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Abstract

Using cocommutativity of the Hopf algebra of symmetric functions, certain skew
Schur functions are proved to be equal. Some of these skew Schur function identities
are new.

1 Introduction

The Schur symmetric functions are a particularly nice basis for symmetric functions. Skew
Schur functions are also very nice symmetric functions, but contain more mysteries. The
full set of relations between skew Schur functions is so far from known that even the
question of when two skew Schur functions indexed by different skew shapes are equal is
not fully understood.

A characterization of when two skew Schur functions are equal is known in the case
of skew ribbons [2]. A partial but quite structural class of skew Schur function identities
is given in [10].

This paper uses very different techniques to find equalities between skew Schur func-
tions. Some of the equalities obtainable with these new techniques are new. However,
many of the identities found in [10] are not obtainable with the results of this paper, so
these new techniques complement the old ones rather than overtaking them.

∗The author would like to thank Stephanie van Willigenburg for useful conversations without which
these results would not exist. The author would also like to thank the referee who took the care to find
a significant mistake in an earlier version and had the patience to stick with the paper until it was fixed.
This work was done while the author was at Simon Fraser University. The author is supported by an
NSERC Discovery grant.
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The problem of skew Schur identities can also be seen as a special case of a question of
Schur positivity. A symmetric function is said to be Schur positive if the coefficients when
written in terms of the basis of Schur functions are all nonnegative. Symmetric function
identities then form the equality case. The special kind of identities considered above,
equalities between two skew Schur functions, forms the equality case of the question of
when the difference between two skew Schur functions is Schur positive. Both Schur
positivity and Schur positivity of differences specifically are questions which have had
much study, see for example [6, 7, 8, 9] and the references therein.

2 Preliminaries and composition of shapes

Given a partition λ = (λ1 > λ2 > · · · > λi) its shape (or Ferrers diagram or Young
diagram) is a set of left aligned rows of boxes with λ1 boxes in the top row, λ2 boxes in
the second from the top row and so on. By abuse of notation the shape of λ will also
be denoted λ. Given another partition µ = (µ1 > µ2 > · · · > µj) if j 6 i and µk 6 λk
for 1 6 k 6 j then we say µ 6 λ and we can form the skew shape λ/µ by taking the
boxes that appear in the shape of λ but not µ when they are aligned with their top left
corners coinciding. A skew shape may or may not be connected. The size of a shape is
the number of boxes. A ribbon is a shape that does not contain four boxes in a square,
that is it does not contain the partition (2, 2) as a subshape. Young’s lattice is the
poset of partition shapes ordered by the 6 defined above.

Let k be a commutative ring. The ring of symmetric functions over k is the subring
of k[[x1, x2, . . .]] consisting of power series that are invariant under all permutations of the
indeterminates and that are of bounded degree. See [12] for details.

A filling of a shape (skew or not) is an assignment of positive integers to the boxes
of the shape with the property that the integers are weakly increasing along the rows
and strictly increasing along the columns. To each filling we can associate a monomial in
k[[x1, x2, . . .]] where the power of xi is the number of occurrences of i in the filling. Given
a partition shape λ the Schur function associated to λ is the sum of all monomials
associated to fillings of λ. This turns out to be a symmetric function and in fact the
Schur functions of partition shape form a basis for symmetric functions. Given a skew
shape λ/µ the associated skew Schur function is formed analogously. Henceforth the
term Schur function will be used to refer to both the skew and non-skew cases.

If α and β are shapes whose associated (skew) Schur functions are equal then we write

α ∼ β

Given a shape α (skew or not), rotating 180 degrees also gives a shape which is denoted
α∗. It is a standard fact that α ∼ α∗. This can be seen by considering the relationship
between the fillings in each case. One trivial but useful consequence of this is that the
Schur functions associated to 180 degree rotations of partition shapes also form a basis
for symmetric functions (in fact the same basis).

Ribbon Schur functions are easier to understand than general skew Schur functions.
Two particular facts about ribbon Schur functions will be important in the following,
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see [2] for proofs. First, ribbon Schur functions span symmetric functions. Second the
product of two ribbon Schur functions is easy to describe. Specifically if α and β are two
ribbons, then the product of the Schur functions associated to α and β is the sum of the
ribbon Schur functions associated to the ribbon obtained by putting the leftmost box of β
immediately to the right of the rightmost box of α and to the ribbon obtained by putting
the bottommost box of β immediately above the topmost box of α.

