (R1) are chords, then G′ will be weakly consistent with
S. Then the operation is a restricted swap operation.

(R3) If G is consistent with the skeleton graph S and G′ is also consistent with S, then
this operation is an S-preserving swap operation.

As we mentioned earlier already Petersen proved ([18]) that any realization of a given
degree sequence can be transformed into another one by consecutive unrestricted swap
operations. Havel’s result gives a rather crude algorithm to find such a swap sequence:
the number of steps may be twice the number of edges in the worst case. It is very natural
to ask what the minimum length of such a swap sequence is. This question was studied
in details by Erdős, Király and Miklós ([8]). Next we will summarize the main findings
of their paper:

Regular swap sequences: Let G and G′ be two realizations of the degree sequence d.
The symmetric difference ∇ = E(G)4E(G′) of their edges has a natural 2-coloration: an
edge in ∇ is red or blue depending on whether it belongs to G or G′. Denote by r(G,G′)
the number of red edges in the symmetric difference (which is of course also the number
of blue edges).

The following statement is a simple observation:

the electronic journal of combinatorics 24(2) (2017), #P2.47 6

Lemma 2.3. Every vertex in ∇ has an equal number of red and blue adjacent edges.
Moreover, the symmetric difference ∇ can be decomposed into even length alternating
(with respect to the coloration) circuits (closed walks), where no circuit contains any vertex
more than twice.

Consider now two realizations G and G′ such that ∇ is one alternating circuit, C. The
next lemma is one of the central results in [8]:

Lemma 2.4. There exists a sequence of consecutive swap operations transforming real-
ization G into G′ with the following properties: (i) Along the process every swap is applied
for vertex pairs belonging completely to V (C). (ii) If G1 and G2 are two consecutive real-
izations along the sequence then r(G1, G

′)− r(G2, G
′) ∈ {0, 1, 2}. (iii) The length of this

swap sequence is r(G,G′)− 1.

The described swap sequence is called a regular swap sequence.

Theorem 2.5 (Erdős–Király–Miklós, [8]). Let G and G′ be arbitrary realizations of degree
sequence d. Every shortest possible swap sequence can be reordered such that this realigned
sequence is identical with a series of subsequent regular swap sequences, corresponding to
a circuit decomposition of the symmetric difference ∇. The length of this swap sequence
is

r(G,G′)− the maximum possible number of circuits in a decomposition,

and hence is at most r(G,G′)− 1.

With some lack of precision we also call the swap sequence described above as a regular
swap sequence, and a shortest regular swap sequence, respectively. Two further useful
observations:

Remark 2.6.

(i) Any particular alternating circuit in ∇ can be extended into a complete decompo-
sition of ∇.

(ii) If an arbitrary swap sequence transforms G into G′ then the inverse swap sequence
transforms G′ into G (here we do not define the notion inverse, because it is self-
evident).

The following is easily verified.

Observation 2.7. In an S-consistent realization G, a swap ab, cd⇒ bc, ad is S-preserving
if and only if either a and c, or b and d are in the same class of S.

One of our motivating questions is whether the space of realizations of a graphical sequence
consistent with a given skeleton graph is connected using swaps. In the classic cases this
is true (see, for example, Theorem 2.5) as well as in the Joint Degree Matrix case (see
[3]). However, as we will see later on, there is not so neat answer for the skeleton graph
problems. The obvious reason for this is that Theorem 2.5 does not apply for this case,
since a regular swap sequence does not necessarily use S-preserving swap operations.

the electronic journal of combinatorics 24(2) (2017), #P2.47 7

3 Graph realizations with a given number of edges crossing a
given bipartition

We start our investigations with one of the most simple skeleton graphs. Let V =
{v1, . . . , vn} be a vertex set, d a degree sequence, Π2 = (U,W) a partition of V , k ∈ N
and let S(k) = (Π2;B, w) be a skeleton graph with two vertices, a weight-k UW bone and
two loops, whose weights are completely defined by d and k. The edges with end vertices
in both classes are called the crossing edges.

The conventional description is the following: Given the degree sequence d, a biparti-
tion of the vertex set and a natural number k, decide if there exists a graph that realizes
the given degree sequence and has precisely k crossing edges.

