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Abstract

We prove several expanders with exponent strictly greater than 2. For any finite
set A ⊂ R, we prove the following six-variable expander results:

|(A−A)(A−A)(A−A)| � |A|2+
1
8

log
17
16 |A|

,∣∣∣∣A+A

A+A
+
A

A

∣∣∣∣� |A|2+
2
17

log
16
17 |A|

,∣∣∣∣AA+AA

A+A

∣∣∣∣� |A|2+ 1
8

log |A|
,∣∣∣∣AA+A

AA+A

∣∣∣∣� |A|2+ 1
8

log |A|
.

1 Introduction

Let A be a finite1 set of real numbers. The sum set of A is the set A+A = {a+ b : a, b ∈
A} and the product set AA is defined analogously. The Erdős-Szemerédi sum-product
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1From now on, A,B,C etc. will always be finite sets.
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conjecture2 states that, for any such A and all ε > 0 there exists an absolute constant
cε > 0 such that

max{|A+ A|, |AA|} > cε|A|2−ε.
In other words, it is believed that at least one of the sum set and product set will always
be close to the maximum possible size |A|2, suggesting that sets with additive structure
do not have multiplicative structure, and vice versa.

A familiar variation of the sum-product problem is that of showing that sets defined
by a combination of additive and multiplicative operations are large. A classical and
beautiful result of this type, due to Ungar [21], is the result that for any finite set A ⊂ R∣∣∣∣A− AA− A

∣∣∣∣ > |A|2 − 2, (1)

where
A− A
A− A

=

{
a− b
c− d

: a, b, c, d ∈ A, c 6= d

}
.

This notation will be used with flexibility to describe sets formed by a combination of
additive and multiplicative operations on different sets. For example, if A,B and C are
sets of real numbers, then AB+C := {ab+c : a ∈ A, b ∈ B, c ∈ C}. We use the shorthand
kA for the k-fold sum set; that is kA := {a1 + a2 + · · · + ak : a1, . . . , ak ∈ A}. Similarly,
the k-fold product set is denoted A(k); that is A(k) := {a1a2 · · · ak : a1, . . . , ak ∈ A}.

We refer to sets such as A−A
A−A , which are known to be large, as expanders. To be more

precise, we may specify the number of variables defining the set; for example, we refer to
A−A
A−A as a four variable expander.

Recent years have seen new lower bounds for expanders. For example, Roche-Newton
and Rudnev [16] proved3 that for any A ⊂ R

|(A− A)(A− A)| � |A|2

log |A|
, (2)

and Balog and Roche-Newton [2] proved that for any set A of strictly positive real numbers∣∣∣∣A+ A

A+ A

∣∣∣∣ > 2|A|2 − 1. (3)

Note that equations (1), (2) and (3) are optimal up to constant (and in the case of (2),
logarithmic) factors, as can be seen by taking A = {1, 2, . . . , N}. More generally, any set
A with |A+ A| � |A| is extremal for equations (1), (2) and (3).

With these results, along with others in [5], [6], [11] and [12], we have a growing
collection of near-optimal expander results with a lower bound Ω(|A|2) or Ω(|A|2/ log |A|).

2In fact, the conjecture was originally stated for all A ⊂ Z, but it is also widely believed to be true
for all A ⊂ R.

3Throughout the paper, this standard notation�,� and respectively O(·),Ω(·) is applied to positive
quantities in the usual way. Saying X � Y or X = Ω(Y ) means that X > cY , for some absolute constant
c > 0. All logarithms in this paper are base 2.
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All of the near-optimal expanders that are known have at least 3 variables. The aim of
this paper is to move beyond this quadratic threshold and give expander results with
relatively few variables and with lower bounds of the form Ω(|A|2+c) for some absolute
constant c > 0.

1.1 Statement of results

It was conjectured in [2] that for any A ⊂ R and any ε > 0, |(A−A)(A−A)(A−A)| �
|A|3−ε. In this paper, a small step towards this conjecture is made in the form of the
following result.

Theorem 1.1. Let A ⊂ R. Then

|(A− A)(A− A)(A− A)| � |A|2+ 1
8

log17/16 |A|
.

This result is the first improvement on the bound |(A − A)(A − A)(A − A)| �
|A|2/ log |A| which follows trivially from (2). The proof uses some beautiful ideas of
Shkredov [18].

The following theorem gives partial support for the aforementioned conjecture from a
slightly different perspective.