We will need some more technical notation and definitions from [10]. If we index the
boxes of a shape by rows and columns, a diagonal of the shape is the set of boxes of the
shape with the same difference between the row and column indices.

Given shapes W and α, say that W lies in the top of α if W appears as a connected
subdiagram of α that includes the northeasternmost box of α. Likewise W lies in the
bottom of α if it includes the southwesternmost box of α.

Given two shapes α1 and α2 and a shape W lying in the top of α1 and in the bottom
of α2, the amalgamation of α1 and α2 along W , written α1qW α2, is the shape obtained
by placing α1 on top of α2 with the copies of W identified. This is Definition 3.5 of [10].

A shape α is a W → O → W shape if

• W lies both in the top and in the bottom of α,

• removing either W leaves a connected shape,

• the subshape resulting from removing both W shapes is O,

• there is at least one diagonal strictly between the two copies of W , and

• the southwesternmost box of O has a box of the lower W immediately to the west
and the northeasternmost box of O has a box of upper W immediately to the east.

A shape α is a W ↑ O ↑ W shape if it satisfies the first four properties above, and instead
of the last property satisfies

• the southwesternmost box of O has a box of the lower W immediately to the south
and the northeasternmost box of O has a box of upper W immediately to the north.

Without loss of generality, McNamara and van Willigenburg also suppose that W is
maximal in the sense that no other shape contains W , satisfies the first two properties
above, and occupies the same diagonals as W . See [10, pp. 9,10] for details.

Their goal is to define a composition of shapes where copies of the second shape are put
together according to the first shape. To do that they need two operations to correspond
to the left-right and up-down relation of boxes in the first shape. These two operations
are amalgamation, defined above, and the following operation, which is a sort of shifted
amalgamation.

Suppose α is a W → O → W shape and α1 and α2 are copies of α. Then α1 ·W α2

is the shape where α2 is positioned so that its lower copy of W is one position northwest
of the upper copy of W in α1. Similarly if α is a W ↑ O ↑ W shape then α1 ·W α2 is the
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shape where α2 is positioned so that its lower copy of W is one position southeast of the
upper copy of W in α1.

Now we are ready to define a modified version McNamara and van Willigenburg’s
composition.

Definition 1 (half of Definition 3.11 [10] modified). Let α and β be shapes and suppose
β is W → O → W or W ↑ O ↑ W . Then α ◦W β (or α ◦ β when W is understood) is the
shape defined as follows.

• There is a copy of β for each box of α, subject to some overlapping detailed below.
Write βb for the copy of β corresponding to box b of α.

• If b1 is a box of α immediately to the west of box b2 then

– if β is W → O → W then βb1 and βb2 overlap according to βb1 qW βb2 ,

– if β is W ↑ O ↑ W then βb1 and βb2 overlap according to βb1 ·W βb2 .

• If b1 is a box of α immediately to the south of box b2 then

– if β is W → O → W then βb1 and βb2 overlap according to βb1 ·W βb2 ,

– if β is W ↑ O ↑ W then βb1 and βb2 overlap according to βb1 qW βb2 .

This differs from McNamara and van Willigenburg in that the roles of ·W and qW have
been swapped for W ↑ O ↑ W shapes. This means that for W ↑ O ↑ W shapes β what I
write as α ◦ β corresponds to what McNamara and van Willigenburg write as α∗ ◦ β and
conversely. This makes no difference to the overall results since both in this paper and in
their paper the ultimate results are about when α ◦ β ∼ α∗ ◦ β. The definition given here
is more convenient for the present purposes because then the role of the top and bottom
key ribbons of Section 4 match in the W → O → W cases and the W ↑ O ↑ W cases
rather than being swapped. See Figure 1 for a schematic of this composition.

McNamara and van Willigenburg also define W ↑ O → W and W → O ↑ W shapes.
These shapes have a somewhat different feel. The main results of [10] are cases where
compositions involving the different WOW shapes are ∼-equivalent. The results of this
paper are also of this form. However, the techniques are quite different and it turns out
that the class of identities that can be proved is also different.

3 The shape Hopf algebra

The approach of this paper relies crucially on the cocommutativity of the Hopf algebra
of symmetric functions.

The Hopf algebra of symmetric functions is one of the classical combinatorial Hopf
algebras [4]. If we think of symmetric functions in terms of Schur functions and then think
of Schur functions in terms of the skew shapes which index them, then we can interpret
the Hopf algebra of symmetric functions as a Hopf algebra operating on shapes.
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Figure 1: Schematic examples of the composition of shapes.