When k is equal to the total number of edges, i.e. both classes induce the empty
graph, then this coincides with the usual bipartite degree sequence problem.

When W has no inner edges, then no direct greedy method (like Havel’s lemma) is
known to construct a consistent realization. The reason for that is simple: we just do
not know the U -side of the bipartite degree sequence in the component graph G[U,W].
However, the Tutte - Edmonds method provides an effective solution for the existence
problem.

3.1 Existence

It is clear that any realization of d is automatically weakly consistent. In this subsection
we consider the existence problem for consistent realizations.

Theorem 3.1. We can decide in polynomial time whether there exists a realization of d
that is consistent with S(k).

The number of crossing edges in a realization G is denoted ε(G). The set of all
realizations of degree sequence d with ` crossing edges is denoted G`(d).

Let G ∈ G`(d) and let G′ be the realization derived from G by the swap operation
ac, bd⇒ bc, ad. By simple case analysis it is easy to see that

|ε(G)− ε(G′)| ∈ {0, 2}. (5)

Lemma 3.2. Let G and G′ be realizations of d with ε(G) < ε(G′). Then

(i) ε(G) ≡ ε(G′) (mod 2);

(ii) for all ` ∈ {ε(G), ε(G) + 2, . . . , ε(G′)}, there exists a realization G′′ ∈ G`(d).

Proof. By Theorem 2.5 there is a regular swap sequence turning G into G′. By equa-
tion (5), the realizations in this sequence either all have an even number of crossing edges
or all have an odd number of crossing edges. Moreover, this sequence hits a realization
G′′ with ε(G′′) = ` for any ε(G) 6 ` 6 ε(G′) with ` = ε(G) (mod 2).

the electronic journal of combinatorics 24(2) (2017), #P2.47 8

Denote by εm(d) the minimum value of ` such that G` is not empty, and similarly
denote by εM(d) the maximum value. By Lemma 3.2 the sets

Gεm(d)(d),Gεm(d)+2(d), . . . ,GεM (d)(d) (6)

of all weakly consistent realizations are not empty while all other sets G`(d) are empty.
Edmonds’ blossom algorithm [6] applied to the Tutte gadget T(Kn,d) can easily find

the minimum and maximum values εm(d) and εM(d) together with the corresponding
realizations consistent with S(εm(d)) and S(εM(d)), respectively.

We first assign weight 0 to all crossing edges in T(Kn,d), while to all other edges we
assign weight 1. Then any maximum weight perfect matching corresponds to a realization
G which contains the minimum possible number of crossing edges. Therefore εm(d) =
ε(G). To determine εM we just reverse the edge weights. So the solution of the maximum
weight matching problem for this graph provides the value εM(d) and a realization G ∈
GεM (d).

The formula (6) gives all other possible ε values while the proof of Lemma 3.2 (ii)
describes the way to find realizations with specific ε-values.

This proof seems to be easy and straightforward. However, the situation is more com-
plicated. First of all, as far as the authors are aware, this is the very first solved degree
sequence type problem without some direct, greedy type solution. Secondly, it is some-
what unusual to solve an existence problem, where the two extremal solutions can be
found directly, while the solutions inbetween can be inferred only indirectly from the ex-
tremal solutions. Finally, we think that it is a small miracle that this proof works at
all. Consider the following, slightly different question: the vertices, equipped by a degree
sequence d, are partitioned into three classes: U,W,Z. We are looking for a realization G
of d which has exactly k edges between U and W. There is no any other restriction. (Of
course this problem does not belong to the skeleton graph problem class, but the differ-
ence is tiny.) For this problem, Lemma 3.2 does not hold. Therefore, finding realizations
with minimum m and maximum M number of crossing edges does not help to solve the
problem if m < k < M . Actually, this problem seems to be quite hard, and the authors
were not able to provide a polynomial-time algorithm solving it despite of serious efforts.

3.2 Connectivity

Now consider two realizations G,G′ of degree sequence d, consistent with the skeleton
graph S(k) = (Π2;B, w). Is it true that in such a situation there always exists a sequence
of S-preserving swaps that turn G into G′? The following counter example shows that
the answer to the above question is “no”.

