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Abstract

The infinite Fibonacci sequence F, which is an extension of the classic Fibonacci
sequence to the infinite alphabet N, is the fixed point of the morphism φ: (2i) 7→
(2i)(2i+ 1) and (2i+ 1) 7→ (2i+ 2) for all i ∈ N. In this paper, we study the growth
order and digit sum of F, and give several decompositions of F using singular words.

Keywords: Infinite Fibonacci sequence; singular words; Fibonacci number; digit
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1 Introduction

Let f = {fn}n>0 be the Fibonacci sequence that is the fixed point of the Fibonacci
morphism σ defined by 0 7→ 01, 1 7→ 0. The Fibonacci sequence f occurs in the study of
combinatorics on words, number theory, dynamical system, quasi-crystals, etc.; see [1, 2,
13, 18] and references therein. It is well known that f is a characteristic Sturmian word of
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slope 1/φ2 where φ = 1+
√

5
2

is the golden ratio. In [9, 10, 11], several generalizations of the
Fibonacci sequence were given, and they were proved to be characteristic Sturmian words
of irrational slopes, whose simple continued fraction expansions are periodic sequences
with period 1 and 2.

The previous extensions of f are all on the alphabet of 2 letters. There are also
extensions on alphabets containing at least 3 letters. A famous one is the Tribonacci
sequence, which is the fixed point of Rauzy substitution 0 7→ 01, 1 7→ 02, 2 7→ 0. Rauzy
[8] studied the dynamical and geometrical aspects of the Tribonacci sequences; see also
[18]. For an extension to an alphabet of m letters, see [15]. In this paper, we study the
following extension of the Fibonacci sequence to an infinite alphabet.

Consider the morphism φ (over N) which is given by

φ : (2i) 7→ (2i)(2i+ 1) and (2i+ 1) 7→ (2i+ 2), for all i > 0.

The infinite Fibonacci sequence F = {Fi}i>0 is the fixed point of φ starting by 0. The
first several terms of F and f are

F = 0 1 2 2 3 2 3 4 2 3 4 4 5 2 3 4 4 5 4 5 6 · · ·
f = 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 · · ·

It is easy to see that F = f (mod 2), since φ is reduced to σ while modulo 2. In this
sense, these two sequence are similar. Hence the infinite Fibonacci sequence F may inherit
some combinatorial properties of the Fibonacci sequence f . For example, since ‘11’ does
not occur in f , two adjacent elements in F can not be both odd numbers. However, F
also has some properties that f does not have. For example, one can find arbitrarily
long palindromes in f ([27, Property 2]); while in F, there are no palindromes of length
larger than 3 (see Proposition 27). In general, the sequence F (mod k) is a substitution
sequence up to a coding (see Section 6).

In [27], Wen and Wen studied the Fibonacci sequence f by analyzing singular words of
f . They proved that the adjacent singular words of the same order are positively separated,
and gave a decomposition of f using singular words. Levé and Séébold [5] studied the
singular factorization of the Fibonacci sequence and its conjugates. Melançon studied the
Lyndon factorization of the Fibonacci sequence in [6, 7]. Tan and Wen [4] studied the
singular words of Sturmian sequences and Tribonacci sequence. In [26], Huang and Wen
studied the occurrence of arbitrary factors of f and gave a quite general decomposition of
f . The study of singular words have applications in the study of combinatorics on words
[3, 16, 22, 23, 24] and Padé approximation [14, 21], etc.

There are many works devoted to the study of the substitution sequences and the
automatic sequences over infinite alphabets. For the research of infinite-state automata
see for example [12, 20] and a survey [25]. For the study of substitution sequences over
an infinite alphabets, see for example [19].

In this paper, we first investigate the growth order of Fn, and show that for all n > 1,

0 6 Fn 6 c log n
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where c is a constant (see Remark 6). Then we turn to study the digit sum problem of
F. We give an exact form of the digit sum of φn(0) (n > 1) in Theorem 13, and give a
formula for the digit sum of the first n digits of F in Theorem 15. Inspired by the work of
Wen and Wen [27], we also study the decomposition (factorisation) of F. In fact, we give
the following three decompositions. The first one is a decomposition using its (slightly
modified) prefixes (see Theorem 16). The second one is a decomposition using singular
words of letter 2 whose lengths are Fibonacci numbers (see Theorem 17). The third one
is a decomposition using singular words of a fixed order (see Theorem 19). The main
difference here is that the singular words (defined in Section 5) in F are defined to be
classes of words, and while modulo 2, the singular words in F are only part of the singular
words in f which is defined in [27].

This paper is organized as follows. In Section 2, we state some basic notation and def-
initions. In Section 3 and Section 4, we study the growth order of the terms of the infinite
Fibonacci sequence F and its digit sums. In Section 5, we give three decompositions of
F. In the last section, several other properties of F are given.

2 Preliminary

Let A = {a0, a1, · · · , an, · · · } be an (infinite) alphabet. Ak denotes the set of all words
of length k on A, and A∗ denotes the set of all finite words on A. The length of a finite
word w ∈ A∗ is denoted by |w|. For any V,W ∈ A∗, we write V ≺ W when the finite
word V is a factor of the word W , that is, when there exist words U,U ′ ∈ A∗, such that
W = UV U ′. We say that V is a prefix (resp. suffix ) of a word W , and we write V CW
(resp. V BW ) if there exists a word U ′ ∈ A∗, such that W = V U ′ (resp. W = U ′V ).

Let u = u0u1u2 · · ·un be a finite word (or u = u0u1u2 · · ·un · · · be a sequence). For
any i 6 j 6 n, define u[i, j] := uiui+1 · · ·uj−1uj.

Denote by W−1 the inverse of W , that is, W−1 = w−1
p · · ·w−1

2 w−1
1 where W =

w1w2 · · ·wp. If V is a suffix of W , we can write WV −1 = U , with W = UV . This
makes sense in A∗, since the reduced word associated with WV −1 belongs to A∗. This
abuse of language will be very useful in what follows.

For a sequence u = (un)n>0 and an integer k > 0, we denote u⊕ k := (un + k)n>0.

3 Growth order of the infinite Fibonacci sequence

In this part, we shall study the growth order of the terms of the infinite Fibonacci sequence.
For this purpose, we first give some basic rules of the digits in F, which reveal the growth
order of the sequence F.

