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Abstract

We provide new examples of Cayley graphs on which the quantum walks reach
uniform mixing. Our first result is a complete characterization of all 2(d+2)-regular
Cayley graphs over Zd3 that admit uniform mixing at time 2π/9. Our second result
shows that for every integer k > 3, we can construct Cayley graphs over Zdq that

admit uniform mixing at time 2π/qk, where q = 3, 4.
We also find the first family of irregular graphs, the Cartesian powers of the star

K1,3, that admit uniform mixing.
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1 Introduction

A continuous-time quantum walk on a graph X is defined by the transition matrix

U(t) := exp(itA) =
∑
k>0

(itA)k

k!
,

where A is the adjacency matrix of X. The probability that at time t, the quantum walk
with initial state represented by u is in the state represented by v is

|U(t)uv|2 .

We say X admits uniform mixing at time t if the above probability is the same for all
vertices u and v. A weaker version of uniform mixing, called local uniform mixing, occurs
if the probability distribution given by a column of U(t) is uniform.

Uniform mixing on graphs is rare, and almost all the known examples are Cayley
graphs. The current list of Cayley graphs contains the complete graphs K2, K3 and K4
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[1], the Hamming graphs H(d, 2), H(d, 3) and H(d, 4) [2, 8], the Paley graph of order nine
[6], some strongly regular graphs from regular symmetric Hadamard matrices [6], some
linear Cayley graphs over Zd2, Zd3 and Zd4 [3, 9], and the Cartesian product of graphs which
admit uniform mixing at the same time. These graphs share the following features.

(a) They are Cayley graphs over abelian groups;

(b) They have integer eigenvalues;

(c) Their mixing times are rational multiples of π.

That being said, a graph that admits uniform mixing is not necessarily vertex-transitive
or even regular. As we will see in Section 11, the star K1,3 admits uniform mixing at time
2π/
√

27. The Cartesian powers of K1,3 are so far the only family of irregular graphs found
to admit uniform mixing, and the only family to which none of the above features applies.

Although characterizing uniform mixing in general seems daunting, the problem can
be reduced if we require some regularity on the graphs. The vertex transitive graphs,
which provide most of the known examples, satisfy the property that for any two vertices
u and v, there is a graph automorphism that maps u to v. The transition matrix of a
vertex-transitive graph is entirely determined by one of its rows. Therefore for all Cayley
graphs, uniform mixing is equivalent to local uniform mixing.

In this paper, we provide new examples of Cayley graphs over Zdq that admit uniform
mixing. Our examples contain both an infinite family of Cayley graphs on which mix-
ing occurs at time 2π/9, and infinite families of Cayley graphs on which mixing occurs
arbitrarily faster. Theorem 10 provides a complete characterization of 2(d + 2)-regular
Cayley graphs over Zd3 that admit uniform mixing at time 2π/9. Theorem 20, Theorem
21 and Theorem 22 show that, for an arbitrarily large integer k, we can construct families
of Cayley graphs over Zdq that admit uniform mixing at time 2π/qk, where q = 3, 4. These
examples extend the results of Mullin [9] and Chan [3].

2 Quotients of Hamming Graphs

A Cayley graph over the additive group Zdq is a graph with vertex set Zdq and edge set

{(g, h) : h− g ∈ C}

for some subset C of Zdq . We will follow Godsil and Royle [7] and denote this graph by
X(Zdq , C), and call C the connection set. Further, we assume C is inverse-closed and does
not contain the identity element, so that X(Zdq , C) is a simple graph. Note here q is not
necessarily a prime power – we will think of the vertex set Zdq as a module in this paper.

While no extra algebraic structure of Zdq is needed to define a Cayley graph, it is often
convenient to view the underlying group Zdq as a Zq-module. Two easy observations follow.
First, if φ is a module automorphism of Zdq , then the two Cayley graphs X(Zdq , C) and
X(Zdq , φ(C)) are isomorphic. Second, X(Zdq , C) is connected if and only if its connection
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set contains a basis of Zdq . An example of connected Cayley graphs over Zdq is the Hamming
graph H(d, q), whose connection set consists of non-zero multiples of the standard basis
{e1, e2, . . . , ed} of Zdq .

We will pay special attention to the quotient graphs of Hamming graphs, as they form
an important family of Cayley graphs over Zdq . The Hamming distance of two elements in
Zdq is the number of coordinates in which they differ. Consider a submodule Γ of Zdq with
Hamming distance at least three. The partition of Zdq by the cosets of Γ satisfies three
properties:

(i) every coset is a coclique;

(ii) every vertex is adjacent to at most one vertex in a coset;

(iii) if some vertex in the coset g+ Γ is adjacent to a vertex in another coset h+ Γ, then
there is a matching between g + Γ and h+ Γ.

The quotient graph of H(d, q) induced by Γ, denoted H(d, q)/Γ, is a graph with a vertex
for each coset of Γ, such that two vertices are adjacent if there is a matching between the
two associated cosets. We note that every quotient graph of H(d, q) is a Cayley graph for
a quotient module of Zdq .

Lemma 1. Let C be the connection set of the Hamming graph H(d, q). For a submodule
Γ of Zdq with Hamming distance at least three, let

C/Γ = {c+ Γ : c ∈ C}.

Then
H(d, q)/Γ ∼= X(Zdq/Γ, C/Γ).

Proof. Let g+ Γ and h+ Γ be two vertices of X(Zdq , C)/Γ. They are adjacent if and only
if there exist x, y ∈ Γ and c ∈ C such that (g + x)− (h+ y) = c, or equivalently,

(g + Γ)− (h+ Γ) = c+ Γ ∈ C + Γ.

3 Linear Cayley Graphs

A Hamming graph H(d, q) is known to admit uniform mixing if and only if q ∈ {2, 3, 4}.
As uniform mixing on H(d, q) implies uniform mixing on some of its quotient graphs, for
our interest it is important to understand which Cayley graphs are quotients of H(d, q).
In this section, we show that quotient graphs of H(d, q) are exactly the linear Cayley
graphs over Zdq , that is, graphs X(Zdq , C) for which C ∪{0} is closed under multiplication
by Zq.

Since Z2 has only one non-zero element, the connection set of every Cayley graph over
Zd2 is trivially closed under multiplication of the non-zero elements of Z2. Similarly, for
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Cayley graphs over Zd3, since we assume the connection set is inverse-closed, it is closed
under multiplication of the only two non-zero elements of Z3. Thus, all Cayley graphs
over Zd2 or Zd3 are linear, and we can characterize uniform mixing on them in terms of the
submodules that induce the quotients.

Theorem 2. Let X(Zrq, C) be a connected linear Cayley graph with valency d(q−1). Then
X(Zrq, C) is isomorphic to a quotient graph H(d, q)/Γ for some submodule Γ of Zdq, where
|Γ| = qd−r and Γ has Hamming distance at least three.

