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Abstract

Let G be a directed planar graph on n vertices, with no directed cycle of length
less than g > 4. We prove that G contains a set X of vertices such that G−X has
no directed cycle, and |X| 6 5n−5

9 if g = 4, |X| 6 2n−5
4 if g = 5, and |X| 6 2n−6

g if
g > 6. This improves recent results of Golowich and Rolnick.

A directed graph G (or digraph, in short) is said to be acyclic if it does not contain
any directed cycle. The digirth of a digraph G is the minimum length of a directed cycle
in G (if G is acyclic, we set its digirth to +∞). A feedback vertex set in a digraph G
is a set X of vertices such that G −X is acyclic, and the minimum size of such a set is
denoted by τ(G). In this short note, we study the maximum fg(n) of τ(G) over all planar
digraphs G on n vertices with digirth g. Harutyunyan [1, 4] conjectured that f3(n) 6 2n

5

for all n. This conjecture was recently refuted by Knauer, Valicov and Wenger [5] who
showed that fg(n) > n−1

g−1 for all g > 3 and infinitely many values of n. On the other hand,

Golowich and Rolnick [3] recently proved that f4(n) 6 7n
12

, f5(n) 6 8n
15

, and fg(n) 6 3n−6
g

for all g > 6 and n. Harutyunyan and Mohar [4] proved that the vertex set of every
planar digraph of digirth at least 5 can be partitioned into two acyclic subgraphs. This
result was very recently extended to planar digraphs of digirth 4 by Li and Mohar [6],
and therefore f4(n) 6 n

2
.

This short note is devoted to the following result, which improves all the previous
upper bounds for g > 5 (although the improvement for g = 5 is rather minor). Due to the
very recent result of Li and Mohar [6], our result for g = 4 is not best possible (however
its proof is of independent interest and might lead to further improvements).

Theorem 1. For all n > 3 we have f4(n) 6 5n−5
9

, f5(n) 6 2n−5
4

and for all g > 6,
fg(n) 6 2n−6

g
.
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In a planar graph, the degree of a face F , denoted by d(F ), is the sum of the lengths
(number of edges) of the boundary walks of F . In the proof of Theorem 1, we will need
the following two simple lemmas.

Lemma 2. Let H be a planar bipartite graph, with bipartition (U, V ), such that all faces
of H have degree at least 4, and all vertices of V have degree at least 2. Then H contains
at most 2|U | − 4 faces of degree at least 6.

Proof. Assume that H has n vertices, m edges, f faces, and f6 faces of degree at least
6. Let N be the sum of the degrees of the faces of H, plus twice the sum of the degrees
of the vertices of V . Observe that N = 4m, so, by Euler’s formula, N 6 4n + 4f − 8.
The sum of degrees of the faces of H is at least 4(f − f6) + 6f6 = 4f + 2f6, and since
each vertex of V has degree at least 2, the sum of the degrees of the vertices of V is at
least 2|V |. Therefore, 4f + 2f6 + 4|V | 6 4n + 4f − 8. It follows that f6 6 2|U | − 4, as
desired.

Lemma 3. Let G be a connected planar graph, and let S = {F1, . . . , Fk} be a set of k
faces of G, such that each Fi is bounded by a cycle, and these cycles are pairwise vertex-
disjoint. Then

∑
F 6∈S(3d(F )−6) >

∑k
i=1(3d(Fi)+6)−12, where the first sum varies over

faces F of G not contained in S.

Proof. Let n, m, and f denote the number of vertices, edges, and faces of G, respectively.
It follows from Euler’s formula that the sum of 3d(F ) − 6 over all faces of G is equal to
6m− 6f = 6n− 12 > 6

∑k
i=1 d(Fi)− 12. Therefore,

∑
F 6∈S(3d(F )− 6) > 6

∑k
i=1 d(Fi)−

12−
∑k

i=1(3d(Fi)− 6) =
∑k

i=1(3d(Fi) + 6)− 12, as desired.

We are now able to prove Theorem 1.

Proof of Theorem 1. We prove the result by induction on n > 3. Let G be a planar
digraph with n vertices and digirth g > 4. We can assume without loss of generality that
G has no multiple arcs, since g > 4 and removing one arc from a collection of multiple arcs
with the same orientation does not change the value of τ(G). We can also assume that G
is connected, since otherwise we can consider each connected component of G separately
and the result clearly follows from the induction (since g > 4, connected components of
at most 2 vertices are acyclic and can thus be left aside). Finally, we can assume that G
contains a directed cycle, since otherwise τ(G) = 0 6 min{5n−5

9
, 2n−5

4
, 2n−6

g
} (since n > 3).

