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Let f = {f.}n>0 be the Fibonacci sequence that is the fixed point of the Fibonacci
morphism ¢ defined by 0 — 01, 1+~ 0. The Fibonacci sequence f occurs in the study of
combinatorics on words, number theory, dynamical system, quasi-crystals, etc.; see [1, 2,
13, 18] and references therein. It is well known that f is a characteristic Sturmian word of
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slope 1/¢? where ¢ = %g is the golden ratio. In [9, 10, 11], several generalizations of the
Fibonacci sequence were given, and they were proved to be characteristic Sturmian words
of irrational slopes, whose simple continued fraction expansions are periodic sequences
with period 1 and 2.

The previous extensions of f are all on the alphabet of 2 letters. There are also
extensions on alphabets containing at least 3 letters. A famous one is the Tribonacci
sequence, which is the fixed point of Rauzy substitution 0 — 01,1 — 02,2 — 0. Rauzy
8] studied the dynamical and geometrical aspects of the Tribonacci sequences; see also
[18]. For an extension to an alphabet of m letters, see [15]. In this paper, we study the
following extension of the Fibonacci sequence to an infinite alphabet.

Consider the morphism ¢ (over N) which is given by

¢ (20) > (20)(2i + 1) and (2i + 1) > (2i +2), for all i > 0.

The infinite Fibonacci sequence F = {F;};>0 is the fixed point of ¢ starting by 0. The
first several terms of F and f are

F=012232342344523445456---
f=010010100100101001010---

It is easy to see that F = f (mod 2), since ¢ is reduced to ¢ while modulo 2. In this
sense, these two sequence are similar. Hence the infinite Fibonacci sequence F may inherit
some combinatorial properties of the Fibonacci sequence f. For example, since ‘11’ does
not occur in f, two adjacent elements in F can not be both odd numbers. However, F
also has some properties that f does not have. For example, one can find arbitrarily
long palindromes in f ([27, Property 2]); while in F, there are no palindromes of length
larger than 3 (see Proposition 27). In general, the sequence F (mod k) is a substitution
sequence up to a coding (see Section 6).

In [27], Wen and Wen studied the Fibonacci sequence f by analyzing singular words of
f. They proved that the adjacent singular words of the same order are positively separated,
and gave a decomposition of f using singular words. Levé and Séébold [5] studied the
singular factorization of the Fibonacci sequence and its conjugates. Melancon studied the
Lyndon factorization of the Fibonacci sequence in [6, 7]. Tan and Wen [4] studied the
singular words of Sturmian sequences and Tribonacci sequence. In [26], Huang and Wen
studied the occurrence of arbitrary factors of f and gave a quite general decomposition of
f. The study of singular words have applications in the study of combinatorics on words
3, 16, 22, 23, 24] and Padé approximation [14, 21], etc.

There are many works devoted to the study of the substitution sequences and the
automatic sequences over infinite alphabets. For the research of infinite-state automata
see for example [12, 20] and a survey [25]. For the study of substitution sequences over
an infinite alphabets, see for example [19].

In this paper, we first investigate the growth order of F),, and show that for alln > 1,

0< F, <clogn
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where ¢ is a constant (see Remark 6). Then we turn to study the digit sum problem of
F. We give an exact form of the digit sum of ¢"(0) (n > 1) in Theorem 13, and give a
formula for the digit sum of the first n digits of F in Theorem 15. Inspired by the work of
Wen and Wen [27], we also study the decomposition (factorisation) of F. In fact, we give
the following three decompositions. The first one is a decomposition using its (slightly
modified) prefixes (see Theorem 16). The second one is a decomposition using singular
words of letter 2 whose lengths are Fibonacci numbers (see Theorem 17). The third one
is a decomposition using singular words of a fixed order (see Theorem 19). The main
difference here is that the singular words (defined in Section 5) in F are defined to be
classes of words, and while modulo 2, the singular words in F are only part of the singular
words in f which is defined in [27].

This paper is organized as follows. In Section 2, we state some basic notation and def-
initions. In Section 3 and Section 4, we study the growth order of the terms of the infinite
Fibonacci sequence F and its digit sums. In Section 5, we give three decompositions of
F. In the last section, several other properties of F are given.

2 Preliminary

Let A = {ag,ai, -+ ,a,, -} be an (infinite) alphabet. A* denotes the set of all words
of length k& on A, and A* denotes the set of all finite words on A. The length of a finite
word w € A* is denoted by |w|. For any V,W € A* we write V' < W when the finite
word V' is a factor of the word W, that is, when there exist words U, U’ € A*, such that
W =UVU'. We say that V is a prefiz (resp. suffiz) of a word W, and we write V< W
(resp. V > W) if there exists a word U’ € A*, such that W = VU’ (resp. W = U'V).

Let u = upuqusg - - - u, be a finite word (or u = wgujus -+ - u, - -+ be a sequence). For
any ¢ < j < n, define ufg, j] := w1 - - - uj_1u,.

Denote by W' the inverse of W, that is, W™ = wy' - wy'w;' where W =
wywsy - - w,. If Vois a suffix of W, we can write WV~! = U, with W = UV. This
makes sense in A*, since the reduced word associated with WV ~! belongs to A*. This
abuse of language will be very useful in what follows.

