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Abstract

Self-complementary Cayley graphs are useful in the study of Ramsey numbers,
but they are relatively very rare and hard to construct. In this paper, we construct
several families of new self-complementary Cayley graphs of order p4 where p is a
prime and congruent to 1 modulo 8.

Keywords: self-complementary graph; Cayley graph; lexicographic product; fixed-
point-free automorphism.

1 Introduction

Throughout this paper, all graphs are assumed to be undirected and simple. A graph
Γ = (V,E) consists of a vertex set V and an edge set E which is a subset of the set
{{u, v} |u, v ∈ V, u 6= v}. The complement Γ of a graph Γ is the graph with the same
vertex set V such that {u, v} is an edge of Γ if and only if u 6= v, and {u, v} is not an
edge of Γ . A graph Γ is called vertex-transitive if AutΓ is transitive on V , Γ is called
self-complementary if it is isomorphic to its complement graph, and an isomorphism from
Γ to Γ is called a complementary isomorphism of Γ .
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The graphs that are both self-complementary and vertex-transitive are said to be
self-complementary vertex-transitive graphs. One of the motivations of studying self-
complementary vertex-transitive graphs is to investigate Ramsey numbers. For a positive
integer m, we wish to construct a graph Γ with vertex set V such that neither Γ nor
Γ contains a complete subgraph Km and |V | is as big as possible. By intuition, the
distribution of pairs of elements of V between Γ and Γ should be “balanced” so that
Γ and Γ should not be very different. In the extreme case, Γ ∼= Γ . Furthermore,
since any induced subgraph of Γ is not isomorphic to Km, the edges of Γ should be
distributed “homogeneously”. In the ideal case, Γ is vertex-transitive. Because of this,
self-complementary vertex-transitive graphs have been effectively used as models to find
good lower bounds of Ramsey numbers (see [4, 5, 9, 24] for references).

The research of self-complementary vertex-transitive graphs has a long history (see
the excellent survey of Beezer [2]). In 1962, Sachs [25] constructed the first families of
self-complementary circulants (that is, where the automorphism group contains a tran-
sitive cyclic subgroup), and since then this class of graphs has been extensively studied
(refer to [6, 20, 22, 26]). In 1990s, the orders of general self-complementary vertex-
transitive graphs were completely determined by Muzychuck [21], and we also refer to
the earlier work in [1, 7] for the orders of self-complementary circulants. More construc-
tions and characterisations of self-complementary vertex-transitive graphs can be found
in [12, 15, 18, 19]. In 2001, Li and Praeger [13] constructed the first family of self-
complementary vertex-transitive graphs which are not Cayley graphs. After 2001, the
study of self-complementary vertex-transitive graphs has been significantly developed by
Li and Praeger [14] and their joint work with Guralnick and Saxl [10] for the vertex-
primitive case. More recently, self-complementary vertex-transitive graphs of order pq
where p, q are primes are classified [16], and self-complementary metacirculants are stud-
ied in [17], which form a subclass of self-complementary vertex-transitive graphs.

To the best of our knowledge, examples of self-complementary vertex-transitive graphs
seem relatively rare and hard to construct. In this paper, we present serval families of
self-complementary Cayley graphs of non-abelian and non-metacyclic p-groups of order
p4. Our main result in some sense complements the work of the second author (with
other collaborators) who has constructed a family of self-complementary Cayley graphs
of nonabelian metacyclic p-groups (forthcoming).

Theorem 1. Let G be a non-abelian and non-metacyclic p-group of order p4, where
p ≡ 1 (mod 8) is a prime. Then there exist self-complementary Cayley graphs of G.

This paper is organized as follows. After this introduction, we give some preliminary
results on both graph theory and group theory in Section 2, and subsequently construct
some new examples of self-complementary Cayley graphs in Section 3 and in Section 4,
respectively. Finally, we summarize the constructions in Section 5.

the electronic journal of combinatorics 24(3) (2017), #P3.19 2



2 Preliminaries

In this section, we define some notation and quote some preliminary results which will be
used later.

