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Abstract

We study fringe subtrees of random m-ary search trees and of preferential attach-
ment trees, by putting them in the context of generalised Pólya urns. In particular
we show that for the random m-ary search trees with m 6 26 and for the linear
preferential attachment trees, the number of fringe subtrees that are isomorphic
to an arbitrary fixed tree T converges to a normal distribution; more generally,
we also prove multivariate normal distribution results for random vectors of such
numbers for different fringe subtrees. Furthermore, we show that the number of
protected nodes in random m-ary search trees for m 6 26 has asymptotically a
normal distribution.

Keywords: Random trees; Fringe trees; Normal limit laws; Pólya urns; m-ary
search trees; Preferential attachment trees; Protected nodes

1 Introduction

The main focus of this paper is to consider fringe subtrees of random m-ary search trees
and of general preferential attachment trees (including the random recursive tree); these
random trees are defined in Section 2. Recall that a fringe subtree is a subtree consisting
of some node and all its descendants, see Aldous [1] for a general theory, and note that
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fringe subtrees typically are “small” compared to the whole tree. (All subtrees considered
in the present paper are of this type, and we will use ‘subtree’ and ‘fringe subtree’ as
synonyms.)

We will use (generalised) Pólya urns to analyze vectors of the numbers of fringe sub-
trees of different types in random m-ary search trees and general (linear) preferential
attachment trees, and in the former class we will also analyze the number of protected
nodes (that is, nodes with distance to a nearest leaf at least two). As a result, we prove
multivariate normal asymptotic distributions for these random variables, for m-ary search
trees when m 6 26 and for preferential attachment trees with linear weights.

Pólya urns have earlier been used to study the total number of nodes in random m-ary
search trees, see [33, 24, 34]. In that case one only needs to consider an urn with m − 1
different types, describing the nodes holding i keys, where i ∈ {0, 1, . . . ,m− 2}. For this
case it is well-known that asymptotic normality does not hold for m-ary search trees with
m > 26, see [6]. Recently, in [22] more advanced Pólya urns (with

(
2m
m−1

)
types) were used

to describe protected nodes in random m-ary search trees. Only the cases m = 2, 3 were
treated in detail in [22], and the cases m = 4, 5, 6 were further treated in [20]. In [22] a
simpler urn (similar to the urn describing the total number of nodes) was also used to
describe the total number of leaves in random m-ary search trees.

In this work we further extend the approach used in [22] for analyzing arbitrary fringe
subtrees of a fixed size in random m-ary search trees as well as in preferential attachment
trees. For the random m-ary search trees we furthermore extend the methods used in [22]
and in [20] to analyze the number of protected nodes in m-ary search trees for m 6 26.

Remark 1.1. The Pólya urns yield asymptotic results for the numbers of fringe subtrees
in m-ary search trees for m > 27 too, using [24, Theorem 3.24] or [40], but the normal-
ization is different and the (subsequence) limits are presumably not normal. In fact, our
proofs show that for any m, the second largest (in real part) eigenvalue in any of our
Pólya urns is the same as the one in the simple Pólya urn mentioned above for counting
the total number of nodes, see Theorem 6.2. As is well-known (see e.g. Theorem 4.1 and
[24]), the asymptotic behaviour depends crucially on the second largest eigenvalue, so
we expect the same type of asymptotic behavior as for the number of nodes, which for
m > 27 is not normal [6], see also [4]. We will not consider this case further in the present
paper.

1.1 Composition of the paper

The m-ary search trees and general preferential attachment trees are defined in Section 2.
Our main results are presented in Section 3; the results in Section 3.1 and in Section 3.2
concern the case of random m-ary search trees and the results in Section 3.3 concern the
case of linear preferential attachment trees.

The results in the case of the random m-ary search trees are extensions of results that
previously have been shown for the special case of the random binary search tree with
the use of other methods, see e.g., [8, 9, 15, 21]. Furthermore, the results for the m-ary
search trees in Section 3.2 (where we consider applications to protected nodes in such
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trees) are extensions of the results that were proved for the random binary search trees
using other methods in [38, 21], and extensions of both the results and the methods that
were used for m = 2, 3 in [22] and for m = 4, 5, 6 in [20]. The results for the preferential
attachment trees in Section 3.3 are extensions of results that previously have been shown
(using different methods) for the random recursive trees, see e.g., [21] and [18].

In particular we show that for the random m-ary search trees with m 6 26 and for the
linear preferential attachment trees, the number of fringe subtrees that are isomorphic
to an arbitrary fixed tree T has an asymptotic normal distribution; more generally, we
also prove multivariate normal distribution results for random vectors of such numbers
for different trees.

In Section 4 we describe the theory of generalised Pólya urns developed in [24] that
we use in our proofs.

In Section 5 we describe the specific Pólya urns that we use for analyzing fringe
subtrees in random m-ary search trees, and in Section 6 we use them to prove the main
results for m-ary search trees in Section 3.1. Similarly, in Section 7 we describe the specific
Pólya urns that we use for analyzing fringe subtrees in preferential attachment trees, and
in Section 8 we use them to prove the main results for preferential attachment trees in
Section 3.3. In Section 9 we describe the specific Pólya urns that we use for analyzing
protected nodes in random m-ary search trees, and in Section 10 we use them to prove
the result on protected nodes in m-ary search trees in Section 3.2.

In Section 11 we present some examples with explicit calculations.
Finally, in Section 12 we use related but simpler Pólya urns to analyze the out-degrees

of the nodes in the random trees.

2 The random trees

2.1 m-ary search trees

We recall the definition of m-ary search trees, see e.g. [32] or [11]. An m-ary search tree,
for an integer m > 2, is constructed recursively from a sequence of n keys (real numbers);
we assume that the keys are distinct. Each node may contain up to m− 1 keys. We start
with a tree containing just an empty root. The first m− 1 keys are put in the root, and
are placed in increasing order from left to right; they divide the set of real numbers into
m intervals J1, . . . , Jm. When the root is full (after the first m−1 keys are added), it gets
m children that are initially empty, and each further key is passed to one of the children
depending on which interval it belongs to; a key in Ji is passed to the ith child. (The
binary search tree, i.e., the case m = 2, is the simplest case where keys are passed to the
left or right child depending on whether they are larger or smaller than the key in the
root.) The procedure repeats recursively in the subtrees until all keys are added to the
tree.

We are primarily interested in the random case when the keys form a uniformly random
permutation of {1, . . . , n}, and we let Tn denote the random m-ary search tree constructed
from such keys. Only the order of the keys matter, so alternatively, we may assume that
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the keys are n i.i.d. uniform random numbers in [0, 1]. Moreover, considering an infinite
sequence of i.i.d. keys, and defining Tn, for n = 1, 2, . . . as the tree constructed from the
n first keys, we obtain a Markov process (Tn)∞n=1.

Nodes that contain at least one key are called internal, while empty nodes are called
external. We regard the m-ary search tree as consisting only of the internal nodes; the
external nodes are places for potential additions, and are useful when discussing the tree
(e.g. below), but are not really part of the tree. (However, the positions of the external
nodes are significant. For example, when a node in a binary search tree has exactly one
internal child, we want to know whether that is a left or a right child.) Thus, a leaf is
an internal node that has no internal children, but it may have external children. (It will
have external children if it is full, but not otherwise.)

From now on, when considering an m-ary search tree, we will ignore the values of the
keys, but we will keep track of the number of keys in each node. Hence, a non-random
m-ary search tree is a (finite) ordered rooted tree where each node is marked with the
number of keys it contains, with this number being in {0, . . . ,m− 1}, and such that if we
include the external nodes, the nodes with m− 1 keys have exactly m children while the
remaining nodes have no children.

We say that a node (external or internal) with i 6 m− 2 keys has i+ 1 gaps, while a
full node has no gaps. It is easily seen that an m-ary search tree with n keys has n + 1
gaps; the gaps correspond to the intervals of real numbers between the keys (and ±∞).

If we condition on the isomorphism class of Tn (or even on the underlying permutation),
then a new key has the same probability 1/(n+ 1) of being inserted into any of the n+ 1
gaps. Thus the Tn+1 is obtained from Tn by choosing gap uniformly at random and
inserting a key there.

Remark 2.1. In applications where the order of the children of a node does not matter,
we can simplify things by ignoring the order and regard the m-ary search tree as an
unordered tree. (In this case, we can also ignore the external nodes completely.)

If we treat (Tn)∞n=1 as a sequence of unordered trees without external nodes, then
without external nodes Tn+1 is obtained from Tn by choosing a node with probability
proportional to k + 1− l, where k is the number of keys in the node and l is the number
of children of the node (of course l = 0, if k < m− 1), and giving this node a new key if
k < m− 1 and a new child if k = m− 1.

Remark 2.2. Each permutation of {1, . . . , n} defines an m-ary search tree; however,
different permutations may define the same m-ary search tree. It is possible to obtain a
bijection by giving each key in the m-ary search tree a time stamp, which is its number in
the sequence of keys used to construct the tree. (For binary trees we thus obtain so-called
increasing trees, see e.g. [11].) This gives a labelled version of m-ary search trees. In this
context two trees T and T ′ are isomorphic if there is an isomorphism with the additional
property that it maps the ith largest time stamp of T to the ith largest time stamp of T ′.
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2.2 General preferential attachment trees

Suppose that we are given a sequence of non-negative weights (wk)
∞
k=0, with w0 > 0. Grow

a random unordered tree Λn (with n nodes) recursively, starting with a single node and
adding nodes one by one. Each new node is added as a child of some randomly chosen
existing node; when a new node is added to Λn−1, the probability of choosing a node
v ∈ Λn−1 as the parent is proportional to wd+(v), where d+(v) is the out-degree of v in
Λn−1. (More formally, this is the conditional probability, given Λn−1 and the previous
history. The sequence (Λn)∞n=1 thus constitutes a Markov process.)

We will mainly consider the case of linear preferential attachment trees, i.e., when

wk = χk + ρ, (1)

for some real parameters χ and ρ, with ρ = w0 > 0; this includes the most studied cases
of preferential attachment trees. Note that we obtain the same random trees Tn if we
multiply all wk by some positive constant. Hence, only the quotient χ/ρ matters, and it
suffices to consider χ ∈ {1, 0,−1}. In the case χ = −1, so wk = ρ − k, wk is eventually
negative. This is not allowed; however, this is harmless if (and only if) ρ = m is an integer;
then wm = 0 so no node ever gets more than m children and thus the values wk for k > m
do not matter and can be replaced by 0. (We exclude the trivial case χ = −1, ρ = 1,
when w1 = 0 so no node ever gets more than one child and the tree Λn deterministically
is a path with n nodes.)

Example 2.3. The random recursive tree is constructed recursively by adding nodes one
by one, with each new node attached as a child of a uniformly randomly chosen existing
node, see [11, Section 1.3.1]. Hence, this is the case wk = 1 for all k, which is a special
case of a linear preferential attachment tree (1) with χ = 0 and ρ = 1. (Any ρ > 0 yields
the same tree when χ = 0.)

Example 2.4. The random plane oriented recursive tree, introduced by Szymański [41],
is constructed similarly to the random recursive tree, but we now consider the trees as
ordered; an existing node with k children thus has k + 1 positions in which a new node
can be added, and we give all possible positions of the new node the same probability.
The probability of choosing a node v as the parent is thus proportional to d+(v) + 1, so
the plane oriented recursive tree is the case of a linear preferential attachment tree with
wk = k + 1, i.e., χ = ρ = 1.

This model with wk = k + 1 is also the preferential attachment model by Barabási
and Albert [2], which has become popular and has been studied by many authors, as has
the generalization wk = k + ρ with arbitrary ρ > 0, i.e., (1) with χ = 1.

Example 2.5. The binary search tree is the special case with w0 = 2, w1 = 1 and wk = 0,
k > 2 (and, furthermore, each first child randomly assigned to be left or right); as said
above, we may regard this as the case χ = −1 and ρ = 2 of (1). However, m-ary search
trees with m > 3 are not preferential attachment trees.
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Remark 2.6. It is often natural to consider preferential attachment trees as unordered;
it is also possible to consider them as ordered, either by assigning random orders as in
Example 2.4 or by ordering the children of each node in the order that they are added to
the tree.

For further descriptions of preferential attachment trees, see e.g., [23, Section 6].

3 Main results

In this section we state the results on fringe subtrees and protected nodes in random
m-ary search trees as well as fringe trees in preferential attachment trees.

3.1 Fringe subtrees in random m-ary search trees

Remark 3.1. As said in the introduction, m-ary search trees can be regarded as either
ordered or unordered trees; it is further possible to consider the labelled version as in
Remark 2.2. (See also [21, Remark 1.2] for the special case of the binary search tree.) The
most natural interpretation is perhaps the one as ordered trees, and it immediately implies
the corresponding result for unordered trees in, for example, Theorem 3.2. However, in
some applications it is preferable to regard the fringe trees as unordered trees, since this
gives fewer types to consider in the Pólya urns that we use, see, e.g., Example 5.1 and
Section 9. The theorems in this section apply to all these interpretations, via the choice
of an appropriate notion of isomorphism.

The following theorem generalises [21, Theorem 1.22], where the special case of the
binary search tree was analyzed.

Let Hm :=
∑m

k=1 1/k be the mth harmonic number. Here and below we write T = T ′

whenever two trees T and T ′ are isomorphic.

Theorem 3.2. Assume that 2 6 m 6 26. Let T 1, . . . , T d be a fixed sequence of non-
isomorphic non-random m-ary search trees and let Yn =

(
XT 1

n , XT 2

n , . . . , XT d

n

)
, where

XT i

n is the (random) number of fringe subtrees that are isomorphic to T i in the random
m-ary search tree Tn with n keys. Let ki be the number of keys of T i for i ∈ {1, . . . , d}.
Let

µn := EYn =
(
E(XT 1

n ),E(XT 2

n ), . . . ,E(XT d

n )
)
.