However, the full set of identities between Schur functions is not known and the Hopf
algebra of symmetric functions viewed in terms of shapes also incorporates these identities
which we do not know. Consequently, it will be helpful to think of the Hopf algebra of
symmetric functions as a quotient of a more naive Hopf algebra defined in terms of shapes
but without such identities. This is also a classical combinatorial Hopf algebra, namely it is
the Hopf algebra of intervals in Young’s lattice. For a nice presentation of Hopf algebras of
intervals in a poset see [1] Theorem 2.1 and immediately before. For the present purposes,
we are interested in taking the commutative version of this construction and in including
skew shapes. The resulting Hopf algebra can be defined directly as follows.

Let P be the set of all partition shapes. Let S be the set of all shapes, both skew and
non-skew, connected and not connected. Let C be the set of connected shapes, skew and
non-skew. Let k be the base field.1 Consider k[C]. If we view a disconnected skew shape
as identified with the monomial of its connected components, then the multiplication
in k[C] lives in a quotient of the vector space generated by S, specifically the quotient
given by identifying all disconnected skew shapes with the same multiset of connected
components. Note that this already captures one easy family of identities of skew Schur
functions, namely if λ is the disjoint union of µ and ν then λ ∼ µν, that is skew Schur
functions are multiplicative on disjoint unions.

Define the coproduct on shapes to match the coproduct of Schur functions, that is for

1In fact as some authors such as Grinberg and Reiner [4] have commented, the basic theory of com-
binatorial Hopf algebras also works over a commutative ring and often working over the ring k = Z is
useful.
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a skew shape λ/µ

∆(λ/µ) =
∑
µ6η6λ

η/µ⊗ λ/η

This defines ∆ on C, and so we define it on k[C] by extending as an algebra homomorphism.
This is a sensible definition since this definition of ∆ on disconnected shapes agrees with
∆ on the product of the connected components. Define the counit by ε(λ/µ) = 0 provided
λ/µ contains at least one box, ε(1) = 1, and extend linearly. These operations satisfy the
axioms of a bialgebra, and the resulting bialgebra is graded and connected hence a Hopf
algebra as well; see [4] or some of the original combinatorial Hopf algebra work [5, 11] for
details.

Then k[C] with ∆ and ε is the commutative version of the Hopf algebra of intervals
of the poset of shapes (including skew shapes). Call this Hopf algebra the shape Hopf
algebra. Note that the shape Hopf algebra is not cocommutative.

There is a map from the shape Hopf algebra to the symmetric function Hopf algebra
given by taking each shape to its Schur function and extending linearly. This map is an
algebra homomorphism since the Schur function of a disconnected shape is the product
of the Schur functions of the components and the map takes the element 1 to 1. This
map is a coalgebra homomorphism because the shape coproduct and counit were defined
to match with those of the Schur functions. Thus the map is a bialgebra homomorphism.
Any bialgebra map between two Hopf algebras is a Hopf algebra homomorphism, and so
the map is a Hopf algebra homomorphism. Further, the map is surjective onto symmetric
functions and so by the Hopf algebra isomorphism theorems the symmetric function Hopf
algebra is a quotient of the shape Hopf algebra. In particular it is the quotient of the
shape Hopf algebra given by forcing products to be what they are for Schur functions by
imposing the required ideal of identities. See [3] for similar quotients in quasi-symmetric
functions.

4 Results

Let β be a partition shape that is a rectangle with the lower right corner box removed.
Let γ be a W → O → W or W ↑ O ↑ W shape. The main result is that β ◦ γ ∼ β∗ ◦ γ
(Theorem 13) provided the ends of the composition do not have any extraneous ribbons
(see Definition 7). The main tool is the cocommutativity of the Hopf algebra of symmetric
functions.

Definition 2. Given a W → O → W or W ↑ O ↑ W shape γ, the top key ribbon of γ
is the connected ribbon defined as follows

1. If γ is W → O → W the top key ribbon is the part of the upper left ribbon of
γ qW γ from the first box after the O of the first γ up to and including the last box
of the O of the second γ.

2. If γ is W ↑ O ↑ W the top key ribbon is the part of the upper left ribbon of γ qW γ
from the first box of the O of the first γ up to and including the last box not in the
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Figure 2: Top key ribbons (red) and bottom key ribbons (blue) in W ↑ O ↑ W and
W → O → W cases

O of the second γ.

Define the bottom key ribbon of γ to be the following connected ribbon

1. If γ is W ↑ O ↑ W the bottom key ribbon is the part of the bottom right ribbon of
γ qW γ from the first box after the O of the first γ up to and including the last box
of the O of the second γ.

