Small feedback vertex sets in planar digraphs
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Abstract

Let G be a directed planar graph on n vertices, with no directed cycle of length
less than g > 4. We prove that G contains a set X of vertices such that G — X has
no directed cycle, and |X| < 255 if g = 4, [X| < 222 if g = 5, and |X| < M if
g = 6. This improves recent results of Golowich and Rolmck

A directed graph G (or digraph, in short) is said to be acyclic if it does not contain
any directed cycle. The digirth of a digraph G is the minimum length of a directed cycle
in G (if G is acyclic, we set its digirth to +00). A feedback vertex set in a digraph G
is a set X of vertices such that G — X is acyclic, and the minimum size of such a set is
denoted by 7(G). In this short note, we study the maximum f,(n) of 7(G) over all planar
digraphs G on n vertices with digirth g. Harutyunyan [1, 4] conjectured that f3(n) < 2
for all n. This conjecture was recently refuted by Knauer, Valicov and Wenger [5] who
showed that f,(n) > ;‘%} for all ¢ > 3 and infinitely many values of n. On the other hand,
Golowich and Rolnick [3] recently proved that fi(n) < 22, f5(n) < 32, and fy(n) < 3”9_6
for all ¢ > 6 and n. Harutyunyan and Mohar [4] proved that the vertex set of every
planar digraph of digirth at least 5 can be partitioned into two acyclic subgraphs. This
result was very recently extended to planar digraphs of digirth 4 by Li and Mohar [6],
and therefore fy(n) < 3.

This short note is devoted to the following result, which improves all the previous
upper bounds for g > 5 (although the improvement for g = 5 is rather minor). Due to the
very recent result of Li and Mohar [6], our result for g = 4 is not best possible (however
its proof is of independent interest and might lead to further improvements).

Theorem 1. For all n > 3 we have fy(n) < 5"9_5, fs(n) < 2275 and for all g > 6,

1
fo(n) < 271,%6-
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In a planar graph, the degree of a face F', denoted by d(F'), is the sum of the lengths
(number of edges) of the boundary walks of F. In the proof of Theorem 1, we will need
the following two simple lemmas.

Lemma 2. Let H be a planar bipartite graph, with bipartition (U,V'), such that all faces
of H have degree at least 4, and all vertices of V' have degree at least 2. Then H contains
at most 2|U| — 4 faces of degree at least 6.

Proof. Assume that H has n vertices, m edges, f faces, and fg faces of degree at least
6. Let N be the sum of the degrees of the faces of H, plus twice the sum of the degrees
of the vertices of V. Observe that N = 4m, so, by Euler’s formula, N < 4n 4+ 4f — 8.
The sum of degrees of the faces of H is at least 4(f — fs) + 6fs = 4f + 2f5, and since
each vertex of V' has degree at least 2, the sum of the degrees of the vertices of V is at
least 2|V|. Therefore, 4f + 2fs + 4|V| < 4n + 4f — 8. It follows that fs < 2|U| — 4, as
desired. O

Lemma 3. Let G be a connected planar graph, and let S = {F},..., Fy} be a set of k
faces of G, such that each F; is bounded by a cycle, and these cycles are pairwise vertex-
disjoint. Then ) g s(3d(F) —6) > S (3d(F) 4 6) — 12, where the first sum varies over
faces F' of G not contained in S.

Proof. Let n, m, and f denote the number of vertices, edges, and faces of G, respectively.
It follows from Euler’s formula that the sum of 3d(F) — 6 over all faces of G is equal to
6m — 6f = 6n — 12 > 63 ¢, d(F}) — 12. Therefore, 3" s(3d(F) —6) > 631 | d(F;) —
12— 3% [(3d(F}) — 6) = 2 (3d(F;) + 6) — 12, as desired. O

We are now able to prove Theorem 1.