Then
n−1/2(Yn − µn)

d−→ N (0,Σ), (2)

where Σ = (σij)
d
i,j=1 is some covariance matrix. Furthermore, in (2), the vector µn can

be replaced by the vector µ̂n := nµ̂ with

µ̂ :=
( P(Tk1 = T 1)

(Hm − 1)(k1 + 1)(k1 + 2)
, . . . ,

P(Tkd = T d)

(Hm − 1)(kd + 1)(kd + 2)

)
. (3)

Moreover, if the trees T 1, . . . , T d have at least one internal node each, then the covariance
matrix Σ is non-singular.
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Remark 3.3. The fact that µn can be replaced by the vector µ̂n means that

E
(
XT i

n

)
=

P(Tki = T i)

(Hm − 1)(ki + 1)(ki + 2)
n+ o

(
n1/2

)
. (4)

A weaker version of (4) with the error term o(n) follows, for anym > 2, from the branching
process analysis of fringe subtrees in [23], see the proof in Section 6. Moreover, the proof
also shows that (4) holds, for any m > 2, with the error term O

(
nmax(γm,0)

)
, where γm

is the second largest real part of a root of the polynomial φm in Theorem 6.2; if m 6 26
then γm < 1

2
(yielding (4)) but if m > 27 then γm > 1

2
, as shown by [35] and [14].

The vector µ̂n can also, using (30) below, be calculated from an eigenvector of the
intensity matrix of the Pólya urn defined in Section 5, see Theorem 4.1(i). See also [27].

Also the covariance matrix Σ = (σij)
d
i,j=1 can be calculated explicitly from the intensity

matrix of the Pólya urn, see Theorem 4.1(ii)–(iii). We give one example in Section 11.
The results in [27] also show

σij = lim
n→∞

1

n
Cov

(
XT i

n , X
T j

n

)
. (5)

More generally, it follows from the results in [28] that all moments converge in (2), see
Remark 6.3. Similarly, as a consequence of [28] and [27], moment convergence and, in
particular, asymptotics of variance and covariances as in (5) hold in all theorems in this
section.

Remark 3.4. The covariance matrix may be singular if some T i is the tree consisting of
a single external node. For example, if d = m− 1 and T i is the tree consisting of a single
node with i − 1 keys, and thus i gaps, then, by counting the number of gaps in the tree
Tn,

d∑
i=1

iXT i

n = n+ 1, (6)

so this sum is deterministic, and thus the covariance matrix is singular. (In particular, if
m = 2, then the number of external nodes is deterministic, namely n+ 1.) Moreover, (6)
shows that the number of external nodes XT 1

is an affine function of the numbers XT j
,

j > 2; thus it is always possible to reduce to the case when every tree T i has at least one
internal node and Σ is non-singular.

The following theorem is an important corollary of Theorem 3.2. It also follows from
Fill and Kapur [14, Theorem 5.1]. The special case of the random binary search tree was
proved by Devroye [8], and the covariances for Yn,k in that case were given by Dennert and
Grübel [7], see also [21, Theorem 1.19 and Proposition 1.10] and the references therein.

Theorem 3.5. Assume that 2 6 m 6 26. Let k > 0 be an arbitrary fixed integer and let
Yn,k be the (random) number of fringe subtrees with k keys in the random m-ary search
tree Tn with n keys. Then, as n→∞,

n−1/2
(
Yn,k − EYn,k

) d−→ N (0, σ2
k), (7)
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where σ2
k is some constant with σ2

k > 0 except when k = 0 and m = 2. We also have

n−1/2
(
Yn,k −

n

(Hm − 1)(k + 1)(k + 2)

)
d−→ N (0, σ2

k). (8)

Remark 3.6. The asymptotic mean n
(Hm−1)(k+1)(k+2)

in (8) easily follows from (4), see

the proof in Section 6. The constant σ2
k can again be calculated explicitly from our proof.

We give one example of Theorem 3.5 in Section 11.1, where we let m = 3 and k = 4.

3.2 Protected nodes in random m-ary search trees

There are many recent studies of so-called protected nodes in various classes of random
trees, see e.g. [3, 5, 10, 12, 38, 39, 21, 22, 23]. A node is protected (more precisely,
two-protected) if it is not a leaf and none of its children is a leaf.

The following result was proved by using Pólya urns in [22, Theorem 1.1] for m = 3
and in [20] for m = 4, 5 and 6.

Theorem 3.7. Let Zn be the number of protected nodes in the random m-ary search tree
Tn with n keys. Then, if m 6 26, we have

n−1/2
(
Zn − EZn

) d−→ N
(
0, σ2

)
, (9)

where σ2 is some positive constant. Furthermore, EZn can be replaced by µn with

µ :=
1

m(Hm − 1)

m−1∑
`=0

m!

(m− `)!
· (m(m− `))!

(m(m− `) + `+ 1)!
. (10)

Remark 3.8. The fact that EZn can be replaced by µn means that

E(Zn) = µn+ o
(
n1/2

)
. (11)

As in Remark 3.3, a weaker version with o(n) follows for any m > 2 from [23], see the
proof in Section 10. Moreover, our proof shows that (11) holds, for any m > 2, with the
error term O

(
nmax(γm,0)

)
, with γm as in Remark 3.3.

The constant σ2 can be calculated explicitly from our proof of Theorem 3.7. For
examples of Theorem 3.7 with explicit calculations of the asymptotic variance σ2, we
refer the reader to [22] for m = 3 and [20] for m = 4.

3.3 Fringe subtrees in preferential attachment trees

The following theorem was proved for the random recursive tree in [21, Theorem 1.22]
using Stein’s method, and (under a technical condition) by Gopaladesikan, Mahmoud
and Ward [18] using the contraction method (see also Feng and Mahmoud [13] for the
univariate case).

Here we give a generalisation to the linear preferential attachment trees. The result
applies to all three versions of the tree as mentioned in Remark 2.6 with the notion of
isomorphism chosen appropriately.
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Theorem 3.9. Let Λ1, . . . ,Λd be a fixed sequence of non-isomorphic unordered (or or-
dered) trees and let Zn = (XΛ1

n , XΛ2

n , . . . , XΛd

n ), where XΛi

n is the number of fringe subtrees
that are isomorphic to Λi in the linear preferential attachment tree Λn. Let ki be the num-
ber of nodes in Λi. Let

µn := EZn =
(
E(XΛ1

n ),E(XΛ2

n ), . . . ,E(XΛd

n )
)
.

Then
n−1/2(Zn − µn)

d−→ N (0,Σ), (12)

where the vector µn can be replaced by the vector µ̂n := nµ̂ with

µ̂ :=
( P(Λk1 = Λ1) · κ

(k1 + κ− 1)(k1 + κ)
, . . . ,

P(Λkd = Λd) · κ
(kd + κ− 1)(kd + κ)

)
, (13)

with
κ :=

ρ

χ+ ρ
=
w0

w1

, (14)

and Σ = (σij)
d
i,j=1 is some non-singular covariance matrix.

Note that for the random recursive tree κ = 1 and for the plane oriented recursive tree
κ = 1

2
.

Remark 3.10. The proof shows also that

E(XΛi

n ) =
P(Λki = Λi) · κ

(ki + κ− 1)(ki + κ)
n+O(1). (15)

A weaker version of (15) with the error term o(n) follows from the branching process
analysis of fringe subtrees, see [23, (5.29) and Example 6.4, in particular (6.24)].

The vector µ̂, and thus the coefficient of n in (15), can also be calculated from an
eigenvector of the intensity matrix in the proof; similarly, the covariance matrix Σ =
(σij)

d
i,j=1 can be calculated explicitly from our proof.

The following theorem is an important corollary of Theorem 3.9. The cases of the
random recursive tree (κ = 1) and binary search tree (κ = 2) were proved in [8, Theorems 4
and 5] and the case of the plane oriented recursive tree (κ = 1

2
) was proved in [17, Theorem

1.1].

Theorem 3.11. Let k be an arbitrary fixed integer. Let Yn,k be the number of subtrees
with k nodes in the linear preferential attachment tree Λn. Then, as n→∞,

n−1/2
(
Yn,k − EYn,k

) d−→ N (0, σ2
k), (16)

where σ2
k is some constant with σ2

k > 0. Furthermore, we also have

n−1/2
(
Yn,k −

κ

(k + κ− 1)(k + κ)
n
)

d−→ N (0, σ2
k), (17)

with κ as in (14).
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Remark 3.12. It follows from (15), see the proof, that

E
(
Yn,k

)
=

κ

(k + κ− 1)(k + κ)
n+O(1). (18)

The constant σ2
k can again be calculated explicitly from our proof.

We give one example in Section 11.3, where we let k = 3.

4 Generalised Pólya urns

A (generalised) Pólya urn process is defined as follows, see e.g. [24] or [34]. There are balls
of q types (or colours) 1, . . . , q, and for each n a random vector Xn = (Xn,1, . . . , Xn,q),
where Xn,i is the number of balls of type i in the urn at time n. The urn starts with a
given vector X0. For each type i, there is an activity (or weight) ai ∈ R>0, and a random
vector ξi = (ξi1, . . . , ξiq). The urn evolves according to a discrete time Markov process. At
each time n > 1, assuming there is a ball of positive activity (see assumption A7 below),
one ball is drawn at random from the urn, with the probability of any ball proportional
to its activity. Thus, the drawn ball has type i with probability

aiXn−1,i∑
j ajXn−1,j

. If the drawn

ball has type i, it is replaced together with ∆X
(i)
n,j balls of type j, j = 1, . . . , q, where

the random vector ∆X (i)
n = (∆X

(i)
n,1, . . . ,∆X

(i)
n,q) has the same distribution as ξi and is

independent of everything else that has happened so far. We allow ∆X
(i)
n,i = −1, which

means that the drawn ball is not replaced.
Usually, the random variables Xn,i and ξij are integer-valued, with Xn,i > 0, in ac-

cordance with the interpretation as numbers of balls; we assume this unless we explicitly
make an exception. However, see Remark 4.4 for an extension, which will be used in
Section 7.

The intensity matrix of the Pólya urn is the q × q matrix

A := (aj E ξji)qi,j=1. (19)

The intensity matrix A with its eigenvalues and eigenvectors is central for proving limit
theorems. As noted in [24], αI + A has all non-negative entries for a sufficiently large
α > 0 and thus by the standard Perron-Frobenius theory, see e.g., [30, Appendix 2], A
has a real eigenvalue λ1 such that all eigenvalues λ 6= λ1 satisfy Reλ < λ1.

The basic assumptions in [24] are the following. We say that a type i is dominating, if
every other type j can be found with positive probability at some time in an urn started
with a single ball of type i. The urn (and its matrix A) is irreducible if every type is
dominating.

(A1) ξij > 0 for j 6= i and ξii > −1. (I.e., the drawn ball may be removed, but no other
ball.)

(A2) E(ξ2
ij) <∞ for all i, j ∈ {1, . . . , q}.
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(A3) The largest real eigenvalue λ1 of A is positive.

(A4) The largest real eigenvalue λ1 is simple.

(A5) There exists a dominating type i with X0,i > 0, i.e., we start with at least one ball
of a dominating type.

(A6) λ1 is an eigenvalue of the submatrix of A given by the dominating types.

We will also use the following simplifying assumption.

(A7) At each time n > 1, there exists a ball of a dominating type.

Before stating the results that we use, we need some notation. By a vector v we
mean a column vector, and we write v′ for its transpose (a row vector). More generally,
we denote the transpose of a matrix A by A′. By an eigenvector of A we mean a right
eigenvector; a left eigenvector is the same as the transpose of an eigenvector of the matrix
A′. If u and v are vectors then u′v is a scalar while uv′ is a q × q matrix of rank 1. We
also use the notation u · v for u′v. Let a = (a1, . . . , aq) denote the (column) vector of
activities, and let u′1 and v1 denote left and right eigenvectors of A corresponding to the
eigenvalue λ1, i.e., vectors satisfying

u′1A = λ1u
′
1, Av1 = λ1v1.

We assume that v1 and u1 are normalised so that

a · v1 = a′v1 = v′1a = 1, u1 · v1 = u′1v1 = v′1u1 = 1, (20)

see [24, equations (2.2)–(2.3)]. We write v1 = (v11, . . . , v1q).
We define

Pλ1 = v1u
′
1,

and PI = Iq−Pλ1 , where Iq is the q× q identity matrix. (Thus Pλ1 is the one-dimensional
projection onto the eigenspace corresponding to λ1 such that Pλ1 commutes with the
matrix A, see [24, equation (2.5)]; note that Pλ1 typically is not orthogonal). We define
the matrices

Bi := E(ξiξ
′
i), (21)

B :=

q∑
i=1

v1iaiBi. (22)

In the case when Reλ < λ1/2 for every eigenvalue λ 6= λ1, we define

ΣI :=

∫ ∞
0

PIe
sABesA

′

P ′Ie
−λ1sds, (23)

where we recall that etA =
∑∞

j=0 t
jAj/j!. (It follows from [24], see also [27], that the

matrix-valued integral ΣI in (23) is absolutely convergent.)
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It is proved in [24] that, under assumptions (A1)–(A7), Xn is asymptotically normal
if Reλ 6 λ1/2 for each eigenvalue λ 6= λ1; more precisely, if Reλ < λ1/2 for each

such λ, then n−1/2(Xn − nµ)
d−→ N (0,Σ) for some µ = (µ1, . . . , µk) and Σ = (σi,j)

k
i,j=1.

(If Reλ = λ1/2 for some eigenvalue λ, then Xn is still asymptotically normal, however
with another normalisation.) The asymptotic covariance matrix Σ may be calculated in
different ways; we refer to [24, Theorem 3.22] for a general formula, but we will instead
use two simpler formulas that apply under (different) additional assumptions; see further
[24, Section 5].

Theorem 4.1 ([24, Theorem 3.22 and Lemmas 5.4 and 5.3(i)]). Assume (A1)–(A7) and
that we have normalised as in (20). Also assume that Reλ < λ1/2, for each eigenvalue
λ 6= λ1.

(i) Then, as n→∞,

n−1/2(Xn − nµ)
d−→ N (0,Σ), (24)

with µ = λ1v1 and some covariance matrix Σ.