2. If γ is W → O → W the bottom key ribbon is the part of the bottom right ribbon
of γ qW γ from the first box of the O of the first γ up to and including the last box
not in the O of the second γ.

The key ribbons are illustrated in Figure 2. See also Figure 5 for how the key ribbons
will appear in the main argument.

Lemma 3. The top key ribbon and bottom key ribbon of γ have the same size, the same
number of rows, and the same number of columns.

Proof. In γ qW γ, for both the top key ribbon and the bottom key ribbon, shifting one
copy of O by the key ribbon puts it onto the other copy of O. Hence both key ribbons
determine the same shift and so have the same number of rows and the same number of
columns. Since they are both ribbons they are also the same size.

Definition 4. Given any shape λ, say a shape µ can be taken out on the left if the
term of the form µ⊗A in ∆(λ) is nonzero in the shape Hopf algebra. Say µ can be taken
out on the right if the term of the form A ⊗ µ in ∆(λ) is nonzero in the shape Hopf
algebra.

To simplify the proof of Lemma 8 it is worth making a digression into infinite shapes.
Extend the notion of taking out on the right and left to infinite shapes as follows. Define
an embedded infinite shape to be a set of boxes in the integer lattice Z2 such that ev-
ery truncation given by restricting to {−N, . . . ,−1, 0, 1, . . . , N}2 is a shape (partition or
skew). The set of infinite shapes is then the set of embedded infinite shapes up to finite
translation. The restriction of an embedded infinite shape λ to {−N, . . . ,−1, 0, 1 . . . , N}2
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will be denotes λN . Say a shape µ can be taken out on the left of an infinite shape λ if
for any embedding of λ there exists an embedding of µ in Z2 (independent of N) such
that for all sufficiently large truncations this copy of µ gives a nonzero term of the form
µ⊗A in ∆(λN) in the shape Hopf algebra. Taking out on the right in infinite shapes can
be defined similarly. Note that it is important that the embedding of µ be fixed for all
N ; is not sufficient to just require that µ can be taken out on the left in every truncation
because there could be a different copy of µ on the border of each truncation but no µ
coming out of the infinite shape. For example µ = (1) cannot be taken out on the left or
the right of the infinite vertical strip though it can be taken out of any truncation.

Lemma 5. Let c be the infinite 1 column shape and let d be the infinite 1 row shape. Let
n be the size of the key ribbons of γ. Then there are no connected ribbons of size n which
can be taken out on left nor which can be taken out on the right in either c ◦ γ or d ◦ γ.

Proof. Suppose t is a ribbon of size n which can be taken out on the right of c ◦ γ.
The infinite ribbon given by the upper left edge of c ◦ γ is periodic. By the definition

of the key ribbon, the period is n. Since t can be taken out on the right t is a finite
connected subribbon of this infinite ribbon. Taking any truncation of c◦γ which includes
at least one γ on each side of t does not affect whether or not t comes out. Since |t| = n
this means that the last box before t and the first box in t are in the same local situation
as the last box of t and the first box not in t. Since t can be taken out, its first box
must be above the box before it and so the last box of t is trapped by the box above it
contradicting the fact that it can be taken out.

The argument is analogous for the other cases.

Lemma 6. Let h be an infinite shape such that every truncation is a partition shape
and such that the numbers of rows in the truncations are unbounded and the numbers of
columns in the truncations are unbounded.

1. Let r be the top key ribbon of γ. The only connected ribbon of size |r| that can
be taken out on the left of h ◦ γ is the copy of r that appears in the copy of γ
corresponding to the top left box of h.

2. Let s be the bottom key ribbon of γ. The only connected ribbon of size |s| that can
be taken out on the right of h∗ ◦ γ is the copy of s that appears in the copy of γ
corresponding to the bottom right box of h∗.

Proof. First note that h consists of a box, a 1 way infinite column beneath the box, a 1
way infinite row after the box, and potentially some boxes to the lower right of the boxes
already given which locally maintain a partition shape.

Suppose t is a ribbon of size |r| that can be taken out on the left of h ◦ γ.
The infinite ribbon given by the upper left edge of h◦γ is made of two periodic pieces;

the upper left edges of the left column of h composed with γ and the upper left edges of
the top row of h composed with γ. Boxes to the lower right in h do not contribute to
this ribbon. Since t can be taken out on the left t is a finite connected subribbon of this
infinite ribbon.
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Figure 3: A schematic of the area around the copy of γ corresponding to the top left box.