Theorem 1.2. Let A ⊂ R. Then for any ε > 0 there is an integer k > 0 such that

|(A− A)(k)| �ε |A|3−ε.

We also prove the following six variable expanders have superquadratic growth.

Theorem 1.3. Let A ⊂ R. Then∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣� |A|2+2/17

log16/17 |A|
.

Theorem 1.4. Let A ⊂ R. Then∣∣∣∣AA+ AA

A+ A

∣∣∣∣� |A|11/8|AA|3/4log |A|
.

In particular, since |AA| > |A|, ∣∣∣∣AA+ AA

A+ A

∣∣∣∣� |A|2+ 1
8

log |A|
.

Theorem 1.5. Let A ⊂ R. Then∣∣∣∣AA+ A

AA+ A

∣∣∣∣� |A|2+ 1
8

log |A|
.
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The proofs of these three results make use of the results and ideas of Lund [10].
In fact, a closer inspection of the proof of Theorem 1.5 reveals that we obtain the

inequality ∣∣∣∣{ ab+ c

ad+ e
: a, b, c, d, e ∈ A

}∣∣∣∣� |A|2+ 1
8

log |A|
.

Therefore, Theorem 1.5 actually gives a superquadratic five variable expander.

2 Preliminary Results

For the proof of Theorem 1.1 we will require the Ruzsa Triangle Inequality. See Lemma
2.6 in Tao-Vu [20].

Lemma 2.1. Let A,B and C be subsets of an abelian group (G,+). Then

|A−B||C| 6 |A− C||B − C|.

A closely related result is the Plünnecke-Ruzsa inequality. A simple proof of the
following formulation of the Plünnecke-Ruzsa inequality can be found in [14].

Lemma 2.2. Let A be a subset of an abelian group (G,+). Then

|kA− lA| 6 |A+ A|k+l

|A|k+l−1
.

We will also use the following variant, which is Corollary 1.5 in Katz-Shen [8]. The
result was originally stated for subsets of the additive group Fp, but the proof is valid for
any abelian group.

Lemma 2.3. Let X,B1, . . . , Bk be subsets of an abelian group (G,+). Then there exists
X ′ ⊂ X such that |X ′| > |X|/2 and

|X ′ +B1 + · · ·+Bk| �
|X +B1||X +B2| · · · |X +Bk|

|X|k−1
.

We will need various existing results for expanders. The first is due to Garaev and
Shen [4].

Lemma 2.4. Let X, Y, Z ⊂ R and α ∈ R \ {0}. Then

|XY ||(X + α)Z| � |X|3/2|Y |1/2|Z|1/2.

In particular,
|X(X + α)| � |X|5/4 (4)

and
max{|XY |, |(X + α)Y |} � |X|3/4|Y |1/2. (5)
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Note that Lemma 2.4 was originally stated only for α = 1, but the proof extends
without alteration to hold for an arbitrary non-zero real number α. A similar and earlier
result of Elekes, Nathanson and Ruzsa [3] will also be used.

Lemma 2.5. Let f : R→ R be a strictly convex or concave function and let X, Y, Z ⊂ R.
Then

|f(X) + Y ||X + Z| � |X|3/2|Y |1/2|Z|1/2.

Define

R[A] :=

{
a− b
a− c

: a, b, c ∈ A
}
.

The following result is due to Jones [6]. An alternative proof can be found in [15].

Lemma 2.6. Let A ⊂ R. Then

|R[A]| � |A|2

log |A|
.

Each of the three latter results come from simple applications of the Szemerédi-Trotter
Theorem.

Note that the proof of Lemma 2.6 also implies that there exists a, b ∈ A such that

|(A− a)(A− b)| � |A|2

log |A|
. (6)

See [15] for details. In particular, this gives a shorter proof of inequality (2), requiring
only a simple application of the Szemerédi-Trotter Theorem. The inequality (2) will also
be used in the proof of Theorem 1.1.

An important tool in this paper is the following result of Lund [10], which gives an
improvement on (3) unless the ratio set A/A is very large.

Lemma 2.7. Let A ⊂ R. Then∣∣∣∣A+ A

A+ A

∣∣∣∣� |A|2

log |A|

(
|A|2

|A/A|

)1/8

.

In fact, a closer examination of the proof of Lemma 2.7 reveals that it can be gener-
alised without making any meaningful changes to give the following statement.