(ii) Suppose further that, for some c > 0,

a · E(ξi) = c, i = 1, . . . , q. (25)

Then the covariance matrix Σ = cΣI , with ΣI as in (23).

(iii) Suppose that (25) holds and that the matrix A is diagonalisable, and let {u′i}
q
i=1 and

{vi}qi=1 are dual bases of left and right eigenvectors, respectively, i.e., u′iA = λiu
′
i,

Avi = λivi and ui · vj = δij. Then, the covariance matrix in (i) is given by, with the
matrix B as in (22),

Σ = c

q∑
j,k=2

u′jBuk

λ1 − λj − λk
vjv
′
k. (26)

Remark 4.2. It is easily seen that (25) implies that λ1 = c and u1 = a, see e.g. [24,
Lemma 5.4].

Remark 4.3. From (24) follows immediately a weak law of large numbers:

Xn/n
p−→ µ. (27)

In fact, the corresponding strong law Xn/n
a.s.−→ µ holds as well, see [24, Theorem 3.21]. It

follows that corresponding strong law of large numbers holds for all theorems in Section 3.
Furthermore, in all applications in the present paper, all ξij are bounded and thus each

Xn,i 6 Cn for some deterministic constant; hence (27) implies by dominated convergence
that also the means converge:

EXn/n→ µ. (28)
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(In fact, this holds in general, without assuming that ξij are bounded, since it is easy
to see that (A2) implies that Xn,i/n are uniformly integrable, which together with (27)
yields (28), see e.g. [19, Theorem 5.5.4].)

Moreover, in all applications in the present paper, a · ξi = c for some c and every
i (a stronger version of (25)), and then (28) can be improved, with an explicit rate of
convergence, see [27].

Remark 4.4. It has been noted several times that the Pólya urn process is also well-
defined for real-valued Xni and ξij, see e.g. [24, Remark 4.2], [26, Remark 1.11] and [40]
(cf. also [29] for the related case of branching processes); the “number of balls” Xni may
thus be any non-negative real number. (This can be interpreted as an urn containing a
certain amount (mass) of each type, rather than discrete balls.) In this version, Condition
(A1) is replaced by the more general:

(A1′) For each i, either

– there is a real number di > 0 such that X0,i and ξ1i, . . . , ξqi are multiples of di
and ξii > −di
or

– ξii > 0.

Moreover, ξij > 0 when i 6= j.

(Note that (A1), with all variables integer-valued, is the case di = 1 for every i.) Theo-
rem 4.1 holds with (A1) replaced by (A1′), see [24, Remark 4.2]. (The extra assumptions
used there are easy to verify when (A1′) holds together with (A2)–(A7).)

In the Pólya urns used in this paper, it is immediately verified that (A1), or at least
(A1′), holds, and also (A2). Furthermore, it is easily seen (from the definitions using trees)
that every type with positive activity is dominating. If we remove rows and columns corre-
sponding to the types with activity 0 from A, then the removed columns are identically 0,
so the set of non-zero eigenvalues of A is not changed. The remaining matrix is irreducible,
and using the Perron–Frobenius theorem, it is easy to verify all conditions (A3)–(A6), see
[24, Lemma 2.1]. Furthermore, in our urns there will always be a ball of positive activity,
so essential extinction is impossible and (A7) holds. Hence, Theorem 4.1 applies.

5 Pólya urns to count fringe subtrees in random m-ary search
trees

In this section we describe the Pólya urns that we will use in the analysis of fringe subtrees
to prove Theorem 3.2 and Theorem 3.5 for m-ary search trees. The definitions apply to
all interpretations of the trees (ordered/unordered, labeled/unlabeled), see Remark 3.1.

Let T 1, . . . , T d be a fixed sequence of (non-random) m-ary search trees and let Yn =
(XT 1

n , XT 2

n , . . . , XT d

n ), where XT i

n is the number of fringe subtrees in Tn that are isomorphic
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to T i. We may assume that at least one tree T i contains at least m− 2 keys. (Otherwise
we simply add one such tree to the sequence.)

We define a partial order on the set of (isomorphism classes of) non-random m-ary
search trees, such that T � T ′ if T ′ can be obtained from T by adding keys (including the
case T ′ = T ). Of course, the order depends on the definition of isomorphism (ordered,
unordered, labelled) one considers.

Assume that we have a given m-ary search tree Tn together with its external nodes.
Denote the fringe subtree of Tn rooted at a node v by Tn(v). We say that a node v is
living if Tn(v) � T i for some i ∈ {1, . . . , d}, i.e., if Tn(v) is isomorphic to some T i or can
be grown to become one of them by adding more keys. Note that this includes all external
nodes and all leaves with at most m − 2 keys (by the assumption above). Furthermore,
we let all descendants of a living node be living. All other nodes are dead.

Now erase all edges from dead nodes to their children. This yields a forest of small
trees, where each tree either consists of a single dead node or is living (meaning that
all nodes are living) and can be grown to become one of the T i. We regard these small
trees as the balls in our generalised Pólya urn. Hence, the types in this Pólya urn are
all (isomorphism types of) non-random m-ary search trees T such that T � T i for some
i ∈ {1, . . . , d}, plus one dead type. We denote the set of living types by

S :=
d⋃
i=1

{T : T � T i}, (29)

and the set of all types by S∗ := S ∪ {∗}, where ∗ is the dead type. (The set S is thus a
down-set for the partial order �. Conversely, any finite down-set occurs as S, provided it
contains all trees with a single node and thus 6 m−2 keys; we may simply let T 1, . . . , T d

be the trees in S.)
When a key is added to the tree Tn, it is added to a leaf with at most m− 2 keys or

to an external node, and thus to one of the living subtrees in the forest just described.
If the root of that subtree still is living after the addition, then that subtree becomes a
living subtree of a different type; if the root becomes dead, then the subtree is further
decomposed into one or several dead nodes and several (at least m) living subtrees. In
any case, the transformation does not depend on anything outside the subtree where the
key is added. The random evolution of the forest obtained by decomposing Tn is thus
described by a Pólya urn with the types S∗, where each type has activity equal to its
number of gaps, and certain transition rules that in general are random, since the way a
subtree is decomposed (or perhaps not decomposed) typically depends on where the new
key is added.

Note that dead balls have activity 0; hence we can ignore them and consider only the
living types (i.e., the types in S) and we will still have a Pólya urn. The number of dead
balls can be recovered from the numbers of balls of other types if it is desired, since the
total number of keys is non-random and each dead ball contains m− 1 keys.

Let Xn,T be the number of balls of type T in the Pólya urn, for T ∈ S. The trees T i

that we want to count correspond to different types in the Pólya urn, but they may also
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appear as subtrees of larger living trees. Hence, if n(T, T ′) denotes the number of fringe
subtrees in T that are isomorphic to T ′, then XTi

n is the linear combination

XT i

n =
∑
T∈S

n(T, T i)Xn,T . (30)

The strategy to prove Theorem 3.2 should now be obvious. We verify that the Pólya
urn satisfies the conditions of Theorem 4.1 (this is done in Section 6); then that theorem
yields asymptotic normality of the vectors (Xn,T )T∈S , and then asymptotic normality of

(XT 1

n , . . . , XT d

n ) follows from (30).

Example 5.1 (a Pólya urn to count fringe subtrees with k keys). As an important
example, let us consider the problem of finding the distribution of the number of fringe
subtrees with a given number of keys, as in Theorem 3.5. In this case, the order of children
in the tree does not matter so it is easier to regard the trees as unordered.

So, fix k > m− 2 and let T i, i ∈ {1, . . . , d}, be the sequence of all m-ary search trees
with at most k keys. This is a down-set, so (29) simply yields S = {T i : 1 6 i 6 d}. We
ignore the dead nodes and consider the urn with only the living types S.

In the decomposition of an m-ary search tree constructed above, a node v is living if
and only if the fringe subtree rooted at v has at most k keys. Hence the decomposition
consists of all maximal fringe subtrees with at most k keys, plus dead nodes.

The replacement rules in the Pólya urn are easy to describe. A type T with j keys has
j+ 1 gaps, and thus has activity j+ 1. Suppose we draw a ball of type T and T1, . . . , Tj+1

are the trees that can be obtained by adding a key to one of these gaps in T . (Some of Ti’s
may be equal.) If j < k, then each Ti has at most k keys and is itself a type in the urn,
so the drawn ball is replaced by one ball of a type chosen uniformly at random among
T1, . . . , Tj+1. On the other hand, if j = k, then each Ti has k + 1 keys and thus has a
dead root; the root contains m− 1 keys, so after removing it we are left with m subtrees
that together contain k + 1 − (m − 1) 6 k keys; hence these subtrees are all living and
the decomposition stops there. Consequently, when j = k, the drawn ball is replaced by
m balls of the types obtained by choosing one of T1, . . . , Tk+1 uniformly at random and
then removing its root.

To find the number of fringe subtrees with k keys, we sum the numbers Xn,T of balls
of type T in the urn, for all types T with exactly k keys. Note that similarly, using (30),
we may obtain the number of fringe subtrees with ` keys, for any ` 6 k, from the same
urn. This enables us to obtain joint convergence in Theorem 3.5 for several different k,
with asymptotic covariances that can be computed from this urn.

Note that for k = m− 2, the urn described here consists of m− 1 types, viz. a single
node with i − 1 keys for i = 1, . . . ,m − 1. This urn has earlier been used in [33, 24, 34]
to study the number of nodes, and the numbers of nodes with different numbers of keys,
in an m-ary search tree.

In Section 11.1 we give an example with m = 3 and k = 4; in that case there are 6
different (living) types in the Pólya urn.
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Remark 5.2. The types described by the Pólya urns above all have activities equal to
the total number of gaps in the type. Since the total number of gaps increases by 1 in
each step, we have a · ξi = 1 for every i, deterministically; in particular, (25) holds with
c = 1. Hence, λ1 = 1 and u = a by Remark 4.2.

Remark 5.3. In the Pólya urns above, a type that is a tree T with g gaps (g − 1 keys)
has activity g, and if a ball of that type is drawn, each gap is chosen with probability
1/g for the addition of a new key. Each gap in T thus gives a contribution with weight
g/g = 1 to the corresponding column in the intensity matrix A in (19).

6 Proofs of Theorem 3.2 and Theorem 3.5

As said in Section 4, it is easy to see (with the help of [24, Lemma 2.1], for example)
that the Pólya urns constructed in Section 5 satisfy (A1)–(A7). To apply Theorem 4.1 it
remains to show that Reλ < λ1/2 for each eigenvalue λ 6= λ1. We will find the eigenvalues
of A by using induction on the size of S, the set of (living) types. For definiteness we
consider the version with ordered unlabelled trees; the versions with unordered trees or
labelled trees are the same up to minor differences that are left to the reader.

Note that there is exactly one type that has activity j for every j ∈ {1, . . . ,m − 1}.
(These correspond to the nodes holding j − 1 keys.) These types are the m− 1 smallest
in the partial order �, and they always belong to the set S constructed in Section 5.

Let q := |S| be the number of types in S, and choose a numbering T1, . . . , Tq of these
q types that is compatible with the partial order �. For k 6 q, let

Sk := {T1, . . . , Tk} , (31)

and note that this is a down-set for �. For k > m − 1, we may thus consider the Pólya
urn with the k types in Sk constructed as in Section 5. Note that this corresponds to
decomposing Tn into a forest with all components in Sk ∪ {∗}. Furthermore, let X k

n :=
(Xk

n,1, . . . , X
k
n,k), where Xk

n,i is the number of balls of type Ti in the urn with types Sk at
time n and let Ak be the intensity matrix of this Pólya urn. Thus A = Aq.

First let us take a look at the diagonal values ξii.

Proposition 6.1. (i) Let m > 3 and m − 1 6 k 6 q. Then (Ak)ii = −ai for every type
i = 1, . . . , k. Hence the trace satisfies

tr(Ak) = −
k∑
i=1

ai. (32)

(ii) Let m = 2 and 1 6 k 6 q. Then (Ak)ii = −ai for every type i = 1, . . . , k, except
for the cases when Ti is the longest left path in Sk or the longest right path in Sk. If k > 3
these two exceptional cases are distinct, and (Ak)ii = −ai + 1 for them; if k = 1 or k = 2,
then the exceptional cases coincide and (Ak)ii = −ai + 2 for the single exceptional case.
Consequently, for any k > 1, the trace satisfies

tr(Ak) = 2−
k∑
i=1

ai. (33)
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Proof. Observe that if we draw a ball of type i with ki keys, then the ball is replaced
either by a single ball of a type with ki + 1 keys or by several different balls obtained
by decomposing a tree with ki + 1 keys that has a dead root. In the latter case, m − 1
of the keys are in the dead root, so each living tree in the decomposition has at most
ki + 1 − (m − 1) = ki − m + 2 keys. Hence, if m > 3, then in no case will there be
a ball with exactly ki keys among the added balls, and in particular no ball of type i;
consequently, ξii = −1 and (Ak)ii = −ai, see (19).

When m = 2, the same holds except if Ti is such that it is possible to add a new key
such that the root dies and the tree decomposes into the dead root, a copy of Ti and an
external node. This can happen only if the root has at most one child, and it follows
by induction that every node has at most one child, so T is a path, and, furthermore,
that Ti must be either a left path or a right path, with the new key added at the end;
furthermore, it must be the longest such path in Sk, since otherwise the root would not
die. If k > 3, then T3 is a path with two nodes, and it follows that the two exceptional
cases are distinct. If Ti is one of them, then Ti has aii gaps and only one of them will yield
a new copy of Ti if the new key is added there. Hence, E ξii = −(aii − 1)/aii, and (19)
yields (Ak)ii = −(aii − 1). The cases k = 1 or 2 are similar, but they are so simple that
they are simplest treated separately; the matrices Ak are

(
1
)

and
( −1 2

1 0

)
, with a1 = 1 and

a2 = 2.

Theorem 6.2. Let m > 2. The eigenvalues of A are the m − 1 roots of the polynomial
φm(λ) :=

∏m−1
i=1 (λ+ i)−m! plus the multiset

{−ai : i = m,m+ 1, . . . , q} . (34)

Proof. We prove by induction on k that the theorem holds for Ak (with q replaced by k
in (34)), for any k with m− 1 6 k 6 q. The theorem is the case k = q.

