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Abstract

A matrix is simple if it is a (0,1)-matrix and there are no repeated columns.
Given a (0,1)-matrix F , we say a matrix A has F as a configuration, denoted F ≺ A,
if there is a submatrix of A which is a row and column permutation of F . Let |A|
denote the number of columns of A. Let F be a family of matrices. We define the
extremal function forb(m,F) = max{|A| : A is an m−rowed simple matrix and has
no configuration F ∈ F}. We consider pairs F = {F1, F2} such that F1 and F2 have
no common extremal construction and derive that individually each forb(m,Fi) has
greater asymptotic growth than forb(m,F), extending research started by Anstee
and Koch.

1 Introduction

The investigations into the extremal problem of the maximum number of edges in an n
vertex graph with no subgraph H originated with Erdős and Stone [14] and Erdős and
Simonovits [13]. There is a large and illustrious literature. A natural extension to general
hypergraphs is to forbid a given trace. This latter problem in the language of matrices
is our focus. We say a matrix is simple if it is a (0,1)-matrix and there are no repeated
columns. Given a (0,1)-matrix F , we say a matrix A has F as a configuration, denoted
F ≺ A, if there is a submatrix of A which is a row and column permutation of F . Let
|A| denote the number of columns in A. We define

Avoid(m,F ) = {A : A is m-rowed simple, F ⊀ A} ,
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forb(m,F ) = max
A
{|A| : A ∈ Avoid(m,F )}.

A simple (0,1)-matrix A can be considered as vertex-edge incidence matrix of a hypergraph
without repeated edges. A configuration is a trace of a subhypergraph of this hypergraph.

Let Ac denote the 0-1-complement of a (0,1)-matrix A. We have that forb(m,F ) =
forb(m,F c).

We recall an important conjecture from [10]. Let Ik denote the k× k identity matrix,
let Ick denote the (0,1)-complement of Ik, and let Tk denote the k × k upper triangular
matrix whose ith column has 1’s in rows 1, 2, . . . , i and 0’s in the remaining rows. For p
matrices m1 × n1 matrix A1, an m2 × n2 matrix A2,. . . , an mp × np matrix Ap we define
A1 × A2 × · · · × Ap as the (m1 + · · · + mp) × n1n2 · · ·np matrix whose columns consist
of all possible combinations obtained from placing a column of A1 on top of a column of
A2 on top of a column of A3 etc. For example, the vertex-edge incidence matrix of the
complete bipartite graph Km/2,m/2 is Im/2× Im/2. Define 1k to be the k× 1 column of 1’s
and 0` to be the `× 1 column of 0’s.

Conjecture 1.1. [10] Let F be a k × ` matrix with F 6=
[
0
1

]
. Let X(F ) denote the

largest p such that there are choices A1, A2, . . . , Ap ∈ {Im/p, Icm/p, Tm/p} so that F ⊀
A1 × A2 × · · · × Ap. Then forb(m,F ) = Θ(mX(F )).

We are assuming p divides m which does not affect asymptotic bounds.
It is natural to extend the concepts of Avoid(m,F ) and forb(m,F ) to the case when

not just a single configuration, but a family F = {F1, F2, . . . , Fr} of configurations is
forbidden.

Avoid(m,F) = {A : A is m-rowed simple, F ⊀ A for all F ∈ F} ,

forb(m,F) = max
A
{|A| : A ∈ Avoid(m,F)}.

One important result in this area is the following theorem of Balogh and Bollobás [11].

Theorem 1.2 (Balogh and Bollobás, 2005). For a given k, there is a constant BB(k)
such that forb(m, {Ik, Tk, Ick}) = BB(k).

The best current estimate for BB(k) is due to Anstee and Lu [8], BB(k) 6 2ck
2

where c is absolute constant, independent of k. It could be tempting to extend Con-
jecture 1.1 to the case of forbidden families, as well. However, as it was shown in [5]
forb(m, {I2 × I2, T2 × T2}) is Θ(m3/2) despite the only products missing both I2× I2 and
T2 × T2.are one-fold products. An even stronger observation is made in Remark 5.9.

In the present paper we continue the investigations started in [7]. Anstee and Koch
determined forb(m, {F,G}) for all pairs {F,G}, where both members are minimal quadrat-
ics, that is both forb(m,F ) = Θ(m2) and forb(m,G) = Θ(m2), but no proper subconfig-
uration of F or G is quadratic. We take this one step further. That is, we consider cases
when one of F or G is a simple minimal cubic configuration and the other one is a minimal
quadratic or minimal simple cubic. Our results are summarized in Table 1. We solve all
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14×1 F9 F10 F11 F12 F13 04×1 Fc
9 Fc

10 Fc
12

13×1
Θ(m2)
Rm 2.1

m + 2
Cr 6.9

Θ(1)
Cr 5.1

Θ(m3/2)
Cr 5.3

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(1)
Cr 5.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

12×2
Θ(m2)
Rm 2.1

m + 3
Cr 6.9

Θ(1)
Cr 5.1

Θ(m3/2)
Cr 5.5

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(1)
Cr 5.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

I3
Θ(1)

Cr 5.1
Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Q3
Θ(m)
Cr 4.2

Θ(m)
Th 6.1

Θ(m)
Cr 4.2

Θ(m3/2)
Cr 4.8

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m)
Cr 4.2

Θ(m)
Th 6.1

Θ(m)
Cr 4.2

Θ(m2)
Rm 2.1

Q8
Θ(m)
Pr 3.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m)
Pr 3.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Q9
3m− 2
Cr 7.2

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

3m− 2
Cr 7.2

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

Θ(m2)
Rm 2.1

14×1
m + 5
Cr 6.9

Θ(1)
Cr 5.1

Θ(m3/2)
Pr 5.6

Θ(m3)
Rm 2.1

Θ(m2)
Pr 3.3

Θ(1)
Cr 5.1

Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

F9
Θ(m3)
Rm 2.1

Θ(m2)
Pr 3.3

Θ(m3)
Rm 2.1

Θ(m2)
Pr 3.3

Θ(m3)
Rm 2.1

Θ(m2)
Pr 3.4

Θ(m2)
Pr 3.4

Θ(m3)
Rm 2.1

F10
Θ(m2)
Pr 3.3

Θ(m3)
Rm 2.1

Θ(m2)
Pr 3.3

Θ(m3)
Rm 2.1

Θ(m2)
Pr 3.4

Θ(m2)
Pr 3.4

Θ(m3)
Rm 2.1

F11
Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

Θ(m3/2)
Pr 5.6

Θ(m2)
Pr 3.3

Θ(m2)
Pr 3.3

Θ(m3)
Rm 2.1

F12
Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

Θ(m3)
Rm 2.1

F13
Θ(m2)
Pr 3.3

Θ(m2)
Pr 3.3

Θ(m2)
Pr 3.3

Θ(m3)
Rm 2.1

Table 1: Results

cases when the minimal simple cubic configuration has four rows. If Conjecture 8.1 is
true, then there are no minimal simple cubic configurations on 5 rows. The six-rowed
ones are discussed in Section 8. The remaining case is forb(m,Q8, F14), where we believe
that non-existence of common quadratic product construction indicates that the order of
magnitude is o(m2).

The structure of the paper is as follows. In Section 2 product constructions and
lower bounds implied by them are treated. Then in Section 3 upper bounds implied
by the standard induction technique ([3], Section 11) are given. These combined with
product constructions give asymptotically sharp bounds for many pairs of configurations.
Sections 4, 5, 6 and 7 deal with specific configurations. In Section 4 a stability theorem
is proven for matrices avoiding the configuration Q3(t), which is a generalization of the
configuration Q3 (see Table 2), and this theorem is applied to prove forbidden pairs
results involving Q3(t). Section 5 contains cases when one member of the forbidden pairs
is a block of 1’s. This naturally involves extremal graph and hypergraph results, as
forbidding 1k×1 restricts the hypergraph corresponding to our simple (0,1)-matrix to be
of rank -(k − 1), that is edges are of size at most k − 1. Interestingly enough, in one case
we use a very recent theorem of Alon and Shikhelman [1]. Section 6 considers F9 (see
Table 3) and some exact results are obtained. Section 7 deals with Q9 of Table 2 based
on the characterization of Q9 avoiding matrices of [4]. Finally, in Section 8 we observe
that forb(m, {F,G}) is quadratic if F is a minimal quadratic and G is a 6-rowed minimal
cubic in all but one case.

Throughout the paper we use standard extremal graph and hypergraph notations, such
as ex(m,G) to denote the largest number of edges a graph on m vertices can have without
containing a subgraph isomorphic to G, or ex(k)(m,H) for the largest number of edges
a k-uniform hypergraph can have without containing a subhypergraph H. The complete
k-partite k-uniform hypergraph on partite sets of sizes s1, . . . , sk, respectively is denoted
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by Kk(s1, . . . , sk). Also, when forbidden pairs of configurations are considered, we use the
notational simplification forb(m, {F,G}) = forb(m,F,G) for typesetting convenience. We
allow ourselves the ambiguity of writing I×Ic instead of the technically precise Im/2×Icm/2
in product constructions.

2 Product Constructions

What follows are tables of all minimal quadratic configurations and simple minimal cubic
configurations with 4 rows. In addition to the configurations, we have included a list of
all 2-fold and 3-fold products of I, Ic and T that avoid these configurations. The list
of constructions avoiding quadratic configurations comes from [7], and the lists for cubic
configurations are proved in Section 2, with the statement that proves the result listed
under “Proposition.”

Note that we have not included the complements of 13×1, 12×2, and I3 in this table, even
though these are also minimal quadratic configurations. This is because if Q denotes any
of these configurations then forb(m,Q, F ) = forb(m,Qc, F c), which is already included in
Table 1.