Proof. Let C be the connection set of X. We can partition C into cells C1, C2, . . . , Cd
such that two elements lie in the same cell if and only if they are multiples of each other,
and the first r cells contains a basis of Zdq . Since Cj is a cyclic group, we may assume
Cj = 〈vj〉. Define a module homomorphism from C to Zrq × Zd−rq by

f(vj) =

{
(vj, 0), if v ∈ Cj for j ∈ {1, 2, · · · , r},
(vj, 0) + ej, if vj ∈ Cj for j ∈ {r + 1, r + 2, · · · , d},

where {e1, e2, . . . , ed} is the standard basis of Zdq . Let

C ′ = {f(v) : v ∈ C}.

Then C ′ consists of all non-zero multiples of a basis of Zrq × Zd−rq . Thus, X(Zdq , C ′) is
isomorphic to the Hamming graph H(d, q). Let φ be a module automorphism of Zdq that
maps a basis in C ′ to the standard basis. Let Γ′ be the submodule of Zdq generated by
{er+1, er+2, . . . , ed}, and Γ the image of Γ′ under φ. Clearly |Γ| = qd−r. By Lemma 1,

H(d, q)/Γ ∼= X(Zdq , C ′)/Γ′ ∼= X(Zrq, C).

Since we started with a simple Cayley graph, Γ must have Hamming distance at least
three.

Conversely, for any quotient graph H(d, q)/Γ, where Γ has minimum distance at least
three, we can find a connection set of the linear Cayley graph isomorphic to H(d, q)/Γ.

Theorem 3. Let Γ be a submodule of Zdq with size qd−r and Hamming distance at least
three. Let Q be a parity check matrix of Γ, and C the set of non-zero multiples of the
columns of Q. Then H(d, q)/Γ is isomorphic to the d(q − 1)-regular graph X(Zrq, C).

Proof. Without loss of generality, we may assume Γ is generated by the columns of the
following block matrix (

R
S

)
,

where S is square and invertible over Zq. Let

P =

(
I −RS−1

0 S−1

)
.
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We have

P

(
R
S

)
=

(
0
I

)
,

that is, P defines a module automorphism φ of Zdq that maps Γ to the submodule generated
by {er+1, er+2, . . . , ed}. Note that the partitioned matrix

Q =
(
I −RS−1

)
is a parity check matrix of Γ. If D is the connection set of H(d, q) and C the multiples of
columns of Q, then by Lemma 1,

H(d, q)/Γ ∼= X(Zdq/Γ, D/Γ)

∼= X(Zdq/φ(Γ), φ(D)/φ(Γ))

∼= X(Zdq , C).

Finally, since the minimum distance of Γ is the minimum number of linearly dependent
columns of its parity check matrix Q, no two columns of Q are multiples of each other.
It follows that X(Zrq, C) has valency d(q − 1).

The quotient approach provides a convenient way to characterize uniform mixing on
linear Cayley graphs. If X = H(d, q)/Γ, the vertices of X are cosets Γ+v of the subgroup,
and each entry of UX(t) is a block sum of the entries of UH(d,q)(t). More specifically, the
(0, v)-entry of UX(t) can be expressed as follows. For more details, see Mullin’s thesis [9,
Ch 8].

Theorem 4 (Mullin). Let X = H(d, q)/Γ. We have

U(t)0,v =

(
e−it

q

)d ∑
a∈Γ+v

(eqit + q − 1)d−wt(a)(eqit − 1)wt(a).

For each coset Γ + v, let Wv(x, y) denote its homogeneous weight enumerator. Note
that the right hand side of the above equation is

Wv(e
qit + q − 1, eqit − 1).

For the (0, 0)-entry, MacWilliams’ identity simplifies the expression to

U(t)0,0 =

(
e−it

q

)d
|Γ|WΓ⊥(eqit, 1).

Thus we have a necessary condition for uniform mixing.

Corollary 5. If H(d, q)/Γ admits uniform mixing at time t, then

|WΓ⊥(eqit, 1)|2 = |Γ⊥|.
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We already know that uniform mixing occurs on H(d, 2), H(d, 3) and H(d, 4) at time
π/4, 2π/9 and π/4, respectively. It is natural to see if their quotients also admit uniform
mixing at these special times.

Corollary 6. (a) H(d, 2)/Γ admits uniform mixing at time π/4 if and only if for each
coset Γ + v,

|Wv(i, 1)|2 = |Γ|;

(b) H(d, 3)/Γ admits uniform mixing at time 2π/9 if and only if for each coset Γ + v,

|Wv(e
2πi/3, 1)|2 = |Γ|;

(c) H(d, 4)/Γ admits uniform mixing at time π/4 if and only if for each coset Γ + v,

|Wv(−1, 1)|2 = |Γ|.

Consider the binary [17, 9, 5]-quadratic code. A numerical check on the weight distri-
butions of its cosets shows that it admits uniform mixing at time π/4.

4 Quotient Graphs with One Generator

For a quotient graph H(d, q)/Γ, the entries of its transition matrix are block sums of the
transition matrix of H(d, q). As functions of the time t, these block sums can be greatly
simplified if we plug in the time τq when H(d, q) admits uniform mixing. Thus, at the
specific time τq, whether uniform mixing occurs on H(d, q)/Γ is fully determined by the
weight distributions of the cosets of Γ. For details see Mullin’s Ph.D. thesis [9, Ch 8].

The Hamming weight wt(a) of an element a in Zdq is the number of non-zero entries
of a. In this section, we characterize quotients H(d, q)/〈a〉 that admit uniform mixing at
time τq, where the submodule is generated by one element a with Hamming weight wt(a)
at least three. As a special case, the “folded” Hamming graphs H(d, q)/〈1〉 have been
studied in [9]. In general, Theorem 3 gives the matrix Q representing the connection set
of H(d, q)/〈a〉. By row reduction, column permutation, and column scaling of Q, it is
not hard to see that H(d, q)/〈a〉 is a Cartesian product of a Hamming graph and a folded
Hamming graph. Combining this observation and the results on the folded Hamming
graphs, we give the following characterization.

Theorem 7. Let a be a vector in Zdq with wt(a) > 3, where q = 2, 3, 4. Then

(a) Uniform mixing occurs on H(d, 2)/〈a〉 at time τ2 = π/4 if and only if wt(a) is odd;

(b) Uniform mixing occurs on H(d, 3)/〈a〉 at time τ3 = 2π/9 if and only if wt(a) is not
divisible by three;

(c) Uniform mixing occurs on H(d, 4)/〈a〉 at time τ4 = π/4 if and only if wt(a) is odd.

This theorem takes care of all the connected (d+ 1)(q− 1)-regular Cayley graphs over
Zdq , which admit uniform mixing at τq, for q ∈ {2, 3, 4}.
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5 Quotient Graphs with Two Generators

We move on to the quotients of Hamming graphs where the submodules are generated
by two elements. Our goal is to characterize the 2(d + 2)-regular Cayley graphs over Zd3
that admit uniform mixing at time 2π/9, as given in Theorem 10. The tool we use is the
weight distribution of a code, that is, the sequence

(α0, α1, α2, · · · )

where αj is the number of of codewords with Hamming weight j. To begin, we need the
following conditions on the cosets of Γ from [9, Ch 8].