Proof of Theorem 1. We prove the result by induction on n > 3. Let G be a planar
digraph with n vertices and digirth g > 4. We can assume without loss of generality that
G has no multiple arcs, since g > 4 and removing one arc from a collection of multiple arcs
with the same orientation does not change the value of 7(G). We can also assume that G
is connected, since otherwise we can consider each connected component of GG separately
and the result clearly follows from the induction (since g > 4, connected components of
at most 2 vertices are acyclic and can thus be left aside). Finally, we can assume that G
contains a directed cycle, since otherwise 7(G) = 0 < min{2%=2, 22 2”9_6} (since n > 3).

1

Let C be a maximum collection of arc-disjoint directed cycles in G. Note that C is
non-empty. Fix a planar embedding of GG. For a given directed cycle C' of C, we denote
by C the closed region bounded by C, and by C the interior of C. It follows from
classical uncrossing techniques (see [2] for instance), that we can assume without loss of
generality that the directed cycles of C are pairwise non-crossing, i.e. for any two elements
C1,Cy € C, either Co’l and Co'g are disjoint, or one is contained in the other. We define the
partial order < on C as follows: C; < (s if and only if Co'l - CO’Q. Note that < naturally
defines a rooted forest F with vertex set C: the roots of each of the components of F are
the maximal elements of <, and the children of any given node C' € F are the maximal
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elements C' =< C distinct from C' (the fact that F is indeed a forest follows from the
non-crossing property of the elements of C).

Consider a node C' of F, and the children C1,...,C} of C'in F. We define the closed
region Re = C — Uy cicp C;. Let ¢¢ be the sum of 3d(F) — 6, over all faces F of G lying
in Rc.

Claim 4. Let Cy be a node of F with children C,...,Cy. Then ¢c, = 2(9 — 2)k + 3g.
Moreover, if g > 6, then ¢c, = %(g —2)k + %g + 3.

Assume first that the cycles Cy, ..., C} are pairwise vertex-disjoint. Then, it follows
from Lemma 3 that ¢¢, > (k+1)(3g+6)—12. Note that since g > 4, we have (k+1)(3g+
6) — 12 > 3(g — 2)k + 3g. Moreover, if g > 6, (k+1)(3g+6) — 12 > 3(g — 2)k + 39+ 3,
as desired. As a consequence, we can assume that two of the cycles Cy, ..., C} intersect,
and in particular, k > 1.

Consider the following planar bipartite graph H: the vertices of the first partite set
of H are the directed cycles Cy, C1, ..., Cy, the vertices of the second partite set of H are
the vertices of GG lying in at least two cycles among Cy, CY, ..., C}, and there is an edge
in H between some cycle C; and some vertex v if and only if v € C; in G (see Figure 1).
Observe that H has a natural planar embedding in which all internal faces have degree at
least 4. Since k > 1 and at least two of the cycles Cy, ..., C} intersect, the outerface also
has degree at least 4. Note that the faces F,. .., F; of H are in one-to-one correspondence
with the maximal subsets Dy, ..., D, of R¢, whose interior is connected. Also note that
each face of GNR¢, is in precisely one region D; and each arc of Uf:o C; (i.e. each arc on
the boundary of R¢,) is on the boundary of precisely one region D;. For each region D;,
let ¢; be the number of arcs on the boundary of D;, and observe that Y"_, ¢; = Z?:o |C].
Let ¢p, be the sum of 3d(F') —6, over all faces F' of G lying in D;. It follows from Lemma 3
(applied with k& = 1) that ¢p, > 3¢; — 6, and therefore ¢¢, = 22:1 op, = 2221(3& —6).

Figure 1: The region R, (in gray) and the planar bipartite graph H.