Theorem 3.3. There exist graphs G,G′ that have the same vertex set V , the same degree
sequence d and that are both consistent with the skeleton graph S(k) = (Π2;B, w) described
above, such that there exists no sequence of S-preserving swaps that turn G into G′.

Proof. We construct an example as follows. Let d = (6, 6, 3, 3, 3, 3, 1, 1) be the degrees
of vertices (u3, w7, u2, w6, u1, w5, u0, w4). Let S be the skeleton graph with Π = {U,W}

the electronic journal of combinatorics 24(2) (2017), #P2.47 9

with U = {u0, u1, u2, u3},W = {w4, w5, w6, w7} and with bone UW with weight k = 7.
Then both vertex classes must contain 3 edges. In Figure 2 we show all realizations of this
degree sequence that are consistent with S. There is a single S-preserving swap that turns
G1 into G2, namely the swap u2w5, u1w6 ⇒ u1w5, u2w6. However, there is no S-preserving
swap that turns G1 into G3 or G2 into G3. (See Figure 3 where the red and blue chords
can be found in only one realization, while the black chords are in both.) Hence, there is
no sequence of S-preserving swaps that turns G1 or G2 into G3.

U W

(a) G1

u3

u2

u1

u0

w7

w6

w5

w4

(b) G2

U W

(c) G3

Figure 2 There is no sequence of S-preserving swaps that turns G1 or G2 into G3.

U W

(a) for G1 and G2

u3

u2

u1

u0

w7

w6

w5

w4

(b) for G2 and G3

U W

(c) for G1 and G3

Figure 3 The red and blue chords come from one realization, while the black ones come
from both. The realizations themselves come from Figure 2.

Motivated by Theorem 3.3, we define a double swap as the simultaneous application
of two disjoint swaps, i.e., if a, b, c, d, e, f, g, h are eight distinct vertices of graph G =
(V,E) such that ab, cd, ef, gh ∈ E and bc, ad, fg, eh /∈ E, then the result of applying
the double swap ab, cd, ef, gh ⇒ bc, ad, fg, eh is the graph G′ = (V,E ∪ {ab, cd, ef, gh} \
{bc, ad, fg, eh}). A double swap is S-preserving, for some skeleton graph S, if G′ is
consistent with S.

Theorem 3.4. For every two graphs G,G′ that have the same vertex set V , the same
degree sequence d and that are both consistent with the same skeleton graph S(k) =

the electronic journal of combinatorics 24(2) (2017), #P2.47 10

(Π2;B, w), there exists a sequence of S-preserving swaps and double swaps that turn G
into G′.

Proof of Theorem 3.4. The proof is by induction on r(G,G′). Let’s recall that this is
the number of red edges in G4G′ which is 1

2
|E(G)4E(G′)|. If r(G,G′) = 0 then G = G′

and we are done. Moreover, if r(G,G′) = 2 then we can turn G into G′ by applying the
single swap consisting of the red and blue edges of ∇ and we are again done. (It is easy
to see that r(G,G′) cannot be 1.) Hence, assume r(G,G′) > 3. In a sequence of lemmas
we will show that we can always find an S-preserving swap and/or double swap sequence
which reduces r(G,G′). In each lemma we identify an alternating circuit in ∇ s.t. the
regular swap subsequence processing this circuit will apply only S-preserving swaps, and
will hence satisfy the conditions described in Theorem 3.4.

Lemma 3.5. If one can find an alternating circuit C ⊂ ∇ completely within a vertex
class, say, U , then the regular swap subsequence processing C (see Theorem 2.5) provides
S-preserving swaps at each step.

Proof. Indeed, the regular swap sequence can start with that particular circuit—see
Lemma 2.6(i)—and the process uses chords of this circuit, therefore all swap operations
happen inside class U and hence all swaps are S-preserving.

From now on we assume that there exists no alternating circuit completely within any
vertex class. To make the references easier for different type of chords in the realizations,
we introduce two further notions: we say that a chord is black if it is an edge in both G
and G′. It is white if it is an edge neither in G nor in G′.