The result for 14×1 is obvious so no proof is given. In addition to this table, the
complement of 14×1 (which we denote by 04×1), F c

9 , F c
10, and F c

12 are minimal simple
cubic configurations, and the products avoiding these configurations are the complements
of the products avoiding their complements.

Table 1 contains the asymptotic values for all pairings of the configurations mentioned
above when at least one of the configurations is cubic. We note that all exact results
stated below hold for m sufficiently large.

In this section we determine all product constructions that avoid the minimal cubic
configurations mentioned above, where we note that if a configuration A is avoided by the
product B then Ac is avoided by the product Bc. We will then be able to obtain most of
our lower bound results from the following observations:

Remark 2.1. If F and G are both avoided by the same p-fold product construction then
forb(m,F,G) = Ω(mp).

Proving forb(m,F,G) = Ω(m2) when either F or G is a minimal quadratic configura-
tion implies that forb(m,F,G) = Θ(m2), and similarly if forb(m,F,G) = Ω(m3) for F or
G a minimal cubic configuration then forb(m,F,G) = Θ(m3).

We note the following result.

Remark 2.2. The only 2-fold product avoiding 14×1 is I × I. The only 3-fold product
avoiding 14×1 is I × I × I.

Lemma 2.3. F9, F10, F
c
9 , F

c
10 ≺ [01]× [01]× T4.

Proof. The last two rows of F9, F10, F
c
9 , F

c
10 are contained in T4, and hence the last three

rows of these configurations will be contained in [01] × T4 and all of the configurations
will be contained in [01]× [01]× T4.
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Configuration Qi Construction(s)

13×1

1
1
1

 I × I

12×2

[
1 1
1 1

]
I × I

I3

1 0 0
0 1 0
0 0 1

 Ic × Ic

Ic × T
T × T

Q3

[
0 0 0 1 1 1
0 1 1 0 0 1

]
I × Ic

Q8

0 0 1 1
1 0 1 0
0 1 0 1

 T × T

Q9


1 0
1 0
0 1
0 1

 I × T
Ic × T

Table 2: Minimal Quadratic Configurations

Proposition 2.4. F9 and F10 are avoided by every 2-fold product not involving I, and
they are contained in every 2-fold product involving I. The only 3-fold product avoiding
F9 and F10 is Ic × Ic × Ic.

Proof. Note that I3 is avoided by every 2-fold product not involving I by [7], and because
I3 ≺ F9, F10 it follows that these products must also avoid F9 and F10. Observe that
F9, F10 ≺ [01]×I3, and hence F9 and F10 will be contained in any 2-fold product involving
I. It follows from Lemma 2.3 that F9, F10 will be contained in any 3-fold product involving
T , so the only 3-fold product that can avoid these configurations is Ic × Ic × Ic, and [3]
notes that this is indeed the case.
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Configuration Fi Quadratic Constr.(s) Cubic Constr.(s) Proposition

14×1


1
1
1
1

 I × I I × I × I Rem. 2.2

F9


1 0 0
0 1 0
0 0 1
0 0 1

 Ic × Ic

Ic × T
T × T

Ic × Ic × T Prop. 2.4

F10


1 0 0
0 1 0
0 0 1
0 0 0

 Ic × Ic

Ic × T
T × T

Ic × Ic × T Prop. 2.4

F11


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 I × T
Ic × T
T × T

T × T × T Prop. 2.6

F12


1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

 All All Lem. 2.7

F13


1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1

 All T × T × T
Lem. 2.7
Prop. 2.8

Table 3: Minimal Simple Cubic Configurations with 4 Rows
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Lemma 2.5. F11, F13 ≺ [01]× [01]× I2 = [01]× [01]× Ic2.

Proof. F11 = I2 × I2 ≺ [01] × [01] × I2. The second and third rows of F13 are equal
to [01] × [01], and the remaining rows consist of columns of I2. We thus have F13 ≺
[01]× [01]× I2.

Proposition 2.6. F11 ⊀ I × T, Ic × T, T × T and it is contained in all other 2-fold
products. The only 3-fold product that avoids F11 is T × T × T .

Proof. Note that Q9 ≺ F11 and that Q9 ⊀ I × T, Ic × T , so it follows that this is also the
case for F11. Because F11 = I2 × I2 and I2 ≺ I, Ic, it follows that every 2-fold product
consisting only of I’s and Ic’s contains F11. [3] notes that F11 ⊀ T × T × T , so it also
follows that F11 ⊀ T × T . It follows from Lemma 2.5 that every 3-fold product involving
an I or Ic contains F11, so the only 3-fold product that can avoid F11 is T × T × T .

Lemma 2.7. All 2-fold products of I, Ic and T avoid F13. All 3-fold products avoid F12

and F c
12

Proof. Every two rows of the first three rows of F13 contains

[
1 0 0 1
0 1 0 1

]
, and as no two

rows of I, Ic, or T contains this configuration, the first three rows of F13 can not be found

in any 2-fold product of these matrices. Any two rows of F12 contains

[
0 1 1
1 0 1

]
, which

again is contained in no two rows of I, Ic or T , so this can not be found in any 3-fold
product of these matrices. Similar logic holds for F c

12.

Proposition 2.8. The only 3-fold product that avoids F13 is T × T × T .

Proof. By Lemma 2.5 every 3-product involving I or Ic contains F13, and [3] notes that
F13 ⊀ T × T × T .

3 Inductive Results

In this section we prove a variety of upper bounds by using two standard techniques:
Theorem 1.2 and the following standard induction method. Let F be a k-rowed matrix.
Suppose we have A ∈ Avoid(m,F ) such that |A| = forb(m,F ). Consider deleting a row
r. Let Cr(A) be the matrix that consists of the repeated columns of the matrix that is
obtained when deleting row r from A. If we permute the rows of A so that r becomes the
first row, then after some column permutations, A looks like this:

A =
r
[

0 · · · 0 1 · · · 1
Br(A) Cr(A) Cr(A) Dr(A)

]
.

where Br(A) are the columns that appear with a 0 on row r, but don’t appear with a 1,
and Dr(A) are the columns that appear with a 1 but not a 0. We have that

forb(m,F ) 6 |Cr(A)|+ forb(m− 1, F ),
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as [Br(A)Cr(A)Dr(A)] ∈ Avoid(m − 1, F ). This is used usually in the form that if
F ≺ [01]× F ′, then

forb(m,F ) 6 forb(m− 1, F ′) + forb(m− 1, F ).

We let 1k,` denote the k× ` matrix where every entry is 1. Similarly, we define 0k,` to
be the k × ` matrix where every entry is 0. We use the notation Cr := Cr(A) when it is
clear from context what the underlying matrix A is.

Proposition 3.1. forb(m,Q8, 1k×`) = forb(m,Q8, 0k×`) = Θ(m).

Proof. As Qc
8 = Q8 we see that these two values are equal, so we only address the 1k,`

case. Note that Im gives the lower bound. For the upper bound, note that Q8 = [01]× I2.
It follows that when we apply the standard induction that Cr can not contain I2 = Ic2.
But by Theorem 1.2 if |Cr| > BB(k+ `) we must have Tk+` ≺ Cr, which would contradict
1k,` ⊀ A. Thus we must have |Cr| 6 BB(k + `), so we can inductively assume a linear
bound for forb(m,Q8, 1k×`).

Lemma 3.2. forb(m, [01]× [01]× Ir, [01]× [01]× Icr , [01]× [01]× Tr) = Θ(m2).

Proof. By using the standard induction and Theorem 1.2 one gets that forb(m, [01] ×
Ir, [01] × Icr , [01] × Tr) = O(m). Given this, when we apply the standard induction for
forb(m, [01]× [01]× Ir, [01]× [01]× Icr , [01]× [01]× Tr) we get a quadratic upper bound.
For the lower bound one can consider I × I.

Proposition 3.3. forb(m,F,G) = Θ(m2) for F = 14,1, F9, F10, F
c
9 , or F c

10 and G = F11

or F13.

Proof. The upper bounds follow from Lemma 3.2, along with the observations that 14,1 ≺
[01]× [01]×T4, F9, F10 ≺ [01]× [01]×T4 by Lemma 2.3, and F11, F13 ≺ [01]× [01]× I2 by
Lemma 2.5. The lower bounds follow from the fact that there exists common quadratic
lower bounds for each F and G by product constructions as listed in Table 3.

Proposition 3.4. forb(m,F,G) = Θ(m2) where F = F9 or F10 and G = F c
9 or F c

10.

Proof. The lower bound follows from the construction T × T , and the upper bound is a
consequence of Lemma 3.2 and the observations that F9, F10, F

c
9 , F

c
10 ≺ [01] × [01] × T4,

F9, F10 ≺ [01]× I3 ≺ [01]× [01]× I3 and F c
9 , F

c
10 ≺ [01]× Ic3 ≺ [01]× [01]× Ic3.

4 Avoiding Q3(t)

We consider a slight generalization of Q3

Q3(t) =

[
0

t︷ ︸︸ ︷
1 · · · 1

t︷ ︸︸ ︷
0 · · · 0 1

0 0 · · · 0 1 · · · 1 1

]
,

where we always assume t > 2 when we write Q3(t). We have the following result from
[7].
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Theorem 4.1. forb(m,Q3(t), t · Ik) = forb(m,Q3(t), t · Ick) = Θ(m) for any fixed k.

Corollary 4.2. forb(m,Q3(t), F ) = Θ(m) for F = 14,1, F10, 04,1, F c
10.

Proof. Each of these F is contained in either Ik or Ick for sufficiently large k, so Theorem 4.1
gives the upper bound, and either Im or Icm gives the lower bound.

