Transversals and Independence in Linear
Hypergraphs with Maximum Degree Two

Michael A. Henning!*  Anders Yeo!?

IDepartment of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa

mahenning@uj.ac.za

2Department of Mathematics and Computer Science
University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark

andersyeo@gmail.com

Submitted: May 24, 2016; Accepted: Jun 22, 2017; Published: Jun 30, 2017
Mathematics Subject Classifications: 05C65

Abstract

For k > 2, let H be a k-uniform hypergraph on n vertices and m edges. Let S
be a set of vertices in a hypergraph H. The set S is a transversal if S intersects
every edge of H, while the set S is strongly independent if no two vertices in S
belong to a common edge. The transversal number, 7(H), of H is the minimum
cardinality of a transversal in H, and the strong independence number of H, a(H),
is the maximum cardinality of a strongly independent set in H. The hypergraph H
is linear if every two distinct edges of H intersect in at most one vertex. Let Hy be
the class of all connected, linear, k-uniform hypergraphs with maximum degree 2.
It is known [European J. Combin. 36 (2014), 231-236] that if H € Hy, then
(k+ 1)7(H) < n+ m, and there are only two hypergraphs that achieve equality in
the bound. In this paper, we prove a much more powerful result, and establish tight
upper bounds on 7(H) and tight lower bounds on «(H) that are achieved for infinite
families of hypergraphs. More precisely, if k£ > 3 is odd and H € Hj has n vertices
and m edges, then we prove that k(k?—3)7(H) < (k—2)(k+1)n+(k—1)?>m+k—1
and k(k%2 —3)a(H) > (k> +k—4)n— (k—1)>m — (k—1). Similar bounds are proven
in the case when k > 2 is even.
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1 Introduction

In this paper, we study transversals and independence in hypergraphs. Hypergraphs
are systems of sets which are conceived as natural extensions of graphs. A hypergraph
H = (V,E) is a finite set V = V(H) of elements, called vertices, together with a finite
multiset £ = F(H) of subsets of V, called hyperedges or simply edges. The order of H is
n(H) = |V| and the size of H is m(H) = |E|. The hypergraph H is said to be k-uniform
if every edge of H is of size k. Every (simple) graph is a 2-uniform hypergraph. Thus
graphs are special hypergraphs. The degree of a vertex v in H, denoted by dy(v), is the
number of edges of H which contain v. A vertex of degree r in H is called a degree-r
vertex. The rank of H is the maximum size of an edge in H. The hypergraph H is
r-regular if dg(v) = r for all v € V(H). The minimum and maximum degrees among the
vertices of H is denoted by §(H) and A(H), respectively. We use the standard notation

k] ={1,2,... k}.
Two vertices x and y of H are adjacent if there is an edge e of H such that {x,y} C
V(e). Two vertices z and y of H are connected if there is a sequence x = vy, v1, v ..., U =

y of vertices of H in which v;_; is adjacent to v; for i € [k]. A connected hypergraph is
a hypergraph in which every pair of vertices is connected. A maximal connected subhy-
pergraph of H is a component of H. Thus, no edge in H contains vertices from different
components.

For a subset X C V(H) of vertices in H, let H[X] denote the hypergraph induced
by the vertices in X, in the sense that V(H[X]) = X and F(H[X]) ={en X | e €
E(H) and |[en X| > 1}; that is, E(H[X]) is obtained from E(H) by shrinking edges
e € E(H) that intersect X to the edges e N X. For a subset X C V(H) of vertices in H,
we define H — X to be the hypergraph obtained from H by deleting the vertices in X
and all edges incident with X, and deleting all isolated vertices, if any, from the resulting
hypergraph.

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or
hitting set in many papers) if T" intersects every edge of H. Equivalently, a set of vertices
S is transversal in H if and only if V/(H) \ S is a weakly independent set in H. That
is, no edge lies completely within V(H) \ S. The transversal number 7(H) of H is the
minimum size of a transversal in H. Transversals in hypergraphs are well studied in the
literature (see, for example, [5, 6, 14, 18, 26, 30]).

A set S of vertices in a hypergraph H is strongly independent if no two vertices in S
belong to a common edge. The strong independence number of H, which we denote by
a(H), is the maximum cardinality of a strongly independent set in H. The independence
number is one of the most fundamental and well-studied graph and hypergraph parameters
(see, for example, [1, 2, 4, 9, 11, 10, 12, 13, 15, 16, 17, 21, 22, 23, 25, 27]).

A hypergraph H is called an intersecting hypergraph if every two distinct edges of H
have a non-empty intersection, while H is called a linear hypergraph if every two distinct
edges of H intersect in at most one vertex. Intersecting and linear hypergraphs are well
studied in the literature (see, for example, [8, 20]).

Two edges in a graph G are independent if they are not adjacent in G. A set of
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pairwise independent edges of GG is called a matching in G, while a matching of maximum
cardinality is a mazimum matching. The number of edges in a maximum matching of G is
the matching number of G which we denote by o/(G). Matchings in graphs are extensively
studied in the literature (see, for example, the classical book on matchings by Lovasz and
Plummer [24], and the excellent survey articles by Plummer [28] and Pulleyblank [29]).

Given a graph G, we define a hypergraph Hg as follows. Let the edges of G become
vertices in Hg and the vertices of G become hyperedges in Hg, containing all edges that
are incident with that vertex in the graph. Thus, V(Hg) = E(G) and E(Hg) contains
a hyperedge for every vertex v € V(G) which consists of all elements of V(Hs) that
correspond with edges incident with v in G. Therefore, n(Hg) = m(G) and m(Hg) =
n(G). We call Hg the dual hypergraph of G.

2 Known Matching Results

We shall need the following results by the authors [19] which establish a tight lower bound
on the matching number of a graph in terms of its maximum degree, order, and size.