First, for the initial case k = m − 1, Ti is a single node with i − 1 keys, i = 1, . . . , k;
thus Xm−1

n,i is the number of nodes with i − 1 keys, i.e., the number of nodes with i

gaps. (In particular, Xm−1
n,1 is the number of external nodes.) This Pólya urn with m− 1

types has earlier been analyzed, see e.g., [24, Example 7.8] and [34, Section 8.1.3]. The
(m−1)× (m−1) matrix Am−1 has elements ai,i = −i for i ∈ {1, . . . ,m−1}, ai,i−1 = i−1
for i ∈ {2, . . . ,m}, a1,m−1 = m · (m− 1) and all other elements ai,j = 0, i.e.,

Am−1 =



−1 0 0 . . . 0 m(m− 1)
1 −2 0 . . . 0 0
0 2 −3 . . . 0 0
0 0 3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . m− 2 −(m− 1)


. (35)

As is well-known, the matrix Am−1 has characteristic polynomial φm(λ); this shows the
theorem for k = m− 1, since the set (34) is empty in this case.

We proceed to the induction step. Let m − 1 6 k < q. By using arguments similar
to those that were used in the proof of [22, Lemma 5.1] we will show that Ak+1 inherits
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(with multiplicities) the eigenvalues of Ak. We write ak = (a1, . . . , ak) for the activity
vector of the Pólya urn with types in Sk.

We have Sk+1 = Sk∪{Tk+1}. The vector X k+1
n determines also the number of subtrees

of each type in the decomposition of Tn into the types in Sk, and there is an obvious
linear map T : Rk+1 → Rk such that X k

n = TX k+1
n . Furthermore, starting the urns with

an arbitrary (deterministic) non-zero vector X k+1
0 ∈ Zk+1

>0 and X k
0 = TX k+1

0 , the urn
dynamics yield

E(X k+1
1 −X k+1

0 ) =
Ak+1X k+1

0

ak+1 · X k+1
0

, (36)

E(X k
1 −X k

0 ) =
AkX k

0

ak · X k
0

. (37)

Consequently, since also ak+1 · X k+1
0 = ak · X k

0 (this is the total activity, i.e., the total
number of gaps),

TAk+1X k+1
0 = (ak+1 · X k+1

0 )T E(X k+1
1 −X k+1

0 ) = (ak · X k
0 )E(X k

1 −X k
0 ) = AkX k

0

= AkTX k+1
0 ,

and thus, since X k+1
0 is arbitrary,

TAk+1 = AkT. (38)

Let u′ be a left generalised eigenvector of rank m corresponding to the eigenvalue λ of
the matrix Ak, i.e.,

u′(Ak − λIk)m = 0.

Then, by (38),
u′T (Ak+1 − λIk+1)m = u′(Ak − λIk)mT = 0,

and thus u′T = (T ′u)′ is a left generalised eigenvector of Ak+1 for the eigenvalue λ. Since
T is onto (it maps (x1, . . . , xk, 0) to (x1, . . . , xk)), T

′ is injective and thus T ′ is an injective
map of the generalised eigenspace (for λ) of Ak into the generalised eigenspace of Ak+1.
This shows that λ is an eigenvalue of Ak+1 with algebraic multiplicity at least as large as
for Ak. Consequently, if Ak has eigenvalues λ1, . . . , λk (including repetitions, if any), then
Ak+1 has eigenvalues λ1, . . . , λk, λk+1 for some complex number λk+1.

Then the result follows by the following observation. The trace of a matrix is equal
to the sum of the eigenvalues; hence,

trAk+1 = λ1 + · · ·+ λk+1 = trAk + λk+1 (39)

and thus by (32) (when m > 2) or (33) (when m = 2),

λk+1 = tr(Ak+1)− tr(Ak) = −ak+1. (40)

Thus, by induction, Theorem 6.2 holds for every Ak, with m−1 6 k 6 q, and in particular
for A = Aq.
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Theorem 6.2 shows that the eigenvalues of A are the roots of φm plus some negative
numbers −ai; hence the condition Reλ < λ1/2 in Theorem 4.1 is satisfied for all eigenval-
ues of A except λ1 if the condition is satisfied for the roots of φm except λ1. Furthermore,
λ1 = 1 by Remark 5.2. Let

γm := max
φm(λ)=0:λ 6=λ1

Reλ, (41)

i.e., the largest real part of a root of φm except λ1. (If m = 2, when there is no other
root, we interpret this as γ2 = −∞.) Thus our condition in Theorem 4.1 is satisfied if
and only if γm < 1

2
; it is well-known that this holds if m 6 26, but not for larger m, see

[35] and [14].
In the remainder of this section we assume m 6 26. Thus

Reλ 6 max(γm, 0) <
1

2
=
λ1

2
(42)

for every eigenvalue λ 6= λ1, and Theorem 4.1 applies to the urn defined above.

Proof of Theorem 3.2. By Theorem 4.1(i), (24) holds, with µ = λ1v1 = v1.
By (30), Yn =

(
XT 1

n , XT 2

n , . . . , XT d

n

)
= RXn for some (explicit) linear operator R.

Hence, (24) implies

n−1/2
(
Yn − nRµ

)
= R

(
n−1/2(Xn − µ)

) d−→ N
(
0, RΣR′

)
. (43)

Furthermore, as said above, Reλ 6 γm for every eigenvalue λ 6= λ1. We note also that if
λ 6= λ1 is an eigenvalue with Reλ = max(γm, 0), then λ is not in (34) so λ is a root of
φm; furthermore, all roots of φm are simple [35], and therefore λ is a simple eigenvalue.
Hence, by [27], cf. [35, Theorem 1] for a special case proved by other methods,

EXn = nµ+O
(
nmax(γm,0)

)
, (44)

and thus, since γm < 1
2

for m 6 26 as said above,

EXn = nµ+ o
(
n1/2

)
. (45)

Hence,
µn = EYn = R

(
EXn

)
= nRµ+ o

(
n1/2

)
. (46)

Consequently, (43) implies (2), with the covariance matrix RΣR′, where Σ is as in (24).
Moreover, as said in Remark 3.3, it follows from [23], to be precise by combining [23,

(5.30), Theorem 7.10 and Theorem 7.11], that (for any m > 2)

EYn = nµ̂+ o(n). (47)

By combining (46) and (47) we see that Rµ = µ̂ (since neither depends on n), and thus
(46) yields (4).

To see that the covariance matrix RΣR′ is non-singular when each T i has an internal
node so ki > 0, suppose that, on the contrary, u′RΣR′u = 0 for some vector u 6= 0. Then,
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by [27, Theorem 3.6], u′Yn = u′RXn is deterministic for every n. We argue as for the case
k = 2 in the proof of [21, Lemma 3.6]. We may assume that every ui 6= 0, since we may
just ignore each T i with ui = 0; we may also assume that 1 6 k1 6 k2 6 . . . . Let N be
a large integer, with N > kd, and let T1 be a tree consisting of a single path with N + k1

internal nodes, each of them (except the root) the right-most child of the preceding one.
Let T2 consist of a similar right-most path with N internal nodes, together with m − 1
copies of T1, which have their roots as the m−1 first children of T2. Note that both T1 and
T2 have (N + k1)(m− 1) keys, so they are possible realizations of T(N+k1)(m−1). Moreover,
for any tree T i, i > 2, T1 and T2 have the same number of fringe trees isomorphic to T i,
while T1 contains m − 1 more copies of T 1 than T2 does. Hence the linear combination
u′Yn =

∑
i uiX

T i

n may take at least two different values when n = (N + k1)(m − 1),
which is a contradiction. Consequently, the covariance matrix cannot be singular when
all ki > 0.

Proof of Theorem 3.5. Let T 1, . . . , T d be all non-random m-ary search trees with k keys.
(We may consider either ordered or unordered trees; for numerical calculations, the un-
ordered case is simpler.) Then Yn,k =

∑d
i=1 X

T i

n . The result (7) thus follows from (2),
and σ2

k > 0 when k > 0 because the covariance matrix Σ in (2) then is non-singular. Also
in the case k = 0 and m > 2 we have σ2

k > 0, because Yn,0 = n+ 1−
∑m−2

j=1 (j + 1)Yn,j by
(6), and the asymptotic variance of the right-hand side is non-zero by an application of
Theorem 3.2 to the sequence of all m-ary search trees with at least 1 and at most m− 2
keys.

Furthermore, summing (4) over the trees T i yields

E
(
Yn,k

)
=

n

(Hm − 1)(k + 1)(k + 2)
+ o
(
n1/2

)
. (48)

and thus (8) follows.

Remark 6.3. The results on moment convergence in Janson and Pouyanne [28] are stated
for a Pólya urn with deterministic replacements, but as is mentioned [28, Remark 1.9] the
results hold also for random replacement vectors (and by [28, Remark 1.7], different types
may have different activities), which yields convergence of all moments in (2), as said in
Remark 3.3. As a consequence, (7) and (8) also hold with convergence of all moments.
Alternatively, in the present case we can instead consider an urn where the balls represent
gaps in the trees in the construction in Section 5. This yields an urn with deterministic
replacements, although now also some subtractions of balls occur. The results in [28]
apply to this version too by [28, Remark 1.8], which again yields moment convergence.

7 Pólya urns to count fringe subtrees in preferential attachment
trees

We now describe the Pólya urns that we use for proving Theorem 3.9 for linear preferential
attachment trees. We may consider either ordered or unordered trees, see Remark 2.6.
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7.1 A Pólya urn with infinitely many types for the general case

Let Λ1, . . . ,Λd be a fixed sequence of rooted trees and let Zn = (XΛ1

n , XΛ2

n , . . . , XΛd

n ),
where XΛi

n is the number of fringe subtrees that are isomorphic to Λi in Λn.
Assume that we have a given preferential attachment tree Λn. As in Section 5, we

say that a node v is living if the fringe subtree Λn(v) � Λi for some i ∈ {1, . . . , d}.
Furthermore, we let all descendants of a living node be living. All other nodes we declare
dead.

Now erase all edges from dead nodes to their children. This yields a forest of small
trees, where each tree either consists of a single dead node or is living and can be grown
to become one of the Λi. Again, we regard these small trees as the balls in our generalised
Pólya urn. However, unlike the situation in Section 5, we now cannot ignore the dead
nodes, since they may get new children; furthermore, the probability of this depends on
their degree. Hence we label each dead node by the number of children it has in Λn.

Hence, the types in this Pólya urn are all (isomorphism types of) rooted trees Λ such
that Λ � Λi for some i ∈ {1, . . . , d} (these are called ordinary types), plus one type ∗k
for each positive integer k, consisting of a single dead node labelled by k (these are called
special types). In other words, the set of types is S ′ ∪ S ′′, where

S ′ :=
d⋃
i=1

{Λ : Λ � Λi} (49)

is the set of ordinary types (cf. (29)) and S ′′ := {∗k : k > 1} is the set of special types.
(As in the corresponding case in Section 5, the set S ′ is thus a down-set for the partial
order �. Conversely, any finite down-set occurs as S ′, for example, by choosing Λ1, . . . ,Λd

to be the trees in S ′.)
Unfortunately, S ′′ is infinite, so this is a Pólya urn with infinitely many types. Theo-

rem 4.1 does not apply to such urns, and we do not know any extension to infinite-type
urns that can be used here. However, in the linear case (1), we can reduce the urn to a
finite-type one; this is done in the following subsection.

Nevertheless, it is easy to describe the replacement rules for this urn in general. The
activity aΛ of an ordinary type Λ is the total weight wΛ :=

∑
v∈Λwd+(v) of all nodes in Λ,

while a special type ∗k has activity wk. If a ball of an ordinary type Λ is drawn, we add
a new child to one of its nodes, with probabilities determined by the weights wk and the
out-degrees as in the definition of Λn, and if the resulting tree is dead (does not belong
to S ′), it is decomposed into several trees (including at least one dead node). If a ball of
a special type ∗k is drawn, it is replaced by one ball of type ∗k+1 and one ball of type •,
the tree with a single node. (The tree • is always an ordinary type.)

7.2 A Pólya urn with finitely many types for the linear case

Consider from now on only the linear case (1). We then can replace the infinite-type
Pólya urn in Section 7.1 by a Pólya urn with finitely many types by using a version of the
trick used in [25, 24] to study node degrees in random recursive trees and plane oriented
recursive trees.
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Recall that we may assume that χ ∈ {−1, 0, 1}. For simplicity, consider first the case
when ρ (and thus every wk) is an integer. Change each ball of type ∗k to wk balls of a new
type ∗. Let ∗ have activity 1; then the activities are preserved by the change. Moreover,
if a ball of type ∗k is drawn, it is, as said above, replaced by one ball of type ∗k+1 and
one of type •; after the change, this means that the number of balls ∗ is increased by
wk+1 − wk = χ. (This is where the linearity of the weights is essential.) If χ = −1, this
means that the ball is not replaced. Consequently, the new urn also evolves as a Pólya
urn with types S∗ := S ′ ∪{∗}. An ordinary type Λ has the activity

∑
v∈Λwd+(v) as above

in Section 7.1, and when drawn, it is replaced as above, except that instead of any ball of
a type ∗k we add wk balls of type ∗. The special type ∗ has activity 1, and when drawn,
it is replaced and we add χ additional balls of type ∗ and one ball of type •. (For an
example, see Section 11.3.)

Moreover, we can do the same for general ρ. As said in Remark 4.4, the Pólya urn
process is well-defined for real-valued Xni and ξij, interpreting the “number of balls” as
the mass in the urn of each type.

With this interpretation, the Pólya urn with types S∗ just described exists and de-
scribes the evolution of fringe subtrees for any linear preferential attachment model, also
with non-integer ρ. (We can also allow χ /∈ {−1, 0, 1}, but as said earlier, this is not more
general.)