Our main result for this section will be a stability theorem which says that large
Q3(t)-avoiding matrices “look like” I × Ic, and from this we will be able to prove an
upper bound for forb(m,Q3, F11), and more generally for forb(m,Q3(t), Ir × Is). We first
introduce some terminology for the proof.

We will say that a row r is dense when restricted to a set of columns C if, restricted
to C, r has at least one 0 but fewer than t 0’s (i.e. r has few 0’s but is not identically
1), and we will say that a row r is sparse when restricted to a set of columns C if r has
at least one 1 and at least t 0’s within the columns of C (i.e. r has many 0’s but is not
identically 0). We will say that a column c ∈ C is identified by a dense row r if r has a 0
in column c.

If A is a matrix and C is a set of columns (not necessarily a subset of the columns
of A), then A \ C will denote the set of columns in A that are not in C. We define the
matrix Q3(t; 0) to be Q3(t) without its column of 1’s. Lastly, we restate Theorem 4.1 as
follows: for any fixed k and t there exists a constant ck,t such that if A is an m-rowed
simple matrix with |A| > ck,tm and Q3(t) ⊀ A, then t · Ik ≺ A.

Theorem 4.3. Let A ∈ Avoid(m,Q3(t)) with |A| = ω(m logm). There exists a set of
integers {k1, . . . , ky} and a set A′ =

{
A′1, . . . , A

′
y

}
, of disjoint submatrices A′j ≺ A such

that:

1. kj+1 6 1
2
kj for all j, and y 6 logm.

2. There exists kj rows of A such that the columns of A′j restricted to these rows are
columns of Ikj .

3. If i is a column of Ikj , let Cj
i denote the set of columns of A′j that are equal to i

when restricted to the kj rows mentioned above. Then, besides these kj rows, no row
restricted to Cj

i is sparse, and every column of Cj
i is identified by some dense row.

4. |A| = Θ(
∑
|A′j|).

We first present an outline of the proof before going into the details. We are given a
large Q3(t)-avoiding matrix A0, and as a first step we remove all rows from A0 that have
few 1’s (for technical reasons) to get a new matrix A1. We then find the largest t ·Ik in A1,
and our goal is to use this as the Ik1 base for A′1. To do so, we trim A1 by getting rid of all
columns of C1

i that are not identified by a dense row, as well as all rows that are sparse
restricted to some C1

i . This gives us A′1, and we repeat the process on the remaining
columns of A1, A2 (after again removing rows with few 1’s). It turns out that the largest
t · I in A2, Ik2 , will satisfy k2 6 1

2
k1, and thus we can repeat this process at most logm
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times. At each step we remove only O(m) columns, so in total only O(m logm) columns
of A0 were removed. As |A0| = ω(m logm), the columns that remain (those of A′) must
be asymptotically as large as our original A0.

Proof. Let A0 ∈ Avoid(m,Q3(t)) with |A0| = ω(m logm). Let R1 denote the set of rows of
A0 that have fewer than 3t−2 1’s, and let A1 denote A0 with these rows removed. Note that
A1 need not be a simple matrix, but if CR1 denotes the set of columns that have a 1 in some
row of R1, then A1\CR1 will be simple. As |CR1| 6 (3t−2)m = O(m), |A1\CR1 | = Θ(|A0|).
Note that we will be working with the matrix A1, not its simplification A1 \CR1 , in order
to use the fact that every row has at least 3t− 2 1’s.

Define k1 to be the largest integer such that t · Ik1 ≺ A1. As |A1 \ CR1| = ω(m),
Theorem 4.1 tells us that we have t · Ik ≺ A1 \CR1 ≺ A1 for any fixed k (so in particular
we can assume that k1 > 3). Rearrange rows so that this t · Ik1 appears in the first k1
rows of A1.

Note that no column of A1 can have two 1’s in the first k1 rows. Indeed, any two rows
of t · Ik1 for k1 > 3 induce a Q3(t; 0), and hence if a column had 1’s in two of these rows
we would have Q3(t) ≺ A1. We can thus partition the columns of A1 as follows. We will
say that a column c belongs to the set C1

i for 1 6 i 6 k1 if c has a 1 in row i, and we will
say that c ∈ C2 if c has no 1’s in these rows. We will make the additional assumption
that the t · Ik1 we placed in the first k1 rows was such that |C2| is minimal. Note that
|C1

i | > 3t− 2 for all i, as otherwise the ith row would belong to R1 and hence not be in
A1. In particular, (3t− 2) · Ik1 ≺ A1.

We now examine the rows that are sparse in some C1
i .

Claim 1. If a row r restricted to C1
i is sparse, then restricted to A1 \ C1

i , r has at most
t− 1 1’s or r is identically 1.

Proof. Assume r is sparse restricted to C1
i , i.e. it has at least t 0’s and one 1 restricted

to C1
i . If r had t 1’s and a 0 in A \ C1

i , then by looking at the ith row, row r, and the
relevant columns, we would find a Q3(t).

We would like to strengthen the above lemma to say that sparse rows are either
identically 0 or identically 1 outside of their C1

i , and to do so we’ll have to ignore a small
number of columns of A1. We will say that a column c is “bad” if there exists a row r
and integer i such that r is sparse restricted to C1

i , r is not identically 1 in A \C1
i , and c

has a 1 in row r. Let C1 denote the set of bad columns.

Claim 2. |C1| = O(m).

Proof. Each sparse row r contributes at most t−1 columns to C1 by Lemma 1, and hence
|C1| 6 (t− 1)m = O(m).

We now wish to ignore rows and columns so that all of A1’s rows are dense, and so
that all rows of

⋃
C1
i are identified by a dense row. Rearrange rows so that the bottom `

rows of A1 consist of all rows that when restricted to some C1
i are sparse. Let Ĉ1

i denote
the columns of C1

i that are not identified by a dense row and that are not in CR1 or C1.
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Let Â1 denote A1 restricted to the top k1 rows, the bottom ` rows, and the columns of⋃
Ĉ1
i .

Claim 3. Â1 is a simple matrix.

Proof. Let ĉ and d̂ be columns of Â1 with corresponding columns c, d in A1 \ CR1 (as no

Ĉ1
i columns are in CR1). If ĉ = d̂, then clearly we must have c, d ∈ C1

i for some i. As
c 6= d (because A1 \CR1 is a simple matrix), we must have c and d differing in some row r
above the bottom ` rows, say c has a 0 in row r and d has a 1. But this means that r must
be dense (as every row between the top k1 rows and bottom ` rows is either identically 0,
identically 1, or dense), and hence c is identified by a dense row, contradicting ĉ belonging

to Â1.

Claim 4. |Â1| = O(m).

Proof. By Claim 1 (and the fact that Â1 contains no columns of C1), we know that each

row r restricted to Ĉ1
i can be one of four types: r can be identically 0 restricted to A1 \C1

i

(in which case we will say it is a row of Bi,0), r can be identically 1 restricted to A1 \ C1
i

(in which case we will say it is a row of Bi,1), or r can itself be either identically 0 or

identically 1. We thus have that the matrix Bi formed by restricting Â1 to the columns

Ĉ1
i and to the rows of Bi,0 and Bi,1 is simple with |Ĉ1

i | columns. Let bi denote the number
of rows in Bi.

If |Bi| > c3,tbi, then we must have t · I3 ≺ Bi, and hence either Bi,0 or Bi,1 must
contain a Q3(t; 0). If Bi,1 contains a Q3(t; 0), then these rows and columns together with
any column of A1 \C1

i gives a Q3(t). If Bi,0 contains a Q3(t; 0), then one can find a t ·Ik1+1

in A1. Indeed, in A1 (note that we are no longer ignoring the columns of C1 and CR1),
take the two rows from Bi,0 that contain a Q3(t; 0), ignore the at most 2t − 2 columns
that have 1’s in these rows outside of C1

i , and swap these rows with rows i and k1 + 1.
After performing these steps, no column of A1 has two 1’s in any of the first k1 + 1 rows
(since we removed the at most 2t − 2 columns that could pose a problem), rows i and
k1 + 1 by assumption have at least t 1’s, and as every other row had at least 3t − 2 1’s
before ignoring the at most 2t−2 columns, they all still have at least t 1’s. Hence we have
t · Ik1+1 ≺ A1, contradicting our definition of k1. Thus we must have |Bi| = |Ĉi| 6 c3,tbi,
and in total we have

|Â1| =
∑
|Ĉ1

i | 6
∑

c3,tbi 6 c3,t` 6 c3,tm,

proving the statement.

We now let A′1 be
⋃

C1
i after removing the columns of Â1, CR1 , and C1 (which in

total are only of size at most (4t− 4 + c3,t)m = O(m)), along with the bottom ` rows. If
|C2| = O(m logm), then A′ = {A′1} meets all of the conditions of the theorem. Otherwise
we can repeat our argument.

Let R2 denote the set of rows below the first k1 rows such that if r ∈ R2 then r has
fewer than 3t− 2 1’s when restricted to C2, and let CR2 be the set of columns where one
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of these rows has a 1 in C2. Let A2 be A1 restricted to C2 after ignoring the rows of R2

and let k2 be the largest integer such that t · Ik2 ≺ A2. Note that we can assume k2 > 3.

Claim 5. k2 6 1
2
k1.