Theorem 1. ([19]) If k > 2 is an even integer and G is a connected graph of order n,
size m and mazimum degree A(G) < k, then

n m 1

K+ D) TRl Rkt D)

o (@) >

unless the following holds.
n m 1

(a) G is k-reqular and n =k + 1, in which case o/(G) = "+ = R TR R
2

(b) G is k-reqular and n = k + 3, in which case o/ (G) = 251 = eyl ﬁ

3

Let k > 4 be even and let > 1 be arbitrary and let £ = r(k—1)+1. Let Xy, Xo,..., X,
be a number of vertex disjoint graphs such that each X; where i € [{] is either a single
vertex or it is a K1 where an arbitrary edge has been deleted. Let Y = {y1,42,..., ¥}
and build the graph Gy, as follows. Let Gy, be obtained from the disjoint union of
the graphs X1, X5, ..., X, by adding to it the vertices in Y and furthermore, for every
i € [r], adding an edge from y; to a vertex in each graph X¢_1)—1)+1, X(i—1)(k—1)+2,
X(i—1)(k=1)431 - - - » X(i—1)(k=1)+k D such a way that no vertex degree becomes more than k.
Let Gi, be the family of all such graph Gj,. When k£ = 4 and r = 2, an example of a
graph G in the family Gy, is illustrated in Figure 1, where G has order n = 21, size m = 35
and matching number o/ (G) = 8.

Proposition 2. ([19]) For k > 4 an even integer and r > 1 arbitrary, if G € Gy, has
order n and size m, then

n m 1

O =D Tl e
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Figure 1: A graph G in the family G,

Theorem 3. ([19]) If k > 3 is an odd integer and G is a connected graph of order n, size
m, and with mazimum degree A(G) < k, then

/() > < k—1 )n+ (kz—k—2>m k-1
~ \ k(K2 - 3) k(k? — 3) k(k?2 —3)

For k > 3 odd, let Hj 5 be the graph of (odd) order &k + 2 whose complement Hy o is
isomorphic to P; U (%)Pg. We note that every vertex in Hy,o has degree k, except for
exactly one vertex, which has degree k — 1. We call the vertex of degree k — 1 in Hjo
the link vertex of Hy,o.

For £ > 3 odd and r > 1 arbitrary, let T}, be a tree with maximum degree at most &
and with partite sets V; and Vi, where |V, = r. Let Hy, be obtained from T}, as follows:
For every vertex x in V5 with dr,, (v) < k, add k — dr, , (z) copies of the subgraph Hj
to Ty, and in each added copy of Hj. 9, join the link vertex of Hj o to z. We note that
every vertex in the resulting graph Hj, has degree k, except possibly for vertices in the
set V1 whose degrees belong to the set {1,2,...,k}. Let Fj, be the family of all such
graphs Hy .

When k = 3 and r = 4, an example of a graph G in the family Fj , is illustrated in
Figure 2, where G has order n = 29, size m = 40 and matching number o/(G) = 12.

(e A8 . o) Vi

I

Figure 2: A graph G in the family Fj4

Proposition 4. ([19]) For k > 3 an odd integer and r > 1 arbitrary, if G € Fy, has
order n and size m, then
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3 Three Families of Hypergraphs

In this section, we define three families of hypergraphs, Hy, H;, and H). For a hypergraph
H with maximum degree at most 2 we let Vi(H) and V,(H ) denote the set of vertices in
H of degree 1 and 2, respectively. Further, we let n;(H) = |V;(H)| for i € [2].

3.1 The Family H,

Definition 5. Let H; be the class of all connected, linear, k-uniform hypergraphs with
maximum degree 2.

For a hypergraph H € H; we define a graph G as follows. Let the vertices of Gy be
the edges of H and let the edges of G correspond to the ny(H) vertices of degree 2 in
H: if a vertex of H is contained in the edges e and f of H, then the corresponding edge
of the multigraph Gy joins vertices e and f of Gg. Thus, V(Gy) = E(H) and for every
v € Vo(H), contained in the two edges e and f, add an edge between e and f in Gy. By
the linearity of H, the multigraph Gy is indeed a graph, called the dual graph of H. Since
H is k-uniform and A(H) = 2, the maximum degree, A(Gy), in Gy is at most k. Since
H is connected, so too is Gy. By construction, n(Gg) = m(H) and m(Gy) = na(H).
We note that if H € Hy, is 2-regular, then the dual graph, G, of H is k-regular.

3.2 The Family H;,

In order to define the family #} , we first define a hypergraph, which we call L.

The Hypergraph L. For k > 2, let L, be the 2-regular, k-uniform hypergraph of
size k+1 and order k(k+1)/2 defined inductively as follows. We define Ly = K3 and we de-
fine L3 to be the hypergraph with V(L3) = {vy,vs,...,vs} and let E(L3) = {e1, ea, €3, €4},
where e; = {vy,v9,v3}, ea = {v1, 04,05}, €3 = {v2,v4, 06} and ey = {v3,v5,v6}. For k > 2,
suppose the hypergraph Lj has been constructed and that E(Lg) = {ej,es,...,ex1}-
Let Lyi2 be the hypergraph of order n(Ly) + 2k + 3 with V(Lxi2) = V(Lg) U {v} U
{uy, ug, ... ugs1} U{wy, wa, ..., wiyr} and with edge set E(Liio) = {f1, fo, -, fras}s
where f; = e; U {u;, w;} for i € [k + 1] and where frio = {v,uy,...,up41} and fri3 =
{v,wq,...,wks1}. The hypergraphs Lo, L, and Lg are illustrated in Figure 3(a), 3(b),
and 3(c), respectively.
We shall need the following result from [7].

Theorem 6. ([7]) For k > 2, the hypergraph Ly, is the unique k-uniform, 2-regular, linear,
intersecting hypergraph.

Definition 7. Let H) = H, \ {Lx}.

3.3 The Family H}/

For a hypergraph H € Hy, let ap(H) be the maximum cardinality of a strongly indepen-
dent set in H consisting only of degree-2 vertices in H. Every strongly independent set
in H corresponds to a matching in the dual graph Gx of H. Conversely, every matching
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(a) Lo (b) Lq (c) Lo

Figure 3: The hypergraphs Ly, Ly and Lg.

M in the dual graph Gy of H corresponds to a strongly independent set Vy; C Vo(H) in
H. This immediately implies the following observation.

Observation 8. If H € H;. and Gy is the dual graph of H, then o/(Gy) = aa(H).