Theorem 8 (Mullin). Let Γ be a submodule of Zd3 with Hamming distance at least three
such that |Γ| = 3s. For any coset of Γ, let nj be the number of elements in it with weight j
modulo three. Uniform mixing occurs on H(d, q)/Γ at time 2π/9 if and only if the weight
distribution of every coset of Γ satisfies

n0n1 + n0n2 + n1n2 = 32s−1 − 3s−1.

Since we have to examine the weight distribution of every coset of Γ, it helps to
understand the relation between the weights of Γ and the weights of Γ + c for each vector
c. Suppose Γ is generated by s elements, and let M be the matrix with the generators of
Γ as its columns. Then each element in Γ can be written as My for some vector y ∈ Zs3,
and is uniquely associated to an element My + c in the coset Γ + c. We will refer to

wt (My + c)− wt (My)

as the weight change of the element My with respect to c. The following gives the
necessary condition on the weight changes for both Γ and Γ + c to satisfy the weight
distribution condition in Theorem 8.

Lemma 9. Let Γ be a submodule of Zd3 with size 3s and minimum distance three, and let
Γ + c be a coset of Γ. For j = 0, 1, 2, let Γj denote the set of elements in Γ with weight
congruent to j modulo three. Let mj be the number of elements in Γj whose weight change
with respect to c is one modulo three. If both Γ and Γ + c satisfy the weight distribution
condition in Theorem 8, then either mj = 0 for all j, or mj satisfies the following:

m0 +m1 +m2 = 3s−1

(m0n0 +m1n1 +m2n2) + 3(m0m1 +m1m2 +m0m2) = 32s−1 − 32s−2.

Proof. We will calculate the weights over Z3. Let My be an element in Γ. Notice that

wt(My + c) = (My + c)T (My + c) = wt(My) + wt(c) + 2cTMy.
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Since wt(c) depends only on c, and the condition in Theorem 8 is symmetric on n0, n1, n2,
we may assume without loss of generality that wt(c) = 0. If cTM = 0, then the weight
change of each element in Γ is zero. Otherwise, there are exactly 3s−1 vectors y such that

2cTMy = 1.

Therefore
m0 +m1 +m2 = 3s−1.

Notice that for each solution y to 2cTMy = 1, the vector 2y is a solution to 2cTMy = 2.
Thus there are equal number of elements in Γj with weight change one and weight change
two. It follows that in the coset Γ + c, the number of elements with weight j is

n′j = nj − 2mj +mj−1 +mj+1,

where the subcripts are calculated modulo three. Since Γ + c satisfies the weight distri-
bution conditon in Theorem 8,

n′0n
′
1 + n′0n

′
2 + n′1n

′
2 = 32s−1 − 3s−1.

This together with the fact that

n0n1 + n0n2 + n1n2 = 32s−1 − 3s−1

yields

(m0n0 +m1n1 +m2n2) + 3(m0m1 +m1m2 +m0m2) = 32s−1 − 32s−2.

With the above observation, we characterize the quotient graphs H(d, q)/〈a, b〉 that
admit uniform mixing at time 2π/9 in terms of the generators a and b.

Theorem 10. Uniform mixing occurs on H(d, 3)/〈a, b〉 at time 2π/9 if and only if one
of the following holds:

(i) aT b ≡ 0 (mod 3), wt(a) 6≡ 0 (mod 3), and wt(b) 6≡ 0 (mod 3),

(ii) aT b 6≡ 0 (mod 3), and wt(a) 6≡ wt(b) (mod 3) unless wt(a) ≡ wt(b) ≡ 0 (mod 3).

Proof. For notational convenience, we define the weight structure of the coset Γ + c to be
the tuple with coordinates n0, n1, n2 in non-descending order, denoted by W (Γ + c). By
Theorem 8, the quotient graph H(d, 3)/〈a, b〉 admits uniform mixing at time 2π/9 if and
only if the weight distribution of every coset Γ + c satisfies

n0n1 + n0n2 + n1n2 = 24

n0 + n1 + n2 = 9
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which holds if and only if for all c,

W (Γ + c) ∈ {(1, 4, 4), (2, 2, 5)}.

We first show that W (Γ) lies in the above set if and only if one of the conditions (i)
and (ii) holds. Let

M =
(
a b

)
be a matrix and let

y =

(
y1

y2

)
be a vector in Z2

3. The weight of My is

wt(My) = yTMTMy = wt(y1) wt(a) + wt(y2) wt(b) + 2y1y2a
T b.

Thus the weights of the elements in Γ are

label weight multiplicity
w0 0 1
w1 wt(a) 2
w2 wt(b) 2
w3 wt(a) + wt(b) + aT b 2
w4 wt(a) + wt(b) + 2aT b 2

Since Γ is a group of order nine, n0 is odd and n1, n2 are even. We consider two cases.

(a) Suppose
W (Γ) = (1, 4, 4).

Then half of {w1, w2, w3, w4} are one, and the rest are two.

• wt(a) = wt(b) 6= 0. Then w3 = w4 /∈ {0, w1} if and only if aT b = 0.

• wt(a) = 2 wt(b) 6= 0. Then w3 = aT b = 2w4. It follows that two of the four
elements {w1, w2, w3, w4} are one and the others are two if and only if aT b 6= 0.

(b) Suppose
W (Γ) = (2, 2, 5).

Then half of {w1, w2, w3, w4} are zero, and the rest are one and two respectively.

• wt(a) = wt(b) = 0. Then w3 = aT b = 2w4. Thus {w3, w4} = {1, 2} if and only
if aT b 6= 0.

• wt(a) = 2 wt(b) 6= 0. Then w3 = aT b = 2w4. It follows that w3 = w4 = 0 if and
only if aT b = 0.
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Summarizing the above yields the conditions (i) and (ii).
Next we show that if

W (Γ) ∈ {(1, 4, 4), (2, 2, 5)}

then
W (Γ + c) = W (Γ),

for all c ∈ Zd3. By Lemma 9, the weight changes m0,m1,m2 are either zero, or satisfy

m0 +m1 +m2 = 3,

(m0n0 +m1n1 +m2n2) + 3(m0m1 +m0m2 +m0m)3 = 18. (1)

In the latter case, the weight changes are either

m0 = m1 = m2 = 1

or
{m0,m1,m2} = {0, 1, 2}.

It is easy to see that if m0 = m1 = m2 = 1, then W (Γ + c) = W (Γ). Suppose

{m0,m1,m2} = {0, 1, 2}.

Then by Equation (1), when W (Γ) = (1, 4, 4), we have

n0 = 1, n1 = n2 = 4

m0 = 0, {m1,m2} = {1, 2}

and when W (Γ) = (2, 2, 5), we have

n0 = 5, n1 = n2 = 2

m0 = 2, {m1,m2} = {0, 1}.