Proof. Note that any row r that is part of this t ·Ik2 must appear above the bottom ` rows
(as restricted to C2 the bottom ` rows either have fewer than t 1’s or they are identically
1). Thus restricted to any C1

i , r is either identically 0, identically 1 or dense. We will say
that a row r is “mostly 1” restricted to C1

i if r is identically 1 or dense restricted to C1
i

(i.e. r has fewer than t 0’s restricted to these columns). Rearrange rows so that this t · Ik2

appears in the first k2 rows.
Note that because k2 > 3, no column can have two 1’s in the first k2 rows. As

|C1
i | > 3t− 2 > 2t− 1 for all i, any two rows that are mostly 1 restricted to any C1

i must
contain a column with 1’s in both of these rows. Hence restricted to any C1

i and the first
k2 rows, there can be at most one mostly 1 row.

If row 1 6 j 6 k2 is not mostly 1 when restricted to any C1
i , then we could use row j

to create a t · Ik1+1 ≺ A1 by swapping it with our original k1 + 1th row, contradicting the
definition of k1. If there is precisely one i such that j restricted to C1

i is mostly 1, then
swapping row j with the original ith row gives a t · Ik1 that would have given us a smaller
value for |C2| (as at least 3t− 2 1’s get added from C2 and at most t− 1 1’s are replaced
by 0’s of the mostly 1 row), which contradicts our choice of t · Ik1 ≺ A1. Hence every row
1 6 j 6 k2 must be mostly 1 restricted to at least two different C1

i , but as each C1
i can

only contribute at most one mostly 1 row we must have k2 6 1
2
k1.

Now inductively assume that we have obtained matrices A′1, . . . , A
′
p such that they

satisfy conditions (1), (2) and (3) of Theorem 4.3, at most (4t− 4 + c3,t)m columns were
deleted when obtaining each of these matrices, and that the remaining matrix Ap+1 has
no row with fewer than 3t−2 1’s, and such that if t · Ik ≺ Ap+1, then k 6 1

2
kp. If |Ap+1| =

ω(m logm), then we can repeat the arguments of the theorem with A1 replaced by Ap+1 to
obtain a suitable matrix A′p+1 and remaining matrix Ap+2. If |Ap+1| = O(m logm), then
we take A′ = {A′1, . . . , A′p}, and by assumption this ignores at most p(4t − 4 + c3,t)m +
O(m logm) columns of A. But by Lemma 4 we must have p 6 logm, so in total at most
O(m logm) columns of A are ignored. As |A| = ω(m logm) by assumption, A′ satisfies
condition (4) of Theorem 4.3, and it was already assumed to satisfy the other conditions
as well.

We will say that a matrix A is I × Ic-like if the following conditions are all met:

1. There exists a k such that restricted to the first k rows, every column of A is a
column of Ik.Furthermore, every column of Ik occurs as such.

2. For 1 6 i 6 k let Ci denote the set of columns of A that have a 1 in row i. Besides
the first k rows, no row restricted to Ci is sparse, and every column of Ci is identified
by some dense row.
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Note that for t = 2 a dense row contains exactly one 0, so dense rows are rows of Ic, so
an I × Ic-like matrix consists of columns of I × Ic.

Corollary 4.4. For F with Q3(t) ∈ F , let Ã be the largest I × Ic-like matrix such that

Ã ∈ Avoid(m,F). Then forb(m,F) = O(max
{
|Ã|,m

}
logm).

Proof. The statement holds if forb(m,F) = O(m logm), so let forb(m,F) = ω(m logm).
Then if A is a maximum sized matrix in Avoid(m,F) we can apply Theorem 4.3 to get a
set of disjoint submatices A′ =

{
A′j
}

with |A′j| 6 |Ã| for all j, as each A′j is a I × Ic-like

matrix in Avoid(m,F) and Ã was chosen to be the largest such matrix. Thus we have
|A| = O(

∑
|A′j|) or |A| = O(|Ã| logm).

We suspect that Corollary 4.4 can be strengthened to O(max
{
|Ã|,m

}
), but as stated

the Corollary can still be used to prove near optimal results. It is possible to get tighter
upper bounds for certain configurations by using some of the additional structure provided
by Theorem 4.3.

Theorem 4.5. If s 6 r then forb(m,Q3(t), Ir × Ics) = O(m2−1/s).

Proof. We first prove this for the case t = 2. Let A ∈ Avoid(m,Q3(2), Ir × Ics) with
|A| = ω(m logm) and let A′ be the corresponding set obtained from Theorem 4.3. We
focus our attention on bounding |A′1|. Note that restricted to C1

i , there must exist |C1
i |

rows that are distinct rows of Ic|C1
i |

(one to identify each column of C1
i ). Denote a set of

such rows by Ri. If there exists a set of integers {i1, . . . , ir} such that |Ri1 ∩· · ·∩Rir | > s,
then by taking these s rows, the rows i1, . . . , ir and the relevant columns we can find an
Ir×Ics in A′1 (since we have an Ics occurring simultaneously under r different Ik1 columns).
How large can |A′1| =

∑
|C1

i | be given this restriction?
We rephrase this problem in terms of graph theory. We form a bipartite graph G(C,R)

where vi ∈ C for 1 6 i 6 k1 corresponding to the C1
i columns, and r ∈ R corresponding

to each row below the first k1 rows. G will contain the edge vir iff r ∈ Ri. Our restriction
of no set {i1, . . . , ir} such that |Ri1 ∩ · · · ∩Rir | > s means that G does not contain a Kr,s,
the complete bipartite graph with vertex sets of size r and s, with the r vertices coming
from C and the s vertices coming from R. Using standard arguments from extremal graph
theory, this graph can have at most c|R||C|1−1/s + d|C| 6 cmk

1/s
1 + dk1 edges for some

constants c and d. Hence in total we have that∑
|A′i| 6

∑
(cmk

1−1/s
i + dki) 6 cmk

1−1/s
1

∑(
1

2

)i(1−1/s)
+ dk1

∑(
1

2

)i
= O(m2−1/s),

and thus this is an asymptotic upper bound for |A| = Θ(
∑
|A′i|).

We wish to generalize this argument for arbitrary t. The key idea is that for each
set Cj

i we must find a set of rows Rj
i with |Rj

i | = Θt(|Cj
i |) and such that Rj

i contains an
Ic|Rj

i |
. Once we have this, we can perform the same graph argument on these Rj

i rows as
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we did for the Ri rows above and get the same asymptotic results. The following lemma
accomplishes this goal by taking B = Cj

i after ignoring rows that are identically 0.

Lemma 4.6. Given an integer t, let B be a matrix consisting of rows with fewer than t
0’s such that every column of B has a 0 in some row. Then there exists a set of rows R
of B such that:

1. R contains an Ic|R|.

2. |R| > 22−t|B|.

Proof. The t = 2 case is obvious (for every column take a row that has a 0 in the column),
so inductively assume the statement holds up to t− 1. We wish to partition the columns
of B into two sets, B1 and B2. Remove the leftmost column c of B and add it to B1, and
remove all columns c′ of B where there exists a row r such that r has a 0 in both column
c and column c′ and add these columns to B2. Repeat this process until every column of
B is in one of these sets, and note that Bi > 1

2
|B| for some i. Note that as every column

of B was identified, every column of B1 and B2 is also identified.
If B1 > 1

2
|B|, then note that no row r has more than one 0 in B1 (if r had 0’s in

c, c′ ∈ B1 with c to the left of c′, then c′ should have been added to B2), so by the t = 2
case we can find a set R with |R| = |B1| > 1

2
|B| that contains an Ic|R|.

If |B2| > 1
2
|B|, then note that B2’s rows all have at most t−2 0’s (as every row with a

0 in some c′ originally had a 0 in the corresponding c column from B1), so by the inductive
hypothesis we can find a set R with |R| > 22−(t−1)|B2| > 22−t|B| that contains an Ic|R|.

We can use the graph idea from the proof of Theorem 4.5 to achieve lower bounds as
well.

Theorem 4.7. forb(m,Q3(t), Ir × Ics) = Ω(ex(m,Kr,s)).

Proof. We define a generalized product operation for matrices. Let A and B be simple
matrices with m1 and m2 rows respectively and G = G(CA, CB) a bipartite graph with
the vertex set CA corresponding to the set of columns of A and CB to the set of columns
of B. We define A×G B to be the simple matrix on m1 + m2 rows such that it contains
the column defined by placing the column a ∈ CA on the column b ∈ CB iff ab ∈ E(G).
Thus |A×G B| = |E(G)|.

Let G(V,W ) be a bipartite graph on m vertices such that G avoids Kr,s and such
that G has the maximum number of edges. Note that using the probabilistic method
it is easy to show that |E(G)| > 1

2
ex(m,Kr,s). We claim that A = I|V | ×G Ic|W | ∈

Avoid(m,Q3(t), Ir × Ics), and hence forb(m,Q3(t), Ir × Ics) > 1
2
ex(m,Kr,s). We certainly

have Q3(t) ⊀ A as A is a sub-matrix of Ia × Ica for a = max {|V |, |W |}, which avoids
Q3(t). Note that if Ir× Ics ≺ A Then we must have all of the Ir rows coming entirely from
either the I|V | rows of A or the Ic|W | rows and the Ics rows coming entirely from the other.
Indeed, no two rows of the I|V | block of A contains a column of two 1’s, but every row of
Ir in Ir × Ics together with a row of Ics contains a column of two 1’s, so the I|V | rows can
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contribute to at most one of these blocks. Further note that if s > 3 then the Ics must
come from the Ic|W | block (as it needs a column with two 1’s), and similarly if r > 3 then

Ir must come from the I|V | block (and hence again the Ics must come from the Ic|W | block).

Now consider B = I|V |×G I|W |. If Ir × Ics ≺ A then we certainly have Ir × Is ≺ B (if s
or r were at least 3 then the Ics must have been in Ic|W | and then complimented to become

an Is, and if s = r = 2 complimenting either block would still leave you with an I2 × I2).
But I|V |×G I|W | is the incidence matrix of G, a graph that avoids Kr,s, and hence it must
avoid Ir × Is, the incidence matrix of Kr,s. Thus we could not have had Ir × Ics ≺ A.