For a sequence u = (uy),>o and an integer k > 0, we denote u @ k := (up, + k)n>o-

3 Growth order of the infinite Fibonacci sequence

In this part, we shall study the growth order of the terms of the infinite Fibonacci sequence.
For this purpose, we first give some basic rules of the digits in F', which reveal the growth
order of the sequence F.

Theorem 1. For any k > 1, we have
O (2 +j) = ¢"(j) & (20)

for any i,j = 0.
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Proof. When k = 1, the result follows from the definition of ¢. Now suppose the result
holds for all k& < n, we shall prove it for n + 1. Suppose j is even. For any ¢ > 0,

¢ (20 +j) = ¢"(2i + j)¢"(2i +j + 1)
= [¢"() @ (20)][0" (1 + 1) & (20)]
=[¢"(7)¢"(J + 1)] @ (20)
= ¢""(5) @ (29).
When j is odd, we have for any i > 0,
¢" 20+ 5) = ¢"(2i + 5 + 1)
— "+ 1) @ (20)
= ¢""'(5) @ (20).
This completes the proof. O
Letting j = 0 in Theorem 1, we have the following result.

Corollary 2. For all k> 1 andi > 0, |¢*(24)| = |¢*(0)].

Recall that for any n > 0, the Fibonacci number L,, counts the number of 1’s in ¢™(0)
(or sums the digits of ¢"(0)), and L, represents the length of ¢™(0). It is worth to
remark that for n > 1,

Lypyi=1Ly+ Ly,

where Lo =0 and L; = 1.
Lemma 3. For all k >0, |¢*(0)| = Ly.o.

Proof. Note that ¢ (mod 2) is the Fibonacci morphism o. So |¢*(0)| = |¢*(0)| = Ly
for all £ > 0. ]

Proposition 4. For anyn > 2,1 > 0,
(n+i—1)(n+1) > ¢"(3).
Moreover, n + i is the largest digit in ¢"(i).

Proof. We first prove this result for i = 0. Note that ¢"(0) is a prefix of F, and according
to Lemma 3, |¢"(0)| = Ly42. So Fr, ,—1 and Fy ., o are the last and the penultimate
digits of ¢™(0). Now we will show by induction that for all n > 2,

{ The largest digit of ¢"(0) is n; )

Fr,,,ci=mnand Fr,_, o=n—1

It is easy to check that (1) holds for n = 2. Assume that (1) holds for all m < n. We
shall check it for m = n + 1. Note that

¢™(0) = ¢"(0)¢" " (2) = ¢"(0)(¢"'(0) & 2) (2)
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and by the induction hypothesis the largest digits of ¢™(0) and ¢"'(0) & 2 are n and
n + 1 respectively. So the largest digit of ¢"*1(0) is n + 1.
Since Fy,, .,—2F1,, ,—1 > ¢™(0), by (2), we have

Frpr2Fr, 1> (0"71(0) @2)
which implies
FL :FLH+1_2+2:naHdFLm+2_1:FLH+1_1+2:TL+1.

m+2_2

Therefore, (1) holds.
Suppose « and [ are the last two digits of ¢™ (7). When i = 2k + 1, we have

¢"(i) = ¢"(2k + 1) = ¢" 71 (2k +2) = ¢"(0) & (2k +2),
where the last equality follows from Theorem 1. So

OJZFLTL+1,2—|—2]€+2:TL+2]€:TL—|—Z'—1,
ﬁzFLn+1_1+2k+2:n+2k+1=n+2,
and the largest digit of ¢™(¢) is n — 1 + 2k + 2 = n + i. The case ¢ = 2k is similar. O

The above result implies that the digits in F can be arbitrary large. However, there
are also infinitely many small digits, say ‘2" and ‘3’ in F.

Proposition 5. For anyn >4, Fi, =2 and Fr,+1 = 3.

Proof. By the definition of F, for any k > 2, ¢**1(0) = ¢*(0)¢*~1(2) is a prefix of F.
Since |¢¥(0)| = Lyi2, we know that Fi,,,Fr, ,41 is a prefix of ¢*~1(2). Tt follows from
the definition of ¢ that Fr, ,Fr, .41 = 23 for any k > 2. O

Remark 6 (The growth order of {F,,},>0). Using Proposition 5, we have
2

n1_>r£10 log L, - nl—g}o log L, -

On the other hand, Proposition 4 gives

FLn,1 . n—2 1

lim —————— = lim =
Nn—00 — n—00 ot ’
—oo log(L, — 1) —0 Jog( o 1) log~y
where v = %5 and ¢ = %5 This implies the limit of F),/n does not exist. However,
we have 7 7 .
liminf — = 0 and limsup —— = .
n—oo logmn n—oo logmn  log~y

The first one is trivial. For the limsup we know from Proposition 4 that

if L, <n< Lk:-i—la then F, < FLk+1—1‘
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Let k = k(n) such that Ly < n < Lgy1. Then
logn > log Ly = klog~y + O(1).
Note that F,, < Fr,,,—1 =k — 1. We have

Fp .. k—1 1
lim sup < lim sup R T sup = .
n—oo 10gM n—soo  logm n—oo logm  logvy

Hence, we have 0 < F), < clogn, for any n > 1, where c is a constant.

Next, we will show that the block of length L, in F from position L,.5 + 1 to
position L, 3 is exact ¢"1(2).