Lemma 2.8. Let A,B ⊂ R. Then∣∣∣∣A+ A

B +B

∣∣∣∣� |A||B|
log |A|+ log |B|

(
|A||B|
|A/B|

)1/8

.

The proofs of Theorems 1.3 and 1.4 use Lemma 2.8 as a black box. However, for
the proof of Theorem 1.5 we need to dissect the methods from [10] in more detail and
reconstruct a variant of the argument for our problem. To do this, we will also need the
following tools which were used in [10]. The first is a generalisation of the Szemerédi-
Trotter Theorem to certain well-behaved families of curves. A more general version of
this result can be found in Pach-Sharir [13].
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Lemma 2.9. Let P be an arbitrary point set in R2. Let L be a family of curves in R2

such that

• any two distinct curves from L intersect in at most two points and

• for any two distinct points p, q ∈ P, there exist at most two curves from L which
pass through both p and q.

Let K > 2 be some parameter and define LK := {l ∈ L : |l ∩ P| > K}. Then

|LK | �
|P|2

K3
+
|P|
K
.

We will need the following version of the Lovász Local Lemma. This precise statement
is Corollary 5.1.2 in [1].

Lemma 2.10. Let A1, A2, . . . , An be events in an arbitrary probability space. Suppose that
each event Ai is mutually independent from all but at most d of the events Aj with j 6= i.
Suppose also that the probability of the event Ai occuring is at most p for all 1 6 i 6 n.
Finally, suppose that

ep(d+ 1) 6 1.

Then, with positive probability, none of the events A1, . . . , An occur.

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Write D = A − A and apply Lemma 2.3 in the multiplicative
setting with k = 2, X = DD and B1 = B2 = D. We obtain a subset X ′ ⊆ DD such that
|X ′| � |DD| and

|X ′DD| � |DDD|
2

|DD|
. (7)

Then apply Lemma 2.1, again in the multiplicative setting, with A = B = DD and
C = (X ′)−1. This bounds the left hand side of (7) from below, giving

|DD/DD|1/2|X ′|1/2 6 |X ′DD| � |DDD|
2

|DD|
. (8)

Recall the observation of Shkredov [18] that R[A]−1 = −R[A]. Indeed, for any a, b, c ∈ A

a− b
a− c

− 1 =
a− b− (a− c)

a− c
= − c− b

c− a
.

Therefore, by Lemmas 2.4 and 2.6,

|DD/DD| > |R[A] ·R[A]| = |R[A] · (R[A]− 1)| � |R[A]|5/4 � |A|5/2

log5/4 |A|
.
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Putting this bound into (8) yields

|A|5/4

log5/8 |A|
|X ′|1/2 � |DDD|

2

|DD|
. (9)

Finally, since |X ′| � |DD| � |A|2
log |A| by (2), it follows that

|DDD|2 � |A|5/4

log5/8 |A|
|DD|3/2 � |A|5/4

log5/8 |A|

(
|A|2

log |A|

)3/2

=
|A|17/4

log17/8 |A|
. (10)

and thus

|DDD| � |A|2+ 1
8

log17/16 |A|
as claimed.

We now turn to the proof of Theorem 1.2, which exploits similar ideas to the proof of
Theorem 1.1.

Proof of Theorem 1.2. Let R := R[A] and D = A − A. We will first prove by induction
on k that

|Rk(D/D)| �k
|A|3−

1

2k

log
3
2 |A|

(11)

holds for all integers k > 0. Indeed, the base case k = 0 follows from (1). Now, let k > 1
and suppose that (11) holds for this k. Then applying Lemma 2.4 (recalling the fact that
−R = R− 1), Lemma 2.6 and the inductive hypothesis yields

|R(k+1)(D/D)|2 = |R ·R(k)(D/D)||(R− 1) ·R(k)(D/D)|

� |R|3/2|Rk(D/D)| �k

(
|A|2

log |A|

)3/2
(
|A|3−

1

2k

log
3
2 |A|

)
=
|A|6−

1

2k

log3 |A|
.

This implies that

|R(k+1)(D/D)| �k
|A|3−

1

2k+1

log3/2 |A|
,

as required, and thus we have proved that (11) holds for all positive integers k. In
particular, it follows immediately from (11) that∣∣∣∣D(k+1)

D(k+1)

∣∣∣∣�k
|A|3−

1

2k

log
3
2 |A|

. (12)

Next, we will use (12) to prove that

|D(2k)| �k
|A|3−f(k)

log3/2 |A|
(13)
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holds for all integers k > 1, where

f(k + 1) =
1

2k
+

k∑
m=1

1

22m−m+k
, f(1) = 1.