Since the weight distribution of Γ + c is

n′j = nj − 2mj +mj−1 +mj+1

again we have W (Γ + c) = W (Γ).

It is perhaps surprising that in all the characterizations discussed so far, the condition
for a quotient graph H(d, q)/Γ to admit uniform mixing only relies on the group genera-
tors, although Theorem 8 suggests checking the weight distribution of every coset of this
group. It would reduce the problem of checking uniform mixing on H(d, q)/Γ at time τq
considerably if this was true in general.
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6 Hamming Schemes

In this section, we construct Cayley graphs over Zdq that admit uniform mixing earlier than
the complete graph Kq. The construction is based on the association scheme which spans
the adjacency algebra of a Hamming graph, called the Hamming scheme. We introduce
the basic concepts of association schemes and some useful results on the eigenvalues of
Hamming schemes.

An association scheme with d classes is a set A = {A0, A1, . . . , Ad} of 01-matrices that
satisfies the following conditions:

• A0 = I.

•
∑d

r=0Aj = J .

• ATr ∈ A for r = 0, 1, · · · , n.

• ArAs = ArAs ∈ span(A).

The association schemeA generates an algebra over C, which is referred to as the Bose-
Mesner algebra of A. This algebra has an orthogonal basis of idempotents E0, E1, . . . , Ed.
Thus for each matrix Ar in the scheme, there are scalars p

(d)
r (s) such that

Ar =
d∑
s=0

p(d)
r (s)Es.

These scalars are called the eigenvalues of the scheme A. When d is clear from the
context, we drop the superscript and write pr(s). The following theorem due to Chan [3]
shows that whether a graph admits uniform mixing depends only on its spectrum and the
eigenvalues of the Bose-Mesner algebra containing its adjacency matrix.

Theorem 11 (Chan). Let X be a graph on v vertices whose adjacency matrix belongs to
the Bose-Mesner algebra of A. Let pj(s) be the eigenvalues of A. Suppose the spectral
decomposition of A(X) is

A(X) =
d∑
s=0

θsEs.

The continuous quantum walk of X is uniform mixing at time τq if and only if there exist
scalars t0, t1, . . . , td such that

• |t0| = |t1| = · · · = |td| = 1,

•
√
veiτqθs =

∑d
j=0 pj(s)tj for s = 0, 1, · · · , d.

A Hamming scheme H(d, q) is an association scheme constructed from the Hamming
graph H(d, q). The matrix Aj is the adjacency matrix of the r-th distance graph of
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H(d, q), which has the same vertex set as H(d, q) such that two vertices are adjacent if
they are at distance r in H(d, q). The eigenvalues of the scheme H(d, q) satisfy

p(d)
r (s) = [xr](1 + (q − 1)x)d−s(1− x)s, (2)

for s = 0, 1, · · · , d. These are called the Krawtchouk polynomials. They satisfy the
following properties.

Lemma 12. Let pr(s) be the eigenvalues of the Hamming scheme H(d, q). Then

(i) pr(s) =
∑

h(−q)h(q − 1)r−h
(
d− h
r − h

)(
s

h

)
.

(ii) pr(s)− pr(s− 1) + (q − 1)pr−1(s) + pr−1(s− 1) = 0.

(iii) p
(d+1)
r (s)− p(d+1)

r (s+ 1) = qp
(d)
r−1(s).

(iv) If q = 2, then

pr−1(s)− pr−1(s+ 2) = 4
∑
h

(−2)h
(
d− 2− h
r − 2− h

)(
s

h

)
.

Proof. By Equation (2),

pr(s) = [xr](1 + (q − 1)x)d−s(1 + (q − 1)x− qx)s

= [xr]
∑
h

(
s

h

)
(1 + (q − 1)x)d−h(−qx)h

=
∑
h

(
[xh]

(
s

h

)
(−qx)h

)(
[xr−h](1 + (q − 1)x)d−h

)
=
∑
h

(−q)h(q − 1)r−h
(
d− h
r − h

)(
s

h

)
.

Properties (ii) and (iii) follow from Equation (2), and Property (iv) follows from the above
three properties for q = 2.

We will use property (iii) frequently, so we rephrase it in the matrix form. Let P (d)

be the eigenvalue matrix for the scheme H(d, q). Let

Cd =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0


be an d× d circulant matrix. Then Property (iii) is equivalent to(

Id−1 0
0 0

)
(Id − C)P (d)

(
Id−1 0

0 0

)
= qP (d−1) (3)
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7 Sufficient Conditions for Uniform Mixing in Hamming Schemes

A graph on n vertices admits uniform mixing at time t if and only if
√
nU(t) is equal to a

complex Hadamard matrix. For notational convenience, let B(q) denote the Bose-Mesner
algebra of the Hamming scheme H(d, q). For q ∈ {2, 3, 4}, we can construct complex
Hadamard matrices in B(q) from a primitive q-th roots of unity.

Lemma 13. Let ζq be a primitive q-th root of unity. For q ∈ {2, 3, 4}, the matrix

eiβ(Iq + ζ6−q(Jq − Iq))⊗d

is a complex Hadamard matrix in B(q).

Proof. First note that Iq + ζ6−q(Jq − Iq) is a complex Hadamard matrix of order q for
q ∈ {2, 3, 4}. In fact, it is a scalar multiple of UKq(τq) for some mixing time τq of Kq.
Now if H1 and H2 are both complex Hadamard matrices of order q, then H1 ⊗H2 is flat
and thus a complex Hadamard matrix of order q2. Lastly, a unimodular scalar multiple
of a complex Hadamard matrix is again a complex Hadamard matrix.

The following generalizes Lemma 3.2 in [3].

Lemma 14. Let X be a graph in B(q) with eigenvalues θ0, θ1, . . . , θd, and let ε ∈ {1,−1}.
Suppose k > 2.

(i) If q = 2, and
θs − θ0 ≡ ε2k−1s (mod 2k+1),

for s = 0, 1, · · · , d, then X admits uniform mixing at time π/2k.

(ii) If q = 3, and
θs − θ0 ≡ ε3k−1s (mod 3k),

for s = 0, 1, · · · , d, then X admits uniform mixing at time 2π/3k.

(iii) If q = 4, and
θs − θ0 ≡ 2ks (mod 2k+1),

for s = 0, 1, · · · , d, then X admits uniform mixing at time π/2k.

Proof. Suppose q ∈ {2, 3, 4}. Let

Hq = eiβ(Iq + ζ6−q(Jq − Iq))⊗d

= eiβ
(

(1 + (q − 1)ζ6−q)

(
1

q
Jq

)
+ (1− ζ6−q)

(
Iq −

1

q
Jq

))⊗d
.