Proposition 7. For anyn > 1, F, ,Fr, 11 Fr,..-1 = 0" 1(2).
Proof. Since ¢"*(0) = ¢™(0)¢"1(2), and [¢"(0)] = L, 12, we have

¢ N2) = Fr, o Froor1 o Fr g1 O
Corollary 8. Foranyn >4, 0<:< L, — 1, we have

_ 27 Zf0<Z<Ln—1_]-;
F”L"_F"_{ 0, if Ly_1 <i<L,—1.

Moreover, form=1andn =2, I} — Fy=1, forn=3, Fb —Fy=2, F5— F, =1.
Proof. For 0 <i < L,_1 — 1, we have known
FoFy - Fr, -1 = ¢"%(0).
By Proposition 7, we have
Fr, Fro-Fr,, 1 =¢"7(2).

Since ¢"3(2) = ¢"3(0) @ 2, it follows that Fj,, — F; = 2.
For L, <1i < L, — 1, from Proposition 7, we have

Fro  Fr, o1 Fr,1=¢"(2).
By Proposition 7, we have
FLn+1FLn+1+1 e FLn+1+Ln—1_l < ¢n_2(2)7

and ¢"4(2) is also the prefix of ¢"2(2) with the length L,_», which is also the length of
FLn+1FLn+1+1 t FLn+1+Ln71_1. Then

_ 4n—4 —
FLn‘i’LnleLn“l’Lnfl‘i’l U FLn+Ln*1 - ¢ (2) - FLTL*].FL7L*1+1 T FLnfl

Thus, Fiyp, — F; = 0. O
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From previous discussions, we know that

e 1 is the largest digit of ¢™(0). 0 is the smallest digit of ¢"(0).
e n occurs only once in ¢™(0). Moreover, n > ¢™(0).

e 0 occurs only once in ¢™(0).

It is natural to ask the location of ‘n — 1’ in ¢"(0). For this purpose, we need the
following decomposition of ¢™(0).

Lemma 9. For anyn >0, let k = "], Then

6" (0) = (H aﬁ"—l—”(%)) n,

i=0
Proof. Assume that n — 1 = 2k + j, where j = 0 or 1. Then
¢"(0) = ¢"7'(01) = ¢"(0)¢" (1)
= ¢"0)9" P (2)¢" 7 (3)
= ¢"7(0)¢"(2)¢" T (4)¢"°(5)

k
= (H 925”12"(22')) ¢ (n—j),
i=0
where ¢/ (n — j) = ¢°(n) = n when j =0, and ¢’(n — j) = ¢(2k + 1) = 2k + 2 = n when
j=1. [l
Proposition 10. Let n — 1 = 2k + j, where j = 0 or 1. Then the letter n — 17 occurs

(k+1) times in ¢™(0). Moreover, the l-th ‘n—1"in ¢™(0) is the P(n,l)-th digit of ¢"(0),
where forl=1,--- [ k+1,

-1
P(n,l) = ZLnH—zi-
i=0

Proof. By Lemma 9, we know that

k
¢"(0) = (H an_l_%(%)) "n.
i=0
By Proposition 4, we have ‘n — 1’ occurs only once in ¢"~17%(2i) (at the end). Note that
|"172(24)| = Ly 41-2;- We know that the i-th ‘n — 17 in ¢™(0) is
6" (0)" 1 72(2) -+ "D (2(1 - 1)] -th digit
of ¢™(0). Moreover,
P(n,1) = [¢"(0)¢" 1 72(2) - ¢" AN (2(1 - 1)
which completes the proof. ]

Remark 11. In the same process, one can also locate ‘n —2’ in ¢™(0) and then ‘n — 3" and
so on. However, the formulae would not be nice to read.
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4 Digit sum

This section is devoted to study the digit sum of the Fibonacci sequence and the gener-
alized Fibonacci sequences. For any integer sequence ¢ = cocy - - -, the digit sum of first

n-terms is denoted by
n—1
Se(n) := Z Ci-
=0

Let (n)r := aya,_1---ap be the unique Fibonacci representation of a non-negative
integer n (see [13, Section 3.8]). That is

n = Z aiLi+2 (3)
1=0

where a; =0 or 1, a, # 0 and a;a;.1 =0 for 0 <7 < r.
For any n > 0 with Fibonacci representation (n)pg = a,a,_1 - - - ag, we have

St(n) = Z a;L;. (4)

In fact, consider the word w := ¢(0)c™(0) - - 0% (0), where the indexes {i\}i_, satisfy
to < r and for all k, a;, # 0 and ix41 < 7. Moreover,

t t r
jw] =) "|0™(0)| =) Lip2 =) a;Liis=n.
k=0 k=0 =0

Since w < o(w), w is the prefix of f. Therefore (4) holds.