This will complete the proof of the theorem, since 2m −m > m and for any ε > 0 there
exists an integer k = k(ε) such that

f(k + 1) 6
1

2k
+

1

2k

k∑
m=1

1

2m
6

1

2k−1
6 ε.

It remains to prove (13). The base case k = 1 follows from (2). Note that the function

f is defined to satisfy f(k + 1) = f(k)
2

+ 2−2
k
. Now let k > 1 and suppose that (13) holds

for this k. Applying Lemma 2.1 multiplicatively with A = B = D(2k) and C = 1/D(2k)

we obtain that

|D(2k+1)|2 � |D(2k)|

∣∣∣∣∣D(2k)

D(2k)

∣∣∣∣∣ .
Then (12) and the inductive hypothesis imply that

|D(2k+1)| �k
|A| 32−

f(k)
2

log3/4 |A|
|A|

3
2
− 1

22
k

log3/4 |A|
=
|A|

3−
(
f(k)
2

+ 1

22
k

)

log3/2 |A|
=
|A|3−f(k+1)

log3/2 |A|
.

This completes the induction.

3.1 Remarks, improvements and conjectures

An improvement to Lemma 2.4 was given in [7], in the form of the bound

|A(A+ α)| � |A|24/19

log2/19 |A|
.

Inserting this into the previous argument, we obtain the following small improvement:

|DDD| � |A|2+ 5
38

log
83
76 |A|

.

Furthermore, a small modification of the previous arguments can also give the bound

|DD/D| � |A|2+ 5
38

log
83
76 |A|

.

In the spirit of Theorem 1.2, it is reasonable to conjecture the following.
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Conjecture 3.1. For any l > 0 there exists k > 0 such that

|(A− A)(k)| �k,l |A|l

uniformly for all sets A ⊂ R.

Even the case l = 3 is of interest as it is seemingly beyond the limit of the methods of
the present paper. An alternative form of Conjecture 3.1 is as follows.

Conjecture 3.2. For any ε > 0 there exists δ > 0 such that for any real set X with

|XX| 6 |X|1+δ

the following holds: if A ⊂ R is such that

A− A ⊂ X,

then
|A| �δ |X|ε.

For comparison with Conjecture 3.1, we note that a similar sum-product estimate with
many variables was proven in [2], in the form of the inequality

|4k−1A(k)| � |A|k.

We also note that Corollary 4 in [19] verifies Conjecture 3.2 for any ε > 1/2 − c, where
c > 0 is some unspecified (but effectively computable) absolute constant.

It is not hard to see that Conjecture 3.2 is indeed equivalent to Conjecture 3.1. Assume
that Conjecture 3.1 is true and fix ε > 0. Next, take l = b1/εc + 3. Assuming that
Conjecture 3.1 holds, there is k(ε) such that

|(A− A)(k)| �k,l |A|l (14)

holds for real sets A.
Now, in order to deduce Conjecture 3.2, take δ = ε/10k and assume that there are sets

X,A such that |XX| 6 |X|1+δ and A− A ⊂ X. If we now also assume for contradiction
that |A| > |X|ε, then by the Plünnecke-Ruzsa inequality (2.2)

|(A− A)(k)| 6 |X(k)| 6 |X|1+δk 6 |A|
1+δk
ε 6 |A|l−1,

which contradicts (14) if |A| is large enough (depending on ε), which we can safely assume.
Now let us assume that Conjecture 3.2 holds true. Let l > 0 be fixed and ε = 1

l+1
. Let

A be an arbitrary real set. Consider the set X0 = (A− A) and define recursively

Xi+1 = XiXi.

Note that by construction
Xi = (A− A)(2

i).
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Let c be an arbitrary non-zero element in A− A. Observe that

c2
i−1 · A− c2i−1 · A = c2

i−1 · (A− A) ⊂ (A− A)(2
i) = Xi,

and so Ai−Ai ⊂ Xi where Ai := c2
i−1·A. Thus, we are in position to apply the assumption

that Conjecture 3.2 holds true. In particular, there is δ(ε) > 0 such that |A| �δ |X|ε
whenever A− A ⊂ X and |XX| 6 |X|1+δ.