Note that the extension to real-valued urns is needed only when χ = 1; when χ = 0
we may assume that ρ = 1 and when χ = −1 we necessarily have ρ ∈ Z+, see Section 2.2;
hence the integer version is enough in these cases. Note further that then (A1′) holds,
with di = 1 for every ordinary type and ξ∗∗ > 0. Hence, Theorem 4.1 holds also for the
real-valued urns considered here; see Remark 4.4.

Remark 7.1. In the linear case, the total activity increases by χ + ρ = w1 each time a
ball is drawn; the easiest way to see this is by going back to the preferential attachment
tree Λn and noting that: the total activity in the urn equals the total weight of the tree;
when we add a new node, it contributes extra weight w0 = ρ and the weight of its parent
increases by χ. In other words, we have a · ξi = χ + ρ deterministically, and thus (25)
holds with c = χ+ ρ. Consequently, λ1 = χ+ ρ, see Remark 4.2.

As a consequence, we also see that the total activity of the urn before the nth step,
i.e., the total weight of the preferential attachment tree Λn with n nodes, is

wΛn = ρ+ (n− 1)(χ+ ρ) = n(χ+ ρ)− χ, (50)

see e.g., [23, (6.22)]; this is deterministic, and any tree with n nodes has the same total
weight.

8 Proofs of Theorem 3.9 and Theorem 3.11

To apply Theorem 4.1 in the proofs of Theorem 3.9 and Theorem 3.11 it remains to show
that Reλ < λ1/2 for each eigenvalue λ 6= λ1 of the intensity matrix A for the urn in

the electronic journal of combinatorics 24(2) (2017), #P2.51 22



Section 7.2. We will again (as in the case of random m-ary search trees in Section 5) find
the eigenvalues of A by using induction.

We consider either ordered or unordered trees; the results and proofs below apply to
both versions.

Recall that the set of types is S∗ = S ∪ {∗}. Let q := |S∗| be the number of types,
and choose a numbering T1, . . . , Tq−1 of the q − 1 ordinary types that is compatible with
the partial order �. (Hence, T1 = •.) For 2 6 k 6 q, let

Sk := {T1, . . . , Tk−1, ∗} . (51)

Since Sk \ {∗} = {T1, . . . , Tk−1} is a down-set for �, we may thus consider the Pólya urn
with the k types in Sk, defined as in Section 7.2. Let Ak be the k × k intensity matrix of
this Pólya urn, and let X k

n := (Xk
n,1, . . . , X

k
n,k), where Xk

n,i is the number of balls of type

Ti in this urn at time n. The activities are ak := (a1, . . . , ak−1, 1), where

ai := wTi = |Ti|(χ+ ρ)− χ. (52)

see (50). (Recall that ∗ always has activity 1.)

Proposition 8.1. Let 2 6 k 6 q.

(i) For every ordinary type Ti, i = 1, . . . , k − 1, except the type that is a path (rooted at
an endpoint) of maximal length,

(Ak)ii = −ai. (53)

(ii) For the ordinary type Tj that is a path of maximal length among all paths in Sk,

(Ak)jj = ρ− aj. (54)

(iii) For the special type ∗, we have
(Ak)kk = χ. (55)

Consequently,

tr(Ak) = χ+ ρ−
k−1∑
j=1

aj. (56)

Proof. This is similar to the proof of Proposition 6.1. Consider first an ordinary type Ti.
If we draw Ti, then we add a node to it, which either gives a new living type Tj 6= Ti, or
a tree with a dead root that is decomposed. In the latter case, the only possibility to get
a copy of Ti is that only the root is dead, and that when we remove it, the remaining |Ti|
living nodes form a tree isomorphic to Ti, i.e., that we first add a node to Ti and then
remove the root, and obtain a copy of Ti. In this exceptional case, the root of Ti has to
have degree at most 1, and by induction it follows that every node in Ti has out-degree
at most 1, so Ti is a path; furthermore, the new node has to be added at the leaf, and Ti
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has to have maximal length (since otherwise the root would not die when the new node
is added).

(i): In this case, a drawn ball of type Ti is never replaced by a ball of the same type;
thus ξii = −1 and, by (19), (Ak)ii = −ai, which yields (53).

(ii): If Tj is a maximal path, then when adding a new node to Tj, the probability of
adding it at the leaf is w0/wTj . In this case, and only then, we obtain a new ball Tj.
Consequently,

E ξjj = −1 + w0/wTj = −1 + w0/aj (57)

and, by (19),

(Ak)jj = aj E ξjj = aj(−1 + w0/aj) = −aj + w0 = −aj + ρ, (58)

which yields (54).
(iii): The special type ∗ has activity 1, and if we draw a ball of type ∗, then the total

change in the urn is χ additional balls of type ∗ and one additional ball of type •; hence
(Ak)kk = E ξkk = χ.

Theorem 8.2. For the linear preferential attachment trees, the eigenvalues of the inten-
sity matrix A are χ+ ρ and −ai for i ∈ {1, . . . , q − 1}, where ai is given by (52).

Proof. The proof is similar to the proof of Theorem 6.2. Again we will use induction, and
consider the k × k matrices Ak defined above.

We start the induction with k = 2, when the types are {•, ∗}. This means that all
nodes with children are dead. If we draw a ball of type •, we add a node to it and get
a tree with two nodes; the root is dead and we obtain a new ball of type • and a dead
node of type ∗1, which is changed to a mass w1 = χ + ρ of type ∗. A ball of type • is
thus replaced by another ball of type • and a mass χ+ ρ of type ∗, so ξ11 = 1− 1 = 0 (in
accordance with (54)) and ξ12 = χ+ ρ. Similarly, ξ21 = 1 and ξ22 = χ. Consequently, by
(19), since a1 = wT1 = w0 = ρ,

A2 =

(
0 1

ρ(χ+ ρ) χ

)
. (59)

The matrix A2 has eigenvalues χ+ ρ and −ρ = −a1, verifying the theorem for A2.
The induction step is identical to the one in the proof of Theorem 6.2. We see again

that the eigenvalues of Ak+1 are inherited from Ak, i.e., that the eigenvalues of Ak+1 can
be listed (with multiplicities) as λ1, . . . , λk+1 where λ1, . . . , λk are the eigenvalues of Ak.
Finally, we use (56) and deduce

λk+1 = tr(Ak+1)− tr(Ak) = −ak, (60)

and the theorem follows by induction.

Remark 8.3. For the linear preferential attachment tree the eigenvalues are easier to
describe than for the m-ary search tree. The reason for this is that we can start the
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induction already when we have a Pólya urn consisting of only two types. (The brave
reader might even start with only one type, regarding all nodes as dead, and A1 = (χ+ρ).)
In the m-ary search tree, on the other hand, we always have at least m−1 different types
as explained above, and these first types are the reason why we get more complicated
eigenvalues.

Proof of Theorem 3.9. The proof is analogous to the proof of Theorem 3.2. By Theo-
rem 8.2, λ1 = χ+ρ and all other eigenvalues are negative. Hence, Theorem 4.1(i) applies,
so (24) holds, with µ = λ1v1. Furthermore, by [27],

EXn = nµ+O(1). (61)

By an analogue of (30), Zn =
(
XΛ1

n , XΛ2

n , . . . , XΛd

n

)
= RXn for some (explicit) linear

operator R. Hence, (24) implies

n−1/2
(
Zn − nRµ

)
= R

(
n−1/2(Xn − µ)

) d−→ N
(
0, RΣR′

)
(62)

and (61) implies
µn = EZn = R

(
EXn

)
= nRµ+O(1), (63)

which together yield (12), with the covariance matrix RΣR′, where Σ is as in (24).
Moreover, as said in Remark 3.10, it follows from [23, (5.29) and Example 6.4, in

particular (6.24)], that
EZn = nµ̂+ o(n). (64)

By (63) and (64), we have Rµ = µ̂, and thus (63) yields (15).
To see that the covariance matrix RΣR′ is non-singular, suppose that, on the contrary,

u′RΣR′u = 0 for some vector u 6= 0. Then, by [27, Theorem 3.6], u′Zn = u′RXn is
deterministic for every n. However, this is impossible by the same construction as in the
proof of Theorem 3.2, taking m = 2 (so the number of internal nodes equals the number
of keys) and then ignoring keys. See also the proofs of [21, Lemmas 3.6 and 3.17], which
give this construction in the special case of the random recursive tree, and note that (at
least for χ > 0), the general case is the same since for a given n, the possible trees Λn

are the same for all χ > 0 and ρ (although their different probability distributions are
different).

Proof of Theorem 3.11. Let Λ1, . . . ,Λd be all non-random unordered (or ordered) trees
with k keys. Then Yn,k =

∑d
i=1 X

Λi

n . The result (16) thus follows from (12), and σ2
k > 0

because the covariance matrix Σ in (12) is non-singular.
Furthermore, summing (15) over the trees Λi yields (18) and thus (17) follows.

9 A Pólya urn to count protected nodes in m-ary search trees

We start precisely in the same way as in [22]. Given an m-ary search tree Tn with n keys
together with its external nodes, erase all edges that connect two internal non-leaves. This
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yields a forest of small trees, where (assuming n > m) each tree has a root that is a non-
leaf in Tn. We regard these small trees as the balls in our generalised Pólya urn. The type
of a ball (tree) is the type of the tree as an unordered tree, i.e., up to permutations of the
children. The type of a tree in the urn is thus described by the numbers xi, i = 1, . . . ,m,
of children of the root with i−1 keys; each of these children is an external node (i = 1) or
a leaf (i > 2), and it has itself children only when i = m when it has m external children;
thus we can unambiguously label the type by a vector x = (x1, . . . , xm). Since the root
of any of the small trees has m children (including external ones) in the original tree Tn,
we have

∑m
i=1 xi 6 m, (with the remainder m −

∑m
i=1 xi equal to the number of erased

edges to children in the original tree Tn that are non-leaves). If n > m, there are no balls
of type (m, 0, . . . , 0), since the root of a small tree is never a leaf in Tn, and therefore the
total number of types is the number of ways to write m as a sum of m + 1 non-negative
integers minus one, i.e.,

(
2m
m

)
− 1.

The activity of a type x is the number of gaps it contains. The root has no gaps and
each child with i− 1 keys contributes i gaps. (These gaps belong to the child itself when
i 6 m−1 and to the m external children of it when i = m.) Therefore type x has activity
ax :=

∑m
i=1 ixi.

Let us denote the unit vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1).

If we add a new key to a leaf with i−1 6 m−2 keys, which belongs to a small tree of type
x, in the Pólya urn this corresponds to replacing the ball by a ball of type x− ei + ei+1.
The same holds if we add a key to an external node that is a child of the root. However,
if we add a key to an external node that is a child of a (full) leaf in a tree of type x,
then that leaf becomes a non-leaf, so the edge from it to the root is erased and the tree is
split into two trees: one of type (m− 1, 1, 0, . . . 0) and the other of type x− em. Thus in
general there may be up to m different ways a small tree can be transformed, depending
on which gap a new key goes into.

10 Proof of Theorem 3.7

The idea of the proof is the same as in the case of fringe subtrees: reducing the urn one
type at a time, until we arrive at the simple urn for counting incomplete leaves with matrix
Am−1. In addition to the types described in Section 9, add types numbered 1 to m where
type i is a single node with i− 1 keys for i 6 m− 1 and type m is the type (m, 0, . . . , 0),
i.e., a node with m− 1 keys and m external children. Of course, when n > m, there are
no small trees of these types, but they are used in the induction.

Recalling that the number of types described above is
(

2m
m

)
− 1 and writing q =

m−1+
(

2m
m

)
, let us enumerate all types from 1 to q in such a way that whenever we insert

a key into a tree of type i (and obtain one or two trees, as described above), the new tree
which inherits the root of the old one must have index larger than i. Note the similarity
with the fringe case where the tree grown by inserting a key must have a larger index.
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There is more than one such enumeration of types, but for clarity we choose the
following one. We let the first m− 1 types be the single nodes ordered with an increasing
number of keys, while the rest of the types are ordered in such a way that a type with more
children precedes a type with fewer children; ordering among types with equal number of
children is achieved by treating them as numbers in base m + 1 (with the coordinate x1

being the most significant digit) arranged in decreasing order. (For types with the same
number of children, this is the reverse lexicographic order.) The vector describing a type
i > m is denoted by x(i). Thus, for example, type m is type x(m) = (m, 0, . . . , 0) and is
followed by x(m+1) = (m−1, 1, 0, . . . , 0), and the last type is the dead type x(q) = (0, . . . , 0).
Figure 1 shows the different types in a ternary search tree (i.e., m = 3), except for the
first 3, which are single nodes (and are the same as the first three in Figure 2).

Let us write Xn = (Xn,1, . . . , Xn,q), where Xn,i is the number of balls of type i in the
urn. The limit distribution of the urn is, of course, described by types m + 1 to q, since
for n > m we have no balls of the first m types.

For each k = m − 1, . . . , q we define a reduced urn by considering the forest of small
trees in the original urn and deleting roots of the trees of types i > k (and the edges

leading to their children). This replaces each tree of type i by x
(i)
j trees of type j, for each

j = 1, . . . ,m. Write
X k
n = (Xk

n,1, . . . , X
k
n,k).

Clearly, there is a k × q matrix Pk such that X k
n = PkXn and therefore

∆X k
n = X k

n+1 −X k
n = Pk (∆Xn) . (65)

It need not be obvious that X k
n is actually a Pólya urn, in the sense that the distribution

of ∆X k
n depends only on the type i of the ball drawn. To convince ourselves we consider

three cases.
Case 1: If we draw a ball of type i ∈ {m+ 1, . . . , k}, then in the original urn this

corresponds to drawing a ball of the same type. Therefore, in view of (65), ∆X k
n has the

same distribution as Pkξi, which depends on i only.
Case 2: If we draw a ball of type i < m, then in the original urn (assuming n > m)

this corresponds to replacing a tree of some type r > k (for which x
(r)
i > 0) by a tree of

type x(s) := x(r)− ei + ei+1. The latter tree inherits the root of the former, which, by the
ordering of types, implies that s > r > k. Therefore in the reduced urn a ball of type i
is replaced by a ball of type i+ 1 (with an exception when k = m− 1 and i = m− 1, in
which case it is replaced by m balls of type 1), regardless of which particular type r was
involved.