4.1 Digit sum of F

For the digit sum of the infinite Fibonacci sequence F, we need a number, say F(i,n),
which sums the digits of ¢"(i). In the case of i = 0, F}, := F(0,n). It is easy to see that
for all i > 1, B B B

F(2i,n)=F(2i—1,n+1) = Fp+2i - L. (5)
Lemma 12. For any n > 2,

Fn:Fn71+ﬁn72+2Ln-

In the matrixz form, the above equation is

Foi 1122 E,
F, |_|1000 E ©)
Ln—i—l 0011 Ln
L, 0010 L1
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Proof. Since ¢"(0) = ¢"~'(01) = ¢"~'(0)¢"*(2), F,=F,_ 1+ F(2,n—2). Then, by (5),
Fo=F, 1+ F, o+ 2L, O

Theorem 13 (Digit sum of ¢™(0)). Let v = 1+2\/5 and 1) = 1’2\/5. For anyn > 1,

poonm W Ay vt
(=0 MCEE

lim —— = .
n—oo N, i

Proof. Denote the 4 x 4 matrix in (6) by A and ﬁnﬂ = (ﬁnﬂ, ﬁn, Lyny1,Ly)" Then by
Lemma 12, we have

Moreover,

Fopi = AF, =+ = A"F,.
Thus, to evaluate ﬁn, we only need to compute A™. This can be done by using the Jordan
form of

A=pPJjp!
where
22—V5)  _2v5 22+V5)  2v5
5 25 5 25
3—V5 6v/5 V543 65
P = 5 25 5 25
0 5-5 0 5+v5
1% 1
0 -2 0 2
ity A4y Y4y o
(v=1)? (=) (v=9)? (v—v)3
R A e e A e OIS e e
= | =92 (=¥  (v—¢)? (v=1)3
0 —_¥ 0 o
Y= Y-
0 1 0 1
Y= V=
and
e N (N
1—/5
g 0 5 0 0
0o 0 5o
1+v5
0 0 0 *2
Then
wn nwn—l 0 0
F e
0 0 Y oy
0 0 0 ™
for all n > 1. The inverse of P is
_543V6 542V6 () T4+3V6 _ 3y A 0 4
4 2 2 V+y Y v
pio| 0 0 1 -Ea) N
[ VR S 1V T T - 1V T I e e 0 e
4 2 2 VY
0 I 0 y+¢ —¥
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Since Fy = (1,0,1,0)" and Fn—l—l = A"F, = PJ"P~'F}, we can give the closed form of L,
and F),:

n __ yn . n+1 n+1 2 n __ an
R Al - S € e )2(1/J +t1) ¥ T
v = (v =) (v =)
Therefore - -
Fn . Fn
lim —t = v and lim = . O]
n—oo Fn n—00 N Ly,

Remark 14. The integer sequence {F, },>0 also satisfies the recurrence relation
Fn :2Fn71+ﬁn72_2ﬁn73_ﬁn74

with the initial values 0, 1, 3, 8. Using this fact, one can show that its generating function
is rational. In fact,

B 3, .2
Zann: xr° +x +2.T2‘
= (1—2z—2a?)

Theorem 15 (Digit sum of ). Let n € N and (n)p = ara,—1---ag. Collect all the index
1 such that a; # 0 and arrange them in descending order. Those indexes are denoted by
lg =1,11, 1. Suppose w is a prefix of F of length n, then

w = 606" () (2K) -+ 6" (20).

Furthermore,
t

Se(n) = F(2k,i).

k=0
Proof. Let w' := ¢™(0)¢™(2) - - - ¢ (2k) - - - ¢'(2t). We have
[w'| = 19" (0)¢" (2) - - ¢ (2k) - - - 9™ (21)]
= [¢°(0) + [¢" (2] + - + [¢™ (2K)| + -+ + |9 (2¢)]

= [ (0)| + |¢" (0)] + - -+ + |¢™(0)| +--- + |#"(0)]  (by Corollary 2)
= Ligy2+ Lijy2 + -+ Lip2 = n.

So we only need to show that w’ < F.
By the definition of iy, 4, ---, ¢, and (3), we have 4; > i;4; +1for 0 < j <t — 1.
Thus forall 0 <7 <t —1,

(27 +2)(2) +3) < P4 117125 +2)
and

0(2j +1) = ¢V N2 +2) = ¢ (¢ T T2 + 2))
= 41 (2 + 29 (2) +3) - (7)
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Therefore
¢ t1(0) = ¢ (0)9™ (1)
= ¢™(0)¢" (2)8" (3) - - by (7)
= ¢ (0)¢" (2)¢™(4)¢™(5) - - - by (7)

= ¢"(0)6" (2)9™(4) - " (2t) - -

which gives w’ < ¢**1(0) < F. The proof is completed. O

5 Singular words decomposition

In this section we present three decompositions (factorisations) of F. These are given in
Theorems 16, 17 and 19. We will state the theorems first and introduce some notation,
then give the three proofs.

Theorem 16. F =112 _,¢/(2), where we define ¢~*(2) to be 0 and ¢~'(2) to be 1.

To state the second decomposition theorem, we introduce the singular words. For all
n > 1 and ¢ > 0, the word '
ag™(2i)5" =: S

is called a singular word of order n (of letter 2i), where a and 3 are two letters satisfying
af > ¢"(i). In addition, we define

S (24) and SPY = (2i + 1).
For example, since ¢*(2) = 23445, then a = 4, 8 =5 and S§2) = 42344.

Theorem 17. The infinite Fibonacci sequence F has the following decomposition using
singular words of letter 2:

o0

F =[] ¥ =01 22323 42344 52344545 (6234454564566 - - -

j=—1

In the above two decompositions, the lengths of the components are unbounded. In
the following, we will decompose F into singular words of a fixed order and gaps between
them; and the gaps have only two different lengths.