The following result is well-known (see, for example, [7]). However, since it is central
to our discussions, we give a short proof for completeness.

Proposition 9. If H € H;, and Gy is the dual graph of H, then o/ (Gy) = |E(H)|—7(H).

Proof. Let H € Hy and let Gy be the dual graph of H. If M is a maximum matching,
then the corresponding set Vj; C V5(H) is a maximum strong independent set in Va(H)
by Observation 8. Therefore, Vi, covers 2|Vy,| distinct edges in H. Using an additional
|E(H)| — 2|V| vertices in H, one from each of the edges not covered by Vy, we can
extend the set Vs to a transversal in H. Therefore, 7(H) < Vi | + (|[E(H)| — 2|Vis]) =
|E(H)| — o/ (Gy), or, equivalently, o/ (Gy) < |E(H)| — 7(H).

Conversely, let 7' be a minimum transversal in H, and so, 7(H) = |T|. If a vertex
x € T covers only one hyperedge in H that is not covered by 7'\ {z}, then delete this
vertex from T and the edge it covers from H. We continue this process removing r
vertices from T, resulting in a set 7", and r associated edges from H, resulting in a
hypergraph H’, until every vertex in 7" covers two distinct edges in H’ that are not
covered by any other vertex of T”. Therefore, T" corresponds to a matching in G, and
(B(H)| = [E(H)| + 7 = 2| + 7 = 2/T'| + (|| — |T']) = [T'| + T|. Thus, o/(Gyr) >
T'| = |E(H)| —|T| = |E(H)| — 7(H). As observed earlier, o/(Gy) < |E(H)| — 7(H).
Consequently, o/ (Gy) = |E(H)| — 7(H). O

The Family M. Let M, be the class of all connected, linear, k-uniform, 2-regular
hypergraphs H with k£ 4+ 3 edges. We note that M, is a subclass of H;. The dual
graph, Gy, of a hypergraph H € M is a k-regular graph of order k + 3. We note
that the complement Gy of Gy is a 2-regular graph on k + 3 vertices. Thus, Gy can
be constructed from Kj 3 by removing the edges of a cycle factor of Kj 3. Using this
approach, we observe that the number of non-isomporphic hypergraphs in M, is equal
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to the number of non-isomorphic cycle factors in Ky 3. For example, | M| = 2 (the cycle
factors in K7 are either a Hamilton cycle or the union of a 3-cycle and a 4-cycle) and
|Mg| = 4 (consider cycle factors with cycle lengths (9), (6,3), (5,4) and (3,3,3)). We
state this formally as follows.

Observation 10. The following holds.
(a) If H € My, then the dual graph of H is a k-reqular graph of order k + 3.
(b) If G is a k-regular graph of order k + 3, then the dual hypergraph of G belongs to
My, and has order k(k + 3)/2.

Definition 11. Let Hj = H) \ My = H;, \ (M U {Ly}).

4 Main Results

In what follows, we adopt the following notation. If H € H;, we let H have order n and
size m, and so n = n(H) and m = m(H). Further, we let n; = n;(H) for ¢ € [2], and so
ny and ng denote the number of vertices of degree 1 and 2, respectively, in H. We note
that km = n; 4+ 2ny. We denote the number of components of a hypergraph H by ¢(H).

4.1 Transversal Number

Our first result establishes an upper bound on the transversal number of a connected,
linear, k-uniform hypergraph with maximum degree 2 for k > 2 even.

Theorem 12. For all even k = 2 the following holds.

(a) If H € Hy, then 7(H) < MHzundhil,

(b) If H € H,, then r(H) < knrl=limss,
<

k(k+1)
(c) If H € HY, then 7(H) < frtllmtl

le(k+1)

Proof. Let k > 2 be even and let H € Hy. Let G be the dual graph of H. If H = Ly,
then, by Theorem 6, we note that m = k 4+ 1 and Gy is a k-regular graph of order k + 1.
If H € My, then m = k + 3 and, by Observation 10, the graph Gy is a k-regular graph
of order k + 3. If H € H}, then Gy has maximum degree A(G) < k. Further, if Gy is
k-regular (and still H € H}), then n(Gy) ¢ {k+ 1,k + 3}. In all cases, we note that Gy
is a connected graph of order n(Gy) = m and size m(Gy) = ny. Let

1 ifHeH)
3 if H e M,
k+1 if H=Ly.

0

By Theorem 1 and our definition of 8, the following holds.

m . ny 0
k(k+1)  k+1 k(k+1)

O/(GH) >
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By Proposition 9, we note that the following therefore holds.

T(H) = m—d(Gg)

N

m—( m__ . M _ 0 >
kk+1)  k+1 k(k+1)

_ (- 1 ni+2n2\  no N 9
B k(k+1) k E+1 k(k+1)

Rk+1)—1 2k(k+1) — 1) — k2 0
(k?(k+1))"1+< R0k + 1) >n2+k(k+1)'

Simplifying and multiplying through with k?(k + 1) we obtain the following.

E2(k+1)7r(H) < (K>+k—1ng+ (K*+ 2k —2)ny + k6
= k?(n1+n2) + (k—1)(ng + 2ng) + kb
= E2n+ (k—1)(km) + k0.
This implies the desired result. [

We discuss next the hypergraphs H € H, for £ > 4 even that achieve the upper
bound for the transversal number in the statement of Theorem 12. If H = L;, then
m(H) = k+ 1 and n(H) = k(k + 1)/2, and the dual graph of H is the graph Kj.
Therefore, by Proposition 9,

T(H)=m(H) — o/ (K1) = (k+1) — g _ k;r2 _kn+ (kk[kli"ff“ L

and equality holds in the statement of Theorem 12(a). If H € My, then m(H) = k + 3
and n(H) = k(k 4+ 3)/2. By Observation 10, the dual graph, Gy, of H is a k-regular
graph of order k 4 3. Therefore, by Proposition 9,

k+2 k+4 knt(k—1m+3
2 2 k(k+1) ’

T(H) =m(H) - o/(Gy) = (k+3) —
and equality holds in the statement of Theorem 12(b). We show next that there is an
infinite family of hypergraphs H € H/ that satisfy

_kn+(E-1)m+1
TH) == a T

For k > 4 an even integer and r > 1, let G’ be an arbitrary graph in the family Gy ,.
We show that associated with the graph G, there exists a hypergraph H € #H], for which
equality holds in the statement of Theorem 12(c), constructed as follows. Let Hg be the
dual hypergraph of GG, and so the edges of G become vertices in Hg and the vertices of G
become hyperedges in H¢, containing all edges that are incident with that vertex in the
graph. We note that n(Hg) = m(G) and m(Hg) = n(G).
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Since A(G) = k, we note that the rank of Hg is k. We note further that the edges
of size 1 in Hg, if any, correspond to the pendant edges in G (that are incident with a
vertex of degree 1). The edges of size 2 in Hg, if any, correspond to vertices of degree 2
in G (that have both neighbors in Y'). All other edges in Hg have size k — 1 or k.