Suppose A ∈ B(q) has spectral decomposition

A =
d∑
r=0

θrEr.
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By Equation (4.2) in [5, Sec 4],

Hq = eiβ
d∑
r=0

(ζ6−q)
rAr,

where Ar is the adjacency matrix of the r-distance graph of H(d, q). Hence the condition√
qdeitA = Hq

is equivalent to √
qdeiθst = eiβ (1 + (q − 1)ζ6−q)

d−s (1− ζ6−q)
s ,

for s = 0, 1, · · · , d. It follows that√
qdeiθ0t = eiβ(1 + (q − 1)ζ6−q)

d (4)

and

ei(θs−θ0)t =

(
1− ζ6−q

1 + (q − 1)ζ6−q

)s
, (5)

for s = 0, 1, · · · , d.

(i) For q = 2, Equation (5) reduces to

2k

π
(θs − θ0)t ≡ ε2k−1s (mod 2k+1).

(ii) For q = 3, Equation (5) reduces to

3k

2π
(θs − θ0)t ≡ ε3k−1s (mod 3k).

(iii) For q = 4, Equation (5) reduces to

2k

π
(θs − θ0)t ≡ 2ks (mod 2k+1).

Thus, for q ∈ {2, 3, 4}, if θs − θ0 satisfies the corresponding condition in the lemma, then
there exist t, β ∈ R that satisfy Equation 4 and 5. That is, X admits uniform mixing at
time t.

Equation 3 tells us that we can check the above conditions by looking at the eigenvalues
of B(q − 1).
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Corollary 15. Let X be a graph in B(q) with adjacency matrix

a0 + a1A1 + · · ·+ adAd.

If q = 2 and there is ε ∈ {1,−1} such that

P (d−1)

a1

· · ·
ad

 ≡ ε2k−21 (mod 2k),

then X admits uniform mixing at time π/2k. If q = 3 or q = 4, and there is ε ∈ {1,−1}
such that

P (d−1)

a1

· · ·
ad

 ≡ εqk−21 (mod qk−1),

then X admits uniform mixing at time 2π/qk.

8 Faster Uniform Mixing on Distance Graphs

We apply the sufficient conditions developed in the last section to the distance graphs of
Hamming graphs, as their eigenvalues are known. In Lemma 3.3 of [3], Chan derived a
more accessible condition for uniform mixing in H(d, 2) using Property (iv) in Lemma 12.
However, this property holds only for q = 2. To extend her result, we need more general
properties for q ∈ {2, 3, 4}. The first one is a corollary to Lemma 14.

Corollary 16. Suppose d > 1, r > 1 and k > 2. Let Xr be the r-distance graph of the
Hamming graph H(d, q), and let ε ∈ {1,−1}.

(i) If q = 2, and

p
(d−1)
r−1 (s) ≡ ε2k−2 (mod 2k),

for s = 0, 1, · · · , d− 1, then Xr admits uniform mixing at time π/2k.

(ii) If q = 3, and

p
(d−1)
r−1 (s) ≡ ε3k−2 (mod 3k−1),

for s = 0, 1, · · · , d− 1, then Xr admits uniform mixing at time 2π/3k.

(iii) If q = 4, and

p
(d−1)
r−1 (s) ≡ 2k−2 (mod 2k−1),

for s = 0, 1, · · · , d− 1, then Xr admits uniform mixing at time π/2k.
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Proof. We prove this for q = 2; the other two cases are similar.
Suppose

p
(d−1)
r−1 (s) ≡ ε2k−2 (mod 2k),

for s = 0, 1, · · · , d− 1. By Property (iii) in Lemma 12, this implies

pr(s+ 1)− pr(s) ≡ −ε2k−1 (mod 2k+1).

It follows that

pr(s)− pr(0) = pr(s)− pr(s− 1) + · · ·+ pr(1)− pr(0)

= −εs2k−1 (mod 2k+1).

By Lemma 14, Xr admits uniform mixing at time π/2k.

With the help from the smaller scheme H(d− 1, q), we are able to construct examples
in H(d, q) that admit faster uniform mixing. It turns out that the conditions on the
eigenvalues can be further simplified using Lemma 12. From now on, we focus on the
Hamming schemes H(d, 3) and H(d, 4), as the examples in H(d, 2) are given in [3].

Lemma 17. For d > 1, r > 1 and k > 2, if there exists ε ∈ {−1, 1} such that the
following holds

(i) 2r−1
(
d−1
r−1

)
≡ ε3k−2 (mod 3k−1),

(ii) 3k−h−1 divides
(
d−h−1
r−h−1

)
for h = 1, 2, · · · , k − 2,

then the distance graphs Xr and Xd−r+1 in the Hamming scheme H(d, 3) admit uniform
mixing at time 2π/3k.

Proof. From Lemma 12, we have

p
(d−1)
r−1 (s) ≡

d−1∑
h=0

(−3)h2r−h−1

(
d− h− 1

r − h− 1

)(
s

h

)
(mod 3k−1)

≡
k−2∑
h=0

(−3)h2r−h−1

(
d− h− 1

r − h− 1

)(
s

h

)
(mod 3k−1).

By condition (i), when s = 0,

p
(d−1)
r−1 (0) = 2r−1

(
d− 1

r − 1

)
≡ ε3k−2 (mod 3k−1)

and condition (ii), when s > 1,

p
(d−1)
r−1 (s) = p

(d−1)
r−1 (0) +

k−2∑
h=1

(−3)h2r−h−1

(
d− h− 1

r − h− 1

)(
s

h

)
(mod 3k−1)

≡ ε3k−2 (mod 3k−1).
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It follows from Corollary 16 that Xr in H(d, 3) admit uniform mixing at time 2π/3k. For
Xd−r+1, first note that condition (i) is symmetric on r and d − r + 1. By condition (ii),
3k−h−1 divides (

d− h
r − h

)
−
(
d− h− 1

r − h− 1

)
=

(
d− h− 1

r − h

)
,

for h = 1, 2, · · · , k − 2. It follows that 3k−h−2 divides(
d− h− 1

r − h

)
−
(
d− h− 2

r − h− 1

)
=

(
d− h− 2

r − h

)
,

for h = 1, 2, · · · , k − 2. Continuing this procedure, we see that 3k−h−` divides(
d− h− `
r − h

)
for h = 1, 2, · · · , k − 2 and ` = 1, 2, · · · , k − 2. Taking h = 1 for all ` shows that 3k−`−1

divides (
d− `− 1

r − 1

)
=

(
d− `− 1

(d− r + 1)− `− 1

)
,

for ` = 1, 2, · · · , k− 2, which is exactly condition (ii) with r replaced by d− r+ 1. Hence,
Xd−r+1 admits uniform mixing at time 2π/3k as well.

With a similar argument, we can reduce the conditions for faster uniform mixing in
H(d, 4) to the following.