Before stating the next result, we shall say some words on the positions of p-th oc-
currence of letter 0 and 1 in Fibonacci sequence f. Those positions turn out to be very
useful in locating singular words in F. Let Ag (resp. Aj) be the set of positions of letter
0 (resp. 1) in f. Namely,

Ao:={neN: f,=0}= {)\O(i)}i>17
A ={neN:f, =1} ={\()}is1,
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where A\°(z) (resp. A!(7)) is the position of i-th 0 (resp. 1) in f. In fact, Ag and A; are the
sequences A022342 and A003622 in OEIS respectively (see [17]). Moreover, the closed
form of the sequence A022342 is given in [17], i.e.,

A(i) = Vi‘l zJ +i—1, Vix>1 (8)

Note that the indices of elements in f starts from 0. Thus \°(1) = 0. Let m’ := {m/ (i) }s=o
where for all i > 0,

m? (i) := Frogit1) — fao(it1)-
Of course fyo) = 0 for all 4, but writing the definition in this way will be useful in what
follows.

Proposition 18. m/ = {F, — f.}neao = {Fn — fntnea,-

Proof. The first equality is the definition. For the second one, we only need to show that
for any ¢ > 1, Fhou) — frow) = Fag) — fr). By the definition of A°(¢) and A'(4), we have
froe = 0and fug = 1. So faig — fre = 1. In Fibonacci sequence f, the i-th 1 is
generated by iterating the i-th 0, and ¢(Fo()) = Fi.F () for some k satisfying Fj, = Fyo().
Thus, by the definition of ¢, Fii;) — Fhouy = 1. Hence, Fxi)y — Fxow = fare) — faow) for
all ¢ > 1. ]

Fix a k > 1. For any p > 1, let S, be the p-th occurrence of singular words of order
k, and let G, be the gap word between two consecutive singular words Sy, and Si py1.
In addition, Gy is defined to be the prefix of F before Si ;. Then, we have the following
decomposition theorem:

Theorem 19. For any k > 1,

F = G10561Gr15%,2Gk25%3GRs - -+ = Gro H SkpGlp,

p=1
where Sy, = 5,22) e mf(p—1), and Gy = XipYi,p satisfying |Yep| = Lits — 1,
% ) Xaem/(p-1), ifprleA,
kP Xio®ml(p—1), ifp+1€A,

and B N
Yip = Y1 @ (Faoaip)+2) — 2),

with initial values Gio = A (0)k71, )A(/M = (k + 2)¢" 1 (2)(k + 3), )?k,Z =Fp+ Ly + 1
and Yy, = "1 (2)(k + 3)7.
For example, when k = 2, we have the following initial values
S8 =323, Gap = 0122, X,y = 423445, Xy, =6, Yy, = 2344,
and the decomposition
F = 012232342344523445456234454564566723445456456674566767 - - -

where Sy ., )?27*, }72* are marked in red, blue and green respectively.
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5.1 Proof of the first two decomposition theorems

Proof of Theorem 16. We only need to show
¢"(0) = T}22,¢7 (2) (9)

for all n > 0. When k = 0, ¢°(0) = 0 = ¢2(2). Assume that it is true for all k < n.
Since

¢"(0) = ¢"N0)Fp,  Frsr o Fr
(522,07 (2)) (FL, o  Fro s Fro1) (by induction)
(H?_EQW( )) ¢"%(2) (by Proposition 7)
= 22,4/ (2),
the formula (9) holds for £ = n. So, by induction, the result follows. ]

Now, we will prove Theorem 17.

Proof of Theorem 17. Firstly, we show ¢"(0)n~! = S(_Ql)S(SZ) e S o for all n > 1. When
n=1,5%=0=¢'"(0)1"'. Assume that it is true for all k < n. Then

O (O eIl (10)
= 0= 1) - D!

S

= S(_Zl)S(()Z) e 57(12_)3(77, —1)¢"2(2)n"'  (by induction)
= SCs 52,87,

where the last equality follows from the definition of singular words and Proposition 4.
Since for all n > 0, ¢"(0)n~! is a prefix of F, and |¢"(0)n~!| — oo when n — oo, we have

F = fim "0 Hl 5 .

5.2 Proof of Theorem 19

In [27], Wen and Wen define the k-th singular word of f to be s, = ac®(0)37!, where
af > o*(0), and they proved the following result.

Lemma 20 ([27, Lemma 2]). For any k > 1, uj,us € {0,1},
s = 0" (uyug) if and only if uyuy = 10.
Moreover, sy occurs only once in o*(10) and
sp = 0"(10)[Lps1, Liys — 1].

We have a similar characterization of the singular words of order %k in F.
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Lemma 21. For anyi > 1, k > 1 and ujus € N2,
SIE%) < ¢ (uyuy) if and only if uyuy = (2i — 1)(21).
Moreover, S,?i) occurs only once in ¢*((2i — 1)(2i)) and
S = ¢ (21 = 1)(20)[Lis, Liys — 1]
Proof. From the definition of singular words, we know that
S = agh(2i)57!
where a3 > ¢¥(2i). By Proposition 4, we have a = 2i +k — 1, 3 = 2i + k and « is the
last digit of ¢¥(2i —1). So S < ag(2i) < ¢F((2i — 1)(2i)).
Now suppose S,(fz) < ¢*(ujuz). Note that
S,i%) = 55, (mod 2) and ¢*(ujus) = 0% (v1v;) (mod 2)

where u; = v; € {0,1} (mod 2) for i = 0,1. By Lemma 20, we have vyv, = 10 and

S,(fi) occurs only once in ¢*(ujuy) at the position ¢*(uyus)[Liy1, Liys — 1].