2.1 Self-complementary graphs

Let Γ = (V,E) be a self-complementary graph, and let σ ∈ Sym(V ) be a complementing
isomorphism from Γ to Γ . Then σ interchanges Γ and Γ , and has order o(σ) = 2eb for
e > 1, where b is an odd number. Observe that σ = σb ·σ1−b, where σb is a complementing
isomorphism of 2-power order and σ1−b ∈ AutΓ . Thus we may assume a complementary
isomorphism σ to be of 2-power order. If σ is of order 2, then σ interchanges some vertices
u, v and fixes {u, v}, which is impossible. So 4 divides the order of σ.

Lemma 2. A complementing isomorphism of a self-complementary graph has order di-
visible by 4.

For a regular self-complementary graph of order n, a vertex has an equal number of
neighbours and non-neighbours, and hence n must be an odd number. Furthermore, the
graph has precisely half number of edges of the complete graph, and so n(n− 1)/4 is an
integer, and n ≡ 1(mod 4).

Lemma 3. The order of a regular self-complementary graph is congruent to 1(mod 4).

We next introduce a classical method for constructing self-complementary graphs. For
a finite group G, let G#: = G\{1}, the set of all non-identity elements of G. For a subset
S ⊆ G# with S = S−1: = {s−1 | s ∈ S}, the associated Cayley graph Cay(G,S) is the
graph with vertex set V = G and edge set E = {{a, b} | a, b ∈ G, ba−1 ∈ S}.

By the definition, the complement of the Cayley graph Cay(G,S) is Cay(G,G# \ S).
Let Γ = Cay(G,S). Then each automorphism σ ∈ Aut(G) induces an isomorphism from
Cay(G,S) to Cay(G,Sσ). Hence, if there exist a subset S ⊂ G# and an automorphism
σ ∈ Aut(G) such that

Sσ = G# \ S,

then Γ is self-complementary, and σ is a complementing isomorphism because

Γ = Cay(G,S) ∼= Cay(G,Sσ) = Cay(G,G# \ S) = Γ .

We call such a subset S an SC-subset (short form for self-complementing subset), and
such an automorphism σ a normal complementing isomorphism. For convenience, we
shall refer such a self-complementary Cayley graph as an SCI graph of G (SCI stands for
Self-complementary Cayley Isomorphism).

Another construction method of self-complementary vertex-transitive graphs is based
on the so-called lexicographic product (sometimes called the wreath product). In general,
for a graph Γ1 with vertex set V1 and a graph Γ2 with vertex set V2, the lexicographic
product Γ1[Γ2] is the graph with vertex set V1 × V2 such that two vertices (u1, u2) and
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(v1, v2) are adjacent if and only if either u1 is adjacent to v1 in Γ1 or u1 = v1 and u2
is adjacent in Γ2 to v2. The lexicographic product provides a method for constructing
self-complementary graphs based on the following properties (see [2] for references).

Lemma 4. If both Γ1 and Γ2 are self-complementary (vertex-transitive), then so is Γ1[Γ2].

2.2 Finite p-groups.

For a finite group G, the Frattini subgroup Φ(G) of G is defined to be the intersection
of all maximal subgroups. An element g of G is called a nongenerator of G if G = 〈T, g〉
implies G = 〈T 〉 for any subset T of G.

Lemma 5. ([23, 5.2.12]) If G is a finite, then Φ(G) equals the set of nongenerators of G.

Let G be a finite p-group. Denote by G′ the derived subgroup of G. Set Gp = 〈gp | g ∈
G〉. The following lemma is called the Burnside Basis Theorem:

Lemma 6. ([23, 5.3.2]) Let G be a finite p-group, where p is a prime. Then Φ(G) = G′Gp.
If |G:Φ(G)| = pr, then every generating set of G has a subset of r elements which also
generates G. In particular, G/Φ(G) = Cr

p, which is elementary abelian of order pr.

Let G be a finite p-group. Denote by c(G) the nilpotent class of G. The exponent of
G is the largest order of the elements in G, denoted by exp(G). The group G is called
p-abelian if (xy)p = xpyp for any x, y ∈ G.

Lemma 7. ([3, Theorem 3.1]) Let G be a finite p-group which is generated by two elements
and whose derived subgroup G′ is abelian. Then G is p-abelian if and only if exp(G′) 6 p
and c(G) < p.