A region D; with ¢; > 4 is said to be of type 1, and we set T3 = {1 < i <
t|D; is of type 1}. Since for any ¢ > 4 we have 3¢ —6 > 372, it follows from the paragraph
above that the regions D; of type 1 satisty ¢p, > % Let D; be a region that is not of

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(2) (2017), #P2.6 3



type 1. Since G is simple, ¢; = 3. Assume first that D; is bounded by (parts of) two
directed cycles of C (in other words, D; corresponds to a face of degree four in the graph
H). In this case we say that D; is of type 2 and we set Ty, = {1 <@ < t|D; is of type 2}.
Then the boundary of D; consists in two consecutive arcs eq, es of some directed cycle
C* of C, and one arc e3 of some directed cycle C~ of C. Since g > 4, these three arcs
do not form a directed cycle, and therefore their orientation is transitive. It follows that
|C*| > g+ 1, since otherwise the directed cycle obtained from C™ by replacing ey, e; with
ez would have length ¢ — 1, contradicting that G has digirth at least g. Consequently,
Zf:o |C;| = (k+ 1)g + |T»|. If a region D; is not of type 1 or 2, then ¢; = 3 and each
of the 3 arcs on the boundary of D; belongs to a different directed cycle of C. In other
words, D; corresponds to some face of degree 6 in the graph H. Such a region D; is said
to be of type 3, and we set T3 = {1 < i < t|D; is of type 3}. It follows from Lemma 2
that the number of faces of degree at least 6 in H is at most 2(k + 1) — 4. Hence, we have
T3] < 2k — 2.

Using these bounds on |T»| and |T3|, together with the fact that for any ¢ € To, U T

we have ¢p, > 3(; — 6 =3 = 3741 — %, we obtain:

bc, = > bp,+ > ép,+ > o,

i€y i€Th ISIE!
t
> D% —3n - 3T
i=1

k
> 3 |G| - 4| - $(2k - 2)
=0

>

N

(k+1)g—3k+3 = 3(g—2)k+3g+3,

as desired. This concludes the proof of Claim 4. O

Let C4, ..., Ck be the ky, maximal elements of <. We denote by R, the closed region
obtained from the plane by removing Ufjl C;. Note that each face of @ lies in precisely
one of the regions R¢e (C' € C) or Reo. Let ¢ be the sum of 3d(F) — 6, over all faces F
of G lying in R.,. A proof similar to that of Claim 4 shows that ¢, > %koo(g —2)+3,
and if g > 6, then ¢o = 3koo(g — 2) + 6.

We now compute the sum ¢ of 3d(F) — 6 over all faces F' of G. By Claim 4,

gboo_l'ZqSC

CeF
shoo(9—2) +3+ (IC] = kso)3(9 — 2) +[C| - 39
(3g — 3)C| + 3.

¢

VoV

If ¢ > 6, a similar computation gives ¢ > 3¢g|C| + 6. On the other hand, it easily
follows from Euler’s formula that ¢ = 6n — 12. Therefore, |C| < 2=, and if g > 6, then

g—17
|C| < 2ng—6'
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Let A be a set of arcs of G of minimum size such that G — A is acyclic. It follows from
the Lucchesi-Younger theorem [7] (see also [3]) that |A| = |C|. Let X be a set of vertices
covering the arcs of A, such that X has minimum size. Then G — X is acyclic. If g =5

we have | X| < |A] = [C] < 2222 and if g > 6, we have |X| < |A| = |C| < 2”;6, as desired.
Assume now that g = 4. In this case |A| = |C] < 25, It was observed by Golowich and

Rolnick [3] that |X| < 5(n + |A|) (which easily follows from the fact that any graph on

n vertices and m edges contains an independent set of size at least 2?" — &), and thus,

| X| < 5"9_ 5 This concludes the proof of Theorem 1. 0

Final remark

A natural problem is to determine the precise value of f,(n), or at least its asymptotical
value as g tends to infinity. We believe that f,(n) should be closer to the lower bound of
"T’l, than to our upper bound of Q"f;fi.

For a digraph G, let 7%(G) denote the the infimum real number z for which there
are weights in [0, 1] on each vertex of GG, summing up to x, such that for each directed
cycle C'; the sum of the weights of the vertices lying on C' is at least 1. Goemans and
Williamson [2] conjectured that for any planar digraph G, 7(G) < %T*(G>. If a planar
digraph G on n vertices has digirth at least g, then clearly 7*(G) < o (this can be seen by
assigning weight 1/g to each vertex). Therefore, a direct consequence of the conjecture of
Goemans and Williamson would be that f;(n) < 3—’;.
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