Therefore, the first and the last digit of S ,(f“') are the last digit of ¢*(u;) and the penultimate
digit of ¢*(uy) respectively. Combining this fact and Proposition 4, we have

2i+k—1=k4+uwyand 2t +k—-1=k+uy—1
which imply u; = 2¢ — 1 and uy = 21. O]
Remark 22. By Lemma 21, for any k,7 > 1,
S < k(20 — 1)(2i)) < ¢"T2(2i — 2). (11)

Remark 22 shows that there is a (unique) singular word of order k in the (k + 2)-th
iteration of any even number (2i). The following two lemmas will show that this is the
only place that singular words of order k can occur.

Lemma 23. All factors of length two in ¥ are of the following forms:
(25)(27 +1), (20 +2)(25 +2) and (20 +1)(25 + 2)
where 0 < j < 4.

Proof. Since F = f (mod 2) and 11 £ f, (2i +1)(2j + 1) £ F for any ¢,5 > 0. For
7 = 0, by the definition of ¢, we know every odd number 2j + 1 is generated by iterating
the unique even number 25. So, in F, every odd number 25 + 1 is preceded by 27, i.e.,
(27)(2j+1) < F.
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Next, we will prove that (2i + 1,25 + 2) (0 < @ < j) does not occur in F. Suppose on
the contrary that (2i 4+ 1)(2j +2) < F. We firstly show the following fact:

(204 1)(2j +2) <F = (20)(2j +2) < F = (2i — 1)(2j + 2) < F. (Fact 1)

In fact, since (2i + 1)(2j + 2) can not be generated by applying ¢ to any number in N,
we have (2 + 1)(2j + 2) < ¢(ujug) where ujus is a factor of length two in F. Therefore,
2i4+ 1> ¢(ur) and 25 + 2 < p(ug). So uyuy is either (2i)(25 +2) or (2i)(25 + 1). However,
from the previous discussion, (2i)(2j + 1) A F which implies (2¢)(2j + 2) = ujus < F.
The second “=" of (Fact 1) follows in the same way.

Applying (Fact 1) 7 times, we have 1(2j + 2) < F for j > 1, which contradicts with
the fact that 12 is only factor of length 2 in F with a leading 1.

Now, we will prove (2i + 2,25 + 2) (0 < i < j) does not occur in F. Suppose on the
contrary that (2i+2)(2j+2) < F. Applying (Fact 1), we have (2 +1)(2j+2) < F which
is a contradiction. O

Lemma 24. Let uyus be a factor of length two in ¥. We have the following:
(1) If uy # upy mod 2, then singular words of order k occur in ¢*+2(ujus) only once;
(2) If uy = uy mod 2, then singular words of order k occur in ¢F+2(uyuy) only twice.

Proof. By (11), we know singular words of order k occur in ¢**2(ujus), where ujus is a
factor of length two in F and at least one of u; and usy is an even number.

(1) Suppose u; # us mod 2. Since, by Lemma 23, ujus must be one of the following
two forms: (25)(25 + 1) and (2i + 1)(2j 4+ 2) where 0 < 7 < ¢. So we shall discuss the
following two cases:

Case 1. When ujuy = (25)(25 + 1) for some j > 0. Then

¢ (wiuz) = 6"2((29) (25 + 1)) = °((29)(27 + 1)(25 +2)(25 +2)(2) + 3)).

By Lemma 21, we know that singular words of order k only occur in ¢*((25 +1)(2j +2)).
Therefore, singular words of order k occur in ¢**2((25)(2j + 1)) only once.
Case 2. When ujus = (2i 4 1)(25 + 2) for some 0 < j < i. Then

2 (uruy) = (20 + 1)(2) +2)) = (20 +2)(2i + 3)(2) + 2)(2] + 3)(2) +4)).

By Lemma 21, we know that singular words of order k occur in ¢*((2j + 3)(2j +4)) and
possibly in ¢*((2i+3)(2j +2)). However, if there is a singular word of order k that occurs
in ¢*((2i+3)(25+2)), then according to Lemma 21, we have k+2i+3 = k+ 25+ 1 which
implies j = ¢ + 1. This contradicts with the assumption 0 < j < ¢. Therefore, singular
words of order k occur in ¢**2((2i + 1)(2j + 2)) only once.

(2) If uy = up mod 2, then ujus = (2i + 2)(2j + 2) for some ¢ > j > 0. Then

O (ugug) = HFT2((20 4+ 2)(27 + 2)) = ¢"((20 +2)(2i + 3)(2i +4)(25 + 2)(25 + 3)).

By Lemma 21, we know that singular words of order k only occur in ¢*((2i + 3)(2i + 4))
and ¢*((27+2)(2j+3)). Therefore, singular words of order k occur in ¢*2((2i+2)(25+2))
only twice. O
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In the following, we will discuss the properties of the gap sequence {Gj,},>1 for any
k> 1.