By the definition of the key ribbon, the first box that is not part of the column
periodicity is the rightmost box of the top key ribbon of the copy of γ corresponding to
the top left box of h. Similarly, the last box that is not part of the row periodicity is the
leftmost box of the top key ribbon of the copy of γ corresponding to the top left box of
h. See Figure 3 for an example.

As in Lemma 5 if t is within either periodic part of the infinite ribbon then it cannot
be taken out. Thus, by the boundaries of the previous paragraph, t must include the
rightmost box and the leftmost box of the top key ribbon of the copy of γ corresponding
to the top left box of h. Thus t must be the top key ribbon of the copy of γ corresponding
to the top left box of h.

The result for h∗ is analogous.

We need one last technical restriction to characterize the class of shapes γ which we
can use.

Definition 7.

1. Let γ be a W → O → W shape and let n be the size of its key ribbons. Say that γ
has no loose end ribbons if no ribbon of length n which begins to the left of the
top key ribbon can be taken out on the left and no ribbon of length n which ends
to the right of the bottom key ribbon can be taken out on the right.

2. Let γ be a W ↑ O ↑ W shape and let n be the size of its key ribbons. Say that γ
has no loose end ribbons if no ribbon of length n which ends to the right of the
top key ribbon can be taken out on the left and no ribbon of length n which begins
to the left of the bottom key ribbon can be taken out on the right.
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Lemma 8. Let λ be a partition shape and let γ have no loose end ribbons.

1. Let r be the top key ribbon of γ. Then, the only connected ribbon of size |r| that can
be taken out on the left of λ ◦ γ is r. r can be taken out exactly once and this is
when it appears in the copy of γ corresponding to the top left box of λ.

2. Let s be the bottom key ribbon of γ. The only connected ribbon of size |s| that can
be taken out on the right of λ∗ ◦ γ is s. s can be taken out exactly once and this is
when it appears in the copy of γ corresponding to the bottom right box of λ∗.

Proof. Suppose t is a ribbon of size |r| that can be taken out on the left of λ ◦ γ.
Consider the upper left ribbon of λ◦γ. This ribbon is made of two pieces: first a finite

section of the upper left ribbon of h ◦ γ from Lemma 6, including the part corresponding
to the upper left corner; and second, an extra bit. If γ is W → O → W then this extra
bit is on the left and comes from the part of the copy of γ coming from the lower left box
of λ which is to the left of the top key ribbon. If γ is W ↑ O ↑ W then this extra bit is on
the right and comes from the part of the copy of γ coming from the upper right box of λ
which is to the right of the top key ribbon. See Figure 4 for an example of the extra bit.

By the assumption of no loose end ribbons t cannot contain any boxes of this extra
bit. Then, by the arguments of Lemma 6, t must be the top key ribbon in the copy of γ
corresponding to the top left box of λ.

The proof for s is analogous.

Given a basis for symmetric functions of a given degree it will be useful to have a
notation for the coefficient vectors in this basis.

Definition 9. Let B be an ordered basis for symmetric functions consisting of Schur
functions. Let λ be a shape. Let λB be the coefficient vector (written as a row) of the
Schur function indexed by λ relative to B.
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Whenever convenient and without comment, when dealing with shapes of a particular
size n, B and λB will be viewed as restricted to size n and hence finite.

Lemma 10. Let B be an ordered basis for symmetric functions made up of connected
ribbon Schur functions and let λ be a shape that is not a connected ribbon. Let v be the
vector of length |B| that is 1 if the corresponding entry of B has an even number of rows
and is −1 if the corresponding entry of B has an odd number of rows. Then v · λB = 0.

Proof. There are two cases to consider, disconnected ribbons and non-ribbons (both con-
nected and disconnected).

Consider a ribbon. The product of two connected ribbons creates two connected
ribbons whose number of rows differs by 1 so one has an odd number of rows and one
has an even number of rows. Thus, using the equivalences in the Hopf algebra to convert
any disconnected ribbon into connected ribbons gives a sum of ribbons with exactly half
having an even number of rows and half having an odd number of rows. Furthermore, all
linear relations among ribbons are generated in this way (see Proposition 2.2 of [2]). So,
writing any given connected ribbon in terms of a fixed basis of connected ribbons does
not change the difference between the number (weighed by their coefficients) of ribbons
in the sum with an odd number of rows and the number with an even number of rows.
This gives the desired result in the case of disconnected ribbons.