We now expand all edges of Hg of size less than k£ to edges of size k by adding
new vertices of degree 1 to each such edge. For example, if e, is an edge of size 1 in Hg
containing the vertex v, then we add k —1 new vertices and expand the edge e, to an edge
of size k that contains these new vertices and the vertex v. Let Hf denote the resulting
hypergraph, and let Hi?" be the family of all such hypergraphs H.. Y. For example, given
the graph G € G, shown in Figure 1 we obtain the associated hypergraph H e H5"
shown in Figure 4.

@ ) °
0 ol [9)
° of (oo ) ° o )
° o| [(e][e] Jo ° o @
) @) @) (o] (o )L.J J, o] o

Figure 4: The hypergraph H € H{%" associated with the graph G € G2 shown in
Figure 1.

Proposition 13. For k > 4 an even integer and r > 1 arbitrary, of H € H'?™ has order n
and size m, then
kn+ (k—1)m+1

k(k+1)

Proof. We consider the graph G € Gy, used to construct the hypergraph H € Hp'", and
so H = HE. Assume that when building the graph G, we have ¢; single vertices and £,
copies of Kj11's minus an edge in X7, Xs,..., X,. We note that 1+l =0 =r(k—1)+1
and n(G) =1+ ¢, + lo(k + 1). Further,

k 01+ 0y —1 k 201 + (K? — k4 2)ly — 2
/ = — = —— — =
Oz(G)—T-f-(Q)EQ E_1 +<2>€2 2(]{7—1) .

T(H) =

The order of HE is

k* 4+ k+2

Further, m(HE) = m(Hg) = n(G) = r + {1 + l3(k + 1), implying that the size of HE,

k k? 1
m(Hg) = <k—1>€1+<k )52%_1

18
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We remark that the graph G € Gy, used to construct the hypergraph Hf, € Hi " is
in fact the dual graph (see Section 3.1) of HE. Therefore, letting H = HE, n = n(HE)
and m = m(H},), and applying Proposition 9 to H and its dual graph G, we have

r(H) = m—d(G)
- () () i)
() Gt e i)

and
kn+(k—Lm+1 k k> +k+2
den = () (e (557)
. k—1 k 0+ k2 00— 1
k(k+1) k—1)" " \k=1)7 k-1
L1
k(k+1)
k+2
R
Equality therefore holds in the statement of Theorem 12(c). O

Next we consider the case when k > 3 is odd.
Theorem 14. For k > 3 an odd integer, if H € Hy, then

(k—2)(k+1)n+(k—1)2m+k—1‘

T(H) < Rk —3)

Proof. Let k > 3 be odd and let H € H;. Let Gy be the dual graph of H and note that
Gy has maximum degree A(G) < k. Further, we note that G is a connected graph of
order n(Gy) = m and size m(Gy) = ne. By Theorem 3, the following holds.

‘60> (gag)n+ (s ) - s

By Proposition 9, we note that the following therefore holds.
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T(H) = m—d(Gg)

_ 2 _ 1. _ _
m—((MZ_QQﬂ%+(wa4$>m-mﬁ_zﬂ

- n n 2 k- —
N (1‘k£1}@>< y222>‘<2@#€35>”?*k£2fa

(K =4k +1 2(k3 — 4k +1) — k(k* — k — 2) k-1
“(WW—&)“ < Rk =3) )”*um—w

N

Simplifying and multiplying through with k?(k* — 3) we obtain the following.

K2k = 3)r(H) < (K —4k+1)ny+ (K> +k* — 6k +2)ngy + k(k — 1)

(
= (kg —2k)(n1 +n2) — (2k — 1)(ng +2n2)+k2 ‘ng + k(k—1)
= (k®=2k)n— (2k — 1)(km) + k? -ng + k(k — 1)
= (k3 —2k)n — (2k — 1)(km) + k*(km — n) + k(k — 1)
= k(k—2)(k+1n+k(k—1)>m+k(k—1).
This implies the desired result. O

We discuss next the hypergraphs H € Hj for k£ > 3 odd that achieve the upper
bound for the transversal number in the statement of Theorem 14. For £ > 3 an even
integer and r > 1, let G' be an arbitrary graph in the family Fj,. Analogously as with
the case when k is even, we let Hg be the dual hypergraph of G, and we let HE be the
hypergraph obtained from Hg by expanding all edges of H¢ of size less than k to edges of
size k by adding new vertices of degree 1 to each such edge. Let HY denote the resulting
hypergraph, and let ’HOdd be the family of all such hypergraphs HY. For example, given
the graph G € F3, shown in Figure 5(a) we obtain the associated hypergraph H € HOdd
shown in Figure 5(b).

Proposition 15. For k > 3 an odd integer and r > 1 arbitrary, if H € ’Hgd,,d has order n
and size m, then
(k=2)k+1)n+(k—-12*m+k—1

k(k? —3) '

T(H) =
Proof. We consider the graph G € Fj,, used to construct the hypergraph H & Hzid, nd

so H = HE. Assume that ¢ copies of the graph Hy,» were added when constructing the
graph G. Thus, as observed in [19],

= (k—=1[Va| = [Vi|] + 1.
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Q N DA%

Oy ¥V,

(a) G c ‘Fg,g

Figure 5: The hypergraph H € Hg%d associated with the graph G € F3,.