Theorem 1. For any k > 1, we have

φk(2i+ j) = φk(j)⊕ (2i)

for any i, j > 0.
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Proof. When k = 1, the result follows from the definition of φ. Now suppose the result
holds for all k 6 n, we shall prove it for n+ 1. Suppose j is even. For any i > 0,

φn+1(2i+ j) = φn(2i+ j)φn(2i+ j + 1)

= [φn(j)⊕ (2i)][φn(j + 1)⊕ (2i)]

= [φn(j)φn(j + 1)]⊕ (2i)

= φn+1(j)⊕ (2i).

When j is odd, we have for any i > 0,

φn+1(2i+ j) = φn(2i+ j + 1)

= φn(j + 1)⊕ (2i)

= φn+1(j)⊕ (2i).

This completes the proof.

Letting j = 0 in Theorem 1, we have the following result.

Corollary 2. For all k > 1 and i > 0, |φk(2i)| = |φk(0)|.

Recall that for any n > 0, the Fibonacci number Ln counts the number of 1’s in σn(0)
(or sums the digits of σn(0)), and Ln+2 represents the length of σn(0). It is worth to
remark that for n > 1,

Ln+1 = Ln + Ln−1,

where L0 = 0 and L1 = 1.

Lemma 3. For all k > 0, |φk(0)| = Lk+2.

Proof. Note that φ (mod 2) is the Fibonacci morphism σ. So |φk(0)| = |σk(0)| = Lk+2

for all k > 0.

Proposition 4. For any n > 2, i > 0,

(n+ i− 1)(n+ i) B φn(i).

Moreover, n+ i is the largest digit in φn(i).

Proof. We first prove this result for i = 0. Note that φn(0) is a prefix of F, and according
to Lemma 3, |φn(0)| = Ln+2. So FLn+2−1 and FLn+2−2 are the last and the penultimate
digits of φn(0). Now we will show by induction that for all n > 2,{

The largest digit of φn(0) is n;

FLn+2−1 = n and FLn+2−2 = n− 1.
(1)

It is easy to check that (1) holds for n = 2. Assume that (1) holds for all m 6 n. We
shall check it for m = n+ 1. Note that

φm(0) = φn(0)φn−1(2) = φn(0)(φn−1(0)⊕ 2) (2)
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and by the induction hypothesis the largest digits of φn(0) and φn−1(0) ⊕ 2 are n and
n+ 1 respectively. So the largest digit of φn+1(0) is n+ 1.

Since FLm+2−2FLm+2−1 B φm(0), by (2), we have

FLm+2−2FLm+2−1 B (φn−1(0)⊕ 2)

which implies

FLm+2−2 = FLn+1−2 + 2 = n and FLm+2−1 = FLn+1−1 + 2 = n+ 1.

Therefore, (1) holds.
Suppose α and β are the last two digits of φn(i). When i = 2k + 1, we have

φn(i) = φn(2k + 1) = φn−1(2k + 2) = φn−1(0)⊕ (2k + 2),

where the last equality follows from Theorem 1. So

α =FLn+1−2 + 2k + 2 = n+ 2k = n+ i− 1,

β =FLn+1−1 + 2k + 2 = n+ 2k + 1 = n+ i,

and the largest digit of φn(i) is n− 1 + 2k + 2 = n+ i. The case i = 2k is similar.

The above result implies that the digits in F can be arbitrary large. However, there
are also infinitely many small digits, say ‘2’ and ‘3’, in F.

Proposition 5. For any n > 4, FLn = 2 and FLn+1 = 3.

Proof. By the definition of F, for any k > 2, φk+1(0) = φk(0)φk−1(2) is a prefix of F.
Since |φk(0)| = Lk+2, we know that FLk+2

FLk+2+1 is a prefix of φk−1(2). It follows from
the definition of φ that FLk+2

FLk+2+1 = 23 for any k > 2.

Remark 6 (The growth order of {Fn}n>0). Using Proposition 5, we have

lim
n→∞

FLn

logLn
= lim

n→∞

2

logLn
= 0.

On the other hand, Proposition 4 gives

lim
n→∞

FLn−1

log(Ln − 1)
= lim

n→∞

n− 2

log(γ
n−ψn

γ−ψ − 1)
=

1

log γ
,

where γ = 1+
√

5
2

and ψ = 1−
√

5
2

. This implies the limit of Fn/n does not exist. However,
we have

lim inf
n→∞

Fn
log n

= 0 and lim sup
n→∞

Fn
log n

=
1

log γ
.

The first one is trivial. For the limsup we know from Proposition 4 that

if Lk 6 n < Lk+1, then Fn 6 FLk+1−1.
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Let k = k(n) such that Lk 6 n < Lk+1. Then

log n > logLk = k log γ +O(1).

Note that Fn 6 FLk+1−1 = k − 1. We have

lim sup
n→∞

Fn
log n

6 lim sup
n→∞

FLk+1−1

log n
= lim sup

n→∞

k − 1

log n
=

1

log γ
.

Hence, we have 0 6 Fn 6 c log n, for any n > 1, where c is a constant.

Next, we will show that the block of length Ln+1 in F from position Ln+2 + 1 to
position Ln+3 is exact φn−1(2).

Proposition 7. For any n > 1, FLn+2FLn+2+1 · · ·FLn+3−1 = φn−1(2).

Proof. Since φn+1(0) = φn(0)φn−1(2), and |φn(0)| = Ln+2, we have

φn−1(2) = FLn+2FLn+2+1 · · ·FLn+3−1.

Corollary 8. For any n > 4, 0 6 i 6 Ln − 1, we have

Fi+Ln − Fi =

{
2, if 0 6 i 6 Ln−1 − 1,
0, if Ln−1 6 i 6 Ln − 1.

Moreover, for n = 1 and n = 2, F1 − F0 = 1, for n = 3, F2 − F0 = 2, F3 − F1 = 1.

Proof. For 0 6 i 6 Ln−1 − 1, we have known

F0F1 · · ·FLn−1−1 = φn−3(0).

By Proposition 7, we have

FLnFLn+1 · · ·FLn+1−1 = φn−3(2).

Since φn−3(2) = φn−3(0)⊕ 2, it follows that Fi+Ln − Fi = 2.
For Ln−1 6 i 6 Ln − 1, from Proposition 7, we have

FLn−1FLn−1+1 · · ·FLn−1 = φn−4(2).