It is known that ex(m,Kr,s) = Θ(m2−1/s) for (s− 1)! 6 r, so for these values of s and
r our bounds from Theorems 4.5 and 4.7 are sharp. In particular, because F11 = I2×I2 =
I2 × Ic2, we have the following result which is a generalization of Theorem 1 of [5].

Corollary 4.8. forb(m,Q3(t), F11) = Θ(m3/2).

5 Avoiding 1k×`

In this section we study the identically 1 matrices 1k×`. We first note an immediate
consequence of Theorem 1.2.

Corollary 5.1. forb(m, 1k×`, F ) = Θ(1) for F = I3, F10, or 0k,`.

Proof. Note that 1k×` ≺ Tk+`, I
c
k+` and that I3, F10 ≺ I4 and 0k,` ≺ Ik+`. We thus have

an upper bound of BB(k + `) by Theorem 1.2.

We next consider a slight generalization of a result from [7].

Theorem 5.2. Let F be the incidence matrix of a (k − 1)-uniform hypergraph H. Then

forb(m, 1k×1, F ) =

(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

k − 2

)
+ ex(k−1)(m,H)

Proof. As a lower bound one can take all columns with fewer than k − 1 1’s, along with
the incidence matrix of a maximum (k−1)-uniform H avoiding hypergraph. For an upper
bound, note that one can have at most

(
m
0

)
+ · · ·+

(
m
k−2

)
columns with fewer than k − 1

1’s, and the columns with weight k − 1 define the incidence matrix of a (k − 1)-uniform
hypergraph that avoids H, and hence can be no larger than ex(k−1)(m,H).

Corollary 5.3.

forb(m, 1k×1, Is1 × · · · Isk−1
) =

(
m

0

)
+ · · ·+

(
m

k − 2

)
+ ex(m,K(k−1)(s1, . . . , sk−1)).

In particular, forb(m, 13,1, F11) = 1 + m + ex(m,K2,2) = Θ(m3/2), as it was noted in [5]..

We can get similar results when considering configurations of the form 1k×2.
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Theorem 5.4. Let F be the incidence matrix of a k-uniform complete r-partite hypergraph
H with r > k. Then

forb(m, 1k×2, F ) =

(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

k − 1

)
+ ex(k)(m,H)

Proof. For a lower bound, again take all columns with fewer than k 1’s along with the
incidence matrix of a maximum H avoiding k-uniform hypergraph. Let A be a maximum
matrix of Avoid(m, 1k×2, F ) and let A′ be a matrix obtained from A by taking every
column with more than k 1’s and removing 1’s until these columns have k 1’s. We claim
that A′ ∈ Avoid(m, 1k×2, F ). Clearly 1k×2 ⊀ A′ (if 1k×2 ⊀ A then removing 1’s from A
can’t induce this configuration) and A′ is simple (the columns with fewer than k 1’s were
already distinct, and if any columns with k 1’s were identical we would have a 1k×2), so
all that remains is to show that F ⊀ A′.

To see this, we claim that if F ′ is the matrix obtained by changing any 0 of F to
a 1 then F ′ contains a 1k×2. This claim is equivalent to saying that if one extends any
e ∈ E(H) to e′ = e ∪ {v} for some v ∈ V (H), v /∈ e, then there exists an f ∈ E(H) such
that |e′ ∩ f | = k. If e contains no vertices that are in the same partition class as v, then
if f is any k-subset of e′ that includes v then f ∈ E(H) and |e′ ∩ f | = k. If e contains a
vertex v′ that belongs to the same partition class as v, then f = e′ \ {v′} ∈ E(H) with
|e′ ∩ f | = k, and thus we’ve proven the claim. This means that A can not contain any
configuration that is obtained by taking 0’s of F and changing them to 1’s (since A avoids
1k×2), and hence the procedure of deleting 1’s from A can not induce an F if F ⊀ A, so
we have F ⊀ A′.

Thus for an upper bound of forb(m, 1k×2, F ), one only needs to consider matrices
where each column has at most k 1’s, and this clearly gives the above upper bound.

Corollary 5.5.

forb(m, 1k×2, Is1 × · · · Isk) =

(
m

0

)
+ · · ·+

(
m

k − 1

)
+ ex(m,K(k)(s1, . . . , sk)).

In particular, forb(m, 12×2, F11) = 1 + m + ex(m,K2,2) = Θ(m3/2).

The asymptotic bound forb(m, 12×2, F11) = Θ(m3/2) was already proven in [5], as
12×2 ≺ T2 × T2.

We note that in general forb(m, 1k+1×1, F ) 6= forb(m, 1k×2, F ) when F is the incidence
matrix of a k-uniform hypergraph. That is, the statement of Theorem 5.4 can not be
strengthened to include all hypergraphs as in Theorem 5.2. For example, Q9 is the
incidence matrix of two disjoint edges. It isn’t difficult to see that the extremal number
for this graph is m− 1, and hence forb(m, 13×1, Q9) = 2m. However, the following matrix
A satisfies |A| = 2m + 1 and A ∈ Avoid(1, 12×2, Q9):

A =


0 1 0 0 · · · 0 1 1 · · · 1 0
0 0 1 0 · · · 0 1 0 · · · 0 1
0 0 0 1 · · · 0 0 1 · · · 0 1
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0 0 · · · 1 1
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It should also be noted that the statement of Theorem 5.4 is not as strong as possible.
For example, the theorem statement and general proof also applies to the configuration F
stated below, despite it not being the incidence matrix of a complete r-partite 3-uniform
hypergraph. It would be interesting to know of a complete characterization of k-uniform
hypergraphs that satisfy Theorem 5.4.

F =


1 1 1
0 1 1
1 0 1
1 1 0

 .

Unfortunately for 1k×` with ` > 2, this “downgrading” technique no longer works.
Next we consider forb(m, 1k×1, F11) The following is a corollary of results in [5], as

14×1 ≺ T2 × T2.

Proposition 5.6. forb(m, 14×1, F11) = Θ(m3/2).

Proposition 5.6 is also a corollary of the following theorem that was first proven by
Füredi and Sali [16]

Theorem 5.7. r > s > k − 2 > 1 be fixed integers. Then forb(m, 1k×1, Ir × Is) =

O(mk−1− 1
s(

k−1
2 )). Furthermore, if r > (s− 1)! + 1 and s > 2k − 4, then forb(m, 1k×1, Ir ×

Is) = Θ(mk−1− 1
s(

k−1
2 ))

For the sake of completeness we give a new simple proof extending ideas of [15] We
need the following theorem of Alon and Shikhelman. Let ex(m,G,H) mean the largest
possible number of subgraphs isomorphic to G in an m-vertex graph that does not have
H as subgraph. Alon and Shikhelman prove

Theorem 5.8 (Alon and Shikhelman). Let r > s > k − 1 be fixed integers. Then

ex(m,Kk, Kr,s) = O(mk− 1
s(

k
2)), furthermore, if r > (s − 1)! + 1 and s > 2k − 2, then

ex(m,Kk, Kr,s) = Θ(mk− 1
s(

k
2)).

Simpler Proof of Theorem 5.7. Let A ∈ Avoid(m, 1k+1×1, Ir × Is). We can inductively

conclude that forb(m, 1k+1×1, Ir × Is)
<k = O(mk−1− 1

s(
k−1

2 )), base case being k = 3. let
A′ be obtained by deleting columns of sum less than k from A. Consider columns of A′

as characteristic vectors of a k-uniform hypergraph F . Let F ′1 be a largest size k-partite
subhypergraph of F , with partite classes V1, V2, . . . , Vk. It is well know that |F| 6 ck|F ′1|
for some constant ck. Let Hi be the (k−1)-partite graph induced by F ′1 after ignoring Vi.
Observe that no Hi contains Kr,s as a trace. Call a hyperedge F ∈ F ′1 1-thick if restricted
to each Hi, F is contained in at least r+ s−2 other hyperedges of F ′1, and call F 0-thick
otherwise. There are at most (r + s − 2)|E(Hi)| 0-thick edges. Recursively define F ′i to
consist of all F ∈ F ′i−1 that are i − 1 thick, and call F ∈ F ′i i-thick if restricted to each
Hi it is contained in at least r+ s− 1 hyperedges of F ′i . By the same reasoning as before,
|
{
F |F ∈ F ′i−1, F /∈ F ′i

}
| 6 (r + s − 2)|E(Hi)|, and thus the number of F ∈ F ′1 that are
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not k-thick is at most k(r + s− 2)|E(Hi)| = O(mk−1− 1
s(

k−1
2 )) by the inductive hypothesis.

On the other hand, the 2-shadow of F ′k can not contain an Kr,s.
Assume in contrary that this is the case and consider an edge {x1, x2} used in this Kr,s

and let F0 be a k-thick edge with {x1, x2} ∈ F0. If F0 contains no vertex in (V (Kr,s) \
{x1, x2}) ∩ V1, then define F1 = F0. Otherwise, by definition of F0 being a k-thick edge
there exists r + s − 1 hyperedges that are (k − 1)-thick and that differ with F0 only in
the vertex set V1. By the pigeonhole principle, one of these hyperedges, call it F1, does
not contain any vertex of (V (Kr,s) \ {x1, x2}) ∩ V1 and still has {x1, x2} ∈ F1. Continue
this way, defining Fi to be a (k− i)-thick hyperedge that contains {x1, x2} and no vertices
of (V (Kr,s) \ {x1, x2}) ∩

⋃
j6i Vj, and we can do this at each step by the way we defined

(k−i)-thickness. In the end we obtain a hyperedge Fk that contains {x1, x2} and no other
vertices of the Kr,s. We can repeat this process for each edge of the Kr,s, and thus these
hyperedges contain Ir × Is as a trace. Thus, we inferred that the 2-shadow does not have
Kr,s as a subgraph. Apply Theorem 5.8 to the graph determined by the 2-shadow of F ′k
and obtain that the number of Kk subgraphs is at most O(mk− 1

s(
k
2)), which clearly is an

upper bound for |F ′k|.
Summarising,

|A| = |A \ A′|+ |A′| 6 |A \ A′|+ 1

ck
(k(r + s− 1)|E(Hi)|+ |F ′k|) = O(mk− 1

s(
k
2)).