Lemma 3.6. Assume that there exists a red crossing edge and a blue crossing edge that
share an endpoint. Then we can identify an alternating circuit C such that the regular
swap subsequence which processes C provides only S-preserving swaps.

ua

x

v

b

e1

e2

U W

Figure 4 A red crossing chord and a blue crossing chord that share an endpoint. The
red chord is an edge in G but not in G′. Analogously the blue chord is an edge in G′

but not in G. Either au is blue but ax is not blue, or bx is red but bu is not red.

Proof. Suppose that e1 = uv is a red crossing edge and e2 = xv is blue crossing edge, where
u, x ∈ U and v ∈ W ; see Figure 4. We first show that there is a vertex a ∈ V (G)\{u, v, x}
such that au is blue but ax is not blue, or there is a vertex b ∈ V (G) \ {u, v, x} such that

the electronic journal of combinatorics 24(2) (2017), #P2.47 11

bx is red but bu is not red. If no such vertex a exists, then db(u) < db(x), and if no such
vertex b exists, then dr(x) < dr(u). But since dr(u) = db(u) and dr(x) = db(x) we have
dr(u) = db(u) < db(x) = dr(x), which contradicts the previous sentence.

Hence such vertex a or vertex b exists. Without loss of generality assume that there
exists a vertex a such that au is blue but ax is not blue.

If ax is red or black, then we apply the S-preserving swap au, uv, xv, ax to G to obtain
G∗, a consistent realization. Since r(G∗, G′) < r(G,G′) therefore the induction applies.

If ax is white, then we apply the swap au, xv ⇒ ax, uv for realization G. (Here we
apply Lemma 2.6 (ii).) For the derived realization G∗ the number of red edges within
E(G)4 E(G∗) is smaller than r(G,G′) and induction applies.

From now on we assume that there exist no adjacent red and blue crossing edges.

Lemma 3.7. Assume there exists a red-blue alternating trail T where the first chord of
T is a red crossing one, the last chord is a blue crossing one, and the other chords of T
are not crossing ones. (Then T consists of at least four chords.) Then we can identify
an S consistent realization G∗ with the property, that |E(G)4E(G∗)| < 2r(G,G′) and
|E(G∗)4E(G′)| < 2r(G,G′), therefore the inductive hypothesis applies.

u

x

v

y

R

e1

e2

U W

Figure 5 A red crossing chord and a blue crossing chord connected by a red-blue alter-
nating chord trail in G. Recall, that a red chord is an actual edge in G but a non-edge
in G′ and a blue chord is a non-edge in G but an edge in G′.

Proof. Suppose that such an alternating trail T exists. Let e1 = uv be the red crossing
edge in T and e2 = xy be the blue crossing edge, where u, x ∈ U , v, y ∈ W , and the
other edges of T lie within W . Let R be the subtrail of T from v to y formed from T by
removing e1 and e2, then R contains at least two chords. See Figure 5 for a picture.

Consider the pair uy. Since Lemma 3.6 does not apply, uy is a black or white chord. If
uy is black, then denote by C the chord circuit (R, vu, uy). This has exactly two crossing
chords, one is red (an edge in G but non-edge in G′), the other is blue (a non-edge in G but
an edge in G′), and it alternates between red and blue chords: every second chord is red,
the others are blue. Denote by C∗ the chord circuit derived from C by switching blue and
red chords along C and denote by G∗ the graph derived from G′ by exchanging C and C∗.
Then G∗ is clearly another realization of d and since C∗ has two crossing chords, one is
an edge, the other is a non-edge, therefore, G∗ is consistent with the skeleton graph S(k).
Since trail R contains at least one red chord, the number of red edges in E(G)4E(G∗) is

the electronic journal of combinatorics 24(2) (2017), #P2.47 12

smaller than r(G,G′) and, consequently, the inductive assumption applies for G and G∗:
there exists a sequence Σ1 of S-preserving swaps and double swaps transforming G into
G∗. Furthermore, since T was not closed, the number of red edges in E(G′)4 E(G∗) is
smaller than r(G,G′) and, therefore, the inductive assumption applies for G∗ and G′ as
well: there exists a sequence Σ2 of S-preserving swaps and double swaps transforming G∗

into G′. So the swap-sequence Σ1 ◦ Σ2 transforms G into G′ via S-preserving operations.