Lemma 18. For d > 1, r > 1 and k > 2, if the following two conditions hold

(i) 3r−1
(
d−1
r−1

)
≡ 2k−2 (mod 2k−1),

(ii) 2k−2h−1 divides
(
d−h−1
r−h−1

)
for h = 1, 2, · · · , bk/2c − 1,

then the distance graphs Xr and Xd−r+1 in the Hamming scheme H(d, 4) admit uniform
mixing at time π/2k.

The above observations imply that our potential examples rely heavily on the divis-
ibility of a binomial coefficient by some prime power. In fact, this is closely related to
the base p representation of the binomial coefficients, where p is prime. To find the pairs
(d, r) that satisfy the divisibility conditions, we need the following number theory result
due to Kummer [4, Ch 9].

Theorem 19 (Kummer). Let p be a prime number. The largest integer k such that
pk divides

(
N
M

)
is the number of carries in the addition of N − M and M in base p

representation.

For our purposes, we look at the ternary representations of d − r and r − h − 1 for
H(d, 3), and their binary representations for H(d, 4). The following are our new examples
of distance graphs that admit uniform mixing at times earlier than the Hamming graphs.

the electronic journal of combinatorics 24(3) (2017), #P3.20 17



Theorem 20. For k > 2 and r ∈ {3k − 1, 3k − 4, 3k − 7}, the r-distance graphs Xr of the
Hamming graph H(2 · 3k − 9, 3) admit uniform mixing at time 2π/3k.

Proof. Let d = 2 · 3k − 9 and r = 3k − 1. Then

d− r = 2 · 3k−1 + 2 · 3k−2 + · · ·+ 2 · 32 + 0 · 31 + 1 · 30,

r − 1− h = 2 · 3k−1 + 2 · 3k−2 + · · ·+ 2 · 32 + 2 · 31 + 1 · 30 − h.

When h = 0, since (d − r) + (r − 1) has exactly k − 2 carries,
(
d−1
r−1

)
is divisible by 3k−2

but not divisible by 3k−1. Then there exists ε ∈ {−1, 1} such that

2r−1

(
d− 1

r − 1

)
≡ ε3k−2 (mod 3k−1).

For h = 1, the number of carries in (d− r) + (r− 2) is still 2k−2. When h = 2, · · · , k− 2,
the number of carries in (d− r) + (r− h+ 1) drops by at most one as h increases by one.
Therefore (d−r)+(r−h+1) has at least k−h−1 carries, and so 3k−h−1 divides

(
n−h
r−h−1

)
.

By Theorem 17, X3k−1 and X3k−7 in H(2 · 3k− 9, 3) admit uniform mixing at time 2π/3k.
Similar argument applies to X3k−4.

Some new examples in H(d, 4) can be obtained in a similar way.

Theorem 21. For k > 2, the distance graph X2k−2 of the Hamming graph H(2k−1−1, 4),
and the distance graphs X2k−1−1, X2k−1 of the Hamming graph H(2k−2, 4) admit uniform
mixing at time π/2k.

9 Faster Mixing in Schemes

In this section, we give another family of graphs inH(d, q) that have faster uniform mixing.
These are unions of some distance graphs of the Hamming graph H(d, q). Compared to
the examples obtained in the last section, these graphs have smaller sizes.

Theorem 22. In the Hamming scheme H(2k + 1, 3), the graph with adjacency matrix∑
`

A3`+i

has uniform mixing at time 2π/3k.

Proof. By Corollary 15, it suffices to show that for each i = 0, 1, 2 and the vector

a =
∑
`

e3`+i,

there is ε ∈ {1,−1} such that

P (d−1)a ≡ ε3k−1 (mod 3k).
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Also, Equation 2 indicates that the eigenvalues p
(2k)
r (s) for H(2k, q) are the coefficients in

fs(x) = (1 + 2x)2k−s(1− x)s.

Let ζ = e2πi/3. We have

fs(1) =

{
3d, s = 0

0, s 6= 0

fs(ζ) = −3kζ−s

fs(ζ
2) = −3kζs.

Then

([x0] + [x3] + [x6] + · · · )f(x) =
1

3
(f(1) + f(ζ) + f(ζ2))

=

{
32k−1 − 2 · 3k−1, s = 0

3k−1 s 6= 0

≡ 3k−11 (mod 3k).

Similar computations can be carried out for

([x1] + [x4] + [x7] + · · · )f(x) =
1

3
(f(1) + ζ2f(ζ) + ζf(ζ2)),

and

([x2] + [x5] + [x8] + · · · )f(x) =
1

3
(f(1) + ζf(ζ) + ζ2f(ζ2)).

10 Mixing Times

The eigenvalues and eigenvectors of an abelian Cayley graph are determined by the group
characters. For linear Cayley graphs over Zdq , there is a simple expression of its eigenvalues
in terms of the connection set C. With these observations, we derive a necessary and
sufficient condition for uniform mixing to occur on linear Cayley graphs over Zdq . This
extends the result in [10, Ch 5] on the case where q = 3. Throughout this section, the
inner product 〈·, ·〉 is taken over Zq.

Lemma 23. Let X be a Cayley graph over Zdq with connection set C. For an element
a ∈ Zdq, let ψa : Zdq → C be the map given by

ψa(x) = e2πi〈a,x〉/q.

Then ψa is an eigenvector for A(X) with eigenvalue ψa(C). Moreover, the eigenvectors
defined above are pairwise orthogonal, and they form a group isomorphic to the additive
group Zdq. Finally, if X is linear, the eigenvalues are integers and can be computed as
follows

ψa(C) =
1

q − 1
(q|C ∩ a⊥| − |C|). (6)
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We apply the spectral decomposition to Cayley graphs over Zdq . Since Cayley graphs
are vertex transitive, it suffices to look at the first row of the transition matrix.

Lemma 24. Let g ∈ Zdq. The 0g-entry of the transition matrix of X(Zdq , C) is

UX(t)0,g =
1

qd

∑
a∈Zdq

eiψa(C)tψa(g).

Proof. By Lemma 23,

Vθ =

{
1√
qd
ψa : ψa(C) = θ

}
is an orthonormal basis of the eigenspace of θ. Hence the idempotents representing the
projection onto the eigenspace of θ is

Eθ =
1

qd

∑
a:ψa(C)=θ

ψaψ
∗
a.

By the spectral decomposition of UX(t), we have

UX(t) =
1

qd

∑
a∈Zdq

eiψa(C)tψaψ
∗
a.

Lastly note that
ψa(0)ψa(g) = ψa(g) = ψ−a(g).

In the rest of this section, we will denote the eigenvalues of X(Zdq , C) by

θa := ψa(C).

For linear Cayley graphs, we can characterize uniform mixing as follows.

Lemma 25. Let X be a linear Cayley graph over Zdq with connection set C. Uniform
mixing occurs on X at time t if and only if for all g ∈ Zdq,∑

a,b:〈a−b,g〉=0

ei(θa−θb)t = qd.