To prove the lower bound take a graph G that gives the lower bound in Alon-Shikhelman’
Theorem and let F consists of those k-subsets of the vertices that induce a complete
graph. Since G does not have Kr,s subgraph, F does not have Kr,s as trace, so if A is the
vertex-edge incidence matrix of F , then A ∈ Avoid(m, 1k+1×1, Ir × Is).

Note that the upper bound in Proposition 5.6 is obtained by putting r = s = k−1 = 2.
The lower bound in Theorem 5.7 does not give the lower bound of Proposition 5.6 directly,
however the vertex-edge incidence matrix of a maximal C4-free grah works.

Remark 5.9. Despite the largest product avoiding 14×1 and Ir× Is being a 1-fold product,
Theorem 5.7 shows that one can make forb(m, 14×1, Ir × Is) = Θ(m3−ε). Thus the best
we could hope for as an extension of Conjecture 1.1 for general forbidden families is
forb(m,F,G) = o(mp) if forb(m,F ) = Θ(mp) and there exists no p-fold product avoiding
both F and G. However, we do not dare to formulate this as a conjecture.

The following extension of Proposition 5.6 was proven in [16].

Proposition 5.10. Let k > 3 be a positive integer. Then forb(m, 1k×1, F11) = Θ(m3/2).

An alternate proof of this Proposition could be given using similar ideas as in the
simpler proof of Theorem 5.7.
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6 Avoiding F9

F9 =


1 0 0
0 1 0
0 0 1
0 0 1


Theorem 6.1. forb(m,Q3(t), F9) = Θ(m).

Proof. Note that Im gives the lower bound. For the upper bound, we first take a look at
what our preliminary data tells us. We have that F9 ≺ I3 × Ic2, so by Theorem 4.5 we
know that forb(m,Q3(t), F9) = O(m3/2). It also isn’t too hard to show (using methods
similar to what we’ll use below) that if Ã ∈ Avoid(m,Q3(t), F9) and Ã is I × Ic-like
then |Ã| = O(m), so we have forb(m,Q3(t), F9) = O(m logm) by Corollary 4.4, and this
suggests that forb(m,Q3(t), F9) = O(m). Unfortunately, this is as far as we can get using
the results of Theorem 4.3. However, by following the same basic argument of the proof
of the theorem, and by using the extra information that we must also avoid F9, we will
be able to show the O(m) result.

Let A ∈ Avoid(m,Q3(t), F9) such that |A| is maximal and assume |A| = ω(m). Let k
be the largest integer such that t · Ik ≺ A (we don’t consider the R1 rows as that technical
step will not be required for this proof). Rearrange rows so that this t · Ik appears in the
first k rows and let Ci denote the set of columns with a 1 in row i and C2 the columns with
no 1’s in the first k rows (and we can assume that k > 3, thus having no Q3(t) implies
that no column can have two 1’s in the first k rows, so all columns belong to precisely
one of these sets).

Claim 1. No row r restricted to
⋃

Ci is identically 0.

Proof. Assume there is an r such that r is identically 0 restricted to
⋃
Ci. Consider how

many 1’s r has in C2. If r has fewer than t 1’s, then by using the standard induction with
row r we see that |Cr| 6 t− 1 = O(1), so we could inductively conclude that |A| = O(m).
Otherwise there are at least t 1’s, in which case one could use this row to find a t · Ik+1 in
A, a contradiction.

Claim 2. If row r with r > k has a 0 restricted to
⋃

Ci then it has 0’s in precisely one Ci.

Proof. Assume r has a 0 in Ci and Ci′ . If there is a 1 in any column of Ci′′ , i
′′ 6= i, i′, then

by taking these columns and rows r, i, i′, and i′′ we get an F9. If every Ci′′ is identically
0 then by Claim 1 one of Ci, Ci′ must have a 1 in some column, say c ∈ Ci. But then
by taking c, the column with a 0 in Ci′ , and any column in any other Ci′′ along with the
relevant rows gives an F9.

Claim 3. |C2| = O(m).

Proof. Assume |C2| = ω(m), in which case there must exist a Q3(t; 0) in C2 and it must

lie below the top k rows. But as k > 3, for any two rows r1, r2 > k one can find a

[
1
1

]
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in some Ci (if r1 has 0’s in C1 and r2 has 0’s in C2 then neither can have 0’s in C3 by
Claim 2). Thus whatever rows the Q3(t; 0) lies in one can find a column to give a Q3(t),
a contradiction.

Claim 4. |
⋃

Ci| = O(m).

Proof. Let Ri denote Ci restricted to its rows that are not identically 1. Note that Ri is
a simple matrix, and let ri denote the number of rows it has. We can’t have |Ci| > c3,tri
(as then we could find a Q3(t; 0) in Ri and take any column of Ci′ , i′ 6= i to get a Q3(t)),
so we must have |

⋃
Ci| =

∑
|Ci| 6 c3,tri 6 c3,tm = O(m).

Thus |A| = |
⋃

Ci|+ |C2| = O(m).

Theorem 6.2. forb(m, 1k×`, F9) = Θ(m) provided we don’t have k = ` = 1.

Proof. Note that Im gives the lower bound. Let A be a maximum sized matrix in
Avoid(m, 1k×`, F9) and apply the standard induction on any row r to get the matrix of re-
peated columns Cr. If Cr 6 BB(k+`+1) then we inductively conclude that |A| = O(m).
Otherwise, we must have either a I3, I

c
k+`+1 or Tk+`+1 in Cr. As 1k,` ≺ Ick+`+1, Tk+`+1,

we must have I3 ≺ Cr and hence [01] × I3 ≺ A. But F9 ≺ [01] × I3, which contradicts
F9 ⊀ A.

It is possible to get a finer value for forb(m, 1k×`, F9), and even an exact value in a
few select cases when m is sufficiently large. The interesting result is that the constant
involved in the Θ(m) bound is not huge, as it would follow from the inductive argument
above, but it is simply equal to 1. For the proof we need the following series of Lemmas.

We say that a column in A is an n-column if its column sum is n. We define
Avoid(m,F )=n to be the set of matrices A that avoid F and whose columns are all
n-columns, and analogously we define forb(m,F )=n. We similarly define Avoid(m,F )>n

and forb(m,F )>n. For columns c, d we will let c ∩ d denote the set of rows that c and d
both have 1’s in, and we similarly define c ∪ d.

Lemma 6.3. For any fixed t > k, forb(m, 1k×`, F9)
=t 6 (BB(k + 2) + `)2t.

Proof. We first consider the ` = 2 case (the ` = 1 case is trivial). Assume the first column
c of a matrix A ∈ Avoid(m, 1k,2, F9)

=t has all its 1’s in the first t rows. For S ⊆ [t] with
|S| 6 k − 1, let CS denote the set of columns c′ of A such that c ∩ c′ = S, and note that
every column of A belongs to precisely one such set. But note that |[t] \ S| > 2, which
means that for every S there exists two rows such that c has a 1 in these rows and every
column of CS has 0’s. Hence, below the first t rows the columns of CS can not induce
an I2 (as in these rows c is 0, so these together with the 2 rows mentioned above give an
F9). But CS is a simple matrix so if |CS| > BB(k + 2) it must contain a Tk+2, which in
particular contains 1k×2. Thus |CS| 6 BB(k + 2) for all S, and as there are fewer than 2t

such sets (and they partition all of A), we must have |A| 6 BB(k + 2)2t.
For ` > 2 one can consider S ⊆ [t] with |S| > k, but for such S we must have |CS| < `

to avoid 1k×`, so we have the bound |A| 6 (BB(k + 2) + `)2t.
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Lemma 6.4. forb(m, 1k×`, F9)
>ck,` = c′k,` where ck,` = 2`−1(k + 1)− 1 and c′k,` = O(1).

Proof. We have ck,1 = k, so the statement is trivially true for ` = 1. Assume for the
purpose of induction that this result is true up to ` − 1 and consider a matrix A ∈
Avoid(m, 1k×`, F9)

>ck,` and any column d in A. Let R0 denote the rows where d has 0’s
and R1 the rows where d has 1’s. We claim that restricted to R0 there exists no Iz where
z = (` − 1)(c′k,`−1 + 1) + 1. Indeed, any two columns of such a Iz, say c1 and c2, induce

an I2 in R0, and using column d as well as c1 and c2 would give a

[
0 1 0
0 0 1

]
, thus if there

exists two rows in R1 where c1 and c2 are both 0 then one could find an F9. As d has
at least 2`−1(k + 1) − 1 1’s, we must have (restricted to R1) |c1 ∪ c2| > 2`−1(k + 1) − 2
(otherwise there will be at least two rows of R1 that aren’t covered by c1 and c2), and
hence one of these ci must have at least 2`−2(k + 1)− 1 = ck,`−1 1’s in R1. Thus all but at
most one of the Ic columns must have at least ck,`−1 1’s in R1. Let A′ be A restricted to
the R1 rows and the columns of the Ic that have at least ck,`−1 1’s in these rows. A′ need
not be simple, but each column can be repeated at most `−1 times before inducing a 1k,`,
so there are at least c′k,`−1 + 1 distinct columns in A′. But by the inductive hypothesis
this means that there exists either an F9 (in which case we’re done) or a 1k×`−1 in R1,
and using column d in addition to this would give a 1k,`. Thus there can exist no Ic in R0,
but similarly there can’t exist sufficiently large Ic’s or T ’s (as these automatically contain
1k,`), so restricted to R0 there can be at most BB(c) column types.