Now consider Xi for i = 1, . . . , bl/δc+ 1 := j. For each i, if |Xi+1| 6 |Xi|1+δ it follows
from Conjecture 3.2 that |A| = |Ai| �δ |Xi|ε, so

|(A− A)(2
i)| = |Xi| �δ |A|1/ε > |A|l

and we are done. Otherwise, if for each 1 6 i 6 j holds |Xi+1| > |Xi|1+δ, one has

|(A− A)(2
j)| = |Xj| > |X0|1+jδ > |A|l.

Thus, Conjecture 3.1 holds uniformly in A with

k(l) := 2j = 2bl/δ(l)c+1.

For a further support, let us remark that Conjecture 3.2 holds true if one replaces the
condition |XX| 6 |X|1+δ with the more restrictive one |XX| 6 K|X| where K > 0 is
an arbitrary but fixed absolute constant. In this setting Conjecture 3.2 can be proved by
combining the Freiman Theorem and the Subspace Theorem and then applying almost
verbatim the arguments of [17]. We leave the details to the interested reader.

4 Proofs of Theorems 1.3 and 1.4

4.1 Proof of Theorem 1.3

We will first prove the following lemma.

Lemma 4.1. Let A ⊂ R. Then∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣� |A|54/32|A/A|13/32log3/4 |A|
.

Proof. Apply Lemma 2.5 with f(x) = 1/x, X = (A + A)/(A + A) and Y = Z = A/A.
Note that f(X) = X and so∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣� ∣∣∣∣A+ A

A+ A

∣∣∣∣3/4 |A/A|1/2.
Then applying Lemma 2.7, it follows that∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣� |A|3/2

log3/4 |A|

(
|A|2

|A/A|

) 3
32

|A/A|1/2 =
|A|54/32|A/A|13/32

log3/4 |A|
.
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This immediately implies that∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣� |A|2+ 3
32
−ε.

However, by optimising between Lemma 4.1 and Lemma 2.7 we can get a slight improve-
ment in the form of Theorem 1.3.

Proof of Theorem 1.3. Let |A/A| = K|A|. If K > |A|
1
17

log
8
17 |A|

then Lemma 4.1 implies that

∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣� |A|67/32K13/32

log3/4 |A|
� |A|2+2/17

log16/17 |A|
.

On the other hand, if K 6 |A|
1
17

log
8
17 |A|

then Lemma 2.7 implies that

∣∣∣∣A+ A

A+ A
+
A

A

∣∣∣∣ > ∣∣∣∣A+ A

A+ A

∣∣∣∣� |A|2

log |A|

(
|A|
K

)1/8

� |A|2+2/17

log16/17 |A|
.

4.2 Proof of Theorem 1.4

Apply Lemma 2.8 with B = AA. This yields∣∣∣∣AA+ AA

A+ A

∣∣∣∣� |A||AA|log |A|

(
|A||AA|
|A/AA|

)1/8

.

By applying Lemma 2.2 in the multiplicative setting, we have

|AA/A| 6 |AA|
3

|A|2

and so∣∣∣∣AA+ AA

A+ A

∣∣∣∣� |A||AA|log |A|

(
|A||AA|
|A/AA|

)1/8

>
|A||AA|
log |A|

(
|A|3

|AA|2

)1/8

=
|A|11/8|AA|3/4

log |A|

as required.

5 Proof of Theorem 1.5

Consider the point set A×A in the plane. Without loss of generality, we may assume that
A consists of strictly positive reals, and so this point set lies exclusively in the positive
quadrant. We also assume that |A| > C for some sufficiently large absolute constant
C. For smaller sets, the theorem holds by adjusting the implied multiplicative constant
accordingly.
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For λ ∈ A/A, let Aλ denote the set of points from A×A on the line through the origin
with slope λ and let Aλ denote the projection of this set onto the horizontal axis. That
is,

Aλ := {(x, y) ∈ A× A : y = λx}, Aλ := {x : (x, y) ∈ Aλ}.

Note that |Aλ| = |Aλ| and ∑
λ

|Aλ| = |A|2.

We begin by dyadically decomposing this sum and applying the pigeonhole principle
in order to find a large subset of A × A consisting of points which lie on lines of similar
richness. Note that ∑

λ:|Aλ|6 |A|2
2|A/A|

|Aλ| 6
|A|2

2
,

and so ∑
λ:|Aλ|> |A|2

2|A/A|

|Aλ| >
|A|2

2
.