If uy is white, then we consider exactly the same circuit C and let C∗ be derived in the
same way. However, G∗ is now derived from G by exchanging C and C∗. Again G∗ is
consistent with the skeleton graph S(k). Since r(G,G∗) = |T |/2 < r(G,G′), there exists
an S-preserving swap sequence Σ1 from G to G∗. Similarly there exists an S-preserving
swap sequence Σ2 transforming G∗ into G′. So the swap-sequence Σ1 ◦ Σ2 transforms G
into G′ via S-preserving operations.

Now we are ready to finish the proof of Theorem 3.4: Consider the symmetric difference
∇. Assume at first there is a connected component in ∇ containing both red and blue
crossing chords. Then they are connected with an alternating chord trail and traversing
it will reveal a red and blue crossing chord pair as in Figure 5. Therefore we may assume
that no connected component has both red and blue crossing chords. Next we decompose
it into alternating chord circuits and let C1 and C2 be two of them, the first has red
crossing chords while the second one has blue crossing chords. By our assumptions these
two circuits are vertex disjoint.

Let Σ1 denote a regular swap sequence processing C1 and let Σ2 denote the analogous
regular sequence for C2. Now we execute Σ1 step by step while the required swaps are
S-preserving. Let Σ1(i) denote the last performed operation. If the swap Σ1(j), where
j 6 i, produced realization H and r(H,G′) is smaller than r(G,G′), then the inductive
hypothesis applies. So we suppose here that the operations Σ1(1), . . . ,Σ1(i) only split the
alternating chord circuits into smaller ones.

At this point we execute the swap sequence Σ2 step by step while the required swaps
are S(k)-preserving. Let Σ2(j) denote the last performed operation. We let H denote the
current realization, which is consistent with S(k) and has r(H,G′) equal to r(G,G′).

Now we execute the double swap Σ1(i + 1) and Σ2(j + 1) which together produce a
new realization H ′ which is consistent with S(k) and for which r(H ′, G′) is smaller than
r(G,G′). The inductive hypothesis applies. This completes the proof of Theorem 3.4.

4 Multipartite graph realizations

This section considers skeleton graphs with more than two classes but without loops.
First, we consider skeleton graphs that contain exactly one odd cycle.

Lemma 4.1. Let V be the underlying vertex set with partition Π = (U1, . . . , U2k−1), let d
be a sequence of |V | integers, and S = (Π;B, w) a skeleton graph consisting of exactly one
odd cycle U1U2, U2U3, · · · , U2k−1U1 with an otherwise undefined weight function w. Then

the electronic journal of combinatorics 24(2) (2017), #P2.47 13

there exists at most one weight function w for which G(S(w)) is not empty. (Here S(w)
is a shorthand for S = (Π;B, w).)

Proof. Assume that G is a realization of d which is weakly consistent with skeleton graph
S = (Π;B). (Recall: there is no edge in G outside B.) Let D(U) (for U ∈ Π) denote
D(U) =

∑
u∈U d(u). (This is the total degree of U in the skeleton graph.) Furthermore

let α denote the number of edges in the bone U1U2. Then there are D(U1) − α edges in
the bone U1U2k−1.

We can calculate the number of edges in the bone U2U3: it is D(U2)−α. The number
of edges along the bone U3U4 is D(U3) − D(U2) + α. And so on: we can calculate the
number of edges in all bones, one by one. We finish it to calculate the number of edges in
the bone U2k−2, U2k−1 which is some β, a linear function of α with coefficient 1. Finally we
know that α+β = D(U2k−1). So α is fully determined. If a weakly consistent realizations
exists then the solution for α must provide non-negative integer values w∗(UiUi+1) for all
bones.

The easy consequence is that all weakly consistent realizations are consistent with exactly
the same weight function: each belongs to S(w∗).

By the above lemma, we can solve the existence problem for this particular skeleton
graph by deciding if there exists a realization of d that is weakly consistent with S. But
Observation 2.1 does exactly this for us.

Corollary 4.2. There exists a polynomial algorithm to decide the existence of a consistent
realization to the skeleton graph problem above.