Case 3: If we draw a ball of type i = m, then in the original urn (assuming n > m)

we replace a tree of type x(r) (for which x
(r)
m > 0) by a tree of type m+1 and a tree of type

x(s) := x(r)− em, which inherits the root and therefore satisfies s > r > k. In the reduced
urn we remove a ball of type m and what we add depends on the value of k: if k > m+ 1,
we add a ball of type m+ 1; otherwise k = m and we add m balls: m− 1 external nodes
and one node with a single key. In either case the outcome does not depend on r.
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Type 12
(0,0,3)

Type 11
(0,1,2)

Type 10
(0,2,1)

Type 8
(1,0,2)

Type 9
(0,3,0)

Type 18
(0,0,2)

Type 7
(1,1,1)

Type 17
(0,1,1)

Type 6
(1,2,0)

Type 5
(2,0,1)

Type 16
(0,2,0)

Type 15
(1,0,1)

Type 4
(2,1,0)

Type 21
(0,0,1)

Type 14
(1,1,0)

Type 20
(0,1,0)

Type 13
(2,0,0)

Type 19
(1,0,0)

Type 22
(0,0,0)

Figure 1: The 19 different types characterizing protected and unprotected nodes in ternary
search trees for n > 3. Type 13, type 19 and type 22 are the only ones that include a
protected node. External nodes are omitted but indicated by dotted lines.

To sum up, we have shown that X k
n , k = m − 1, . . . , q, are Pólya urns with some

random replacement vectors ξ
(k)
i , i = 1, . . . , k. Regardless of k, the activity of a type

i is the number of gaps in the corresponding tree, which we denote ai. So ai = i for
i = 1, . . . ,m − 1 and ai = ax(i) for i > m. Hence the intensity matrices of the reduced
urns are

Ak := (aj E ξ(k)
ji )ki,j=1.

As in the fringe case, the diagonal values of Ak for m > 3 are easy to determine.

Proposition 10.1. For m > 3, k = m − 1, . . . , q and every type i = 1, . . . , k we have
(Ak)ii = −ai.

Proof. We need to show that whenever a ball of type i is drawn, it is never replaced. For
i 6 m this is clear from the discussion above (cases 2 and 3), so let us assume i > m.
Suppose that a key is inserted into a child with less than m−1 keys. Then in the original
urn a ball of type i is replaced by a ball of higher index j, so in the reduced urn i is
replaced with either a ball of type j or some balls with types at most m, none of which
coincide with type i. If a key is inserted into a full child of the root (which means x

(i)
m > 0),

then also a ball of type x(m+1) = (m− 1, 1, 0, . . . , 0) is added. Since its last coordinate is
zero, it cannot coincide with type i.
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The number of protected nodes is the total number of balls of types (i, 0, . . . , 0),
i = 0, . . . ,m − 1. The urn X q−1

n ignores the dead type (0, . . . , 0). However, writing bi
for the number of keys in a tree of type i, the number of balls of the dead type can be
expressed as an affine function of the other types, namely

Xn,q =
1

m− 1

(
n−

q−1∑
i=m+1

biXn,i

)
.

Consider the urn X q−m−1
n obtained by deleting the roots of trees with at most one child.

For n > m, the first m coordinates of X q−m−1
n (single nodes and the type (m, 0, . . . , 0))

are equal to the last m coordinates of X q−1
n (roots with one child). Consequently, the

urn described in Section 9 but with the dead type ignored, and thus
(

2m
m

)
− 2 = q −

m− 1 types, is isomorphic to the urn X q−m−1
n and has thus also intensity matrix Aq−m−1

(up to relabelling the types). In particular, the number of protected nodes is an affine
function of X q−m−1

n and therefore, in order to prove asymptotic normality of the number
of protected nodes, it is enough to prove asymptotic normality of X q−m−1

n . To deduce
this from Theorem 4.1, it remains to show that Reλ < λ1/2 for each eigenvalue λ 6= λ1,
which, for m 6 26, follows from the next theorem.

Theorem 10.2. Let m > 2. The eigenvalues of Aq−m−1 are the roots of the polynomial
φm(λ) =

∏m−1
i=1 (λ+ i)−m! plus the multiset

{−ai : i = m,m+ 1, . . . , q −m− 1} .

Proof. For m = 2, the eigenvalues were determined in [22] as {1,−2,−3,−4} (when we
ignore the dead type), which agrees with the statement.

For m > 3 the proof goes along the same lines as the proof of Theorem 6.2; we again
show by induction the corresponding statement for Ak for m− 1 6 k 6 q −m− 1. Note
that urn Xm−1

n has the same meaning as in the fringe case, since Xm−1
n,i , i = 1, . . . ,m− 1,

stands for the number of nodes with i − 1 keys. Therefore Am−1 is defined by (35) and
has characteristic polynomial φm(λ).

We use Proposition 10.1 instead of Proposition 6.1. The linear map T such that
X k
n = TX k+1

n is a (k + 1) × k matrix obtained by appending to an identity matrix a
column (x1, . . . , xm, 0, . . . , 0)′, where x(k+1) = (x1, . . . , xm) is the vector describing type
k + 1. The rest of the proof is identical.

Proof of Theorem 3.7. This is similar to the other proofs. As in Section 6, for m 6 26,
the roots λ 6= λ1 of φm satisfy Reλ 6 γm < 1

2
= λ1/2, where γm is given by (41), and

thus Theorem 10.2 shows that (42) holds for all eigenvalues λ 6= λ1 of Aq−m−1. As said
above, Aq−m−1 is also the intensity matrix of the urn in Section 9, without the dead type,
and if we reinstate the dead type, we just add one eigenvalue 0 (since the new column in
A is identically 0). Hence Theorem 4.1 applies to the urn in Section 9, and implies, since
Zn is the total number of balls of the m types (i, 0, . . . , 0), 0 6 i 6 m− 1,

n−1/2
(
Zn − µ′n

) d−→ N (0, σ2) (66)
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for some µ′ and σ2 > 0. Furthermore, it follows from [27] and (42) that (for any m)

E(Zn) = µ′n+O
(
nmax(γm,0)

)
. (67)

Moreover, it follows from [23, Theorems 7.11, 10.1 and 10.3] that Zn/n
a.s.−→ µm given by

(10), and consequently, by dominated convergence (see also [23, Remark 5.19])

E(Zn) = µn+ o(n). (68)

By (67) and (68), µ′ = µ (for any m). When m 6 26, we have γm < 1
2
, and thus (67)

implies (11), and thus EZn can be replaced by µ′n = µn in (9).
To see that σ2 > 0, it suffices by [27, Theorem 3.6] to show that Var(Zn) > 0 for some

n. This is easy; for example, with n = 2m− 1 keys, we can have either 0 or 1 protected
node.

11 Examples with explicit calculations of variances

We give some examples with explicit calculations (done using Mathematica).

11.1 Example of Theorem 3.5 when m = 3 and k = 4

We consider the case when we want to evaluate σ2
4 in Theorem 3.5 in the case of a random

ternary search tree (m = 3). We use the construction of the Pólya urn in Example 5.1,
which gives an urn with the following 6 different (living) types:

1: An empty node.

2: A node with one key.

3: A node with two keys and three external children.

4: A tree with a root holding two keys and one child holding one key, plus two external
children.

5: A tree with a root holding two keys and two children holding one key each, plus one
external child.

6: A tree with a root holding two keys and one child holding two keys, plus two external
children of the root and three external children of the leaf.

See Figure 2 for an illustration of these types.
The activities of the types are 1, 2, 3, 4, 5, 5. We can easily describe the intensity

matrix, first noting that if we draw a type k for k 6 3 it is replaced by one of type k+ 1.
If we draw a type 4 it is replaced by one of type 5 with probability 1/2 and one of type 6
with probability 1/2. If we draw a type 5 it is replaced by three of type 2 with probability
1/5, and one of each of the types 1, 2 and 3 with probability 4/5; see Figure 3 for an
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Type 4 Type 5 Type 6

Type 1 Type 2 Type 3

Figure 2: The different types for counting the number of the fringe subtrees with four
keys in a ternary search tree.

Type 5

Type 5

4/5

1/5

Type 1+Type2+Type3

3.Type 2

Figure 3: The two possibilities for adding a key to a tree of type 5 in Figure 2.

illustration. Finally if we draw a type 6 it is replaced by one each of the types 1, 2 and 3
with probability 2/5, and two of type 1 and one of type 4 with probability 3/5; see Figure
4 for an illustration.

Thus, we get the intensity matrix A in (19) as

A =


−1 0 0 0 4 8

1 −2 0 0 7 2
0 2 −3 0 4 2
0 0 3 −4 0 3
0 0 0 2 −5 0
0 0 0 2 0 −5

 . (69)

The eigenvalues are, by direct calculation or by Theorem 6.2,

1,−3,−4,−4,−5,−5. (70)

the electronic journal of combinatorics 24(2) (2017), #P2.51 31



Type 6

3/5

2/5

2.Type 1+Type 4

Type 1+Type 2+Type 3Type 6

Figure 4: The two possibilities for adding a key to a tree of type 6 in Figure 2

(We know already that λ1 = 1, as was noted in Remark 5.2.)
Furthermore, by Remark 5.2, the left eigenvector u1 = a = (1, 2, 3, 4, 5, 5). The right

eigenvector v1, with the normalization (20), is found to be

v1 =
( 3

25
,

1

10
,

2

25
,

3

50
,

1

50
,

1

50

)
. (71)

Note that µ = v1 in the proof of Theorem 3.2 (of which Theorem 3.5 is a direct conse-
quence), since λ1 = 1. The fringe subtrees with 4 keys in the random ternary search tree
correspond to the last two types, so Yn,4 = XT 5

n + XT 6

n . Hence, the expected number of
subtrees with 4 keys is, see (45),

EYn,4 = (µ5 + µ6)n+ o
(
n1/2

)
=

1

25
n+ o

(
n1/2

)
. (72)

Note that this gives the same answer as Theorem 3.5 (where results from branching
processes were applied to deduce the expectation), since the asymptotic expectation in
(8) is

n

(H3 − 1)(4 + 1)(5 + 1)
=

n

25
.

To calculate the variance σ2
4, we calculate the covariance matrix Σ in Theorem 4.1

by Theorem 4.1(ii); thus we first calculate Bi, B and ΣI in (21)–(23). We describe the
calculations briefly; for further details on how the calculations are performed, we refer to
[22], where Theorem 4.1(ii) was applied to the urn in Figure 1 in Section 10 above to count
the number of protected nodes in a random ternary search tree. Since A is diagonalisable,
it is, as an alternative, also possible to calculate Σ by Theorem 4.1(iii).

We thus first calculate Bi = E(ξiξ
′
i) in (21). As an example we have (the other cases

are analogous)

B5 = 1
5
· b1b

′
1 + 4

5
· b2b

′
2, (73)
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where

b1 = (0, 3, 0, 0,−1, 0)′ and b2 = (1, 1, 1, 0,−1, 0)′. (74)

We then calculate B by (22) and evaluate the integral in (23), which yields ΣI . Finally,
Σ = ΣI by Theorem 4.1 with c = 1. The result is

Σ =



29017
259875

− 117371
10395000

− 44311
5197500

− 2143
945000

− 28289
5197500

− 28289
5197500

− 117371
10395000

7379
83160

− 34927
5197500

− 3907
236250

− 166037
20790000

− 166037
20790000

− 44311
5197500

− 34927
5197500

159241
2598750

− 4747
236250

− 84709
10395000

− 84709
10395000

− 2143
945000

− 3907
236250

− 4747
236250

39227
945000

− 13309
1890000

− 13309
1890000

− 28289
5197500

− 166037
20790000

− 84709
10395000

− 13309
1890000

22613
1299375

− 6749
2598750

− 28289
5197500

− 166037
20790000

− 84709
10395000

− 13309
1890000

− 6749
2598750

22613
1299375



. (75)

However, to calculate σ2
4, we only need the submatrix

∆ =

(
σ5,5 σ5,6

σ6,5 σ6,6

)
=

( 22613
1299375

− 6749
2598750

− 6749
2598750

22613
1299375

)
. (76)

Summing the σi,j in (76), which is equivalent to calculating (1, 1)∆(1, 1)′, we find

σ2
4 =

38477

1299375
.

Note that we can use this urn to calculate the asymptotic variance for the number of
leaves in the random ternary search tree, which was evaluated in [22, Theorem 4.1]. We
get

(0, 1, 1, 1, 2, 1)Σ(0, 1, 1, 1, 2, 1)′ =
89

2100
. (77)

We could also use this urn to evaluate

σ2
3 = (0, 0, 0, 1, 0, 0)Σ(0, 0, 0, 1, 0, 0)′ =

39227

945000
, (78)

σ2
2 = (0, 0, 1, 0, 0, 1)Σ(0, 0, 1, 0, 0, 1)′ =

131

2100
, (79)

σ2
1 = (0, 1, 0, 1, 2, 0)Σ(0, 1, 0, 1, 2, 0)′ =

8

75
. (80)
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Type 4 Type 5 Type 6

Type 7 Type 8 Type 9

Type 1 Type 2 Type 3

Figure 5: The different types used to find the joint distribution of fringe trees that are
isomorphic to type 7 and type 9 in a quaternary search tree.

11.2 Example of Theorem 3.2 when m = 4

We consider the random quaternary search tree (m = 4) as an ordered tree. Suppose
that we consider two fringe subtrees in this tree. Let the first one T 1 consist of 5 keys
i.e., k1 = 5, so that the root holds three keys with its first two children holding one key
each, and with its remaining two external children to the right. Let the second one T 2

consist of 6 keys i.e., k2 = 6, so that the root holds three keys, and with its first child
holding three keys and thus also having four external children, and with the remaining
three external children of the root to the right.

We use the construction of the Pólya urn in Section 5 which gives an urn with the
following 9 different (living) types, see Figure 5:

1–4 For k 6 4, type k is a node with k − 1 keys; the fourth type also has four external
children.