Let C be a maximum collection of arc-disjoint directed cycles in G. Note that C is
non-empty. Fix a planar embedding of G. For a given directed cycle C of C, we denote
by C the closed region bounded by C, and by C̊ the interior of C. It follows from
classical uncrossing techniques (see [2] for instance), that we can assume without loss of
generality that the directed cycles of C are pairwise non-crossing, i.e. for any two elements
C1, C2 ∈ C, either C̊1 and C̊2 are disjoint, or one is contained in the other. We define the
partial order � on C as follows: C1 � C2 if and only if C̊1 ⊆ C̊2. Note that � naturally
defines a rooted forest F with vertex set C: the roots of each of the components of F are
the maximal elements of �, and the children of any given node C ∈ F are the maximal
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elements C ′ � C distinct from C (the fact that F is indeed a forest follows from the
non-crossing property of the elements of C).

Consider a node C of F , and the children C1, . . . , Ck of C in F . We define the closed
region RC = C −

⋃
16i6k C̊i. Let φC be the sum of 3d(F )− 6, over all faces F of G lying

in RC .

Claim 4. Let C0 be a node of F with children C1, . . . , Ck. Then φC0 >
3
2
(g − 2)k + 3

2
g.

Moreover, if g > 6, then φC0 >
3
2
(g − 2)k + 3

2
g + 3.

Assume first that the cycles C0, . . . , Ck are pairwise vertex-disjoint. Then, it follows
from Lemma 3 that φC0 > (k+1)(3g+6)−12. Note that since g > 4, we have (k+1)(3g+
6)− 12 > 3

2
(g − 2)k + 3

2
g. Moreover, if g > 6, (k + 1)(3g + 6)− 12 > 3

2
(g − 2)k + 3

2
g + 3,

as desired. As a consequence, we can assume that two of the cycles C0, . . . , Ck intersect,
and in particular, k > 1.

Consider the following planar bipartite graph H: the vertices of the first partite set
of H are the directed cycles C0, C1, . . . , Ck, the vertices of the second partite set of H are
the vertices of G lying in at least two cycles among C0, C1, . . . , Ck, and there is an edge
in H between some cycle Ci and some vertex v if and only if v ∈ Ci in G (see Figure 1).
Observe that H has a natural planar embedding in which all internal faces have degree at
least 4. Since k > 1 and at least two of the cycles C0, . . . , Ck intersect, the outerface also
has degree at least 4. Note that the faces F1, . . . , Ft of H are in one-to-one correspondence
with the maximal subsets D1, . . . ,Dt of RC0 whose interior is connected. Also note that
each face of G∩RC0 is in precisely one region Di and each arc of

⋃k
i=0Ci (i.e. each arc on

the boundary of RC0) is on the boundary of precisely one region Di. For each region Di,
let `i be the number of arcs on the boundary of Di, and observe that

∑t
i=1 `i =

∑k
j=0 |Cj|.

Let φDi
be the sum of 3d(F )−6, over all faces F of G lying in Di. It follows from Lemma 3

(applied with k = 1) that φDi
> 3`i − 6, and therefore φC0 =

∑t
i=1 φDi

>
∑t

i=1(3`i − 6).

C0

C1

C2

C5

C4

C3

Figure 1: The region RC0 (in gray) and the planar bipartite graph H.

A region Di with `i > 4 is said to be of type 1, and we set T1 = {1 6 i 6
t | Di is of type 1}. Since for any ` > 4 we have 3`− 6 > 3`