Before we proceed to even cycles we need some definitions and a result about restricted
degree sequence problems from [9]. Let F be a subset of the vertex pairs from V . The
other vertex pairs on V are called chords. Let d be a degree sequence on V . We are
interested in those realizations of d which completely miss F (the forbidden set of non-
chords). The set of all such realizations is denoted by GF (d).

Consider a realization G = (V,E) ∈ GF (d) where v1, . . . , v2k is an alternating (edge,
non-edge, . . . etc.) circuit of chords. Assume that all pairs vivj which would divide C into
two even chord circuits (these are the pairs i, j ∈ {1, . . . , 2k} with j = i+ 1 (mod 2) and
|i− j| > 1) are forbidden (they are not chords). Then the operation which exchanges the
edges and non-edges along the circuit C is called an F -swap. It is clear that if F = ∅
then this notion coincides with Havel’s swap notion. The following result follows directly
from Theorem 2.3 of [9]: the space GF (d) is connected under F -swaps. More precisely:

Theorem 4.3 ([9]). Let G,G′ ∈ GF (d) be two realizations. Then there exists a sequence
of F -swaps which turns G into G′. Moreover if the symmetric difference between G and
G′ is one alternating chord circuit, then all the F -swaps happen within the vertex set
of C.

We continue our investigations with considering skeleton graphs consisting of one even
cycle: we use similar notations as before except that the last vertex partition is denoted
by U2k and the cycle is modified accordingly.

the electronic journal of combinatorics 24(2) (2017), #P2.47 14

The existence problem for such skeleton graphs was originally raised for the case k = 2
by László A. Székely [23]; he also suggested a solution for this particular question.

Now we can do the same calculation here that happened in the proof of Lemma 4.1.
However, the final equation contains no α, it is just an alternating sum of D(Ui)s, an
identity. Therefore there may exist several feasible values for α, and it is possible to
find all feasible weight functions (a constant number) and to find at least one consistent
realization for each feasible weight function in polynomial time. More precisely:

Lemma 4.4. Let S = (Π;B) be a skeleton graph consisting of exactly one cycle C with an
undefined weight function. Let α denote the weight of U1U2 under a realization consistent
with S. Then there exist a minimum possible value αm and a maximum possible value αM ,
and each value α = αm, αm + 1, . . . , αM appears as feasible bone weight on U1U2. Finally
one can provide one consistent realization for each possible weight function in polynomial
time.

Proof. When our cycle C has odd length, then Lemma 4.1 and Corollary 4.2 apply and
we have nothing to prove. So assume now that C = (U1U2, . . . , U2kU1). Applying the
method of Observation 2.1 with weight 0 for all chords in the bone U1U2 and 1 for all
other chords, the derived maximum weight perfect 1-factor provides the value αm and a
corresponding degree sequence realization. If we consider the opposite weight function
then the maximum weight perfect 1-factor provides the value αM and a corresponding
degree sequence realization.

Finally one can find in polynomial time at least one realization for each value α =
αm, αm + 1, . . . , αM applying Theorem 4.3 as follows: from this statement we know that
G can be transformed into G′ using F -swaps. In this setup the chords are the vertex pairs
within the bones, all other vertex pairs are forbidden. When G and G′ are from G(Π,B)
then they can be consistent with different weight functions w and w′. In any procedure
transforming G into G′ each F -swap alters the edges and non-edges along an alternating
chord circuit C ′. There are two possibilities: this C ′ can go around the bone-circuit C
zero or an even number of times or an odd number of times. In the first case for each
bone the number of edges in this bone before and after the swap will be the same. In the
second case the numbers of the edges within the bones increase and decrease with exactly
one, alternately. Therefore each possible value α between αm and αM must occur in the
bone U1U2.

Now we discuss in short another possible multipartite skeleton graph:

Lemma 4.5. Let the skeleton graph S = (Π;B, w) be a tree and let L be a leaf in this
tree. Assume that realization G ∈ G(d) is consistent with S. Then the weight function w
and the value D(L) are completely determined by the values D(U), U 6= L.