5 A root with three keys with its four children having (1, 0, 0, 0) keys.

6 A root with three keys with its four children having (0, 1, 0, 0) keys.

7 A root with three keys with its four children having (1, 1, 0, 0) keys.

8 A root with three keys with its four children having (2, 0, 0, 0) keys.

9 A root with three keys with its four children having (3, 0, 0, 0) keys, and the first child
having four external children.
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We get the intensity matrix as in the example in Section 11.1. We describe one example
of a transition, the others are similar. If we draw a type 5 it is replaced by one of type 7
with probability 1/5, and one of type 8 with probability 2/5, and two of type 1 and two
of type 2 with probability 2/5; see Figure 6.

Type 5

Type 7

Type 8

Type 5

Type 5

2/5

1/5

2/5

2.Type 1+2.Type 2

Figure 6: The three possibilities for adding a key to a tree of type 5 in Figure 5.

The intensity matrix is

A =



−1 0 0 6 4 10 10 6 24
1 −2 0 2 4 4 10 3 5
0 2 −3 0 0 2 4 3 0
0 0 3 −4 0 0 0 0 3
0 0 0 1 −5 0 0 0 1
0 0 0 1 0 −5 0 0 1
0 0 0 0 1 1 −6 0 0
0 0 0 0 2 0 0 −6 0
0 0 0 0 0 0 0 3 −7


. (81)

The eigenvalues are, by direct calculation or by Theorem 6.2,

1,−7
2

+
√

23
2
i,−7

2
−
√

23
2
i,−4,−5,−5,−6,−6,−7. (82)

Note that the activity vector a = (1, 2, 3, 4, 5, 5, 6, 6, 7) and it again follows that the left
eigenvector u1 = a. The right eigenvector v1, with the normalization (20), is calculated
as

v1 =
(113

520
,

61

455
,

34

455
,

33

728
,

1

130
,

1

130
,

1

455
,

1

455
,

3

3640

)
. (83)

We see from this vector that the expected number of fringe subtrees of the two types that
we consider is ( 1

455
+ 3

3640
)n + o(n) = 11

3640
n + o(n), since the two types are type 7 and
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type 9. We can verify that this gives the same answer as Theorem 3.2 (where results from
branching processes were applied to deduce the expectation), since the vector µ̂ in (3)
has coordinates

P(T5 = T 1)

(H4 − 1)(5 + 1)(5 + 2)
=

3
5
· 2

4
· 1

3

(1
2

+ 1
3

+ 1
4
) · 6 · 7

=
1

455
(84)

and

P(T6 = T 2)

(H4 − 1)(6 + 1)(6 + 2)
=

3
6
· 2

5
· 1

4

(1
2

+ 1
3

+ 1
4
) · 7 · 8

=
3

3640
. (85)

We proceed by calculating the covariance matrix Σ. It again turns out that A is
diagonalisable, and this time we apply Theorem 4.1(iii). We again have to calculate the
matrix B in (22), and for this we have to calculate Bi = E(ξiξ

′
i) in (21). For example,

B7 = 4
6
· b1b

′
1 + 2

6
· b2b

′
2, (86)

where

b1 = (2, 1, 1, 0, 0, 0,−1, 0, 0)′ and b2 = (1, 3, 0, 0, 0, 0,−1, 0, 0)′. (87)

Having calculated B1, . . . , B9 in this way, we obtain the matrix B from (22) and then the
covariance matrix Σ by (26); the result is shown in Appendix A. However, to evaluate
the joint distribution of the fringe subtrees T 1 and T 2 described above, we only need the
submatrix

Γ =

(
σ7,7 σ7,9

σ9,7 σ9,9

)
=

( 157523
72872800

− 2884319
194424630400

− 2884319
194424630400

5681341
6943736800

)
. (88)

Note that we can also use this urn to calculate the asymptotic variance σ2
1 for the

number of leaves in the random quaternary search tree; we get

σ2
1 = (0, 1, 1, 1, 1, 1, 2, 1, 1)Σ(0, 1, 1, 1, 1, 1, 2, 1, 1)′ =

5276

122525
. (89)

We can alternatively obtain σ2
1 by using the simple Pólya urn with the four types illus-

trated in Figure 7. (As another simple example of Theorem 3.2 and the construction in
Section 5, see also [22, Section 5.2] for a minor variation of this urn.) The intensity matrix
is

A =


−1 0 0 12

1 −2 0 4
0 2 −3 0
0 0 3 −4

 . (90)

The eigenvalues are, by direct calculation or by Theorem 6.2,

1,−7
2

+
√

23
2
i,−7

2
−
√

23
2
i,−4. (91)
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Type 4Type 1 Type 2 Type 3

Figure 7: The different types used to study the number of leaves in a quaternary search
tree.

Since A is diagonalisable we may again use Theorem 4.1(iii) to calculate Σ. We obtain

Σ =


34466
122525

153
49010

− 963
24505

− 10393
245050

153
49010

519
4901

− 339
9802

− 681
24505

− 963
24505

− 339
9802

276
4901

− 57
3770

− 10393
245050

− 681
24505

− 57
3770

4391
122525

 . (92)

From Σ we see that the asymptotic variance for the number of leaves in a random qua-
ternary search tree is

(0, 1, 1, 1)Σ(0, 1, 1, 1)′ =
5276

122525
, (93)

which equals the result in (89).

11.3 Example of Theorem 3.11 when k = 3

We consider the case when we want to evaluate σ2
3 in Theorem 3.11 in the case of a linear

preferential attachment tree. As explained in Section 2.2, only the quotient χ/ρ matters,
and thus we may assume that χ ∈ {−1, 0, 1}. For (notational) simplicity, we consider only
the case χ = 1 in the formulas below; the cases χ = 0,−1 (and general χ) are similar but
are left to the reader. The final results will be expressed in the parameter κ = ρ/(χ+ ρ)
in (14); these results are valid for all values of χ and ρ. (This follows either by checking
the other cases, or by analytic continuation, since the eigenvector v1 and the integral (23)
are analytic functions of (χ, ρ) in a suitable domain.)

We use the construction of the Pólya urn in Section 7.2, with S ′ the set of (unordered)
trees with at most 3 nodes. (Cf. Example 5.1 for m-ary search trees.) This gives an urn
with the following 5 different types, see Figure 8:

1: An empty node.

2: A path with two nodes.

3: A path with three nodes.
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Type 4 Type 5

Type 1 Type 2 Type 3

*

Figure 8: The different types used to study the number of fringe subtrees with three nodes
in a preferential attachment tree.

4: A tree consisting of one root with two children.

5: A special type (with activity 1).

We get the intensity matrix as in the examples in Section 11.1 and Section 11.2. We
describe one example of a transition, the others are similar. If we draw a type 3 it is
replaced by, see Figure 9,

• 1 of type 1, 1 of type 2, and 2 + ρ of type 5 with probability 1+ρ
2+3ρ

;

• 1 of type 4 and 1 + ρ of type 5 with probability 1+ρ
2+3ρ

;

• 1 of type 3 and 1 + ρ of type 5 with probability ρ
2+3ρ

.

The intensity matrix is

A =


−ρ 0 ρ+ 1 5ρ+ 6 1

ρ −2ρ− 1 ρ+ 1 2ρ 0

0 ρ −2ρ− 2 0 0

0 ρ+ 1 ρ+ 1 −3ρ− 2 0

0 0 3(ρ+ 1)2 3(ρ+ 1)(ρ+ 2) 1

 . (94)

The eigenvalues are, simplest by Theorem 8.2,

ρ+ 1,−ρ,−2ρ− 1,−3ρ− 2,−3ρ− 2.

It again turns out that A is diagonalisable. To calculate Σ we apply Theorem 4.1(iii). We
again have to first calculate Bi and B in (21)–(22).
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*

Type 3

Type 3

Type 3

(1+ρ)/(2+3ρ)

(1+ρ)/(2+3ρ)

ρ/(2+3ρ)

*

*

Type 1+Type2+(2+ρ).Type5

Type 4+(1+ρ).Type5

Type 3+(1+ρ).Type5

Figure 9: The three possibilities for adding an additional node to a tree of type 3 in Figure
8.

Note that the activity vector a = (ρ, 1 + 2ρ, 2 + 3ρ, 2 + 3ρ, 1) and it again follows that
the left eigenvector u1 = a. The eigenvector v1 (with the normalisation (20)) is calculated
to be

v1 =
1

(2ρ+ 1)(3ρ+ 2)(4ρ+ 3)

(
6(ρ + 1)2, 3ρ(ρ + 1), ρ2, ρ(ρ + 1), 6(ρ + 1)3

)
. (95)

We express this using κ in (14), which yields

v1 =
1

(κ+ 1)(κ+ 2)(κ+ 3)

(
6(1 − κ), 3(1 − κ)κ, (1 − κ)κ2, (1 − κ)κ, 6

)
. (96)

Recall from the proof of Theorem 3.9 (of which Theorem 3.11 is a direct consequence)
that µ = λ1v1, where λ1 = ρ + 1 = 1/(1 − κ). The fringe subtrees with three nodes
correspond to type 3 and type 4, so Yn,3 = Xn,3 + Xn,4. Hence, from (61) and (96) we
obtain

EYn,3 =
1

1− κ
(1− κ)κ2 + (1− κ)κ

(κ+ 1)(κ+ 2)(κ+ 3)
n+O(1) =

κ

(κ+ 2)(κ+ 3)
n+O(1), (97)

which agrees with Theorem 3.11 and (18).
We next calculate Bi = E(ξiξ

′
i) in (21); we take B3 as an example, where we get, see

Figure 9,

B3 = 1+ρ
2+3ρ
· b1b

′
1 + 1+ρ

2+3ρ
· b2b

′
2 + ρ

2+3ρ
· b3b

′
3, (98)
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with

b1 = (1, 1,−1, 0, ρ+ 2)′, (99)

b2 = (0, 0,−1, 1, ρ+ 1)′, (100)

b3 = (0, 0, 0, 0, ρ+ 1)′. (101)

We then find the matrix B. Finally, the eigenvectors ui and vi are calculated for all
eigenvalues and the covariance matrix Σ is calculated by (26). The covariances are listed
in Appendix B, again using the notion κ in (14). As said above, these formulas are valid
for all χ and ρ.

Returning to the number of fringe subtrees of order 3 we thus obtain

σ2
3 = (0, 0, 1, 1, 0)Σ(0, 0, 1, 1, 0)′ = Σ3,3 + 2Σ3,4 + Σ4,4

=
3κ (11κ3 + 52κ2 + 77κ+ 30)

2(κ+ 2)(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
.

(102)

We can check that this formula yields previously known results (obtained by other meth-
ods) in the three most important special cases, Examples 2.3–2.5.

For the random recursive tree, κ = 1 and (102) yields σ2
3 = 17/336, which equals

the result given by Devroye [8, Theorem 4], where σ2
k was calculated for general k (using

different methods), see also [16] and [21, Proposition 1.13 and (1.20)].
For the binary search tree, κ = 2 and (102) yields σ2

3 = 8/175, which agrees with the
result by Devroye [8, Theorem 5] (for general k), see also [21, Proposition 1.10].

For the plane oriented recursive tree, κ = 1/2 and (102) yields σ2
3 = 663/15680. This

variance was calculated, for general k, by Fuchs [17, Theorem 1.1] by other methods
(generating functions).

Remark 11.1. There is a mistake in the formula for the asymptotic variance in [17,
Theorem 1.1]: the numerator 8k2− 4k− 8 should be 8k2− 4k. (The reason is that in the
calculation of Var(Xn,k) on [17, p. 419], there should be a plus sign in front of 4

(4k2−1)2

instead of a minus sign.) With this correction, (102) (with κ = 1/2) agrees with the value
for k = 3 of the formula in [17, Theorem 1.1], and the values for σ2

1 and σ2
2 obtained below

agree with the values of the formula for k = 1, 2.

Note that we can use the Pólya urn in this example to calculate also σ2
1 and σ2

2, i.e. the
constants in the asymptotic variances for the numbers Yn,1 and Yn,2 of fringe subtrees of
size 1 and 2 in a linear preferential attachment tree. Note that Yn,1 is simply the number of
leaves, i.e., the number of nodes of out-degree 0. We have Yn,1 = Xn,1 +Xn,2 +Xn,3 +2Xn,4

and Yn,2 = Xn,2 +Xn,3, see Figure 8. Thus, again using Appendix B,

σ2
1 = (1, 1, 1, 2, 0)Σ(1, 1, 1, 2, 0)′ =

κ

(κ+ 1)2(2κ+ 1)
, (103)

σ2
2 = (0, 1, 1, 0, 0)Σ(0, 1, 1, 0, 0)′ =

κ (5κ2 + 10κ+ 6)

(κ+ 1)(κ+ 2)2(2κ+ 1)(2κ+ 3)
. (104)
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However, these values can also be obtained by smaller urns, yielding simpler calculations,
for examples by the urn with only types 1, 2 and 5 (the special type) above. For k = 1
it suffices to use the urn with two colours and intensity matrix (59) used in the proof of
Theorem 8.2, see Example 12.5.

We can again check that the results agrees with known results when κ = 1, 1
2
, 2. For

the random recursive tree (κ = 1), (103)–(104) yield σ2
1 = 1/12 and σ2

2 = 7/90, as shown
in [8, Theorem 4], see also [21, Proposition 1.13]; for the plane oriented recursive tree
(κ = 1/2) we obtain σ2

1 = 1/9 and σ2
2 = 49/600, as shown in [37] and [17, Theorem

1.1] (see Remark 11.1); for the binary search tree (κ = 2) we obtain σ2
1 = 2/45 and

σ2
2 = 23/420, as shown in [8, Theorem 5], see also [16] and [21, Proposition 1.10].

12 Degrees

By using (simpler) variants of the Pólya urns described above for studying fringe subtrees
in m-ary search trees and preferential attachment trees, we can also easily prove normal
limit theorems for the out-degrees of the nodes in both of these models.