Lemma 25. For any k > 1, the sequence {|Gyp|}p=1 is the Fibonacci sequence over the
alphabet {2Ly 13, Lri3}.

Proof. Comblmng (11) and Lemma 24, we know that for any p > 1, the singular word
Skp < ¢"2(Fyo(p). Then, by Lemma 21,

Skp = 2 (Fro)) [Litss Lita — 1]. (12)

For any p > 1, Fhog, and Fho(p41) either occur in F consecutively or separate by only one
odd number. Then

Grp < 0" (Fro Fropin) of Grp < 6" (Frogy FrFyopt)
for some ¢t € A'. In the first case, by (12),
Grp = " (Fro) Fropr1)) [Lisa Lies — 1. (13)
In the second case, by (12),
Grp = 0" (Fro) FiFxo 1) [Liya, Ligs + Ligs — 1. (14)

So for any p > 1,

G| = Liys, ifX(p+1) = X(p) =1;
kP 2Lkys, if A(p+1) — X\o(p) = 2.

By (8),
Np+1) = X(p)}ps1 = { {(p—i— ). \/32— lJ B \‘p. \/52_ 1J } .

which is the Fibonacci sequence over {1,2}. This implies that {|Gp|}p>1 is the Fibonacci
sequence over {2Ly.3, Ly13}. O

Now we will give the explicit expression of the gap words. We denote gap words of
length 2L, 5 and Ly, 3 by Gé* and Gi* where the superscript ‘L’ and ‘S’ stand for long
and short. Then

{Gﬁ,p}zél = {Gk,)\o(p)—l-l}p;l and {Gf,p}p% = {Gk)\l(p)—&—l}p}l'
Combining (13) and (14), we have
Giip = ¢k+2(FA0(p)F/\0(p+1))[Lk+4> Lyys — 1];

Gip = ¢k+2(F)\0(p)FtF)\0(p+1))[Lk-+4, Lk+3 + Lk+5 - ]_]
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That is
Gip= X,prkLp and G}, =X Y,
where [V2| = V2| = Liys — 1, | X[, = 1+ Ligs and | X5 ] = 1. In detail,
Xip = 0" (Frogp F)\O (+1) [Lias Lia],
Ykp 2 (Froy Frogan)) [Liya + 1, Liys — 1],
(FAO FtFAO p+1))[Lk+4> Liys),
(Fyo) FiFropi1)) [Lis + 1, Liys + Liys — 1)
Moreover,
{Gk,p}p>1 = Xlilykj?l Xlilylfl XIf,QYkJ?Q Xli?,ykj??, le,zylfz Xlg,4i/kj?4 T
For example, if we choose the singular word S, = 323, then it is easy to see that
GL, = 4234452344 with XF, = 423445, .5, = 2344 and G5, = 62344 with X5, = 6,
Yf]l = 2344. Here, we have 7 7 7 7

F = 0122 323 423445 2344 545 6 2344 545
F = GQ,O S2,1 X1L YlL 52,2 Xig )/15 52,2

Proof of Theorem 19. The proof is composed by the following three steps. Fix a k > 1
Step 1. We will show that S, = S,gQ) ®&m!(p—1), for any p > 1. In fact, combining (11)
and Lemma 24, we know that for any p > 1, the singular word Sy, < ¢** 2(Fyo@p). So by

(12) and the definition of {m/(p)},>1, we have S, = Sg1 ®&m/(p—1), where Sy, = S,(f).
Step 2. We will show that

% _ ) Xaemip-1), ifprien,
P Xpo@ml(p—1), ifp+1€A,
with initial values Xy, = (k + 2)¢*"1(2)(k 4 3) and Xm = Fy+ Lo+ 1.

It is easy to see that Xy, = X[y = (k+2)¢" 1 (2)(k+3) and X = XP, = Fr +
Lj4o + 1. Combining Lemma 25 and Proposition 18, we have X,fip =Xl emi(p-1)
and X7 = X2, @m/(p—1).

Step 3. We will show that
i}k,p = }N/k,l D (FAO(AI(I’H?) - 2)
With the initial value Y, = ¢**(2)(k + 3)"L. By Lemma 25, we only need to show
p 1O (Frogn) and Vil = V2, = Vi @ (Fyopig+2) — 2)-

Apparently, Vi1 = ¢*1(2)(k 4 3)~L. Since Yi, is a prefix of the word generating by

iterating k + 2 times of the second even number in F, we have

Ykp < gb (F)\o p+1))
Then by Lemma 25 and Proposition 18, we have

Y =Yopa <6 (Fooips2), Yo = Yaiper < 8" (Fopip)2)
and |Ykl”p = |Ylfp . So Yk[,/p = Yk‘?p = Y]ﬁl D (F)\O()\l(p)+2) — 2) ]
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6 Miscellaneous

By Theorem 19, we know that the structure of singular words will strongly affect the
infinite Fibonacci sequence F itself. So we also study the structure of singular words, and
we have the following results.