By Proposition 7, we have

FLn+1FLn+1+1 · · ·FLn+1+Ln−1−1 C φn−2(2),

and φn−4(2) is also the prefix of φn−2(2) with the length Ln−2, which is also the length of
FLn+1FLn+1+1 · · ·FLn+1+Ln−1−1. Then

FLn+Ln−1FLn+Ln−1+1 · · ·FLn+Ln−1 = φn−4(2) = FLn−1FLn−1+1 · · ·FLn−1.

Thus, Fi+Ln − Fi = 0.
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From previous discussions, we know that

• n is the largest digit of φn(0). 0 is the smallest digit of φn(0).

• n occurs only once in φn(0). Moreover, nB φn(0).

• 0 occurs only once in φn(0).

It is natural to ask the location of ‘n − 1’ in φn(0). For this purpose, we need the
following decomposition of φn(0).

Lemma 9. For any n > 0, let k = bn−1
2
c. Then

φn(0) =

(
k∏
i=0

φn−1−2i(2i)

)
· n.

Proof. Assume that n− 1 = 2k + j, where j = 0 or 1. Then

φn(0) = φn−1(01) = φn−1(0)φn−1(1)

= φn−1(0)φn−3(2)φn−3(3)

= φn−1(0)φn−3(2)φn−5(4)φn−5(5)

= · · ·

=

(
k∏
i=0

φn−1−2i(2i)

)
φj(n− j),

where φj(n− j) = φ0(n) = n when j = 0, and φj(n− j) = φ(2k + 1) = 2k + 2 = n when
j = 1.

Proposition 10. Let n − 1 = 2k + j, where j = 0 or 1. Then the letter ‘n − 1’ occurs
(k+ 1) times in φn(0). Moreover, the l-th ‘n− 1’ in φn(0) is the P (n, l)-th digit of φn(0),
where for l = 1, · · · , k + 1,

P (n, l) =
l−1∑
i=0

Ln+1−2i.

Proof. By Lemma 9, we know that

φn(0) =

(
k∏
i=0

φn−1−2i(2i)

)
· n.

By Proposition 4, we have ‘n− 1’ occurs only once in φn−1−2i(2i) (at the end). Note that
|φn−1−2i(2i)| = Ln+1−2i. We know that the l-th ‘n− 1’ in φn(0) is∣∣φn−1(0)φn−1−2(2) · · ·φn−1−2(l−1)(2(l − 1))

∣∣ -th digit

of φn(0). Moreover,

P (n, l) =
∣∣φn−1(0)φn−1−2(2) · · ·φn−1−2(l−1)(2(l − 1))

∣∣
which completes the proof.

Remark 11. In the same process, one can also locate ‘n− 2’ in φn(0) and then ‘n− 3’ and
so on. However, the formulae would not be nice to read.

the electronic journal of combinatorics 24(2) (2017), #P2.52 7



4 Digit sum

This section is devoted to study the digit sum of the Fibonacci sequence and the gener-
alized Fibonacci sequences. For any integer sequence c = c0c1 · · · , the digit sum of first
n-terms is denoted by

Sc(n) :=
n−1∑
i=0

ci.

Let (n)F := arar−1 · · · a0 be the unique Fibonacci representation of a non-negative
integer n (see [13, Section 3.8]). That is

n =
r∑
i=0

aiLi+2 (3)

where ai = 0 or 1, ar 6= 0 and aiai+1 = 0 for 0 6 i 6 r.
For any n > 0 with Fibonacci representation (n)F = arar−1 · · · a0, we have

Sf (n) =
r∑
i=0

aiLi. (4)

In fact, consider the word w := σi0(0)σi1(0) · · ·σit(0), where the indexes {ik}tk=0 satisfy
i0 6 r and for all k, aik 6= 0 and ik+1 < ik. Moreover,

|w| =
t∑

k=0

|σik(0)| =
t∑

k=0

Lik+2 =
r∑
i=0

aiLi+2 = n.

Since w / σ(w), w is the prefix of f . Therefore (4) holds.

4.1 Digit sum of F

For the digit sum of the infinite Fibonacci sequence F, we need a number, say F̃ (i, n),

which sums the digits of φn(i). In the case of i = 0, F̃n := F̃ (0, n). It is easy to see that
for all i > 1,

F̃ (2i, n) = F̃ (2i− 1, n+ 1) = F̃n + 2i · Ln+2. (5)

Lemma 12. For any n > 2,

F̃n = F̃n−1 + F̃n−2 + 2Ln.

In the matrix form, the above equation is
F̃n+1

F̃n
Ln+1

Ln

 =


1 1 2 2
1 0 0 0
0 0 1 1
0 0 1 0

 ·


F̃n
F̃n−1

Ln
Ln−1

 . (6)
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Proof. Since φn(0) = φn−1(01) = φn−1(0)φn−2(2), F̃n = F̃n−1 + F̃ (2, n− 2). Then, by (5),

F̃n = F̃n−1 + F̃n−2 + 2Ln.

Theorem 13 (Digit sum of φn(0)). Let γ = 1+
√

5
2

and ψ = 1−
√

5
2

. For any n > 1,

F̃n =
n(γn+1 + ψn+1)(ψ2 + γ)

(γ − ψ)2
+
ψn − γn

(γ − ψ)3
.

Moreover,

lim
n→∞

F̃n
nLn

= γ.

Proof. Denote the 4 × 4 matrix in (6) by A and ~Fn+1 := (F̃n+1, F̃n, Ln+1, Ln)t. Then by
Lemma 12, we have

~Fn+1 = A ~Fn = · · · = An ~F1.

Thus, to evaluate F̃n, we only need to compute An. This can be done by using the Jordan
form of

A = PJP−1

where

P =


2(2−

√
5)

5
−2
√

5
25

2(2+
√

5)
5

2
√

5
25

3−
√

5
5

6
√

5
25

√
5+3
5

−6
√

5
25

0 5−
√

5
10

0 5+
√

5
10

0 −
√

5
5

0
√

5
5



=


ψ4+ψ

(γ−ψ)2
− γ2+ψ

(γ−ψ)3
γ4+γ

(γ−ψ)2
γ2+ψ

(γ−ψ)3

ψ4−ψ
(γ−ψ)2

γ4+ψ3+ψ
(γ−ψ)3

γ4−γ
(γ−ψ)2

−γ4+ψ3+ψ
(γ−ψ)3

0 − ψ
γ−ψ 0 γ

γ−ψ
0 − 1

γ−ψ 0 1
γ−ψ


and

J =


1−
√

5
2

1 0 0

0 1−
√

5
2

0 0

0 0 1+
√

5
2

1

0 0 0 1+
√

5
2

 .