Proof. The condition

|UX(t)0,g|2 =
1

qd

is equivalent to

qd =

∣∣∣∣∣∣
∑
a∈Zdq

eiθatei2π〈a,g〉/q

∣∣∣∣∣∣
2

=
∑
a,b∈Zdq

ei(θa−θb)tei2π〈a−b,g〉/9. (7)
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Now partition pairs (a, b) of group elements into q classes

Kλ = {(a, b) : 〈a− b, g〉 = λ},

where λ ∈ Zq. Note that for any λ 6= 0, we have (a, b) ∈ K1 if and only if (λa, λb) ∈ Kλ.
Further, by the formula in Lemma 23,

θa − θb = θλa − θλb.

Therefore Equation 7 reduces to

qd =
∑

(a,b)∈K0

ei(θa−θb)t + ei(θa−θb)t
∑
λ 6=0

ei2πλ/q

=
∑

(a,b)∈K0

ei(θa−θb)t −
∑

(a,b)∈K1

ei(θa−θb)t. (8)

Applying 8 to the 00-entry of the transition matrix, we have

qd =
∑
a,b

ei(θa−θb)t =
∑

(a,b)∈K0

ei(θa−θb)t + (q − 1)
∑

(a,b)∈K1

ei(θa−θb)t. (9)

Combining 8 and 9 yields the desired condition.

By Lemma 23, the difference between two eigenvalues of X(Zdq , C) is

θa − θb =
q

q − 1

(
|C ∩ a⊥| − |C ∩ b⊥|

)
which is divisible by q. Let

mab :=
θa − θb
q

.

We define a rational function in x over the integers by

Fg(x) :=

 ∑
a,b:〈a−b,g〉

xmab

− qd. (10)

Note that by symmetry in a and b, this is a palindromic polynomial divided by some
power of x. The mixing times of X(Zdq , C) are determined by the roots of these rational
functions.

Theorem 26. X(Zdq , C) admits uniform mixing at time t if and only if eqit is a zero of

gcd{Fg : g ∈ Zdq}.
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Proof. By Lemma 25, uniform mixing occurs at time t if and only if t satisfies∑
a,b:〈a−b,g〉=0

ei(θa−θb)t = qd

for all g, or equivalently, if and only if∑
a,b:〈a−b,g〉=0

(eqit)
θa−θb
q − qd = 0,

which is exactly Fg(e
qit) = 0, for all g.

For an application of the above result, consider the linear Cayley graph X(Zdq , C),
where C consists of all non-zero multiples of {e1, e2, . . . , ed,1}. It is isomorphic to the
quotient graph H(d+ 1, q)/〈1〉.

Theorem 27. If H(d+ 1, q)/〈1〉 admits uniform mixing at time t, then either

(i) q = 2, 4 and t = kπ/4 for some odd k, or

(ii) q = 3 and t = 2kπ/9 for some k not divisible by 3.

Proof. We compute the function F1(x). By Theorem 23, the eigenvalue θa is determined
by |C ∩ a⊥|. Since the elements in C are non-zero multiples of {e1, e2, . . . , ed,1}, we have

θa =

{
(q − 1)d− qwt(a) + (q − 1), if 〈a,1〉 = 0

(q − 1)d− qwt(a)− 1, if 〈a,1〉 6= 0.

Now let αj be the number of elements in 〈1〉⊥ with weight j. Since

W1(x, y) = xd + (q − 1)yd

by MacWilliams’ identity,

W1⊥ =
1

q

(
(x+ (q − 1)y)d + (q − 1)(x− y)d

)
.

Therefore

nj =
1

q

(
d

j

)(
(q − 1)j + (−1)j(q − 1)

)
.

To compute the weights of the other elements in Zdq , note that for each λ 6= 0, there is a
one-to-one correspondence between {g : 〈g,1〉 = λ} and {g : 〈g,1〉 = 1}, so it suffices to
compute the number of elements in

{g : 〈g,1〉 = 1}
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with weight j, denoted βj. Since the total number of elements in Zdq with weight j is(
d

j

)
(q − 1)j,

we have

(q − 1)βj =

(
d

j

)
(q − 1)j − βj,

that is,

βj =
1

q

(
d

j

)(
(q − 1)j − (−1)j)

)
.

Hence,

F1(x) =
∑
a,b

xmab − qd

=
∑

a,b:〈a,1〉=〈b,1〉=1

xwt(a)−wt(b) + (q − 1)
∑

a,b:〈a,1〉=〈b,1〉=1

xwt(a)−wt(b) − qd

=
∑
j

∑
k

(αjαk + (q − 1)βjβk)x
j−k − qd

=
1

q

∑
j

∑
k

(
d

j

)(
d

k

)(
(q − 1)j+k + (−1)j+k(q − 1)

)
xj−k − qd

=
1

q

(
(q − 1)

(
x+

1

x

)
+ (q − 1)2 + 1

)
+
q − 1

q

(
2−

(
x+

1

x

))d
− qd.

Now let z = x + 1/x. Recall that x = eiqt for some t, so −2 6 z 6 2. Substitute z into
F1(x) and we have

F1(z) :=
1

q
((q − 1)z + (q − 1)2 + 1)d +

q − 1

q
(2− z)d − qd.

The derivative of F1(z) is positive if and only if

((q − 1)z + (q − 1)2 + 1)d−1 > (2− z)d−1.

Notice that the expression in the brackets of the left hand side is at least

−2(q − 1) + (q − 1)2 + 1 = (q − 2)2 > 0,

so F ′1(z) > 0 if and only if

(q − 1)z + (q − 1)2 + 1 > 2− z,

that is, z > 2− q. It follows that for q > 4,

F1(z) 6 F1(2) = qd−1 − qd < 0.

Hence H(d, q)/〈1〉 does not admit uniform mixing when q > 4. For q ∈ {2, 3, 4}, we see
that z = 2− q is the stationary point and the only zero in the interval [−2, 2]. Therefore
uniform mixing must occur at time t for which 2 cos(qit) = 2− q.
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For all the Cayley graphs over Zq known to admit uniform mixing, the mixing time
is of the form 2π/qn for some integer n. As a second consequence of Theorem 26, the
degree of such a graph must be large enough for mixing to occur at time 2π/qn.

Corollary 28. Let φ(n) be the Euler’s totient function. If uniform mixing occurs on
X(Zdq , C) at time 2π/qn, then

|C| > q − 1

2
(φ(n) + q − 1).

Proof. Let g ∈ C. For a, b ∈ Zdq such that 〈a− b, g〉 = 0,

|C ∩ a⊥| − |C ∩ b⊥| 6 |C| − 2.

Hence
deg(fg) 6 |C| − q + 1.

If X(Zdq , C) admits uniform mixing at 2π/qn, then Fg is divisible by the n-th cyclotomic
polynomial Φn(n) with degree φ(n). Thus

φ(n) 6
2

q − 1
(|C| − q + 1).

11 Local and Global Uniform Mixing on Stars

For irregular graphs, local uniform mixing may be a better choice to start with. We follow
Carlson et al [2] and show that the star K1,n admits local uniform mixing. In particular,
uniform mixing in the global sense occurs on the claw K1,3.