Dyadically decompose the sum to get

dlog |A|e∑
j>1

∑
λ:2j−1 |A|2

2|A/A|6|Aλ|<2j
|A|2

2|A/A|

|Aλ| >
|A|2

2
.

Therefore, there exists some τ > |A|2
2|A/A| such that

τ |Sτ | �
∑
λ∈Sτ

|Aλ| �
|A|2

log |A|
, (15)

where Sτ := {λ : τ 6 |Aλ| < 2τ}. Using the trivial bound τ 6 |A|, it also follows that

|Sτ | �
|A|

log |A|
. (16)

For a point p = (x, y) in the plane with x 6= 0, let r(p) := y/x denote the slope of the
line through the origin and p. For a point set P ⊆ R2 let r(P ) := {r(p) : p ∈ P}. The
aim is to prove that

|r((AA+ A)× (AA+ A))| = |r((A× A) + (AA× AA))| � |A|
2+ 1

8

log |A|
. (17)

Since r((AA+ A)× (AA+ A)) = AA+A
AA+A

, inequality (17) implies the theorem.
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Write Sτ = {λ1, λ2, . . . , λ|Sτ |} with λ1 < λ2 < · · · < λ|Sτ | and similarly write A =
{x1, . . . , x|A|} with x1 < x2 < · · · < x|A|. For each slope λi, arbitrarily fix an element
αi ∈ Aλi . Note that, for any 1 6 i 6 |Sτ | − 1,

λi < r((αi, λiαi) + (αi+1x1, λi+1αi+1x1)) < r((αi, λiαi) + (αi+1x2, λi+1αi+1x2))

< . . .

< r((αi, λiαi) + (αi+1x|A|, λi+1αi+1x|A|))

< λi+1.

Since λiαi and λi+1αi+1 are elements of A, this gives |A| distinct elements of R((AA +
A)× (AA+ A)) in the interval (λi, λi+1). Summing over all i, it follows that

|r((AA+ A)× (AA+ A))| >
|Sτ |−1∑
i=1

|A| = |A|(|Sτ | − 1)� |A||Sτ |. (18)

If |Sτ | > c|A|9/8
log |A| for any absolute constant c > 0 then we are done. Therefore, we may

assume for the remainder of the proof that this is not the case. In particular, by (15), we
may assume that

τ > C|A|7/8 (19)

holds for any absolute constant C.4

Next, the basic lower bound (18) will be enhanced by looking at larger clusters of
lines, a technique introduced by Konyagin and Shkredov [9] and utilised again by Lund
[10]. We will largely adopt the notation from [10].

Let 2 6 M 6 |Sτ |
2

be an integer parameter, to be determined later. We partition Sτ
into clusters of size 2M , with each cluster split into two subclusters of size M , as follows.

For each 1 6 t 6
⌊
|Sτ |
2M

⌋
, let

ft = 2M(t− 1)

Tt = {λft+1, λft+2, . . . , λft+M}
Ut = {λft+M+1, λftM++2, . . . , λft+2M}.

For the remainder of the proof we consider the first cluster with t = 1, but the same

arguments work for any 1 6 t 6
⌊
|Sτ |
2M

⌋
. We simplify the notation by writing T1 = T and

U1 = U .
Let 1 6 i, k 6 M and M + 1 6 j, l 6 2M with at least one of i 6= k or j 6= l holding.

For ai ∈ Aλi and ak ∈ Aλk . Define

E(ai, j, ak, l) = |{(x, y) ∈ A× A : r((ai, λiai) + (αjx, λjαjx))

= r((ak, λkak) + (αly, λlαly))|.
4In fact, even having τ > C|A|1/2 would be sufficient for what follows, and having exponent 7/8 has

no quantitative impact.
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Lemma 5.1. Let i, j, k, l satisfy the above conditions and let K > 2. Then there are
O(|A|4/K3 + |A|2/K) pairs (ai, ak) ∈ Aλi × Aλk such that

E(ai, j, ak, l) > K.

Proof. We essentially copy the proof of Lemma 2 in [10], and so some details are omitted.
Let la,b be the curve with equation

(λia+ λjαjx)(b+ αly) = (λkb+ λlαly)(a+ αjx).

Let L be the set of curves

L = {la,b : a ∈ Aλi , b ∈ Aλk}

and let P = A× A. Note that (x, y) ∈ lai,ak if and only if

r((ai, λiai) + (αjx, λjαjx)) = r((ak, λkak) + (αly, λlαly)).