12.1 Out-degrees in m-ary search trees

We first consider m-ary search trees for which by out-degree we mean the number of
internal children. The following theorem was recently proved by Kalpathy and Mahmoud
[31] using a Pólya urn (based on gaps instead of nodes) that is equivalent to the one used
here. (A simpler version, Am in the proof below, was used in [22] to study the special case
of the number of leaves.) We nevertheless sketch a proof in order to show the connections
with the analysis in the previous sections, and in particular the induction argument for
the eigenvalues. (In [31], the eigenvalues were calculated numerically.)

Theorem 12.1. Let Dn,k be the number of nodes with out-degree k in the random m-ary
search tree Tn. If m 6 26, then, as n→∞,

Dn,k − µkn√
n

d−→ N (0, σ2
k), (105)

with

µk =

{
m−1

2(Hm−1)(m+1)
, k = 0,

1
(Hm−1)m(m+1)

, 1 6 k 6 m,
(106)

where σ2
k is some positive constant.

Proof. We construct a Pólya urn by chopping up the m-ary search tree as in Section 5,
but we now erase all edges from parents to internal children, keeping only the edges to
external children. Hence, the small trees in the resulting forest, which are represented by
balls in the urn, are of the following 2m− 1 types. (We regard the trees as unordered.)

• A single internal node with 1, . . . ,m− 2 keys.
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Type 1 Type 2 Type 3 Type 4

Type 5 Type 6

Figure 10: The alternative types used to characterize the out-degrees in a quaternary
search tree.

• A root with m− 1 keys and 0, . . . ,m external children.

We can simplify a little by noting that the type consisting of a root with 0 external
children is dead (activity 0) so it does not affect the evolution of the urn and can be
ignored (although it should be included in the final count of node degrees; it represents the
nodes of degree m). Moreover, the type with 1 external child can instead be represented
by a single external node (although it should be counted as a node of degree m−1). This
yields a Pólya urn with the following 2m − 2 types. (See Figure 10, which shows such
alternative types in the case m = 4.)

1, . . . ,m− 1 Type i is a single node with i − 1 keys. There are i gaps and thus the
activity ai = i.

m, . . . , 2m− 2 Type i is a node with m − 1 keys and 2m − i external children. The
activity ai = 2m− i. (The out-degree is i−m.)

If we draw a ball of type i 6 m − 2, it is replaced by a ball of type i + 1. Similarly, a
ball of type m− 1 is replaced by a ball of type m. A ball of type i ∈ {m, . . . , 2m− 3} is
replaced by a ball of type i+ 1 and a ball of type 2. A ball of type 2m− 2 is replaced by
a ball of type 1 and a ball of type 2.

For our induction argument, we also consider a reduced urn with types 1, . . . , k, for
m − 1 6 k 6 2m − 2, obtained by chopping up also all trees of types j > k. In other
words, we replace a ball of type j > k by 2m− j balls of type 1. (Just as we already have
cut up trees with a single external child.) This reduced urn thus ignores all nodes with
m− 1 keys and degree > k −m.

Let Ak be the intensity matrix of this urn with k types. When a ball is drawn, there
will never be a ball of the same type in the set of balls replacing it. Hence every ξii = −1
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and the diagonal elements of Ak are −ai, where ai is the activity of type i. For k = m−1,
the reduced urn is the same as the urn with the m − 1 first types in Section 6, so Am−1

is given by (35) and its eigenvalues are the roots of φm(λ) :=
∏m−1

i=1 (λ + i)−m!. It now
follows by the same induction argument as in Section 6 that the eigenvalues of Ak are the
roots of φm plus {−m,−(m− 1), . . . ,−(2m− k)}. In particular, taking k = 2m− 2, the
eigenvalues of the intensity matrix A = A2m−2 are the eigenvalues of φm plus the negative
numbers −2, . . . ,−m.

Hence, for every eigenvalue λ 6= λ1 = 1, Reλ 6 max(γm,−2) 6 max(γm, 0), cf. (41),
and thus Theorem 4.1 applies when m 6 26. The rest of the proof is as in the proof of
Theorem 3.2 and other proofs above. The constants (106) can be found either by finding
the eigenvector v1 of the intensity matrix A explicitly, as in [31], or by comparison with
[23, Theorems 7.11 and 7.14] (proved using branching processes).

Finally, σ2
k > 0 by another application of [27, Theorem 3.6] and the fact that Dn,k is

not deterministic for all n, as is easily seen.

12.2 Out-degrees in preferential attachment trees

Mahmoud and Smythe [36] used a Pólya urn to show asymptotic normality for the numbers
of nodes of out-degrees 0, 1 and 2 in a random recursive tree, and Mahmoud, Smythe and
Szymański [37] did the same for a plane oriented recursive tree; these results were extended
to arbitrary degrees by Janson [25]. We can extend this to general linear preferential
attachment trees (using essentially the same urn).

In the case χ < 0, when we can assume χ = −1 and ρ = m for some integer m, the
resulting tree has no nodes of out-degree > m, and we consider only out-degrees k 6 m
in the following theorem; otherwise k is arbitrary. For the asymptotic proportions µk in
(108), see also [23, (6.33)].

Theorem 12.2. Let D̂n,k be number of nodes with out-degree k in the linear preferential
attachment tree Λn defined by the weights (1). Then, as n→∞,

D̂n,k − µkn√
n

d−→ N (0, σ2
k), (107)

with some σ2
k > 0 and

µk =
w1

w0 + w1

k∏
i=1

wi−1

wi + w1

=
χ+ ρ

χ+ 2ρ

k∏
i=1

χ(i− 1) + ρ

χ(i+ 1) + 2ρ
. (108)

Proof. As in Section 7, we begin by constructing an urn with infinitely many types. The
types are {0, 1, 2, . . . }, and a ball of type i simply represents a node of out-degree i. The
activity of type i is thus ai = wi = χi + ρ, see (1). When a ball of type i is drawn, it is
replaced by a ball of type i+ 1 and a ball of type 0. (In the case χ < 0, we consider only
a finite number of types so we have a finite urn; we leave the minor modifications in this
case to the reader.)

the electronic journal of combinatorics 24(2) (2017), #P2.51 43



To get an urn with finitely many types, we truncate as in Section 7.2 (and [25]); we
choose an integer k > 0 and use the k + 2 types {0, 1, . . . , k} ∪ {∗}, where the new type
∗ represents the activity of the nodes with out-degrees > k. Hence, ∗ has activity 1. If
we draw a ball of type i < k, we replace it by a ball of type i+ 1 and a ball of type 0, as
before; if we draw a ball of type k, we replace it by a ball of type 0 and wk+1 = (k+1)χ+ρ
balls of type ∗; if we draw a ball of type ∗, it is replaced and we add χ additional balls of
type ∗ and a ball of type 0.

Let Ak+2 denote the (k + 2)× (k + 2) intensity matrix of this urn. For k = 0 we have
the same urn as in the proof of Theorem 8.2, so A2 is given by (59) with the eigenvalues
χ+ρ and −ρ. As in the proof of Theorem 6.2, the eigenvalues of Ak are inherited by Ak+1,
and a simple induction shows that the eigenvalues of Ak+2 are χ+ρ and −wj = −(χj+ρ)
for 0 6 j 6 k. In particular, all eigenvalues except λ1 = χ + ρ are negative. Hence
Theorem 4.1 applies and the proof is completed as the other proofs. The constants µk
can be found by verifying directly that (108) yields an eigenvector of the intensity matrix
A for the infinite urn, and thus it is mapped to an eigenvector for Ak+2 by the truncation
above. Alternatively, we can use [23, (6.14)]. The claim that σk > 0 follows, as before,
from [27, Theorem 3.6] and the easy fact that D̂n,k is non-deterministic.

Remark 12.3. We can modify the urn in the proof of Theorem 12.2 to an equivalent
one by changing each ball of type i 6 k to wi new balls of type i; the new balls all have
activity 1 and can be interpreted as gaps. (This is the urn actually used in [25].) The new
intensity matrix Ak+2 has the same eigenvalues as the old one, but it has the advantage
that it is homogeneous of degree 1 in ρ and χ, i.e., each entry is a linear combination of
χ and ρ.

Remark 12.4. In both cases, we also obtain asymptotic joint normal distributions of the
numbers Dn,k and D̂n,k for different k.

Example 12.5. The simplest case is k = 0, when D̂n,0 is the number of leaves in Λn. In
this case, (108) yields

µ0 =
w1

w0 + w1

=
χ+ ρ

χ+ 2ρ
=

1

κ+ 1
. (109)

Moreover, the proof above yields the urn with two colours and intensity matrix A2 given
by (59). The eigenvalues of A2 are by direct calculation or by Theorem 8.2, λ1 = χ + ρ
and −ρ. Simple calculations show that

B =

 ρ+χ
2ρ+χ

χ(ρ+χ)
2ρ+χ

χ(ρ+χ)
2ρ+χ

(ρ+χ)(ρ2+χρ+χ2)
2ρ+χ

 (110)

and the covariance matrix Σ is, using, for example, Theorem 4.1(iii) again,

Σ =

 κ
(κ+1)2(2κ+1)

κ2

(κ−1)(κ+1)2(2κ+1)

κ2

(κ−1)(κ+1)2(2κ+1)
κ3

(2κ+1)(κ2−1)2

 . (111)
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Thus, the asymptotic variance of the number of leaves is

σ2
1 = (1, 0)Σ(1, 0)′ =

κ

(κ+ 1)2(2κ+ 1)
, (112)

which equals the result in (103). (This was shown for the random recursive tree and the
binary search tree in [8], and for the plane oriented recursive tree in [37].)

Example 12.6. We also consider the case when k = 1. In this case the proof above yields
the urn with three colours and intensity matrix A3 given by

A3 =

 0 ρ+ χ 1
ρ −ρ− χ 0
0 (ρ+ χ)(ρ+ 2χ) χ

 . (113)

The eigenvalues of A3 are λ1 = χ+ ρ, −ρ and −(χ+ ρ). Simple calculations show that

B =


ρ+χ
2ρ+χ

− ρ
2(2ρ+χ)

(ρ+χ)(ρ+2χ)
2(2ρ+χ)

− ρ
2(2ρ+χ)

3ρ
2(2ρ+χ)

−ρ(ρ+2χ)
2(2ρ+χ)

(ρ+χ)(ρ+2χ)
2(2ρ+χ)

−ρ(ρ+2χ)
2(2ρ+χ)

(ρ+χ)2(ρ+2χ)
2(2ρ+χ)

 (114)

and, for example, using Theorem 4.1(iii),

Σ =


κ

(κ+1)2(2κ+1)
− κ(2κ2+3κ+2)

2(κ+1)2(κ+2)(2κ+1)
κ(2−κ)

2(κ+1)2(κ+2)(2κ+1)

− κ(2κ2+3κ+2)
2(κ+1)2(κ+2)(2κ+1)

κ(2κ3+25κ2+32κ+12)
12(κ+1)2(κ+2)(2κ+1)

−κ(2−κ)(10κ2+13κ+6)
12(κ+1)2(κ+2)(2κ+1)

κ(2−κ)
2(κ+1)2(κ+2)(2κ+1)

−κ(2−κ)(10κ2+13κ+6)
12(κ+1)2(κ+2)(2κ+1)

κ(2−κ)(10κ2+7κ+6)
12(κ+1)2(κ+2)(2κ+1)

 . (115)

In the upper left corner, we find again σ2
1 in (103) and (112).

The upper left 2× 2 submatrix of Σ, giving the asymptotic variances and covariance
of the numbers of nodes of out-degrees 1 and 2, was found in [8] for the binary search tree
(κ = 2), in [36] for the random recursive tree (κ = 1) and in [37] for the plane oriented
recursive tree (κ = 1/2), see also [25].
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A The covariance matrix Σ in Section 11.2

Σ
= 
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B The covariances in the matrix Σ in Section 11.3

Σ1,1 =
κ (−14κ5 − 73κ4 + 131κ3 + 1438κ2 + 3018κ+ 2070)

(κ+ 1)(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ1,2 =
3κ (2κ6 + 37κ5 + 124κ4 − 55κ3 − 900κ2 − 1488κ− 720)

4(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ1,3 =
κ2 (10κ5 − 47κ4 − 664κ3 − 2083κ2 − 2592κ− 1080)

4(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ1,4 =
κ (10κ5 − 47κ4 − 664κ3 − 2083κ2 − 2592κ− 1080)

4(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ1,5 = −κ (20κ6 + 104κ5 − 69κ4 − 1088κ3 − 1307κ2 + 1224κ+ 2160)

2(κ− 1)(κ+ 1)(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ2,2 =
3κ (17κ6 + 145κ5 + 507κ4 + 929κ3 + 976κ2 + 612κ+ 180)

2(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ2,3 = − κ3 (80κ4 + 579κ3 + 1558κ2 + 1803κ+ 720)

4(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ2,4 = − κ2 (80κ4 + 579κ3 + 1558κ2 + 1803κ+ 720)

4(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ2,5 =
κ (28κ7 + 264κ6 + 829κ5 + 816κ4 − 515κ3 − 702κ2 + 1152κ+ 1080)

4(κ− 1)(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ3,3 =
κ2 (49κ4 + 276κ3 + 539κ2 + 396κ+ 90)

2(κ+ 1)2(κ+ 2)(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ3,4 = − κ3 (16κ3 + 87κ2 + 152κ+ 75)

2(κ+ 1)2(κ+ 2)(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ3,5 = − κ2 (4κ6 + 64κ5 + 251κ4 + 194κ3 − 729κ2 − 1488κ− 720)

4(κ− 1)(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ4,4 =
κ (16κ5 + 120κ4 + 341κ3 + 462κ2 + 321κ+ 90)

2(κ+ 1)2(κ+ 2)(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ4,5 = − κ (4κ6 + 64κ5 + 251κ4 + 194κ3 − 729κ2 − 1488κ− 720)

4(κ− 1)(κ+ 1)2(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
;

Σ5,5 =
κ (−4κ7 − 4κ6 + 147κ5 + 574κ4 + 610κ3 − 51κ2 + 132κ+ 630)

(κ− 1)2(κ+ 1)(κ+ 2)2(κ+ 3)2(2κ+ 1)(2κ+ 3)(2κ+ 5)
.
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