We apply spectral decomposition to the adjacency matrix A of the star K1,n. The
eigenvalues of K1,n are θ0 = 0, θ1 =

√
n and θ2 = −

√
n. Denote the projections onto

these eigenspaces by E0, E1 and E2. We have

E0 =

(
0 0T

0 I − 1
n
J

)
,

E1 =
1

2n

(
n

√
n1T√

n1 J

)
,

E2 =
1

2n

(
n −

√
n1T

−
√
n1 J

)
,

where J denotes the all-ones matrix. It follows that the transition matrix of K1,n is

U(t) = e0·itE0 + e
√
nitE1 + e−

√
nitE2

=

(
cos (
√
nt) i√

n
sin (
√
nt) 1

i√
n

sin (
√
nt) 1 I + 1

n
(cos (

√
nt)− 1) J

)
.
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The quantum walk starting with the central vertex is uniform mixing at time t if and only
if ∣∣cos

(√
nt
)∣∣ =

∣∣∣∣sin (
√
nt)√
n

∣∣∣∣
or equivalently,

tan
(√

nt
)

= ±
√
n. (11)

Thus, the star K1,n admits local uniform mixing at time

±arctan (
√
n)√

n
+ kπ

for all integers k.
For uniform mixing, one additional condition from the lower right block of U(t) is∣∣∣∣1 +

1

n

(
cos
(√

nt
)
− 1
)∣∣∣∣ =

∣∣∣∣ 1n (cos
(√

nt
)
− 1
)∣∣∣∣

or equivalently,

cos
(√

nt
)

= 1− n

2
. (12)

Combining Equation (11) and Equation (12), we see that the only solution is

n = 3, t = ± 2π√
27

+ 2kπ

for all integers k. Plugging this into U(t) yields a flat matrix. We conclude that the
only star that admits uniform mixing is the claw K1,3, with earliest mixing time 2π/

√
27.

The Cartesian powers of K1,3 then form an infinite family of irregular graphs that admit
uniform mixing.

12 Open Problems

There are a number of open problems on unifom mixing, ranging across characterizing
graphs that admit uniform mixing in some common family, determining the mixing times
of a given graph, and constructing new examples. Following our notation in Section 4, we
let τq denote the earliest time at which the complete graph Kq admits uniform mixing.

1. Question: To determine whether uniform mixing occurs on the quotient graph
H(d, q)/Γ at time τq, we have to check the weight distribution of every coset of
Γ. Is it sufficient to just check the weight distribution of Γ?

For groups with one or two generators, the weight distribution of any coset Γ + c is
merely a permutation of the weight distribution of Γ. For an example see Theorem
10. If this were true in general, it would be helpful in characterizing linear Cayley
graphs with higher degrees.

the electronic journal of combinatorics 24(3) (2017), #P3.20 25



2. Question: Is there a characterization of uniform mixing on non-linear Cayley graphs
over Zdq?
This is one thing that the weight distribution condition does not tell. For q > 4, a
Cayley graph over Zdq may not be linear, and thus may not be a quotient graph of
H(d, q). It is desirable to find another approach for these non-linear Cayley graphs.

3. Question: If a Cayley graph over Zdq admits uniform mixing, must its eigenvalues
be integral?

As we mentioned in Section 1, all the known Cayley graphs that admit uniform
mixing have integer eigenvalues. It is unclear if this is a necessary condition. The
first place to find a counterexample might be the Cayley graphs over Zd5, as the
eigenvalues are no longer guaranteed to be integral.

4. Question: If a Cayley graph over Zdq admits uniform mixing at time t, must t be a
rational multiple of π?

Again this is true for all the known examples. However, it may only apply to graphs
with integer eigenvalues. Even for this smaller class of graphs, it would be interesting
to confirm such an algebraic property of the mixing times.

5. Question: How fast can a Cayley graph over Zdq admit uniform mixing?

So far, the best examples that admit uniform mixing earlier than τq are the distance
graphs of H(d, 2) found in [3], and the distance graphs of H(d, 3) and H(d, 4) found
in Section 8 of this paper. These families provide arbitrarily faster uniform mixing,
although at the cost of larger vertex sets. In an effort to construct new examples
with faster uniform mixing, a question arises as to whether there is a lower bound
on the mixing time of a given graph.

6. Question: Are there more irregular graphs that admit uniform mixing?

The star K1,3 and its Cartesian powers suggest that there could be other irregular
graphs that admit uniform mixing. As we did in Section 11, one may look at local
uniform mixing on some common families of irregular graphs, and then impose more
conditions for global uniform mixing.

References

[1] Amir Ahmadi, Ryan Belk, Christino Tamon, and Carolyn Wendler, On mixing in
continuous-time quantum walks on some circulant graphs, Quantum Information &
Computation 3 (2003), no. 6, 611–618.

[2] William Carlson, Allison Ford, Elizabeth Harris, Julian Rosen, Christino Tamon,
and Kathleen Wrobel, Universal mixing of quantum walk on graphs, Quantum Infor-
mation & Computation 7 (2007), 738–751.

the electronic journal of combinatorics 24(3) (2017), #P3.20 26



[3] Ada Chan, Complex Hadamard matrices, instantaneous uniform mixing and cubes,
arXiv:1305.5811 (2013).

[4] Leonard Eugene Dickson, History of the Theory of Numbers. Vol. I: Divisibility and
Primality, Chelsea Publishing Co., New York, 1966.

[5] Chris Godsil, Generalized Hamming schemes, arXiv:1011.1044 (2010).

[6] Chris Godsil, Natalie Mullin, and Aidan Roy, Uniform mixing and association
schemes, arXiv:1301.5889 (2013).

[7] Chris Godsil and Gordon F. Royle, Algebraic Graph Theory, Springer New York,
2001.

[8] Cristopher Moore and Alexander Russell, Quantum walks on the hypercube, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 2483 (2002), 164–178.

[9] Natalie Ellen Mullin, Uniform Mixing of Quantum Walks and Association Schemes,
Ph.D. thesis, University of Waterloo, sep 2013.

[10] Hanmeng Zhan, Uniform Mixing on Cayley Graphs over Z 3ˆd, Ph.D. thesis, Uni-
versity of Waterloo, 2014.

the electronic journal of combinatorics 24(3) (2017), #P3.20 27

http://arxiv.org/abs/1305.5811
http://arxiv.org/abs/1011.1044

	Introduction 
	Quotients of Hamming Graphs
	Linear Cayley Graphs
	Quotient Graphs with One Generator 
	Quotient Graphs with Two Generators
	Hamming Schemes
	Sufficient Conditions for Uniform Mixing in Hamming Schemes
	Faster Uniform Mixing on Distance Graphs 
	Faster Mixing in Schemes
	Mixing Times
	Local and Global Uniform Mixing on Stars 
	Open Problems