Proposition 26. There are three constructions of singular words in the following:
(1) For anyn > 1,

SO —nsBsiP ... 5 (15)
(2) For anyn > 1, if af > ¢"(0), then Sn+1 = BoflST(LO)ST(i) .
(3) Forn > —1, S®y = UVU’, where V.= S @2, U' = S, ®2 and U = (n +
4" H(2)(n +3)7
Proof. (1) Since 57(321 =n¢"™(0)(n+1)7!, by (10), we have

S =ns®sP ... 8P,

(2) When n =1, ¢'(0) = 01, = 0, so B 1$\”5? = 1071001 = 101 = S{”. Assume
that it is true for all £ < n. Then,
nin—1)7180s® = pin—1)"n-1)(n-2)"15Y, 5% 5@
= n(n—2)"'5" 5% 5@

n

= ns8s s 52,
= 8%, by (15).

= not5VsP e ... 5@

(3) Since ¢™(2) = F0(2)F1(2) . ~F£i)+2 2F£i)+z 1> we have
57(12) = Fﬁ)ﬁ—zFo(z)Fl(Q) T FL(i)+2—2'
Then
U= (F2, +2) BPLP - R,
V= (F2 +2) (B +2) - (R, +2),
U = ( ) ot 2) (F(Q) + 2) . (FL(?H—z + 2) .
By Proposition 4, we have

Fl(zi)+3*2 +2= F[(/2) =N + 67 Fl(i)+3*1 = Fl(i)+272 +2=n+5

n+5
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and F L(2) = n + 6. Moreover,

n+4*1
2 2 2 2 n
Fén)+3 F[(/n)+3+1Fl(/n)+3+2 s Fén)+4fl = ¢ (2) @ 2

= (R +2) (FP +2) - (A, +2),
FO D LD L P = 6202

Ln+4 Ln+4+1 n+4+2 )
- (Fg2> + 2) (Ff” + 2) - (F(Q) + 2) |

Lpta—1
Thus
S0 =L RO R L E R
U v
O, O, F .
B

The next result completely characterizes palindromes in F. Recall that a word w =
wow; - - - w, is a palindrome if wyw,_; - - - wywy = w.

Proposition 27. The palindromes in F are of the forms (22®21), (23262i) and (323$21)
where © > 0.

Proof. (i) Since F =f mod 2 and 11 £ f, we have (2i+1,2i+1) £ F. So the palindromes
of length 2 in F are of the form (24, 2i) where i > 0.

(77) The palindromes of length 3 are generated by iterating words of length 2. By
Lemma 23 and the fact that 000 does not occur in f, we know that the palindromes of
length 3 are (24,2 + 1,2¢) and (2i + 1,2,2i + 1).

(737) If there are palindromes of length 4 in F, then they are of the form wjususu;.
Since F = f mod 2, 11 £ f implies uy = 2j for some j > 1, and 0000 £ f implies
up = 2i + 1 for some ¢ > 0. By Lemma 23, usu; < F gives ¢« = j. Thus ujususu; =
(20 +1)(20)(2i)(2¢ + 1) < F. Since ¢(F) = F, the pre-image of (2 + 1)(2¢)(2¢)(2¢ + 1)
must be a factor of F. Note that (2i + 1)(24)(2i)(2¢ + 1) has a unique pre-image under ¢,
which is (2¢)(2¢ — 1)(2¢). So (2¢)(2i — 1)(2i) < F which contradicts (i7). Therefore, there
are no palindromes of length 4 in F.

(vi) Suppose that there are palindromes of length 5 in F. Then by (i7), they are of
the following forms: v(2)(2i + 1)(2¢)vy; and v9(2i + 1)(24)(2i + 1)vs.

e Note that v1(24)(2i + 1)(2¢)v; (mod 2) is either 00100 or 10101. But 10101 £ f,
we have v; = 2j for some j > 1. The pre-image of (25)(2¢)(2¢ + 1)(2¢)(2j) is
(27 — 1)(20)(2¢ — 1)z where z = 25 — 1 or 2j. In any case, (25 — 1)(2i)(2i — 1) <
F. However, by Lemma 23, (2i)(2i — 1) A F which is a contradiction. Thus
(27)(20)(2i +1)(20)(27) A F.

e In the second case, vy = 2j for some j > 1since 11 £ f. By Lemma 23, (25)(2i+1) <
F yields that j = . Thus (2¢)(2¢ + 1)(2¢)(2¢ + 1)(2i) < F, and its pre-image is
(20)(2¢)(2i—1) or (24)(2i)(27). However, (2i)(2i—1) £ F implies (2¢)(2i)(2i—1) £ F,
and 000 4 f implies (24)(2i)(2¢) £ F. Hence (2i)(2¢ + 1)(2i)(2i + 1)(2:1) £ F.
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So there are no palindrome of length 5 in F.

(v) If there are palindromes of length larger than or equal to 6, then we can find palin-
dromes of length 4 or 5. However, according to (iii) and (vi), there are no palindromes of
length 4 and 5, so there are no palindromes of length larger than or equal to 6 in F. [

In the last part, we give some observations of the sequence F (mod k) where k& > 2.
When £ is an even number, the sequence F ( mod k) is a pure substitution sequence which
is generated by the substitution ¢ (mod k), i.e.,

{0%01, {2—>23, {k—2—>(l~c—2)(k—1),

1— 2, 3 — 4, k—1—0.

When £k is an odd number, the sequence F (mod k) is a substitution sequence under a
coding where the substitution ¢ (mod 2k), i.e.,

0—01, |2— 23, 2k — 2 — (2k — 2)(2k — 1),
1—2, 3—4, 2k —1—0,

and the coding is 7: i (i + k) — i for every 0 < i < k.
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