Further, the order, size and matching number of G are as follows.

n(G) = (K+k-DV| - (k+DWV|+(k+2)
2m(G) = (BB 4+ k2 —k+1)|Vo| — (k* + 2k — 1)|Vi| + (K> + 2k — 1)
20/ (G) = (K2 +1)|Va| — (k+1)|Vi|+ (k+1).

For i € [k], let ny; be the number of vertices in V; that have degree i in G. Thus, if
[V1, V3] denotes the set of edges between V; and V5 in G, then

k k
d =il and Y i = |[Vi,Val| = k|Va| — £ = [Vi| + [Va| — 1.
=1 =1

Recall that H = HE, n = n(HE) and m = m(HE). The order of H is

k k
= m(G)+k (Z ’nu) - (ZZ : nl,z’)
i=1 i=1

= m(G) + (k=1)[W| = [Va] +1

B +k2—k—1 k241 k2
= (e (S (),

Further, H has size m = m(HE) = m(Hg) = n(G), and so

m=(k*+k—1)|Va| — (k+1)|Vi| + (k +2).
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We remark that the graph G € Fj,, used to construct the hypergraph HE € Hz?rd is

in fact the dual graph (see Section 3.1) of Hf. Therefore, applying Proposition 9 to H
and its dual graph G, we have

T(H) = m-—d(G)
= (B +k—D[Va| = (k+ DVi| + (k+2))

_% (k2 + D)|Va| — (k + D|Vi| + (k + 1)

k2 +2k—3 E+1 k+3
- (B (e

and

(k=2)(k+1)n+(k-12*m+k—1
k(k? — 3)

- (M) (== (5w (55))

¥ (%—D) ((F? + k= DIV| = (k+ 1)|Vi] + (k +2)

k(k2 = 3)
N k—1
(k2 — 3)
k? + 2k —3 k+1 k+3
L (BB () ke
Equality therefore holds in the statement of Theorem 14. m

4.2 Strong Independence Number

In this section we establish a lower bound on the strong independence number of a con-
nected, linear, k-uniform hypergraph H with maximum degree 2 for k£ > 2. For this
purpose, we first establish a lower bound on a maximum strong independent set consist-
ing only of degree-2 vertices in H.

Theorem 16. For all even k > 2 the following holds.
n1+(k2+2)n2—k(k+1)

Z

(a) If H € Hy, then as(H) > e
(b) If H € Hj,, then as(H) > %
(c¢) If H € HY, then ay(H) >

ni -‘r(k‘2+2)n2 —k
k2(k+1)

Proof. Let k > 2 be even and let H € Hy, and let Gy be the dual graph of H. We adopt
the notation in the proof of Theorem 12. Analogously as in the proof of Theorem 12,

m n ng 0
k(k+1) E+1 k(k+1)

Oé/(GH) 2
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By Observation 8, we note that the following therefore holds.

az(H) = o (Gpy)
S m n ny 0
T k(k+1)  k+1 k(k+1)

- <k(k1+ 1)> (m 2%2) s i k(ki 1)

Multiplying through with k?(k + 1) we obtain the following.

k2(k + Vag(H) = ny + (k* + 2)ng — k6.
This implies the desired result. [

We proceed further with the following simple lemma.?

Lemma 17. ([3]) If H is a k-uniform hypergraph of order n and size m with 6(H) > 1
and with ¢ components, then (k— 1)m + ¢ = n.

Proof. Replace each hyperedge e € E(H) by a star of k — 1 edges on the vertex set of e
to produce a graph G. If H has ¢ components, then so too does G. Since G has (k—1)m
edges, n vertices and ¢ components, we have that (k — 1)m + ¢ > n. O

As a special case of Lemma 17, we note that if H is a connected k-uniform hypergraph
of order n and size m, then (k —1)m+1 > n.

Theorem 18. For all even k > 2 the following holds.

(a) If H € Hy, then a(H) > (’f“)”—]g’(ﬂk—ii;n—(kﬂ)'
(b) If H € Hj, then a(H) > (k+2)n—(k—1)m—3
=

k(k+1)
(c) If H € Hj, then a(H)

(k+2)n—(k—1)m—1
%(k+1)

Proof. Let k > 2 be even and let H € HJ be arbitrary. Let Vi(H) denote the set of all
vertices of degree 1 in H, and let S be the set of all edges of H that contain at least
one vertex in Vi(H). Let R be the vertices in H which belong to two edges of S, and let
r=|R|. Let X =V (H)\ (Vi1(H)U R) and consider the hypergraph H[X] induced by the
vertices in X. Let S” be the set of edges in H[X] of size less than k. We note that each edge
in S” was obtained by shrinking an edge in S by removing from it vertices in V;(H) U R.
We note that H[X] contains at most r + 1 components; that is, c(H[X]) <7+ 1.

1'We have not been able to find the original source of this lemma, but as remarked in [3], “it definitely
seems to have been known already at least in the early 1960’s.” For completeness, we provide the short
proof given in [3].
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Let H' be obtained from H[X] by removing all edges in H[X] of size less than k.
Equivalently, H' is obtained from H be removing all edges in S and all resulting isolated
vertices. We note that H' has order

n(H") =n(H) —ni(H) —r

and may possibly be the empty hypergraph. For every i = {0} U [k — 1], let T} denote

the subset of edges of S which contain vertices from exactly 7 different components in H’
and let ¢; = |T;|. We note that for i € [k — 1]\ {1}, the removal of all edges in T; from
H[X] gives rise to at most (i — 1)¢; additional components. Thus,

k—1
c(H") < +Zz—1
=2

As observed earlier, ¢(H|[X]) < r + 1, implying that

k—1
Zz—l (H') —r—1.
=2

Every edge in T; contains at most k —1¢ vertices of degree 1 in H, and at least ¢ vertices
from different components of H’, in addition to possibly some vertices of R. Thus,

k—1
ni(H) < k|S|— <Zi-ti> —2r
] k—1
= kS|- <Zt> (Z z—l)ti> —2r + 1t
=2

< KIS| = |S| = (e(H') =1 — 1) — 2r + g
= (k—1)|S| - c(H) —r+1tg+ 1.