Then

Jn =


ψn nψn−1 0 0
0 ψn 0 0
0 0 γn nγn−1

0 0 0 γn


for all n > 1. The inverse of P is

P−1 =


−5+3

√
5

4
5+2
√

5
2

0 7+3
√

5
2

0 0 1 −1+
√

5
2

−5−3
√

5
4

5−2
√

5
2

0 7−3
√

5
2

0 0 1
√

5−1
2

 =


− γ3+γ
γ2+ψ

γ4+γ2

γ2+ψ
0 γ4

0 0 γ + ψ −γ
−ψ3+ψ
γ2+ψ

ψ4+ψ2

γ2+ψ
0 ψ4

0 0 γ + ψ −ψ

 .
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Since ~F1 = (1, 0, 1, 0)t and ~Fn+1 = An ~F1 = PJnP−1 ~F1, we can give the closed form of Ln
and F̃n:

Ln =
γn − ψn

γ − ψ
and F̃n =

n(γn+1 + ψn+1)(ψ2 + γ)

(γ − ψ)2
+
ψn − γn

(γ − ψ)3
.

Therefore

lim
n→∞

F̃n+1

F̃n
= γ and lim

n→∞

F̃n
nLn

= γ.

Remark 14. The integer sequence {F̃n}n>0 also satisfies the recurrence relation

F̃n = 2F̃n−1 + F̃n−2 − 2F̃n−3 − F̃n−4

with the initial values 0, 1, 3, 8. Using this fact, one can show that its generating function
is rational. In fact, ∑

n>0

F̃nx
n =

x3 + x2 + x

(1− x− x2)2
.

Theorem 15 (Digit sum of F). Let n ∈ N and (n)F = arar−1 · · · a0. Collect all the index
i such that ai 6= 0 and arrange them in descending order. Those indexes are denoted by
i0 = r, i1, · · · , it. Suppose w is a prefix of F of length n, then

w = φi0(0)φi1(2) · · ·φik(2k) · · ·φit(2t).

Furthermore,

SF(n) =
t∑

k=0

F̃ (2k, ik).

Proof. Let w′ := φi0(0)φi1(2) · · ·φik(2k) · · ·φit(2t). We have

|w′| = |φi0(0)φi1(2) · · ·φik(2k) · · ·φit(2t)|
= |φi0(0)|+ |φi1(2)|+ · · ·+ |φik(2k)|+ · · ·+ |φit(2t)|
= |φi0(0)|+ |φi1(0)|+ · · ·+ |φik(0)|+ · · ·+ |φit(0)| (by Corollary 2)

= Li0+2 + Li1+2 + · · ·+ Lit+2 = n.

So we only need to show that w′ C F.
By the definition of i0, i1, · · · , it and (3), we have ij > ij+1 + 1 for 0 6 j 6 t − 1.

Thus for all 0 6 j 6 t− 1,

(2j + 2)(2j + 3) C φij−ij+1−1(2j + 2)

and

φij(2j + 1) = φij−1(2j + 2) = φij+1(φij−ij+1−1(2j + 2))

= φij+1(2j + 2)φij+1(2j + 3) · · · (7)

the electronic journal of combinatorics 24(2) (2017), #P2.52 10



Therefore

φi0+1(0) = φi0(0)φi0(1)

= φi0(0)φi1(2)φi1(3) · · · by (7)

= φi0(0)φi1(2)φi2(4)φi2(5) · · · by (7)

· · ·
= φi0(0)φi1(2)φi2(4) · · ·φit(2t) · · ·

which gives w′ C φi0+1(0) C F. The proof is completed.

5 Singular words decomposition

In this section we present three decompositions (factorisations) of F. These are given in
Theorems 16, 17 and 19. We will state the theorems first and introduce some notation,
then give the three proofs.

Theorem 16. F = Π∞j=−2φ
j(2), where we define φ−2(2) to be 0 and φ−1(2) to be 1.

To state the second decomposition theorem, we introduce the singular words. For all
n > 1 and i > 0, the word

αφn(2i)β−1 =: S(2i)
n

is called a singular word of order n (of letter 2i), where α and β are two letters satisfying
αβ B φn(i). In addition, we define

S
(2i+2)
−1 := (2i) and S

(2i+2)
0 := (2i+ 1).

For example, since φ3(2) = 23445, then α = 4, β = 5 and S
(2)
3 = 42344.

Theorem 17. The infinite Fibonacci sequence F has the following decomposition using
singular words of letter 2:

F =
∞∏

j=−1

S
(2)
j = 0 1 22 323 42344 52344545 6234454564566 · · ·

In the above two decompositions, the lengths of the components are unbounded. In
the following, we will decompose F into singular words of a fixed order and gaps between
them; and the gaps have only two different lengths.

Before stating the next result, we shall say some words on the positions of p-th oc-
currence of letter 0 and 1 in Fibonacci sequence f . Those positions turn out to be very
useful in locating singular words in F. Let Λ0 (resp. Λ1) be the set of positions of letter
0 (resp. 1) in f . Namely,

Λ0 := {n ∈ N : fn = 0} = {λ0(i)}i>1,

Λ1 := {n ∈ N : fn = 1} = {λ1(i)}i>1,
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where λ0(i) (resp. λ1(i)) is the position of i-th 0 (resp. 1) in f . In fact, Λ0 and Λ1 are the
sequences A022342 and A003622 in OEIS respectively (see [17]). Moreover, the closed
form of the sequence A022342 is given in [17], i.e.,

λ0(i) =

⌊√
5− 1

2
· i

⌋
+i− 1, ∀ i > 1. (8)

Note that the indices of elements in f starts from 0. Thus λ0(1) = 0. Let mf := {mf (i)}i>0

where for all i > 0,
mf (i) := Fλ0(i+1) − fλ0(i+1).

Of course fλ0(i) = 0 for all i, but writing the definition in this way will be useful in what
follows.