Proof. This statement is almost trivial. One can argue in the same way as it happened
in the proof of Lemma 4.1: starting from the leaves different from L and working along
the paths toward L one can determine all D(UW) values along the tree. At the last step
on the unique bone UL the value w(UL) must be the same as D(L).

the electronic journal of combinatorics 24(2) (2017), #P2.47 15

Putting together these statements we have the following result:

Theorem 4.6. Let d be a sequence of |V | positive integers and let S = (Π;B) be a
connected skeleton graph with at most one cycle. Then we can find in polynomial time all
weight functions w for which there exists realizations of d which are consistent with the
skeleton graph S = (Π;B, w) along with at least one realization for each possible weight
function.

Proof. We may and will assume that the skeleton graph has exactly one cycle C and
trees connected to the vertices of that cycle because otherwise Lemma 4.5 would apply.
If at vertex class U of C in the connected tree the vertex U has a neighbors, then we
consider a disjoint subtrees, all rooted in U . For each subtree the application of Lemma
4.5 determine the corresponding weight function values, and together they determine the
“residual” D(U) for the cycle C. This can be done in polynomial time.

If C is odd, then it provides one unique weight function as possible setup for consistent
realizations. The usual application of the Tutte method provides in polynomial time a
weakly consistent realization of d which will be automatically consistent.

If C is even, then the application of Lemma 4.4 provides the possible weight functions,
together with actual consistent realizations for each possible weight function.

This finished the discussion of the existence problem of consistent realizations for skeleton
graphs S = (Π;B, w) where all connected components contain at most one cycle. In the
remainder of this section we discuss briefly the connectivity problem of the space of all
consistent realizations.

First of all we have to recognize that instead of asking the connectivity of the real-
ization space G(S) under the regular swap operations we have to consider the F -swap
operations, defined by the forbidden edges outside the active bones.

Assume that our skeleton graph is connected and it has at most one cycle. If this
cycle is odd, then there is at most one weight function for which G(S) is not empty,
and every weakly consistent realization will be automatically consistent as well, so the
F -swap operations do not destroy the consistency. The application of Theorem 4.3 proves
the connectivity of the space.

When the cycle under consideration is even then we have a more complex situation.
First of all there may be several different weight functions with consistent realizations,
and—similarly to the bipartite case S(k)—it is possible that G(S) is not connected under
F -swaps. However, again similarly to the bipartite case, one can organize the F -swap
sequence such that whenever we have to leave the current weight function w into w′—
which differs from w with one on each bone along the cycle—then the next F -swap goes
back again to the original weight function. Thus, GS) is connected under F -swaps and
“double F -swaps”.

the electronic journal of combinatorics 24(2) (2017), #P2.47 16

References

[1] Y. Amanatidis, B. Green, M. Mihail. Graphic realizations of joint-degree matrices.
Manuscript. 2008.

[2] G. Amanatidis, B. Green, M. Mihail. Graphic Realizations of Joint-Degree Matrices.
arXiv:1509.07076 2015.

[3] É. Czabarka, A. Dutle, P.L. Erdős, I. Miklós. On Realizations of a Joint Degree
Matrix. Discrete Appl. Math. 181:283–288, 2015. doi:10.1016/j.dam.2014.10.012

[4] É. Czabarka. On realizations of a Partition Adjacency Matrix, unpublished
manuscript 2014.

[5] J. Edmonds. Paths, trees, and flowers. Can. J. Math. 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4

[6] J. Edmonds. Maximum matchings and a polyhedron with 0,1-vertices. Journal of
Research National Bureau of Standards Section 69B:125–130, 1965.

[7] P. Erdős, T. Gallai. Gráfok elő́ırt fokú pontokkal (Graphs with prescribed degree of
vertices). Mat. Lapok, 11:264–274, 1960. (in Hungarian)

[8] P.L. Erdős, Z. Király, I. Miklós. On the swap-distances of different realiza-
tions of a graphical degree sequence. Comb. Prob. Comp. 22(3):366–383, 2013.
doi:10.1017/S0963548313000096

[9] P.L. Erdős, S.Z. Kiss, I. Miklós, L. Soukup. Approximate Counting of Graphical
Realizations. PLOS One #e0131300, 2015. doi:10.1371/journal.pone.0131300

[10] M. Gjoka, B. Tillman, A. Markopoulou. Construction of Simple Graphs with a Target
Joint Degree Matrix and Beyond. Proceedings of IEEE INFOCOM April 26 – May
1, Honkong, PR Chine 1553–1561, 2015. ISBN 978-1-4799-8381-0

[11] S.L. Hakimi. On the realizability of a set of integers as degrees of the vertices of a
graph. SIAM J. Appl. Math. 10:496–506, 1962. doi:10.1137/0110037

[12] V. Havel. A remark on the existence of finite graphs (in Czech). C̆asopis Pĕst. Mat.
80:477–480, 1955.