Consider a non-ribbon. Given a connected shape containing at least one (2, 2), say
the boxes above or to the right of the upper rightmost (2, 2) are the right ribbon and
say the boxes below or to the left of the lower leftmost (2, 2) are the left ribbon. This
proof is a triple induction, first on the number of (2, 2)s inside the shape, second within
connected shapes with the same number of (2, 2), by sum of the sizes of the left and right
ribbons, and third within shapes with the same total size of left and right ribbon, by the
size of the left ribbon. The base case for the outer induction is the ribbons, connected
and disconnected.

Given a non-ribbon shape with k (2, 2)s. If the shape is connected and has no right
or left ribbons, add a box to the end of the first row. By cocommutativity the results of
taking out one box on the right in all possible ways must equal the results of taking out
one box on the left in all possible ways. One of the ways of taking out one box on the
right gives the shape itself; all other ways of taking out one box on either the left or the
right either remove a (2, 2) or disconnect the shape. Since the shape had no right or left
ribbons, in the case where the shape becomes disconnected, each connected component
must contain at least one (2, 2) and so each component has fewer than k (2, 2)s. To
summarize, cocommutativity gives an equality between two sums of shapes. One of the
shapes in one of the sums is the shape we began with while the others have fewer (2, 2)s.
Solving for the shape itself, we obtain the shape itself as a sum of other shapes where each
connected component has fewer (2, 2)s. Notice that any time a connected component has
only one (2, 2) then this (2, 2) can be broken in exactly two ways: one by taking out a box
on the right and one by taking out a box on the left and both ways give ribbons with the
same number of rows. Thus when the sum gives ribbons they will appear in pairs with
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opposite sign and same row parity. By induction and the result for products of ribbons,
the result holds in the case of shapes with k (2, 2)s and no left or right ribbons.

Now consider a connected shape with k (2, 2)s and no left ribbon. Again add a box
to the end of the first row. Again, by cocommutativity, the results of taking out one box
on the right in all possible ways must equal the results of taking out one box on the left
in all possible ways, and one of the results of taking out one box on the right is the shape
itself. Taking out any other single box either removes a (2, 2), which is fine by induction,
or disconnects the shape. If disconnecting the shape results in components each with at
least one (2, 2) then again we’re fine by induction. The remaining possibility is that the
box removed was in the right ribbon which results in a connected component with no left
ribbon and a smaller right ribbon. Solving for the shape itself, similarly to the previous
paragraph, this case holds by induction.

Finally take any shape with k (2, 2)s. Assume the result holds for any shape with fewer
(2, 2)s (outer induction), for any shape with smaller total size of left and right ribbons
(middle induction), and for any shape with the same total size of left and right ribbons
but with smaller left ribbon (inner induction). The set up is the same as before. Call the
connected component that contains the top row the top component. Again one way of
taking out one box on the right is the shape itself. Taking out any other single box does
one of the following:

• removes a (2, 2); the result holds on this piece by the outer induction

• removes a box from the left or right ribbon of a component that is not the top
component; the result holds on this piece by the middle induction

• removes a box from the left ribbon of the top component; the result holds on this
piece by the inner induction

• creates a new connected component; the result holds on this piece by the outer
induction if each new component contains a (2, 2) and by the middle induction
otherwise.

Solving for the shape itself completes the proof.

Lemma 11. Let s and t be connected ribbon Schur functions with the same number of
rows. If s is a nonzero scalar multiple of t then s = t

Proof. Take a basis of connected ribbon Schur functions that includes s. As noted in
the proof of Lemma 10, writing any given connected ribbon in terms of a fixed basis of
connected ribbons does not change the coefficient-weighted difference between the number
of ribbons in the sum with an odd number of rows and the number with an even number
of rows. Writing t in terms of the basis the only ribbon in this sum is s and both s and t
have the same number of rows so the weight must be 1.

Proposition 12. Let β be a partition shape that is a rectangle with the lower right corner
box removed. Let γ be a W → O → W or W ↑ O ↑ W shape with no loose end ribbons.
Suppose the top key ribbon and the bottom key ribbon of γ are the same. Then β◦γ ∼ β∗◦γ.
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Figure 5: An example of the position of the key ribbons in the set up of Proposition 12

Proof. Let s be β with the lower right corner filled. Note that if we lay β ◦ γ and β∗ ◦ γ
on top of each other with the copies of γ corresponding to common boxes of β and β∗

identified then the resulting shape is s ◦ γ. Furthermore, those boxes of s ◦ γ that are not
in β ◦ γ are the unique copy of top key ribbon of γ that can be removed from s ◦ γ on the
left as described in Lemma 8. Symmetrically, those boxes of s ◦ γ that are not in β∗ ◦ γ
are the unique copy of bottom key ribbon of γ that can be removed from s ◦ γ. Let α be
the key ribbon of γ. See Figure 5 for an illustration for β = (2, 1) and γ = W ↑ O ↑ W .