Proposition 18. mf = {Fn − fn}n∈Λ0 = {Fn − fn}n∈Λ1 .

Proof. The first equality is the definition. For the second one, we only need to show that
for any i > 1, Fλ0(i) − fλ0(i) = Fλ1(i) − fλ1(i). By the definition of λ0(i) and λ1(i), we have
fλ0(i) = 0 and fλ1(i) = 1. So fλ1(i) − fλ0(i) = 1. In Fibonacci sequence f , the i-th 1 is
generated by iterating the i-th 0, and φ(Fλ0(i)) = FkFλ1(i) for some k satisfying Fk = Fλ0(i).
Thus, by the definition of φ, Fλ1(i) − Fλ0(i) = 1. Hence, Fλ1(i) − Fλ0(i) = fλ1(i) − fλ0(i) for
all i > 1.

Fix a k > 1. For any p > 1, let Sk,p be the p-th occurrence of singular words of order
k, and let Gk,p be the gap word between two consecutive singular words Sk,p and Sk,p+1.
In addition, Gk,0 is defined to be the prefix of F before Sk,1. Then, we have the following
decomposition theorem:

Theorem 19. For any k > 1,

F = Gk,0Sk,1Gk,1Sk,2Gk,2Sk,3Gk,3 · · · = Gk,0

∞∏
p=1

Sk,pGk,p,

where Sk,p = S
(2)
k ⊕mf (p− 1), and Gk,p = X̃k,pỸk,p satisfying |Ỹk,p| = Lk+3 − 1,

X̃k,p =

{
X̃k,1 ⊕mf (p− 1), if p+ 1 ∈ Λ0,

X̃k,2 ⊕mf (p− 1), if p+ 1 ∈ Λ1,

and
Ỹk,p = Ỹk,1 ⊕ (Fλ0(λ1(p)+2) − 2),

with initial values Gk,0 = φk(0)k−1, X̃k,1 = (k + 2)φk+1(2)(k + 3), X̃k,2 = Fk + Lk+2 + 1

and Ỹk,1 = φk+1(2)(k + 3)−1.

For example, when k = 2, we have the following initial values

S
(2)
2 = 323, G2,0 = 0122, X̃2,1 = 423445, X̃2,2 = 6, Ỹ2,1 = 2344,

and the decomposition

F = 012232342344523445456234454564566723445456456674566767 · · ·
where S2,∗, X̃2,∗, Ỹ2,∗ are marked in red, blue and green respectively.
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5.1 Proof of the first two decomposition theorems

Proof of Theorem 16. We only need to show

φn(0) = Πn−2
j=−2φ

j(2) (9)

for all n > 0. When k = 0, φ0(0) = 0 = φ−2(2). Assume that it is true for all k < n.
Since

φn(0) = φn−1(0)FLn+1FLn+1+1 · · ·FLn+2−1

=
(
Πn−3
j=−2φ

j(2)
)

(FLn+1FLn+1+1 · · ·FLn+2−1) (by induction)

=
(
Πn−3
j=−2φ

j(2)
)
φn−2(2) (by Proposition 7)

= Πn−2
j=−2φ

j(2),

the formula (9) holds for k = n. So, by induction, the result follows.

Now, we will prove Theorem 17.

Proof of Theorem 17. Firstly, we show φn(0)n−1 = S
(2)
−1S

(2)
0 · · ·S

(2)
n−2 for all n > 1. When

n = 1, S
(2)
−1 = 0 = φ1(0)1−1. Assume that it is true for all k < n. Then

φn(0)n−1 = φn−1(0)φn−2(2)n−1 (10)

= φn−1(0)(n− 1)−1(n− 1)φn−2(2)n−1

= S
(2)
−1S

(2)
0 · · ·S

(2)
n−3(n− 1)φn−2(2)n−1 (by induction)

= S
(2)
−1S

(2)
0 · · ·S

(2)
n−3S

(2)
n−2

where the last equality follows from the definition of singular words and Proposition 4.
Since for all n > 0, φn(0)n−1 is a prefix of F, and |φn(0)n−1| → ∞ when n→∞, we have

F = lim
n→∞

φn(0)n−1 =
∞∏

j=−1

S
(2)
j .

5.2 Proof of Theorem 19

In [27], Wen and Wen define the k-th singular word of f to be sk = ασk(0)β−1, where
αβ B σk(0), and they proved the following result.

Lemma 20 ([27, Lemma 2]). For any k > 1, u1, u2 ∈ {0, 1},

sk ≺ σk(u1u2) if and only if u1u2 = 10.

Moreover, sk occurs only once in σk(10) and

sk = σk(10)[Lk+1, Lk+3 − 1].

We have a similar characterization of the singular words of order k in F.
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Lemma 21. For any i > 1, k > 1 and u1u2 ∈ N2,

S
(2i)
k ≺ φk(u1u2) if and only if u1u2 = (2i− 1)(2i).

Moreover, S
(2i)
k occurs only once in φk((2i− 1)(2i)) and

S
(2i)
k = φk((2i− 1)(2i))[Lk+1, Lk+3 − 1].

Proof. From the definition of singular words, we know that

S
(2i)
k = αφk(2i)β−1

where αβ B φk(2i). By Proposition 4, we have α = 2i + k − 1, β = 2i + k and α is the

last digit of φk(2i− 1). So S
(2i)
k ≺ αφk(2i) ≺ φk((2i− 1)(2i)).

Now suppose S
(2i)
k ≺ φk(u1u2). Note that

S
(2i)
k ≡ sk (mod 2) and φk(u1u2) ≡ σk(v1v2) (mod 2)

where ui ≡ vi ∈ {0, 1} (mod 2) for i = 0, 1. By Lemma 20, we have v1v2 = 10 and

S
(2i)
k occurs only once in φk(u1u2) at the position φk(u1u2)[Lk+1, Lk+3 − 1].

Therefore, the first and the last digit of S
(2i)
k are the last digit of φk(u1) and the penultimate

digit of φk(u2) respectively. Combining this fact and Proposition 4, we have

2i+ k − 1 = k + u1 and 2i+ k − 1 = k + u2 − 1

which imply u1 = 2i− 1 and u2 = 2i.