We now obtain a strong independent set in H by taking a maximum strong indepen-
dent set of degree-2 vertices in H' and adding to this set a vertex of degree one from each
edge in S. Therefore the following holds by Theorem 16, as no component belongs to
{Lr} UMy (recall that H € HJ).

ni(H') 4+ (k% + 2)no(H') — k - c(H’).

> >
a(H) > |S|+az(H') > |S|+ 2k + 1)

As ny(H') +no(H') =n(H') = n(H) — ny(H) — r, we note that
ng(H/) = ng(H) — nl(H') —T.

Furthermore,
ni(H') = k|S| —ni(H) — 2r,

as the |S| edges in S each have k vertices and every vertex with degree 1 in H' belongs
to an edge in S and does not have degree 1 in H and does not belong to R, and every
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vertex in R counts two in k|S| — n1(S) but does not belong to H'. The following now
holds by the above observations.

+ 1)[S| +n1(H') + (k* + 2)na(H') — k- c(H')
+ )|S| +n1(H') + (k* +2)(n2(H) — 7 —n1(H")) — k- c(H)
+ D[S +n1(H)(1 — (k2 +2)) + (k2 + 2)n2(H) — (K2 +2)r — k- c(H')
+ 1)|S| + (k|S| = ni(H) — 2r)(—=k* = 1) + (k* 4+ 2)no(H) — (K* + 2)r — k- ¢(H')
+ k2 — k3 —K)|S| +ni(H)(K* +1) + (k® +2)no(H) + k?r — k- c(H')
k(k—1)|S| — k- c(H') — kr + kto + k)

—kto +ni(H)(k*> + 1) + (K + 2)no(H) + (K + k)r — k
k-ni(H))— kto+ni(H)(k* + 1) + (k* + 2)na(H) + (K* + k)r — k
k2 +k+1)ni(H) + (K2 + 2)ng(H) + (k2 + k)r — kto — k
k% +2k)(n1(H) +na(H)) — (k — 1)(ny(H) + 2n2(H)) + (k* + k)r — ktg — k
K2+ 2k)n(H) — (k — 1)(k - m(H)) + (k% + k)r — ktg — k.

~ o~ o~ o~

Note that every edge in Ty must contain a vertex from R. In particular, if » = 0, then
to = 0. In this case, dividing though by k£ the above simplifies to the following.

k(k + V)a(H) > (k + 2)n(H) — (k — 1)m(H) — 1.

Suppose that » > 1. We note that every edge in 7j contains at most k — 1 vertices from
R, and so ty < (k — 1)r. Dividing though by k above we get the following.

k(k+1Da(H) = (k+2n(H)— (k—1)m(H)+ (k+1)r—tp—1
> (k+2n(H)—(k—1)mH)+ (k+1)r—(k—1)r—1
= (k+2nH)—(k—1)m(H)+2r—1
> (k+2)n(H)— (k—1)m(H) —1

This implies the theorem in the case when H € H.

Suppose next that H € H,. If H ¢ M, then as shown above we have k(k+1)a(H) >
(k+2)n(H) — (k — 1)m(H) — 1. Suppose, therefore, that H € Mj. We note that, by
Theorem 16,
ni(H) + (k% + 2)no(H) — 3k

az(H) > K2(k + 1)

As H is 2-regular, we have a(H) = as(H) and ni(H) = 0, and therefore n(H) =
no(H) = k(k+3)/2 and k- m(H) = 2ne(H) = k(k + 3). Therefore,

k2 + 2)no(H) — 3k
k2(k+1)

a(H) > (
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_ Kk + 2)na(H) — 2(k — 1)na(H) — 3k

k2(k+1)
_ Kk + 2n(H) — (k1) (k - m(H)) — 3k
k*(k+1)
_ (k+2)n(H)| — (k= )m(H) -3
k(k+1) ‘

This implies the theorem in the case when H € Hj.
Suppose finally that H € H;. From the above, it remains for us to consider the case
when H = Lj. In this case Theorem 16 implies that

ni(H) + (k% + 2)no(H) — k(k + 1)'

az(H) > 20k + 1)

As H is 2-regular, we have a(H) = as(H) and ni(H) = 0, and therefore n(H) =
ne(H) = k(k+1)/2 and k- m(H) = 2ne(H) = k(k + 1). Analogous to the discussion in

the previous argument,

(k+2)n(H)— (k—1)m(H) — (k+1)
>
a(H) > k(k+ 1) ’
This implies the theorem in the case when H € H. n

We discuss next the hypergraphs H € Hy for £ > 2 even that achieve the lower bound
for the strong independence number in the statement of Theorem 18. If H = L;, then,
by Observation 8 and Theorem 1(a), equality holds in the statement of Theorem 18(a).
If H € My, then, by Observation 10 and Theorem 1(b), equality holds in the statement
of Theorem 18(b).

We show next that there is an infinite family of hypergraphs H € H} for which equality
holds in the statement of Theorem 18(c). For k > 4 an even integer and r > 1, let G
be an arbitrary graph in the family Gy, and let Hf be the associated hypergraph in the
family H7*™. For each vertex v of degree 1 in HE, we add k — 1 new vertices and an edge
(of size k) containing v and these new vertices. Let RE denote the resulting hypergraph,
and let Ry, be the family of all such hypergraphs RE,.

Proposition 19. For k > 4 an even integer and r = 1 arbitrary, if H € RiY™ has ordern
and size m, then
(k+2n—(k—1)m—1

k(k+1)

Proof. Let G € Gy, be the graph and Hf € Hio" the associated hypergraph used to
construct the hypergraph H € Ry, and so H = Rg.