Any column type restricted to R0 with at least k 1’s can’t appear more than ` − 1
times (as this would give a 1k×`), and columns restricted to R0 with fewer than k 1’s must
have at least ck,` − (k − 1) = 2`−1(k + 1) − 1 − (k − 1) > 2`−2(k + 1) − 1 = ck,`−1 1’s
in R1 (since every column of A has at least ck,` 1’s), and thus can’t appear more than
c′k,`−1 times without inducing in R1 either an F9 or a 1k×`−1 (and hence a 1k×` by using
column d). Thus each of the constant number of column types appears at most a constant
number of times, so we have forb(m, 1k,`, F9)

>ck,` 6 BB(c)(`− 1 + c′k,`−1) = O(1).

Lemma 6.5. For any fixed t, if A ∈ Avoid(m, 1k×`, F9)
=t and if c is any column of A,

then there are at most O(1) columns c′ of A with |c ∩ c′| < t− 1.

Proof. The statement is trivially true for t > k (since there can only be at most O(1) such
columns by Lemma 6.3) and t = 1, so assume 1 < t 6 k. Rearrange rows so that the 1’s of
c appear in the first t rows of A, and for any S ⊆ [t] let CS denote the columns of A with
c∩ c′ = S. If S is a set with |S| < t− 1, then as argued in Lemma 6.3 the columns of CS
can’t contain an I2 (since there exists at least two of the first t rows with 1’s in c and 0’s
in all of CS) and it also can’t contain a Tk+`+1, so we must have |CS| 6 BB(k+`+1), and
since there are fewer than 2t such sets of A we have |A| 6 BB(k + ` + 1)2t = O(1).

Let A6=t denote the collection of columns of a matrix A that are not t-columns.

Lemma 6.6. There exists a constant p ∈ N such that if A ∈ Avoid(m, 1k×`, F9) with
|A| > 2pck,` + c′k,`, then there exists a unique t 6 k such that |A6=t| 6 (2p − 1)k + p.
Further, there exists t− 1 rows where every t-column of A has t− 1 1’s in these rows.
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Note that implicitly this statement requires that m be sufficiently large in order for
|A| > 2pck,` + c′k,`.

Proof. Let p be the smallest (constant) value such that it is larger than ck,` + 1, c′k,` and
all the O(1) constants obtained from Lemma 6.3 for k < t 6 ck,` and Lemma 6.5 for t 6 k.
Let t 6 k be the smallest t such that A contains at least 2p t-columns (and at least one
such t must exist by the previous lemmas and the assumption that |A| > 2pck,` + c′k,`).
We claim that this is the only such t. Indeed, by Lemma 6.5 at most p of these t-columns
don’t intersect in the same t − 1 rows, or in other words, at least p of these t-columns
must intersect in the same t − 1 rows, say the first t − 1. Their last 1’s must all be in
separate rows, and this induces an Ip below the first t−1 rows. We claim that A contains
no t′-column with t < t′ < p− 1. Indeed, such a t′ must contain at least two 1’s outside
of the first t − 1 rows (since t′ > t), and it does not have 1’s in at least two rows of the
Ip (since t′ < p − 1). Take two rows where t′ has 1’s below the first t − 1 rows and two
rows where t′ does not have 1’s in rows of the Ip, as well as the t′ column and the two

columns of the Ip that give an I2 from the rows chosen. The t′ column gives a


0
0
1
1

 (the

first two rows where it doesn’t intersect with Ip) and the other columns give a


1 0
0 1
0 0
0 0


(since all these rows are after the first t − 1, and hence every column of the Ip has only
one 1 in these columns), and this gives an F9, so there can be no such t′-columns (the
same argument shows that any t-column must have 1’s in the first t− 1 rows). As t was
chosen to be the smallest column type with at least 2p columns, in addition to the fact
that forb(m, 1k,2, F9)

>p 6 c′k,` 6 p, it is the only such column type with at least this many
columns, and thus A can contain at most (2p− 1)t + p 6 (2p− 1)k + p columns that are
not t-columns.

Corollary 6.7. For m sufficiently large, forb(m, 1k×1, F9) = m + fk, where fk is some
constant depending only on k.

Proof. Note that Im gives the lower bound. For any A ∈ Avoid(m, 1k,1, F9) with |A| >
2pck,`+c′k,` and m sufficiently large, Lemma 6.6 tells us that only one column type appears
more than 2p times, say the t-columns for some t 6 k. But |A=t| 6 m− t + 1 (only this
many t-columns can intersect in the same t− 1 rows, and every t-column in A does this)
and |A 6=t| 6 (2p− 1)k + p, and hence |A| 6 m− t+ 1 + (2p− 1)k + p 6 m+ (2p− 1)k + p,
where (2p− 1)k + p is a constant depending only on k.

Corollary 6.8. For ` > 2 and m sufficiently large,

forb(m, 1k×`, F9) = forb(m, 1k+1×1, F9) + `− 1 = m + fk+1 + `− 1.
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Proof. Let p be the constant defined in Lemma 6.6 and let A ∈ Avoid(m, 1k,`, F9) with
|A| > 2pck,` + c′k,`. We claim that A contains at most ` − 1 columns with at least k 1’s.
Indeed, consider the Ip in A and note that any column with at least k 1’s must have 1’s in
all but at most one of the rows that contains the Ip (as otherwise one can find an F9). As
p > k+`, there can exist at most `−1 such columns before the columns induce a 1k,`. Thus
we can reduce sufficiently large A ∈ Avoid(m, 1k,`, F9) to an A′ ∈ Avoid(m, 1k+1,1) after
removing at most `− 1 columns, so we have forb(m, 1k,`, F9) 6 forb(m, 1k+1,1, F9) + `− 1.

Take any A ∈ forb(m, 1k+1,1, F9) and let A′ be A after adjoining ` − 1 (m − 1)-
columns to A. A′ avoids F9 (since A avoided F9 and no (m − 1)-column can contain
an F9 since they don’t have two 0’s) and it avoids 1k,` (as there are only ` − 1 columns
of A′ with at least k 1’s). Hence A′ ∈ Avoid(m, 1k,`, F9) so we have forb(m, 1k,`, F9) >
forb(m, 1k+1,1, F9) + `− 1.

It is somewhat surprising that, despite the extra care needed to deal with ` > 1 in
our lemmas, the value of ` only contributes linearly to forb(m, 1k×`, F9). This will also
be the case for forb(m, 1k×`, Q9) in the next section, and this provides some evidence
that the upper bound for forb(m, 1k×`, Is1 × · · · Isk) should asymptotically be the same as
forb(m, 1k×2, Is1 × · · · Isk).

The exact value of fk seems to be difficult to compute in general, but for specific
(small) values of k it is possible to compute through somewhat laborious case analysis.
One can verify that f2 = 1, f3 = 2, and that f4 = 5. In particular, we have the following
results.

Corollary 6.9. For sufficiently large m:

forb(m, 13×1, F9) = m + 2

forb(m, 12×2, F9) = m + 3

forb(m, 14×1, F9) = m + 5.

7 Avoiding Q9

Q9 =


1 0
1 0
0 1
0 1


It turns out that the problem of avoiding Q9 and 1k×` has a very similar flavor to the
problem of avoiding F9 and 1k×`, and because of this we will once again be able to achieve
exact results. We maintain all of our notation and terminology from the previous section.

The bound forb(m,Q9) =
(
m
2

)
+ 2m− 1 was proven in [12], while in [4] the following

classification of Q9 avoiding matrices was established (following [2]). For each 2 6 t 6
m − 2 we can divide the rows into three disjoint sets At, Bt, Ct ⊆ {1, 2, . . . ,m} so that
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after permuting the rows the t-columns can either be given as

type 1:
At{
Bt{
Ct{

 I|At|
1|Bt|,|At|
0|Ct|,|At|

 or type 2:
At{
Bt{
Ct{

 Ic|At|
1|Bt|,|At|
0|Ct|,|At|

 .

We will say t is of type i (i = 1 or i = 2) if the t-columns are of type i.

Proposition 7.1. Let m > 2k, then forb(m,Q9, 1k×1) = 1 + (k − 1)m−
(
k−1
2

)
.

Proof. We note that if m > 2k, then it is clear that forb(m,Q9)
=t = m − (t − 1) for

1 < t 6 k. From this observation it follows that forb(m,Q9, 1k×1) is upper bounded by

1 + m +
k∑
t=2

(m− (t− 1)) = 1 + (k − 1)m−
(
k − 1

2

)
,

and this value can be achieved by having m − (t − 1) t-columns intersecting in the first
t− 1 rows, along with all columns of column sum 0 and 1.

Corollary 7.2. For m > 8,

forb(m,Q9, 14×1) = 3m− 2.

We can extend these results for ` > 1.

Proposition 7.3. forb(m,Q9, 1k×2) = forb(m,Q9, 1k+1×1) + 1.