Remark 22. By Lemma 21, for any k, i > 1,

S
(2i)
k ≺ φk((2i− 1)(2i)) ≺ φk+2(2i− 2). (11)

Remark 22 shows that there is a (unique) singular word of order k in the (k + 2)-th
iteration of any even number (2i). The following two lemmas will show that this is the
only place that singular words of order k can occur.

Lemma 23. All factors of length two in F are of the following forms:

(2j)(2j + 1), (2i+ 2)(2j + 2) and (2i+ 1)(2j + 2)

where 0 6 j 6 i.

Proof. Since F ≡ f (mod 2) and 11 6≺ f , (2i + 1)(2j + 1) 6≺ F for any i, j > 0. For
j > 0, by the definition of φ, we know every odd number 2j + 1 is generated by iterating
the unique even number 2j. So, in F, every odd number 2j + 1 is preceded by 2j, i.e.,
(2j)(2j + 1) ≺ F.
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Next, we will prove that (2i+ 1, 2j + 2) (0 6 i < j) does not occur in F. Suppose on
the contrary that (2i+ 1)(2j + 2) ≺ F. We firstly show the following fact:

(2i+ 1)(2j + 2) ≺ F⇒ (2i)(2j + 2) ≺ F⇒ (2i− 1)(2j + 2) ≺ F. (Fact 1)

In fact, since (2i + 1)(2j + 2) can not be generated by applying φ to any number in N,
we have (2i+ 1)(2j + 2) ≺ φ(u1u2) where u1u2 is a factor of length two in F. Therefore,
2i+ 1B φ(u1) and 2j + 2C φ(u2). So u1u2 is either (2i)(2j + 2) or (2i)(2j + 1). However,
from the previous discussion, (2i)(2j + 1) 6≺ F which implies (2i)(2j + 2) = u1u2 ≺ F.
The second “⇒” of (Fact 1) follows in the same way.

Applying (Fact 1) i times, we have 1(2j + 2) ≺ F for j > 1, which contradicts with
the fact that 12 is only factor of length 2 in F with a leading 1.

Now, we will prove (2i + 2, 2j + 2) (0 6 i < j) does not occur in F. Suppose on the
contrary that (2i+2)(2j+2) ≺ F. Applying (Fact 1), we have (2i+1)(2j+2) ≺ F which
is a contradiction.

Lemma 24. Let u1u2 be a factor of length two in F. We have the following:
(1) If u1 6≡ u2 mod 2, then singular words of order k occur in φk+2(u1u2) only once;
(2) If u1 ≡ u2 mod 2, then singular words of order k occur in φk+2(u1u2) only twice.

Proof. By (11), we know singular words of order k occur in φk+2(u1u2), where u1u2 is a
factor of length two in F and at least one of u1 and u2 is an even number.

(1) Suppose u1 6≡ u2 mod 2. Since, by Lemma 23, u1u2 must be one of the following
two forms: (2j)(2j + 1) and (2i + 1)(2j + 2) where 0 6 j 6 i. So we shall discuss the
following two cases:
Case 1. When u1u2 = (2j)(2j + 1) for some j > 0. Then

φk+2(u1u2) = φk+2((2j)(2j + 1)) = φk((2j)(2j + 1)(2j + 2)(2j + 2)(2j + 3)).

By Lemma 21, we know that singular words of order k only occur in φk((2j+ 1)(2j+ 2)).
Therefore, singular words of order k occur in φk+2((2j)(2j + 1)) only once.
Case 2. When u1u2 = (2i+ 1)(2j + 2) for some 0 6 j 6 i. Then

φk+2(u1u2) = φk+2((2i+ 1)(2j + 2)) = φk((2i+ 2)(2i+ 3)(2j + 2)(2j + 3)(2j + 4)).

By Lemma 21, we know that singular words of order k occur in φk((2j + 3)(2j + 4)) and
possibly in φk((2i+3)(2j+2)). However, if there is a singular word of order k that occurs
in φk((2i+3)(2j+2)), then according to Lemma 21, we have k+2i+3 = k+2j+1 which
implies j = i + 1. This contradicts with the assumption 0 6 j 6 i. Therefore, singular
words of order k occur in φk+2((2i+ 1)(2j + 2)) only once.

(2) If u1 ≡ u2 mod 2, then u1u2 = (2i+ 2)(2j + 2) for some i > j > 0. Then

φk+2(u1u2) = φk+2((2i+ 2)(2j + 2)) = φk((2i+ 2)(2i+ 3)(2i+ 4)(2j + 2)(2j + 3)).

By Lemma 21, we know that singular words of order k only occur in φk((2i+ 3)(2i+ 4))
and φk((2j+2)(2j+3)). Therefore, singular words of order k occur in φk+2((2i+2)(2j+2))
only twice.
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In the following, we will discuss the properties of the gap sequence {Gk,p}p>1 for any
k > 1.

Lemma 25. For any k > 1, the sequence {|Gk,p|}p>1 is the Fibonacci sequence over the
alphabet {2Lk+3, Lk+3}.

Proof. Combining (11) and Lemma 24, we know that for any p > 1, the singular word
Sk,p ≺ φk+2(Fλ0(p)). Then, by Lemma 21,

Sk,p = φk+2(Fλ0(p))[Lk+3, Lk+4 − 1]. (12)

For any p > 1, Fλ0(p) and Fλ0(p+1) either occur in F consecutively or separate by only one
odd number. Then

Gk,p ≺ φk+2(Fλ0(p)Fλ0(p+1)) or Gk,p ≺ φk+2(Fλ0(p)FtFλ0(p+1))

for some t ∈ Λ1. In the first case, by (12),

Gk,p = φk+2(Fλ0(p)Fλ0(p+1))[Lk+4, Lk+5 − 1]. (13)

In the second case, by (12),

Gk,p = φk+2(Fλ0(p)FtFλ0(p+1))[Lk+4, Lk+3 + Lk+5 − 1]. (14)

So for any p > 1,

|Gk,p| =
{
Lk+3, if λ0(p+ 1)− λ0(p) = 1;
2Lk+3, if λ0(p+ 1)− λ0(p) = 2.

By (8),

{λ0(p+ 1)− λ0(p)}p>1 =

{⌊
(p+ 1) ·

√
5− 1

2

⌋
−

⌊
p ·
√

5− 1

2

⌋}
p>1

+ 1

which is the Fibonacci sequence over {1, 2}. This implies that {|Gk,p|}p>1 is the Fibonacci
sequence over {2Lk+3, Lk+3}.