We show firstly that a(RE) = ni(HE) + o/(G). Let S be a maximum independent
set in H = R}, that contains the maximum number of vertices of degree 1 in H. For
each vertex v of degree 1 in Hf, let e, be the associated edge containing v that was

alH) =

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(2) (2017), #P2.50 17



added to Hf when constructing H. We note that every vertex in e, different from v
has degree 1 in H. Let v/ be an arbitrary vertex in e, different from v. If v € S or if
S contains no vertex from e,, then the set (S \ {v}) U {v'} is a maximum independent
set containing more vertices of degree 1 than does S, a contradiction. Hence, the set S
contains n; (HE) vertices of degree 1, one from each edge added to HE when constructing
H. The remaining vertices of S belong to V(Hg) and have degree 2 in HE, and so
a(H) < ni(HE) + ax(HE). Conversely, every maximum independent set of degree-2
vertices in Hf, can be extended to an independent set in H by adding to it n; (HE) vertices
of degree 1, one vertex from each edge added to HE when constructing H, implying that
a(H) = ni(HE) + ag(HE). Consequently, a( H) = ny(HE) + aa(HE). We note that G is
the dual graph of the hypergraph HY, € Hy, and so, by Observation 8, ax(HE) = o/(G).
Therefore, a(RE) = ni(HE) + o/ (G).

Let G be constructed from ¢, single vertices and ¢ copies of K1 —e. Further, let ¢ ;
and /; » be the number of single vertices of degree 1 and degree 2 in GG, and let /51 and {55
be the number of copies of K;,; — e joined to one or two vertices in Y, respectively. We
note that (¢114+012)+(lo1+0as) =i+l =0 =7r(k—1)+1and n(G) = r+0,+l(k+1).
Recall that n = n(H) and m = m(H). We note that

o= n(HE)+ (b — Ui (HE)
m = m(HE) +ni(HE)

ni(HE) = (k—1)la+ (k—2)lo+la1
r = lio+laa+1

Recall (see the proof of Proposition 13) that

n(HE) = kb + 3(k*+k+2)l
m(HE) = 5 (kt + k%, — 1)
O/(G) = r+ %kﬁg.

We note that .
s+ 2010+ a1+ lo2)

= L0+ 19+ 2092)
(l+r—1)
(rtk—=1)+1)+r—1)

I T S

Thus,

(k + 2)11]{;]{:(1@L I)l)m -1 (k(le;;LZl)) (n(Hg) + (k — 1)n1(Hg))

(i) (mtty + mty)
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1
k(k + 1)

:(%) (Ml + (W) by + (k- 1)n1(Hg))
() () v (755) - i)
k(k1+ 0

<k3+k2+4k+4> )

2k(k + 1)

(i)
—0 + <k2 * 4) lo+ (T) na(HE)

2k
k244
2k

=l +0l2)+ < > (a1 + l22)

+ <kk1> ((k — 1)5171 + (k - 2)£1,2 + 62,1)

K2 —k+1 k? — 2k + 2
=\—— b1+ | —— ) li2

k 2
N k2 + 2k +2 tor 1+ k2 +4 '
2]{,’ 2,1 Qk 2,1

=(k—1)l1 1+ (k—2)l12+ {2

1 1
—&-% (brg+2019 4 la1 +2029) + ik(&,l +la2)

=ni(HE) +r + %ké
=ny (HE) + (G)
=a(H). O
Next we consider the case when & > 3 is odd.
Theorem 20. For k > 3 odd, if H € Hy, then

(k—1)ny + (B3 = k* = 2)ny — k(k —1)
20k —3) :

Proof. Let k > 3 be odd and let H € Hj. Let Gy be the dual graph of H and note that
G has maximum degree A(G) < k. Further, we note that Gy is a connected graph of
order n(Gy) = m and size m(Gpy) = ng. By Theorem 3, the following holds.
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By Observation 8, and noting that km = n; + 2ns, the following therefore holds.
k—1 ny + 2n9 k> —k—2 k—1
= > S — -
et =60 > (=) (") + (= )~ wer

Multiplying through with k?(k? — 3), and simplifying, we obtain the following.

E2(k? — 3)ag(H) > (k— )y + (k% — k% — 2)ng — k(k — 1).
This implies the desired result. O
Theorem 21. For k > 3 odd, if H € Hy,, then

(K + k= 4n(H) — (k= 1*m(H) = (k= 1)

a(H) > k(k? — 3)

Proof. Let k > 3 be odd and let H € H;. We follow the same notation as introduced in
the proof of Theorem 18. Proceeding exactly as in the proof of Theorem 18, we have

n1(H) (k—=1)|S|—c(H)—r+ty+1
ni(H') k|S| —ni(H) —2r
no(H') = no(H)—ni(H') -

N

The following holds by Theorem 20.

(k—Dny(H') + (k3 — k? = 2)no(H') — k(k — 1)c(H’).

H) > H) >

Therefore,

k2(k? — 3)a(H) =k*(k* = 3)|S| + (k — D)ni(H') + (k* — k? — 2)ng(H') — k(k — 1)c(H")
=k*(K* = 3)|S| + (k = D1 (H') + (k* — k* = 2)(no(H) — ma(H') — 1)
—k(k — 1)c(H')
=E*(k* = 3)|S| + (—k> + k* + k + 1)n(H)
+ (k3 —k? —2)ng(H) — (K3 — k* — 2)r — k(k — 1)e(H")
=k2(k* = 3)|S| + (=k> + k* + k + 1)(k|S| — ny(H) — 2r)
+ (k% — k? = 2)ng(H) — (K3 — k* = 2)r — k(k — 1)c(H)
=(k* =3k — ' + B2+ K2+ k)[S| 4+ (K2 — k> — k — 1)ny(H)
+ (k3 — k? — 2)ny(H ) + (k3 — k? — 2k)r — k(k — 1)c(H")
=k(k —1)*|S| + (¥° —k—1)n(H)
+ (K3 — k* — 2)no(H ) (k3 — k? — 2k)r — k(k — 1)c(H)
=k(k = 1)((k = 1)|S| = c(H") —=r +to + 1)
—k(k—Dtg—k(k—1)+ (K3 —k* — k — 1)ny(H)
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+ (k3 — k? — 2)ny
>k(k — 1)ni(H) — k
+ (3 — k* — 2)no(H) + k(K> — 3)r
=(k3 — 2k — V)ny(H) + (k* — k? — 2)ny(H)
+ k(k* = 3)r —k(k — 1)tg — k(k — 1)
=k(K* +k — 4)(n1(H) + na(H)) — (k — 1)*(n1(H) + 2n2(H))
+ k(k? = 3)r — k(k — 1)ty — k(k —1)
=k(E* + k —4)n(H) — k(k — 1)*m(H) + k(k* = 3)r — k(k — )tg — k(k — 1).