For an odd prime p and a positive integer m, we write p1+2m
+ for the extraspecial group

of exponent p, and p1+2m
− for the one of exponent p2. A classification of the non-abelian

groups of order p4 for an odd prime p was given by Huppert [11, Chapter 3, Theorem 12.6
and Exercise 29]. Thus we have the following lemma.

Lemma 8. Let p be an odd prime and G a non-abelian and non-metacyclic group of order
p4. Then G is one of the following groups:

(1) G1(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉;

(2) G2(p) = 〈a, b, c | ap2 = bp = cp = 1, [b, c] = ap, [a, b] = [a, c] = 1〉;

(3) G3(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉;

(4) G4(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = 1, [c, b] = aνp〉, where ν is 1 or a
non-quadratic residue modulo p;

(5) G5(p) = 〈a, b | ap = bp = cp = dp = 1, [a, b] = c, [c, b] = d, [a, d] = [b, d] = [c, d] =
[c, a] = 1〉 for p > 3;

G5(3) = 〈a, b, c | a9 = b3 = c3 = 1, [a, b] = 1, [a, c] = b, [b, c] = a−3〉;
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(6) G6(p) = p1+2
− × Cp, where Cp is cyclic of order p;

(7) G7(p) = p1+2
+ × Cp.

3 SCI graphs

In this section, we will construct self-complementary Cayley graphs via fixed-point-free
automorphisms of groups of order p4, where p is an odd prime. Lemma 9 below provides a
generic method for constructing self-complementary Cayley graphs based on fixed-point-
free automorphisms of groups. The following lemma is possibly known. As the authors
find no proper references, a proof is given.

Lemma 9. Let G be a finite group. Then there exist SCI graphs of G if and only if G
has an automorphism σ of order a power of 2 such that σ2 is fixed-point-free.

Proof. Let Γ = Cay(G,S), where S ⊂ G# = G \ {1}. Assume first that Γ is an SCI
graph. Notice that Sσ = G# \ S, we have S ∩ Sσ = ∅, and hence the automorphism σ is
fixed-point-free, namely, σ fixes no non-identity elements of G. Moreover, since S = S−1,
and σ cannot interchange any pair of vertices, we further obtain that σ2 is fixed-point-free
too, and as σ2 fixes both S and G# \S, we may assume that σ is a 2-element, that is, the
order o(σ) = 2e for some e.

On the other hand, suppose that G has an automorphism σ of order 2e such that σ2

is fixed-point-free.
Let ∆ be an orbit of 〈σ2〉 acting on G#. Let ∆−1 = {h−1 |h ∈ ∆}. Then, for any

g ∈ ∆, we have ∆ = g〈σ
2〉, and ∆−1 = (g−1)〈σ

2〉, namely, ∆−1 is an orbit of 〈σ2〉 on
G#. We claim that ∆σ ∩ ∆−1 = ∅. Assume otherwise. Then gσ

2l+1
= (gσ

2l
)σ = g−1 for

some g ∈ ∆, and hence gσ
2(2l+1)

= g. Since σ is of order 2e, we have gσ
2

= g, which
contradicts the fact that σ2 is fixed-point-free. Thus ∆−1 ∩∆σ = ∅, and 〈σ〉 acts on the
set {{g, g−1} | g ∈ G#} with no fixed element.

Let ∆1,∆2, . . . ,∆2k be the orbits of 〈σ2〉 acting on {{g, g−1} | g ∈ G#} such that

∆σ
2i−1 = ∆2i for 1 6 i 6 k.

Then ∆σ
2i = ∆2i−1. Let

S = ∆1 ∪∆3 ∪ · · · ∪∆2k−1.

Since ∆−1j = ∆j, we have S−1 = S. Moreover,

G# \ S = ∆2 ∪∆4 ∪ · · · ∪∆2k and Sσ = G# \ S.

It follows that the Cayley graph Γ : = Cay(G,S) ∼= Cay(G,Sσ) = Cay(G,G# \ S) =
Γ . Therefore, Cay(G,S) is self-complementary and the complementing isomorphism is
produced by the automorphism σ of G. 2

For the sake of stating our main results, we derive an elementary number theoretic
result. Let n, λ be coprime positive integers. The order of λ modulo n is the least positive
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integer m such that λm ≡ 1 (mod n), denoted by ordn(λ). As usual, the order of λ modulo
n is a divisor of ϕ(n). If ordn(λ) = ϕ(n), then λ is called a primitive root modulo n.