Now we will give the explicit expression of the gap words. We denote gap words of
length 2Lk+3 and Lk+3 by GL

k,∗ and GS
k,∗ where the superscript ‘L’ and ‘S’ stand for long

and short. Then

{GL
k,p}p>1 := {Gk,λ0(p)+1}p>1 and {GS

k,p}p>1 := {Gk,λ1(p)+1}p>1.

Combining (13) and (14), we have

GS
k,p = φk+2(Fλ0(p)Fλ0(p+1))[Lk+4, Lk+5 − 1],

GL
k,p = φk+2(Fλ0(p)FtFλ0(p+1))[Lk+4, Lk+3 + Lk+5 − 1].
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That is
GL
k,p = XL

k,pY
L
k,p and GS

k,p = XS
k,pY

S
k,p,

where |Y L
k,p| = |Y S

k,p| = Lk+3 − 1, |XL
k,p| = 1 + Lk+3 and |XS

k,p| = 1. In detail,

XS
k,p = φk+2(Fλ0(p)Fλ0(p+1))[Lk+4, Lk+4],

Y S
k,p = φk+2(Fλ0(p)Fλ0(p+1))[Lk+4 + 1, Lk+5 − 1],

XL
k,p = φk+2(Fλ0(p)FtFλ0(p+1))[Lk+4, Lk+5],

Y L
k,p = φk+2(Fλ0(p)FtFλ0(p+1))[Lk+5 + 1, Lk+3 + Lk+5 − 1].

Moreover,

{Gk,p}p>1 = XL
k,1Y

L
k,1X

S
k,1Y

S
k,1X

L
k,2Y

L
k,2X

L
k,3Y

L
k,3X

S
k,2Y

S
k,2X

L
k,4Y

L
k,4 · · ·

For example, if we choose the singular word S2 = 323, then it is easy to see that
GL

2,1 = 4234452344 with XL
2,1 = 423445, Y L

2,1 = 2344 and GS
2,1 = 62344 with XS

2,1 = 6,
Y S

2,1 = 2344. Here, we have

F = 0122 323 423445 2344 545 6 2344 545 · · ·
F = G2,0 S2,1 XL

1 Y L
1 S2,2 XS

1 Y S
1 S2,2 · · ·

Proof of Theorem 19. The proof is composed by the following three steps. Fix a k > 1.
Step 1. We will show that Sk,p = S

(2)
k ⊕mf (p−1), for any p > 1. In fact, combining (11)

and Lemma 24, we know that for any p > 1, the singular word Sk,p ≺ φk+2(Fλ0(p)). So by

(12) and the definition of {mf (p)}p>1, we have Sk,p = Sk,1⊕mf (p− 1), where Sk,1 = S
(2)
k .

Step 2. We will show that

X̃k,p =

{
X̃k,1 ⊕mf (p− 1), if p+ 1 ∈ Λ0,

X̃k,2 ⊕mf (p− 1), if p+ 1 ∈ Λ1,

with initial values X̃k,1 = (k + 2)φk+1(2)(k + 3) and X̃k,2 = Fk + Lk+2 + 1.

It is easy to see that X̃k,1 = XL
k,1 = (k + 2)φk+1(2)(k + 3) and X̃k,2 = XS

k,1 = Fk +

Lk+2 + 1. Combining Lemma 25 and Proposition 18, we have XL
k,p = XL

k,1 ⊕mf (p − 1)

and XS
k,p = XS

k,1 ⊕mf (p− 1).
Step 3. We will show that

Ỹk,p = Ỹk,1 ⊕
(
Fλ0(λ1(p)+2) − 2

)
with the initial value Ỹk,1 = φk+1(2)(k + 3)−1. By Lemma 25, we only need to show

Ỹk,p C φk+2(Fλ0(p+1)) and Y L
k,p = Y S

k,p = Ỹk,1 ⊕
(
Fλ0(λ1(p)+2) − 2

)
.

Apparently, Ỹk,1 = φk+1(2)(k + 3)−1. Since Ỹk,p is a prefix of the word generating by
iterating k + 2 times of the second even number in F, we have

Ỹk,p C φk+2(Fλ0(p+1)).

Then by Lemma 25 and Proposition 18, we have

Y L
k,p = Ỹλ0(p)+1 C φk+2(Fλ0(λ1(p)+2)), Y S

k,p = Ỹλ1(p)+1 C φk+2(Fλ0(λ1(p)+2))

and |Y L
k,p| = |Y S

k,p|. So Y L
k,p = Y S

k,p = Ỹk,1 ⊕ (Fλ0(λ1(p)+2) − 2).
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6 Miscellaneous

By Theorem 19, we know that the structure of singular words will strongly affect the
infinite Fibonacci sequence F itself. So we also study the structure of singular words, and
we have the following results.

Proposition 26. There are three constructions of singular words in the following:
(1) For any n > 1,

S
(0)
n+1 = nS

(2)
−1S

(2)
0 · · ·S

(2)
n−1. (15)

(2) For any n > 1, if αβ B φn(0), then S
(0)
n+1 = βα−1S

(0)
n S

(2)
n−1.

(3) For n > −1, S
(2)
n+3 = UV U ′, where V = S

(2)
n ⊕ 2, U ′ = S

(2)
n+1 ⊕ 2 and U = (n +

4)φn+1(2)(n+ 3)−1.

Proof. (1) Since S
(0)
n+1 = nφn+1(0)(n+ 1)−1, by (10), we have

S
(0)
n+1 = nS

(2)
−1S

(2)
0 · · ·S

(2)
n−1.

(2) When n = 1, φ1(0) = 01, α = 0, so βα−1S
(0)
1 S

(2)
0 = 10−1001 = 101 = S

(0)
2 . Assume

that it is true for all k < n. Then,

n(n− 1)−1S(0)
n S

(2)
n−1 = n(n− 1)−1(n− 1)(n− 2)−1S

(0)
n−1S

(2)
n−2S

(2)
n−1

= n(n− 2)−1S
(0)
n−1S

(2)
n−2S

(2)
n−1

= · · ·
= n0−1S

(0)
1 S

(2)
0 S

(2)
1 · · ·S

(2)
n−1

= nS
(2)
−1S

(2)
0 S

(2)
1 · · ·S

(2)
n−1

= S
(0)
n+1 by (15).