H) + (k* — 3k)r
k— 1Dty —k(k—1)+ (k* = k* =k — 1)ny (H)

_ =

Dividing through by k, the above simplifies to
E(k* = 3)a(H) > (K* +k—4)n(H) — (k- 1)*m(H) + (K> = 3)r — (k— Dty — (k—1).
As observed in the proof of Theorem 18, if r = 0, then ¢, = 0, while if » > 1, then
to < (k— 1)r. If r = 0, then the above simplifies to the following.
k(k* = 3)a(H) > (K + k —4)n(H) — (k — 1)*>m(H) — (k — 1).
If » > 1, then the above simplifies to the following.
E(k* = 3)a(H) >(k* + k — 4)n(H) — (k — 1)*m(H)
+ k=3 — (k-1 —(k—1)
(B> +k — 4)n(H) — (k —1)*m(H) +2(k — 2)r — (k — 1)
>k(k®> +k—4)n(H) — (k—1)*m(H)+ k-3
>k(k®> + k —4)n(H) — (k—1)*m(H)
) k (H)

>Sk(k* 4k —4

This completes the proof of Theorem 21. O

We show next that there is an infinite family of hypergraphs H € H;, for which equality
holds in the statement of Theorem 21. For k > 3 an odd integer and r > 1, let G be
an arbitrary graph in the family Fj ., and let HE be the associated hypergraph in the
family H%f}nd. For each vertex v of degree 1 in Hf, we add k — 1 new vertices and an edge
(of size k) containing v and these new vertices. Let RY denote the resulting hypergraph,
and let Rz‘}d be the family of all such hypergraphs RE,.

Proposition 22. For k > 3 an odd integer and r > 1 arbitrary, if H € Rzid has order n
and size m, then

(k2 + k — 4)n(H) — (k — 1)?m(H) — (k — 1)
k(K2 — 3) '

Proof. Let G € Fy, be the graph and HE € Hzid the associated hypergraph used to

construct the hypergraph H € Rzid, and so H = RE,. Analogous to the proof of Propo-
sition 19, we have that

alH) =

o(H) =ni(HE) + o (G).
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For i € [k], let ny; be the number of vertices in V; that have degree i in G. As shown in

the proof of Proposition 13,

k k
an,i:‘Vﬂ and Zi'TLLi:’Vl’—f—’VQ’—l,
i=1 i=1

implying that
k k k
nl(Hg) = Z(kﬁ - ’L')TLLZ' = anLi - Zl ‘N1 = (k - 1)|V1| - |V2| + 1.
i=1 i=1 i=1
Recall that n = n(H) and m = m(H). We note that
n = n(HE)+ (k—1D)ni(HE)
m = m(HE) + ma(HE)

Recall (see the proof of Proposition 13) that

n(ik) = <k3+k22—k—1>%|_ <k:22+1)|vl|+ <k2+§k+1>
m(HE) = (K +k—1)Va| — (k+D|Va| + (k+2)
d(G) = %((k:2+1)|V2|—(k:+1)|V1|+(k+1))

Therefore,

(B2 +k—4)n—(k—1)2m— (k—1)
k(k2 —3)

_<’§j(;’<f_3)4> (n(HE) + (= 1y (1))

— (M) (m(Hé) + n1(H§))
k—1
(k2 —3)

(K +k—4 K3+ k?—k—1 V| k*+1 Vil + k2 +2k+1
“\ k(K2 - 3) 2 2 2 ! 2

Y
= D)) - () (02 4 k= DIl = -+ DA

k—1
k N —
(k +2) + i (HE) =3
(KD =2k —2k% — 3k +6 Vol kY — k3 — k2 +3k—6 "
B 2%k (k2 — 3) 2 2k (k2 — 3) !
k*—k*—3k+3 e K*+EP K2 —-3k—6
( k(k2 — 3) >”1(HG)+ 2% (k2 — 3)
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k2 +k—2 k? —k+2 k—1 ey KP4+ k+2
_<2k‘> "/2‘_ (2]{:) |V1’+ <k‘> nl(HG)+T

2k k
k? +k+2
2k
k2 +1 k+1 k+1
:n1(Hé) + < ) |Va| — (2) V1| + 5
=ni(HE) + o/ (G)
=a(H).
This completes the proof of Proposition 22. m

5 Summary

For small values of k > 3, the results in this paper are summarized in Table 1 and Table 2
below.

k even H has order n and size m.
H € Hy \ HeH, \ HeH]
k=4 | 20r(H) <4n+3m+5 | 207(H)<4n+3m+3 | 207(H) <4n+3m+1
20a(H) 26n—3m—5 | 20a(H) >6n—3m—3 | 20« >6n—3m—1
k=6 427(H

L20(H)=28n—>5m—7 | 422a(H)>8n—>5m—3 | 42a(H) >8n—5m —1
k=8| 72r(H)<8n+T™m+9 | 72r(H)<8n+Tm+3 | 727(H) <8+ Tm+1
720(H) > 10n — Tm — 9 | 72a(H) > 10n — Tm — 3 | 72a(H) > 10n — Tm — 1

Table 1. Results for small values of even k > 4

) < (H) < (H) <
) (H) (H)
)<6n+5m+7 | 427(H)<6n+5m+3 | 427(H) <6n+5m+1
) (H) (H)
) (H) (H)

’ k odd H H € Hj, has order n and size m.

k=3 9r(H) <2n+2m+1

9a(H) =2 4n —2m —1

k=5 557(H) < 9n+8m + 2
55a(H) > 13n — 8m — 2
k=7 161r(H) < 20n 1 18m + 3
161a(H) > 26n — 18m — 3

Table 2. Results for small values of odd k > 3
We have further shown that in each of the inequality statements involving the transver-

sal number or the independence number, there is an infinite family of hypergraphs H € Hy,
for which equality holds, implying that all the bounds are tight.
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