Lemma 10. Let p, λ be coprime positive integers, where p is an odd prime. Assume
ordpn(λ) = pn−1(p− 1). Then ordpm(λ) = pm−1(p− 1) where 1 6 m < n.

Proof. By Euler’s Theorem, λp
m−1(p−1) ≡ 1 (mod pm). Assume ordpm(λ) = µ, where µ

is a proper divisor of pm−1(p − 1). Calculation shows that λµp
n−m ≡ 1 (mod pn), which

contradicts the hypothesis. Thus the statement follows. 2

Lemma 11. Let G = G1(p), G5(p) or G7(p) be the group defined in Lemma 8. If p ≡
1 (mod 8), then G has two fixed-point-free automorphisms σ and σ2 of 2-power orders.

Proof. Assume first that G = G1(p). By Lemma 8, we have

G1(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉.

Now pick a positive integer λ1 such that ordp2(λ1) = p(p− 1). By Lemma 10, we have
ordp(λ1) = p− 1. Let σ be such that

aσ = aλ
p
1 , bσ = bλ1 and cσ = cλ

2
1 .

It is simple to show that σ is an automorphism of G of order p − 1. Assume that
p ≡ 1 (mod 8). Write p− 1 = 2em with m an odd number and e > 3. Then

aσ
m

= aλ
mp
1 , bσ

m
= bλ

m
1 and cσ

m
= cλ

2m
1 .

Suppose, if possible, that there exists some 1 6= x ∈ G such that xσ
m

= x. By definition
of G1(p), we have x = ai1bi2ci3 , where 0 6 i1 6 p2 − 1, and 0 6 i2, i3 6 p − 1. If i1 = 0
and i2 = 0, then x = ci3 where i3 6= 0. Thus

(ci3)λ
2m
1 = xσ

m

= x = ci3 .

It follows that λ2m1 ≡ 1 (mod p), which is a contradiction. Thus, either i1 6= 0 or i2 6= 0.
Observe that G′ = 〈c〉. Let G = G/G′. For any z ∈ G, we denote by z the image of z in

G. Write G = 〈a, b〉. Then x = ai1b
i2 6= 1. Since G′ is a characteristic subgroup of G, σm

induces an automorphism τ of G, namely,

(aib
j
)τ = aibj

τ
= (aibj)σm = (ai)λ

mp
1 (bj)λ

m
1 = (ai)λ

mp
1 (b

j
)λ
m
1 ,

where i, j are integers. Then we have

(ai1)λ
mp
1 (b

i2
)λ
m
1 = xτ = xσm = x = ai1b

i2
.

This implies that λmp1 ≡ 1 (mod p2), again a contradiction. Thus σm is a fixed-point-free
automorphism of order 2e. Similarly, σ2m is also fixed-point-free and of order 2e−1.
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Assume now that G = G5(p). By Lemma 8, we have

G5(p) = 〈a, b | ap = bp = 1, [a, b] = c, [c, b] = d, [a, c] = [a, d] = [b, d] = 1〉.

Let ordp(λ2) = p− 1. Let σ be such that

aσ = aλ2 , bσ = bλ2 , cσ = cλ
2
2d

λ22(λ2−1)

2 and dσ = dλ
3
2 .

It is easy to verify that σ is an automorphism of G of order p− 1. Assume p ≡ 1 (mod 8).
Write p− 1 = 2em with m an odd number and e > 3. By the definition of σ, we have

aσ
m

= aλ
m
2 , bσ

m
= bλ

m
2 , cσ

m
= cλ

2m
2 d` and dσ

m
= dλ

3m
2 ,

where ` is an integer. Arguing similarly as above, we can obtain that σm and σ2m are
fixed-point-free automorphisms of order 2e and 2e−1, respectively.

Assume finally that G = G7(p). Let H = 〈a, b | ap = bp = 1, [a, b] = c, ca = cb = c〉. By
Lemma 8, we have that G = H × 〈d〉 ∼= p1+2

+ × Cp.
Let ordp(λ3) = p− 1. Let σ be such that

aσ = aλ3 , bσ = bλ3 , cσ = cλ
2
3 and dσ = dλ3 .