Consider ∆(s ◦ γ). Working in the shape Hopf algebra, we see that in ∆(s ◦ γ) we
have terms α⊗ (β∗ ◦ γ) and (β ◦ γ)⊗ α, and by Lemma 8 no other terms are of the form
α⊗A or A⊗ α. We now need some notation. Given a shape λ let λ⊗Rλ be the sum of
all terms of the form λ⊗A in ∆(s ◦ γ) and let Lλ⊗ λ be the sum of all terms of the form
A⊗ λ in ∆(s ◦ γ).

Moving to the symmetric functions Hopf algebra for the rest of the proof, let B be a
basis for symmetric functions of degree |α| that includes the Schur function indexed by α
and for which all other elements of the basis are also connected ribbon Schur functions.
This is possible since the connected ribbon Schur functions span symmetric functions.

Build two matrices L and R with entries in the symmetric function Hopf algebra. L
and R will each have rows indexed by the shapes of size |α| that are not connected ribbons
and columns indexed by the elements of B. Given a shape λ that is not a connected ribbon,
the row corresponding to λ in L is LλλB in R is RλλB. Note that Lλ and Rλ are linear
combinations of shapes, so are scalars in this context, while λB is a rational vector.

By construction the row of R corresponding to λ gives the contributions of λ to terms
of the form b ⊗ A with b ∈ B in ∆(s ◦ γ). The same holds for L with b ⊗ A replaced by
A ⊗ b. Given b ∈ B, b 6= α, by Lemma 8 there is no contribution to the b ⊗ A terms of
∆(s ◦ γ) from b itself or from any other connected ribbon. Therefore the full contribution
of the form b ⊗ A is given by the sum of the entries of the b column of R. Similarly the
full contribution of the form A ⊗ b is given by the sum of the entries of the b column of
L. By cocommutativity of the symmetric function Hopf algebra the sum of the entries of
the b column of R is equal to the sum of the entries of the b column of L for b ∈ B, b 6= α.
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By Lemma 10 the column of L corresponding to α is a signed sum of the other
columns L and likewise, with the identical linear combination, for R. Therefore, using
the observation of the previous paragraph, the sum of the entries of the α column of R is
equal to the sum of the entries of the α column of L.

The full contributions to terms involving α in ∆(s ◦ γ) must also include the direct
contribution from taking out α on the top and bottom which was calculated earlier in
the proof. Taking everything together, the full contribution to the terms of the form
α ⊗ A in ∆(s ◦ γ) is the sum of the α column of R plus β∗ ◦ γ and the full contribution
to the terms of the form A ⊗ α in ∆(s ◦ γ) is the sum of the α column of L plus β ◦ γ.
Therefore by cocommutativity β∗ ◦ γ and β ◦ γ are equal as symmetric functions. That
is, β∗ ◦ γ ∼ β ◦ γ.

Theorem 13. Let β be a partition shape that is a rectangle with the lower right corner
box removed. Let γ be a W → O → W or W ↑ O ↑ W shape with no loose end ribbons.
Then β ◦ γ ∼ β∗ ◦ γ.

Proof. Let α1 be the top key ribbon of γ and let α2 be the bottom key ribbon of γ. If the
Schur functions indexed by α1 and α2 are not linearly independent then by Lemma 11
they are equal. In that case we can argue as in the proof of Proposition 12.

Now assume the Schur functions indexed by α1 and α2 are linearly independent. Let B
be a basis for symmetric functions of degree |α| that includes the Schur functions indexed
by α1 and α2 and for which all other elements of the basis are also connected ribbon Schur
functions. Build the matrices L and R as in the proof of Proposition 12.
B is not the correct basis for completing this argument because the top and bottom

key ribbons are contributing to different basis elements hence to different columns. In
order to fix this we will modify B in order to form a new basis B′. Once that has been
done, the rest of the argument will proceed as for Proposition 12 using B′ in place of the
original B.