Hence E(ai, j, ak, l) > K if and only if |lai,ak ∩ P| > K.
We can verify that the set of curves L satisfies the conditions of Lemma 2.9. One

can copy this verbatim from the corresponding part of of the proof of Lemma 2 in [10].
Therefore, there are most

O

(
|P|2

K3
+
|P|
K

)
= O

(
|A|4

K3
+
|A|2

K

)
curves l ∈ L such that |l ∩ P| > K. The lemma follows.

Now, for each (i, j) such that 1 6 i 6 M and M + 1 6 j 6 2M choose an element
aij ∈ Aλi uniformly at random. Then, for any 1 6 i, k 6 M and M + 1 6 j, l 6 2M ,
define X(i, j, k, l) to be the event that

E(aij, j, akl, l) > B,

where B is a parameter to be specified later. By Lemma 5.1, the probability that the
event X(i, j, k, l) occurs is at most

C

τ 2

(
|A|4

B3
+
|A|2

B

)
,

where C > 0 is an absolute constant.
Furthermore, note that the event X(i, j, k, l) is independent of the event X(i′, j′, k′, l′)

unless (i, j) = (i′, j′) or (k, l) = (k′, l′). Therefore, the event X(i, j, k, l) is independent
of all but at most 2M2 of the other events X(i′, j′, k′, l′). With this information, we can
apply Lemma 2.10 with

n = M4 −M2, d = 2M2, p =
C

τ 2

(
|A|4

B3
+
|A|2

B

)
.
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It follows that there is a positive probability that none of the the events X(i, j, k, l) occur,
provided that

eC

τ 2

(
|A|4

B3
+
|A|2

B

)
(2M2 + 1) 6 1. (20)

That is, assuming (20) holds, then there is a positive probability that none of the events
X(i, j, k, l) occur, and thus there exists a choice of the fixed points aij and akl such that
E(aijj, akl, l) 6 B.

The validity of (20) is dependent on our subsequent choice of the value of B. For now
we proceed under the assumption that this condition is satisfied.

Let
Q =

⋃
16i6M,M+16j62M

{(aij, λiaij) + (αja, λjαja) : a ∈ A}.

Crucially,

r(Q) >M2|A| −
∑

16i,k6M,M+16j,l62M :{i,j}6={k,l}

E(aij, j, akl, k). (21)

In (21), the first term is obtained by counting the |A| slopes in Q coming from all pairs of
lines in U × T . The second error term covers the overcounting of slopes that are counted
more than once in the first term.

Since E(aij, j, akl, k) 6 B for all quadruples (i, j, k, l) satisfying the aforementioned
conditions, it follows that

r(Q) >M2|A| −M4B. (22)

Choosing B = |A|
2M2 , it follows that

r(Q) >
M2|A|

2
. (23)

This choice of B is valid as long as

eC

τ 2
(8M6|A|+ 2M2|A|)(2M2 + 1) 6 1. (24)

This will certainly hold if
30eC

τ 2
M8|A| 6 1

and so we choose

M =

⌊(
τ 2

30eC|A|

)1/8
⌋
.

In particular, by (19) we have M > 2 and so

M � τ 1/4

|A|1/8
. (25)
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It is also true that M 6 |Sτ |
2

. This is true for all sufficiently large A since

|Sτ | >
c|A|

log |A|
> |A|1/8 > 2M.

Therefore ⌊
|Sτ |
2M

⌋
� |Sτ |

M
. (26)

Next, note that r(Q) is a subset of the interval (λ1, λ2M). We can repeat this argument
for the next cluster to find at least M2|A|/2 elements of r((AA+A)× (AA+A)) in the

interval (λ2M+1, λ4M) and then so on for each of the
⌊
|Sτ |
2M

⌋
clusters of size 2M . It then

follows from (26) and (25) that∣∣∣∣AA+ A

AA+ A

∣∣∣∣ = |r((AA+ A)× (AA+ A))|

>

b |Sτ |2M c∑
j=1

M2|A|
2

� |Sτ |M |A|
� (|Sτ |τ)1/4|A|7/8|Sτ |3/4.

Applying (15) and (16), we conclude that∣∣∣∣AA+ A

AA+ A

∣∣∣∣� |A|2+ 1
8

log |A|

as required.
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