It is straightforward to check that σ is an automorphism of G of order p − 1. Assume
that p ≡ 1 (mod 8). Let p− 1 = 2em, where m is an odd number and e > 3. Then

aσ
m

= aλ
m
3 , bσ

m

= bλ
m
3 , cσ

m

= cλ
2m
3 and dσ

m

= dλ
m
3 .

Arguing as for the group G1(p), we obtain that σm and σ2m are fixed-point-free automor-
phisms of order 2e and 2e−1, respectively. This completes the proof of Lemma 11. 2

Lemma 12. Let G = G2(p) be the group defined in Lemma 8. If p ≡ 1 (mod 4), then G
has two fixed-point-free automorphisms σ and σ2 of 2-power orders.

Proof. By Lemma 8, we have

G2(p) = 〈a, b, c | ap2 = bp = cp = 1, [b, c] = ap, [a, b] = [a, c] = 1〉.

Now take a positive integer λ such that ordp2(λ) = p(p− 1). By Lemma 10, we have
ordp(λ) = p− 1. Let σ be such that

aσ = a−λ
p
, bσ = cλ and cσ = b.

It is easy to show that σ is an automorphism of G of order 2(p−1). Assume p ≡ 1 (mod 4).
Write p− 1 = 2em with m an odd number and e > 2. Then

aσ
m

= a−λ
pm

, bσ
m

= cλ
m+1

2 and cσ
m

= bλ
m−1

2 .

Arguing similarly as in Lemma 11, σm and σ2m are fixed-point-free automorphisms of
order 2e+1 and 2e, respectively. 2

Combining Lemma 9 with Lemmas 11-12, we obtain an important conclusion in the
next proposition.
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Proposition 13. Let G be a p-group of order p4, where p is an odd prime. Then one of
the following holds:

(i) if p ≡ 1 (mod 4), then there exist SCI graphs of G when G = G2(p);

(ii) if p ≡ 1 (mod 8), then there exist SCI graphs of G when G = G1(p), G5(p) or G7(p).

4 Non-SCI graphs

In this section, we construct self-complementary Cayley graphs of the groups G3(p), G4(p)
and G6(p). For such groups, we have the following lemma.

Lemma 14. Let G = G3(p), G4(p) or G6(p) be the group defined in Lemma 8. Then the
square of each automorphism of G is not fixed-point-free.

Proof. By Lemma 8, we have

G3(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉,
G4(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = 1, [c, b] = aνp〉.

Let G = G3(p) or G4(p). In either case, Φ(G) = 〈ap, c〉 and Z(G) = 〈ap〉. For any
σ ∈ Aut(G), if p = 3, then σ2 centralises Z(G), and hence σ2 is not fixed-point-free. Thus
we may assume p > 3. By Lemma 7, G is p-abelian.

Assume first that G = G3(p). By the previous paragraph, we may assume

aσ = ak1bk2ck3 , bσ = apl1bl2cl3 and cσ = ckapl,

where 1 6 k1 6 p2 − 1, (k1, p) = 1, and 0 6 ki, lj, k, l 6 p− 1 for i = 2 or 3, and j = 1, 2
or 3. In particular, (ap)σ = (ak1bk2ck3)p = apk1 since G is p-abelian.

By [cσ, aσ] = (ap)σ, we calculate that [ck, ak1 ] = apk1 , and so apkk1 = apk1 . Thus pkk1 ≡
pk1 (mod p2). Since (k1, p) = 1, we obtain k = 1. Let r = ct1apt2 where 1 6 t1, t2 6 p− 1.
Then rσ = ct1ap(k1t2+lt1). If k1 = 1, then (ap)σ = ap. Otherwise, let t2 = l

1−k1 t1, and then
rσ = r. It follows that G has no fixed-point-free automorphism.

Assume next that G = G4(p). For any σ ∈ Aut(G), we may assume

aσ = ak1ck2 , bσ = apl1bl2cl3 and cσ = aplck,

where 1 6 k1 6 p2 − 1, (k1, p) = 1, and 0 6 ki, lj, k, l 6 p − 1, (k, p) = 1 for i = 2

or 3 and j = 1, 2 or 3. By [cσ, bσ] = (avp)σ, we compute that avpkl2 = avpk1 , and thus

k1 ≡ k l2 (mod p). By [aσ, bσ] = cσ, we obtain ck1l2 = ck, and so k ≡ k1l2 (mod p). Since
(k1, p) = 1, we conclude that l2 ≡ ±1 (mod p).