(3) Since φn(2) = F
(2)
0 F

(2)
1 · · ·F

(2)
Ln+2−2F

(2)
Ln+2−1, we have

S(2)
n = F

(2)
Ln+2−2F

(2)
0 F

(2)
1 · · ·F

(2)
Ln+2−2.

Then

U =
(
F

(2)
Ln+3−2 + 2

)
F

(2)
0 L

(2)
1 · · ·F

(2)
Ln+3−2,

V =
(
F

(2)
Ln+2−2 + 2

)(
F

(2)
0 + 2

)
· · ·
(
F

(2)
Ln+2−2 + 2

)
,

U ′ =
(
F

(2)
Ln+3−2 + 2

)(
F

(2)
0 + 2

)
· · ·
(
F

(2)
Ln+3−2 + 2

)
.

By Proposition 4, we have

F
(2)
Ln+3−2 + 2 = F

(2)
Ln+5−2 = n+ 6, F

(2)
Ln+3−1 = F

(2)
Ln+2−2 + 2 = n+ 5
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and F
(2)
Ln+4−1 = n+ 6. Moreover,

F
(2)
Ln+3

F
(2)
Ln+3+1F

(2)
Ln+3+2 · · ·F

(2)
Ln+4−1 = φn(2)⊕ 2

=
(
F

(2)
0 + 2

)(
F

(2)
1 + 2

)
· · ·
(
F

(2)
Ln+2−1 + 2

)
,

F
(2)
Ln+4

F
(2)
Ln+4+1F

(2)
Ln+4+2 · · ·F

(2)
Ln+5−1 = φn+1(2)⊕ 2

=
(
F

(2)
0 + 2

)(
F

(2)
1 + 2

)
· · ·
(
F

(2)
Ln+3−1 + 2

)
.

Thus

S
(2)
n+3 =F

(2)
Ln+5−2F

(2)
0 F

(2)
1 · · ·F

(2)
Ln+3−2︸ ︷︷ ︸

U

F
(2)
Ln+3−1F

(2)
Ln+3
· · ·F (2)

Ln+4−2︸ ︷︷ ︸
V

F
(2)
Ln+4−1F

(2)
Ln+4
· · ·F (2)

Ln+5−2︸ ︷︷ ︸
U ′

.

The next result completely characterizes palindromes in F. Recall that a word w =
w0w1 · · ·wp is a palindrome if wpwp−1 · · ·w1w0 = w.

Proposition 27. The palindromes in F are of the forms (22⊕2i), (232⊕2i) and (323⊕2i)
where i > 0.

Proof. (i) Since F ≡ f mod 2 and 11 6≺ f , we have (2i+1, 2i+1) 6≺ F. So the palindromes
of length 2 in F are of the form (2i, 2i) where i > 0.

(ii) The palindromes of length 3 are generated by iterating words of length 2. By
Lemma 23 and the fact that 000 does not occur in f , we know that the palindromes of
length 3 are (2i, 2i+ 1, 2i) and (2i+ 1, 2i, 2i+ 1).

(iii) If there are palindromes of length 4 in F, then they are of the form u1u2u2u1.
Since F ≡ f mod 2, 11 6≺ f implies u2 = 2j for some j > 1, and 0000 6≺ f implies
u1 = 2i + 1 for some i > 0. By Lemma 23, u2u1 ≺ F gives i = j. Thus u1u2u2u1 =
(2i + 1)(2i)(2i)(2i + 1) ≺ F. Since φ(F) = F, the pre-image of (2i + 1)(2i)(2i)(2i + 1)
must be a factor of F. Note that (2i+ 1)(2i)(2i)(2i+ 1) has a unique pre-image under φ,
which is (2i)(2i− 1)(2i). So (2i)(2i− 1)(2i) ≺ F which contradicts (ii). Therefore, there
are no palindromes of length 4 in F.

(vi) Suppose that there are palindromes of length 5 in F. Then by (ii), they are of
the following forms: v1(2i)(2i+ 1)(2i)v1 and v2(2i+ 1)(2i)(2i+ 1)v2.

• Note that v1(2i)(2i + 1)(2i)v1 (mod 2) is either 00100 or 10101. But 10101 6≺ f ,
we have v1 = 2j for some j > 1. The pre-image of (2j)(2i)(2i + 1)(2i)(2j) is
(2j − 1)(2i)(2i − 1)z where z = 2j − 1 or 2j. In any case, (2j − 1)(2i)(2i − 1) ≺
F. However, by Lemma 23, (2i)(2i − 1) 6≺ F which is a contradiction. Thus
(2j)(2i)(2i+ 1)(2i)(2j) 6≺ F.

• In the second case, v2 = 2j for some j > 1 since 11 6≺ f . By Lemma 23, (2j)(2i+1) ≺
F yields that j = i. Thus (2i)(2i + 1)(2i)(2i + 1)(2i) ≺ F, and its pre-image is
(2i)(2i)(2i−1) or (2i)(2i)(2i). However, (2i)(2i−1) 6≺ F implies (2i)(2i)(2i−1) 6≺ F,
and 000 6≺ f implies (2i)(2i)(2i) 6≺ F. Hence (2i)(2i+ 1)(2i)(2i+ 1)(2i) 6≺ F.
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So there are no palindrome of length 5 in F.
(v) If there are palindromes of length larger than or equal to 6, then we can find palin-

dromes of length 4 or 5. However, according to (iii) and (vi), there are no palindromes of
length 4 and 5, so there are no palindromes of length larger than or equal to 6 in F.

In the last part, we give some observations of the sequence F (mod k) where k > 2.
When k is an even number, the sequence F ( mod k) is a pure substitution sequence which
is generated by the substitution φ (mod k), i.e.,{

0→ 01,

1→ 2,

{
2→ 23,

3→ 4,
· · ·

{
k − 2→ (k − 2)(k − 1),

k − 1→ 0.

When k is an odd number, the sequence F (mod k) is a substitution sequence under a
coding where the substitution φ (mod 2k), i.e.,{

0→ 01,

1→ 2,

{
2→ 23,

3→ 4,
· · ·

{
2k − 2→ (2k − 2)(2k − 1),

2k − 1→ 0,

and the coding is τ : i (i+ k)→ i for every 0 6 i < k.
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