Let B′ be the basis formed by removing α2 from B and replacing it by α2 − α1. Let
L′ and R′ be the corresponding matrices for B′. The columns other than the column for
α2 (now α2 − α1) are unchanged. So for any b ∈ B′ with b 6= α1 and b 6= α2 − α1, by
Lemma 8 and cocommutativity the sum of the entries of the b column of R′ is equal to
the sum of the entries of the b column of L′.

Let v be the vector of length |B| that is 1 if the corresponding entry of B has an even
number of rows and is −1 if the corresponding entry of B has an odd number of rows. Let
v′ be v with the entry corresponding to α2 (α2 − α1 in B′) set to 0. Take any shape λ of
size |α1|. The α1 entry of λB′ is the sum of the α1 and α2 entries of λB while the α2 − α1

entry of λB′ is the difference between the α1 and α2 entries of λB. By Lemma 3 α1 and
α2 have the same weight in v and so Lemma 10 implies that v′ · λB′ = 0.

Consequently, the column of L′ corresponding to α1 is a signed sum of the other
columns of L′ which does not use the α2 − α1 column and likewise for R′. Therefore the
sum of the entries of the α1 column of R′ is equal to the sum of the entries of the α1

column of L′.
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Finally, α1 taken out on the left contributes α1 ⊗ (β∗ ◦ γ) and α2 taken out on the
right contributes (β ◦ γ)⊗ (α2 − α1) + (β ◦ γ)⊗ α1. Considering the α1 contributions on
both sides of the tensor, by the previous paragraph and cocommutativity, as in the proof
of Proposition 12, we get that β∗ ◦ γ and β ◦ γ are equal as symmetric functions. That is,
β∗ ◦ γ ∼ β ◦ γ.

Note that by [10] Lemma 3.19 ii (which is just an elementary check) (β ◦W γ)∗ =
β∗ ◦W ∗ γ∗ and ∗ swaps W → O → W and W ↑ O ↑ W shapes. So since rotating a shape
180 degrees does not affect the Schur function, applying ∗ to β∗ ◦ γ in Theorem 13 gives
the following corollary.

Corollary 14. Let β be a partition shape that is a rectangle with the lower right corner
box removed. Let γ be a W → O → W or W ↑ O ↑ W shape with no loose end ribbons.
Then β ◦ γ ∼ β ◦ γ∗.

5 Discussion

These results are interesting for two reasons. First of all the tools they use are quite dif-
ferent from what has been used for similar results (see [13, 2, 10]). The tools of this paper
don’t require heavy algebraic machinery, using primarily just the fact of cocommutativity
of the symmetric function Hopf algebra.

Secondly, although there are many identities obtainable with other methods which
are not obtainable by the present methods, other identities are obtainable by the present
methods but not by other methods. Most interesting along these lines is to compare
Theorem 13 with the main results of [10]. Those authors are able to tackle a much larger
class of shapes since they do not need to restrict the shape of β nearly as heavily. However,
they do require a technical hypothesis, called hypothesis V, which they conjecture to be
unnecessary. They give an example which they cannot obtain by their methods because
of hypothesis V, illustrated here in Figure 6. This example follows from Theorem 13 with
β = (2, 1) and γ = (4, 4, 2, 2)/(2, 1) = (1, 1) → (2, 2, 1, 1)/(1) → (1, 1). Hence it gives an
example obtainable by the methods of this paper, but not by the methods of [10].

∼

Figure 6: An example of McNamara and van Willigenburg which can be done by the
methods of this paper but not by the methods of [10].

Finally, it is natural to ask whether the present methods can be generalized. One
question is whether the restrictions on β can be lessened. The simplicity of the key
ribbons depends on the special shape of β. The difficulty in generalizing is in finding
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an appropriate generalization of Lemma 8; once we go beyond key ribbons, there can be
more than one shape of the same size that can be taken out.

The other unpleasant hypothesis was the hypothesis of no loose end ribbons. Some
hypothesis is required in place of the no loose end ribbon hypothesis. To see this, take
β = (2, 1) and γ = (8, 7, 2)/(3, 1), then γ is a W → O → W shape,2 however β◦γ 6∼ β∗◦γ.
The key ribbons have size 6 but there is another ribbon of size 6 which can be removed
from γ to the left of the upper key ribbon and so this shape has a loose end ribbon.
Ideally, the no loose end ribbon hypothesis would be replaced by something less obscure.
Note that it also makes sense in view of the results of McNamara and van Willigenburg
that some additional hypothesis should be necessary because their hypothesis IV has not
been incorporated in this Hopf setup. Hypothesis IV is what fails for McNamara and van
Willigenburg in the previous example.
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