Let G = G/Φ(G). For any x ∈ G, we denote by x the image of x in G. Since G′ is a
characteristic subgroup of G, σ induces an automorphism σ of G, that is,

(aib
j
)σ = aibj

σ
= (aibj)σ = aik1 bjl2 = aik1b

jl2
,
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where i, j are integers. This implies that b
σ

= b
l2

, and so b
σ2

= b. In other words, σ2 is
not fixed-point-free. By [8, p.335, Lemma 1.3], σ2 is not a fixed-point-free automorphism
of G. Since σ is arbitrary, the statement holds.

Assume finally that G = G6(p). Arguing similarly as above, G has no fixed-point-free
automorphism. This completes the proof of Lemma 14. 2

We remark that when G = G3(p) or G6(p), G has no fixed-point-free automorphisms,
and when G = G4(p), the square of each automorphism of G is not fixed-point-free. If
there exist self-complementary Cayley graphs of G, then the complementing isomorphism
can not be produced by special automorphisms of the group G, see Lemma 9.

In order to state the following construction, we need the next lemma.

Lemma 15. Let G = p1+2
+
∼= C2

p:Cp, where p is an odd prime. If p ≡ 1 (mod 8), then G
has two fixed-point-free automorphisms σ and σ2 of 2-power orders.

Proof. Now we may write G as follows:

G = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

Assume that p− 1 = 2em, where m is an odd number, and e > 3. Let λ be a positive
integer such that ordp(λ) = 2e. Let σ be such that

aσ = aλ, bσ = bλ and cσ = cλ
2
.

It is clear that σ and σ2 are two fixed-point-free automorphisms of 2-power orders. 2

Let p ≡ 1 (mod 8) be a prime. Write p− 1 = 2em with e > 3, and m an odd number.
Let

G = G3(p) = 〈a, b | ap2 = bp = cp = 1, [a, b] = c, [c, a] = ap, [c, b] = 1〉.

Clearly, Z(G) = 〈ap〉 ∼= Cp. Set H = 〈ap, b, c〉 ∼= C3
p.

Pick a positive integer λ such that ordp(λ) = 2e. Then we choose σ ∈ Aut(H) such
that

(ap)σ = (ap)λ, bσ = bλ and cσ = cλ
2
.

Obviously, σ is a fixed-point-free automorphism of order 2e. So is σ2 of order 2e−1 as
e > 3. By Lemma 9, there exists S1 ⊂ H such that S1 is an SC-subset with respect to σ.
Then Sσ1 = H# \ S1, and so for any elements x = api1bj1ck1 and y = api2bj2ck2 ,

ap(i2−i1)bj2−j1ck2−k1 = yx−1 ∈ S1

⇔aλp(i2−i1)bλ(j2−j1)cλ2(k2−k1) = yσ(xσ)−1 6∈ S1.

Let τ ∈ Aut(〈a〉) be such that aτ = aλ, where λ is as above. Let G = G/Z(G) =
〈a, b, c〉 = C2

p:Cp. By Lemma 15, the pair (σ, τ) induces a fixed-point-free automorphism

ρ of G. So does ρ2 for e > 3.
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Again by Lemma 9, we may let S2 ⊂ G
#

be an SC-subset with respect to ρ. Then

S
ρ

2 = G
# \ S2, and Cayley graph

Σ = Cay(G,S2)

is self-complementary with complementing isomorphism ρ.

Let I = {(i, j, k) | aibjck ∈ S2, 0 6 i, j, k 6 p− 1}. Set

S2 = ∪(i,j,k)∈Iaibjck〈ap〉,
Γ2 = Cay(G,S2).

Let ap = d. We observe that each element of G can be written as

aibjckdl where 0 6 i, j, k, l 6 p− 1.

By the definition, we have the conclusion in the next lemma.