Proof. For the lower bound, one can take the construction for forb(m,Q9, 1k+×,1) given
in Proposition 7.1 and add in the (m − 1)-column with a 0 in the first row. This new
column can’t be used to make a Q9 since it has too few 0’s, and it doesn’t intersect
any other column in k rows so it can’t be used to find a 1k×2. Thus this new matrix is
in Avoid(m,Q9, 1k×`). For the upper bound, note that if c, d are columns with at least
k + 1 1’s then either |c ∩ d| > k (in which case we have 1k×2) or there exists two rows
where c has 1’s and d does not and vice versa (in which case we have Q9), so a matrix in
Avoid(m,Q9, 1k×2) can have at most one column that has more than k 1’s.

Analyzing the ` > 2 case once again turns out to be significantly more difficult than
the ` 6 2 cases, but nonetheless we are able to achieve a neat upper bound for this
problem.

Lemma 7.4. forb(m,Q9, 1k×`)
=t 6 k + ` for k + ` > t > k.

Proof. The size of a type 1 matrix of column sum t can be at most `−1 without inducing a
1k×`, and the size of a type 2 matrix of the same column sum is bounded by t+1 6 k+`.

Lemma 7.5. forb(m,Q9, 1k×`)
>k+` = `− 1.
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Proof. Let c be a column of A ∈ Avoid(m,Q9, 1k×`)
>k+` with the fewest number of 1’s

(say t of them). We must have |c ∩ d| > t− 1 for any other d (as if d has two 0’s in rows
where c has 1’s, by virtue of c having the fewest number of 1’s d must have at least two
1’s where c has 0’s, giving a Q9), and hence for any other `−1 columns in A there exists k
rows such that c and all of these other columns have 1’s in these rows (since each can have
at most one 0 in the at least k+ ` rows where c has 1’s), so we must have |A| 6 `− 1.

Proposition 7.6. For k > 2, ` > 3 and m > (` + 1)(k + `) + k,

forb(m,Q9, 1k×`) 6 forb(m,Q9, 1k+1,1) + 3`− 5.

Proof. Let A ∈ Avoid(m,Q9, 1k×`) with |A| > 1 + km−
(
k
2

)
. Let p denote the number of

k-columns that A has. Because forb(m,Q9, 1k×`)
>k+1 6 `(k + `) + (` − 1), the only way

we can have |A| > 1 + km −
(
k
2

)
is if p > m − k − `(k + `) − (` − 1) by Proposition 7.1

and Lemmas 7.4 and 7.5. Now using that m > (`+ 1)(k + `) + k, this can only happen if
columns of sum k are of type 1. We assume that their common 1’s are in the first k − 1
rows, which induces an Ip in the rows below the first k − 1 rows.

No column with at least k + 1 1’s can have two 0’s in the first k − 1 rows (as any
k-column has two rows where it has 0’s and this large column does not, and this large
column necessarily has two rows where it has 1’s and the k-column does not, since it has
at least k + 1 1’s and two of them aren’t in the first k − 1 rows). If a column with at
least k + 1 1’s has one 0 in the first k − 1 rows and k > 2 then this column must cover
the entire Ip (otherwise we could find a column that isn’t covered by the large column,
take these two columns, the rows where the k-column has 1’s and the large column has
0’s and any rows that the large column has that other doesn’t to find a Q9), but because
Ip is large we can have at most ` − 1 columns that cover it before inducing a 1k×`. We
ignore these covering columns for now and restrict our attention to columns with at least
k+1 1’s and that are identically 1 in the first k−1 rows. Let c be such a column with the
fewest number of 1’s and assume it has 1’s in the first k+1 rows. As argued in the second
lemma, any other column must have |c ∩ d| > k and in particular (since all the columns
we’re considering are identically 1 in the first k − 1 rows) the only 0’s the other columns
can have are in the kth and k + 1st rows. There can be at most `− 1 columns with a 0 in
the kth row before inducing a 1k×`, but if there are precisely `− 1 such columns then A
can not contain the k-column with 1’s in rows 1 through k− 1 and row k + 1, decreasing
the maximum value p can take by 1, so “effectively” these columns can contribute at most
` − 2. Similar results hold for columns with a 0 in the k + 1st row, so in total we have
|A| 6 forb(m,Q9, 1k+1,1) + 2(`− 2) + `− 1 = forb(m,Q9, 1k+1,1) + 3`− 5

Note that the lower bound construction for forb(m,Q9, 1k+1,1) gives a lower bound for
forb(m,Q9, 1k×`) in case of ` > 1, as well. With some significant effort one can add a
linear number of columns in ` we omit the details.
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Configuration Fi Quadratic Const.(s) Cubic Const.(s) Proposition

F14


1 0
1 0
1 0
0 1
0 1
0 1


I × I
I × Ic

I × T
Ic × Ic

Ic × T

I × I × T
I × Ic × T
Ic × Ic × T

Prop. 8.3

F15


1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0


I × I
I × T
Ic × Ic

Ic × T
T × T

I × I × T
Ic × Ic × T

Prop. 8.4

Table 4: Minimal Simple Cubic Configurations with 6 Rows

8 Future Directions

A natural extension to this work would be to consider all simple minimal cubic configu-
rations, not just those with 4 rows. [3] does not explicitly list these configurations, but it
is possible to determine the complete list (provided a certain conjecture is true).

First, note that there exists no minimal cubic configuration with 7 or more rows.
Indeed, each column of a 7 rowed matrix contains 14,1 or 04,1, meaning the configuration
can’t be a minimal cubic.

Conjecture 8.1. There exists no 5-rowed minimal cubic configuration.

The following was essentially worked out in [9].

Proposition 8.2. The configurations F14 and F15 listed in Table 4 are minimal cubic
configurations. Moreover, they are the only simple 6-rowed minimal cubic configurations.

Proposition 8.3. F14 ⊀ I × I, I × Ic, I × T, Ic× Ic, Ic× T and F14 ⊀ I × I × T, I × Ic×
T, Ic × Ic × T . Moreover, these are the only 2 and 3-fold products that avoid F14.

Proof. Note that any selection of three rows of F14 contains 12,1 and 02,1, but neither I
nor Ic contains both of these configurations so any I or Ic in a product could contribute
at most 2 rows to find F14. Similarly, any four rows of F14 contains I2, and hence T can
contribute at most 3 rows in finding F14 for any product it is involved in. This shows that
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all 2-fold products except possibly T × T avoids F14, but it isn’t too difficult to see that
F14 ≺ T4 × T4 ≺ T × T .

Any 3-fold product involving only I’s and Ic’s will contain F14, as each of these can
contribute an I2 from two of their rows and three of these put together give F14. Thus
the only possible 3-fold product that could avoid F14 are products using precisely one T
and the rest I’s and Ic’s. And this does in fact avoid F14, as the most each I and Ic can
contribute is two rows that form an I2, but this still leaves at least one I2 to be covered
by the T , which it can not do.

Proposition 8.4. F15 ⊀ I×I, I×T, Ic×Ic, Ic×T, T ×T and F15 ⊀ I×I×T, Ic×Ic×T .
Moreover, these are the only 2 and 3-fold products that avoid F15.

Proof. As F15 consists of an I3 on top of an Ic3, it is clear that F15 ≺ I × Ic. Note that
Ic3 ⊀ I × I, I × T, T × T , and hence F15 will not be contained in any of these products.
Similarly I3 ⊀ Ic × Ic implies that F15 ⊀ Ic × Ic, Ic × T .

To see that F15 ⊀ I × I × T , note that any two rows of the Ic3 of F15 contains 12,1 (so
I can contribute to at most one row of Ic3) and I2 (so T can contribute to at most one
row of Ic3). Consequently, each of the I’s and the T must contribute to precisely one row
of the Ic3. But if an I contributes to the ith row of F15 (i > 4), then the only other row
it can contribute to is the (i − 3)rd row (as using any other row gives a 12,1). But if T
covers the ith row (i > 4), it can not also contribute to the (i − 3)rd row, as these two
rows contain an I2. Thus no matter which rows of the Ic3 the I and T blocks cover, it will
be impossible to cover all 6 rows of F15. It is not difficult to show that F15 ≺ I × T × T
by finding rows 1 and 4 in I, rows 3 and 5 in the first T and rows 2 and 6 in the second
T . Similarly F15 ≺ T × T × T by finding rows 1 and 5 in one T, 2 and 6 in another, and
3 and 4 in the last.

From these constructions we are able to show that forb(m,Q, F ) = Θ(m2) where Q
is a minimal quadratic configuration and F is either F14 or F15 with the exception of the
pairing Q = Q8 and F = F14 (as the only 2-fold product that avoids Q8 is T × T , which
is the only 2-fold product that contains F14). We would predict based on our previous
work that forb(m,Q8, F14) = o(m2), but we are unable to show this.

Question 1. What is forb(m,Q8, F14)?

The problem of pairing F14 and F15 with other cubics is also a difficult question.
Through the constructions we listed, it is possible to show that forb(m,F1, F2) = Ω(m2)
for F1 either F14 and F15 and F2 any other simple minimal cubic configuration, and that
forb(m,F14, F15) = Θ(m3), as well as forb(m,F1, F2) = Θ(m3) where F1 is F14 or F15 and
F2 is F12 or F c

12. Unfortunately, we are unable to prove any tighter bounds.

Question 2. What is forb(m,F1, F2) in general for F1 = F14 or F15 and F2 any simple
minimal cubic configuration?

One potential route for proving these results, at least for F14, would be to characterize
how matrices in A ∈ Avoid(m,F14)

=t must look like as was done for Q9 in [4]. However,
classifying t-columns of F14 seems to be a more difficult problem compared to Q9.

Question 3. Is there a nice characterization of matrices A ∈ Avoid(m,F14)
=t?
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[14] P. Erdős, A.H. Stone. On the Structure of Linear Graphs. Bull. A.M.S., 52:1089–1091
(1946).
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