[13] M.R. Jerrum, A. Sinclair, E. Vigoda. A Polynomial-Time Approximation Algo-
rithm for the Permanent of a Matrix with Nonnegative Entries. Journal of the ACM
51(4):671–697, 2004. doi:10.1145/1008731.1008738

[14] Hyunju Kim, Z. Toroczkai, P.L. Erdős, I. Miklós, L.A. Székely. Degree-
based graph construction. J. Phys. A: Math. Theor. 42:392001, 2009.
doi:10.1088/1751-8113/42/39/392001

[15] Z. Király. Recognizing graphic degree sequences and generating all realizations.
EGRES Technical Report TR-2011-11 ISSN 1587-4451, 2012.

[16] P. Mahadevan, D. Krioukov, K. Fall, A. Vahdat. Systematic topology analysis and
generation using degree correlations. ACM SIGCOMM Computer Communication
Review 36(4):135–146, 2006 doi:10.1145/1151659.1159930

the electronic journal of combinatorics 24(2) (2017), #P2.47 17

http://arxiv.org/abs/1509.07076
http://dx.doi.org/10.1016/j.dam.2014.10.012
http://dx.doi.org/10.4153/CJM-1965-045-4
http://dx.doi.org/10.1017/S0963548313000096
http://dx.doi.org/10.1371/journal.pone.0131300
http://dx.doi.org/10.1137/0110037
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1088/1751-8113/42/39/392001
http://dx.doi.org/10.1145/1151659.1159930

[17] A.N. Patrinos, S.L. Hakimi. Relations between graphs and integer-pair sequences.
Discrete Mathematics 15:437–358, 1976. doi:10.1016/0012-365X(76)90048-0

[18] J. Petersen. Die Theorie der regulären Graphs. Acta Math. 15:193–220, 1891.

[19] H.J. Ryser. Combinatorial Mathematics, Carus Math. Monograph 14, Math. Assoc.
of America, 1963.

[20] J.K. Senior. Partitions and their Representative Graphs. Amer. J. Math., 73:663–689,
1951. doi:10.2307/2372318

[21] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency Algorithms and
Combinatorics 24. Springer. 2004. Chapter 26. ISBN: 978-3-540-44389-6

[22] I. Stanton, A. Pinar. Constructing and sampling graphs with a prescribed joint
degree distribution. ACM Journal on Experimental Algorithms 17(1): Article No.
3.5, 2012. doi:10.1145/2133803.2330086

[23] L.A. Székely. personal communication, 2014.

[24] W.T. Tutte. The factorization of linear graphs. J. London Math. Soc. 22:107–111,
1947. doi:10.1112/jlms/s1-22.2.107

[25] W.T. Tutte. The factors of graphs. Canad. J. Math. 4:314–328, 1952.
doi:10.4153/CJM-1952-028-2

[26] W.T. Tutte. A short proof of the factors theorem for finite graphs. Canad. J. Math.
6:347–352, 1954. doi:10.4153/CJM-1954-033-3

the electronic journal of combinatorics 24(2) (2017), #P2.47 18

http://dx.doi.org/10.1016/0012-365X(76)90048-0
http://dx.doi.org/10.2307/2372318
http://dx.doi.org/10.1145/2133803.2330086
http://dx.doi.org/10.1112/jlms/s1-22.2.107
http://dx.doi.org/10.4153/CJM-1952-028-2
http://dx.doi.org/10.4153/CJM-1954-033-3

	Introduction
	Definitions and tools
	Graph realizations with a given number of edges crossing a given bipartition
	Existence
	Connectivity

	Multipartite graph realizations