2
, it follows from the paragraph

above that the regions Di of type 1 satisfy φDi
> 3`i

2
. Let Di be a region that is not of
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type 1. Since G is simple, `i = 3. Assume first that Di is bounded by (parts of) two
directed cycles of C (in other words, Di corresponds to a face of degree four in the graph
H). In this case we say that Di is of type 2 and we set T2 = {1 6 i 6 t | Di is of type 2}.
Then the boundary of Di consists in two consecutive arcs e1, e2 of some directed cycle
C+ of C, and one arc e3 of some directed cycle C− of C. Since g > 4, these three arcs
do not form a directed cycle, and therefore their orientation is transitive. It follows that
|C+| > g+1, since otherwise the directed cycle obtained from C+ by replacing e1, e2 with
e3 would have length g − 1, contradicting that G has digirth at least g. Consequently,∑k

i=0 |Ci| > (k + 1)g + |T2|. If a region Di is not of type 1 or 2, then `i = 3 and each
of the 3 arcs on the boundary of Di belongs to a different directed cycle of C. In other
words, Di corresponds to some face of degree 6 in the graph H. Such a region Di is said
to be of type 3, and we set T3 = {1 6 i 6 t | Di is of type 3}. It follows from Lemma 2
that the number of faces of degree at least 6 in H is at most 2(k+ 1)− 4. Hence, we have
|T3| 6 2k − 2.

Using these bounds on |T2| and |T3|, together with the fact that for any i ∈ T2 ∪ T3
we have φDi

> 3`i − 6 = 3 = 3`i
2
− 3

2
, we obtain:

φC0 =
∑
i∈T1

φDi
+
∑
i∈T2

φDi
+
∑
i∈T3

φDi

>
t∑

i=1

3`i
2
− 3

2
|T2| − 3

2
|T3|

> 3
2

k∑
i=0

|Ci| − 3
2
|T2| − 3

2
(2k − 2)

> 3
2
(k + 1)g − 3k + 3 = 3

2
(g − 2)k + 3

2
g + 3,

as desired. This concludes the proof of Claim 4. �

Let C1, . . . , Ck∞ be the k∞ maximal elements of �. We denote byR∞ the closed region
obtained from the plane by removing

⋃k∞
i=1 C̊i. Note that each face of G lies in precisely

one of the regions RC (C ∈ C) or R∞. Let φ∞ be the sum of 3d(F )− 6, over all faces F
of G lying in R∞. A proof similar to that of Claim 4 shows that φ∞ > 3

2
k∞(g − 2) + 3,

and if g > 6, then φ∞ > 3
2
k∞(g − 2) + 6.

We now compute the sum φ of 3d(F )− 6 over all faces F of G. By Claim 4,

φ = φ∞ +
∑
C∈F

φC

> 3
2
k∞(g − 2) + 3 + (|C| − k∞)3

2
(g − 2) + |C| · 3

2
g

> (3g − 3)|C|+ 3.

If g > 6, a similar computation gives φ > 3g|C| + 6. On the other hand, it easily
follows from Euler’s formula that φ = 6n− 12. Therefore, |C| 6 2n−5

g−1 , and if g > 6, then

|C| 6 2n−6
g

.
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Let A be a set of arcs of G of minimum size such that G−A is acyclic. It follows from
the Lucchesi-Younger theorem [7] (see also [3]) that |A| = |C|. Let X be a set of vertices
covering the arcs of A, such that X has minimum size. Then G −X is acyclic. If g = 5
we have |X| 6 |A| = |C| 6 2n−5

4
and if g > 6, we have |X| 6 |A| = |C| 6 2n−6

g
, as desired.

Assume now that g = 4. In this case |A| = |C| 6 2n−5
3

. It was observed by Golowich and
Rolnick [3] that |X| 6 1

3
(n + |A|) (which easily follows from the fact that any graph on

n vertices and m edges contains an independent set of size at least 2n
3
− m

3
), and thus,

|X| 6 5n−5
9

. This concludes the proof of Theorem 1. �

Final remark

A natural problem is to determine the precise value of fg(n), or at least its asymptotical
value as g tends to infinity. We believe that fg(n) should be closer to the lower bound of
n−1
g

, than to our upper bound of 2n−6
g

.

For a digraph G, let τ ∗(G) denote the the infimum real number x for which there
are weights in [0, 1] on each vertex of G, summing up to x, such that for each directed
cycle C, the sum of the weights of the vertices lying on C is at least 1. Goemans and
Williamson [2] conjectured that for any planar digraph G, τ(G) 6 3

2
τ ∗(G). If a planar

digraph G on n vertices has digirth at least g, then clearly τ ∗(G) 6 n
g

(this can be seen by

assigning weight 1/g to each vertex). Therefore, a direct consequence of the conjecture of
Goemans and Williamson would be that fg(n) 6 3n

2g
.
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