Lemma 16. The Cayley graph Γ2 = Σ[Kp], and for any elements x = ai1bj1ck1dl1 and
y = ai2bj2ck2dl2 with (i1, j1, k1) 6= (i2, j2, k2), we have

yx−1 ∈ S2 ⇔ y x−1 ∈ S2 ⇔ yρ(xρ)−1 6∈ S2.

With this preparation, we are ready to present our construction of self-complementary
Cayley graphs of the group G3(p).

Construction 17. With the notation above, let

S = S1 ∪ (S2 \H) and
Γ = Cay(G,S).

Define a permutation ρ of the set G as follows:

ρ : aibjckdl 7→ aλibλjcλ
2kdλl

′
,

where l′ = l + ij[(λ2−1)i+λ−1]
2

+ (λ2 − 1)ik and 0 6 i, j, k, l 6 p− 1.

We remark that the map ρ only fixes the identity of G, but by Lemma 14, ρ is not an
automorphism of G. The next lemma shows that ρ maps Γ to its complement Γ .

Lemma 18. The Cayley graph Γ defined in Construction 17 is self-complementary, and
ρ is a complementing isomorphism.

Proof. Take two vertices x = ai1bj1ck1dl1 and y = ai2bj2ck2dl2 , where 0 6 it, jt, lt, kt 6 p−1
with t = 1, 2. By the definition of G, we have

yx−1 = ai2bj2−j1ck2−k1a−i1dl2−l1 .
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By the definition of ρ, we obtain

(xρ)−1 = c−λ
2k1b−λj1a−λi1d−λ(l1+

i1j1[(λ
2−1)i1+λ−1]

2
+(λ2−1)i1k1),

yρ = aλi2bλj2cλ
2k2dλ(l2+

i2j2[(λ
2−1)i2+λ−1]

2
+(λ2−1)i2k2).

Assume first that i1 = i2. Then, by the previous three equations,

yx−1 = bj2−j1ci2(j2−j1)+k2−k1dl2−l1−
i2(j2−j1)(i2+1)

2
−i2(k2−k1),

yρ(xρ)−1 = bλ(j2−j1)cλ
2[i2(j2−j1)+k2−k1]dλ[l2−l1−

i2(j2−j1)(i2+1)
2

−i2(k2−k1)].

By the above two equations, we obtain that both yx−1 and yρ(xρ)−1 belong to H.
Recall that S1 ⊂ H is an SC-subset with respect to σ. By the definition of ρ, S1 is also
an SC-subset with respect to ρ. It follows that yx−1 belongs to S1 if and only if yρ(xρ)−1

does not belong to S1.
Assume now that i1 6= i2. It is easy to show that neither yx−1 nor yρ(xρ)−1 belongs

to H. Calculation shows that

y x−1 = ai2−i1b
j2−j1

ci1(j2−j1)+k2−k1 , and

yρ(xρ)−1 = aλ(i2−i1)b
λ(j2−j1)

cλ
2[i1(j2−j1)+k2−k1].

Lemma 16 along with the above two equations imply that

yx−1 ∈ S2 ⇔ y x−1 ∈ S2 ⇔ yρ(xρ)−1 /∈ S2 ⇔ yρ(xρ)−1 /∈ S2.

It follows that x, y are adjacent in Γ if and only if xρ, yρ are not adjacent in Γ , and so ρ
is an isomorphism between Γ and Γ . In particular, Γ ∼= Γ . 2

Notice that, with the same method, a similar construction will also work for the groups
G4(p) and G6(p).

5 Proof of Theorem 1

Combining Proposition 13 and Lemma 18 along with Construction 17, we obtain an
important conclusion in the next proposition.

Proposition 19. Let G be a p-group of order p4, where p is an odd prime. Then one of
the following holds:

(i) if p ≡ 1 (mod 4), then there exist self-complementary Cayley graphs of G when
G = G2(p);

(ii) if p ≡ 1 (mod 8), then there exist self-complementary Cayley graphs of G when
G = Gi(p) for i = 1 or 3 6 i 6 7.

We remark that the groups G1(p), G2(p), G5(p) and G7(p) have fixed-point-free auto-
morphisms by Lemmas 11-12. Therefore, the self-complementary Cayley graphs appearing
in Proposition 19 can be produced by fixed-point-free automorphisms of the groups.

The assertion of Theorem 1 follows from Lemma 8 and Proposition 19.
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