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Abstract

Let n, k, and r be nonnegative integers and let Sn be the symmetric group. We
introduce a quotient Rn,k,r of the polynomial ring Q[x1, . . . , xn] in n variables which
carries the structure of a graded Sn-module. When r > n or k = 0 the quotient
Rn,k,r reduces to the classical coinvariant algebra Rn attached to the symmetric
group. Just as algebraic properties of Rn are controlled by combinatorial properties
of permutations in Sn, the algebra of Rn,k,r is controlled by the combinatorics of
objects called tail positive words. We calculate the standard monomial basis of Rn,k,r

and its graded Sn-isomorphism type. We also view Rn,k,r as a module over the 0-
Hecke algebra Hn(0), prove that Rn,k,r is a projective 0-Hecke module, and calculate
its quasisymmetric and noncommutative 0-Hecke characteristics. We conjecture a
relationship between our quotient Rn,k,r and the delta operators of the theory of
Macdonald polynomials.

Keywords: symmetric function; coinvariant algebra; permutation

1 Introduction

Consider the action of the symmetric group Sn on n letters on the polynomial ring Q[xn] :=
Q[x1, . . . , xn] given by variable permutation. The polynomials belonging to the invariant
subring

Q[xn]Sn := {f(xn) ∈ Q[xn] : π.f(xn) = f(xn) for all π ∈ Sn} (1.1)
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the electronic journal of combinatorics 24(3) (2017), #P3.21 1



are the symmetric polynomials in the variable set xn. Let ed(xn) be the elementary sym-
metric function of degree d, that is ed(xn) =

∑
16i1<···<id6n xi1 · · · xid . It is well known that

the set {e1(xn), . . . , en(xn)} gives an algebraically independent homogeneous collection of
generators for the ring Q[xn]Sn .

Let Q[xn]Sn
+ ⊂ Q[xn]Sn be the subspace of symmetric polynomials with vanishing

constant term. The invariant ideal In ⊆ Q[xn] is the ideal

In := 〈Q[xn]Sn
+ 〉 = 〈e1(xn), . . . , en(xn)〉 (1.2)

generated by this subspace. The coinvariant algebra Rn is the corresponding quotient:

Rn := Q[xn]/In. (1.3)

The algebra Rn is a graded Sn-module.
The coinvariant algebra is among the most important representations in algebraic

combinatorics; algebraic properties of Rn are deeply tied to combinatorial properties of
permutations in Sn. E. Artin proved [2] that the collection of ‘sub-staircase’ monomials
{xi11 · · ·xinn : 0 6 ij < j} descends to a vector space basis for Rn, so that the Hilbert
series of Rn is given by

Hilb(Rn; q) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1) = [n]!q, (1.4)

the standard q-analog of n!. Chevalley [4] proved that as an ungraded Sn-module, we have
Rn
∼= Q[Sn], the regular representation of Sn. Lusztig (unpublished) and Stanley [18]

refined this result to describe the graded isomorphism type of Rn in terms of the major
index statistic on standard Young tableaux.

In this paper we will study the following generalization of the coinvariant algebra Rn.
Recall that the degree d homogeneous symmetric function in Q[xn] is given by hd(xn) :=∑

16i16···6id6n xi1 · · · xid .

Definition 1.1. Let n, k, and r be nonnegative integers with r 6 n. Let In,k,r ⊆ Q[xn] be
the ideal

In,k,r := 〈hk+1(xn), hk+2(xn), . . . , hk+n(xn), en(xn), en−1(xn), . . . , en−r+1(xn)〉

and let
Rn,k,r := Q[xn]/In,k,r

be the corresponding quotient ring.

The ideal In,k,r is homogeneous and stable under the action of the symmetric group, so
thatRn,k,r is a graded Sn-module. Since the generators of In,k,r are symmetric polynomials,
we have the containment of ideals In,k,r ⊆ In, so that Rn,k,r projects onto the classical
coinvariant algebra Rn. If r = n or k = 0 we have the equality In,k,r = In, so that
Rn,k,r = Rn.

Just as algebraic properties of Rn are controlled by combinatorics of permutations
π1 . . . πn of the set {1, 2, . . . , n}, algebraic properties of Rn,k,r will be controlled by the
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combinatorics of permutations π1 . . . πn+k of the multiset {0k, 1, 2, . . . , n} whose last r
entries πn+k−r+1 . . . πn+k−1πn+k are all nonzero. We will call such permutations r-tail
positive. Let Sn,k,r be the collection of all r-tail positive permutations of the multiset
{0k, 1, 2, . . . , n}. For example, we have

S2,2,1 = {0012, 0021, 0102, 0201, 1002, 2001}.

By considering the possible locations of the k 0’s in an element of Sn,k,r, it is immediate
that

|Sn,k,r| =
(
n+ k − r

k

)
· |Sn| =

(
n+ k − r

k

)
· n!. (1.5)

The basic enumeration of Equation 1.5 will manifest (see Theorem 3.6) in Hilbert series
as

Hilb(Rn,k,r; q) =

[
n+ k − r

k

]
q

· Hilb(Rn; q) =

[
n+ k − r

k

]
q

· [n]!q, (1.6)

where
[
m
i

]
q

:= [m]!q
[i]!q [m−i]!q is the usual q-binomial coefficient. Going even further, we have

(see Theorem 4.2) the following graded Frobenius image

grFrob(Rn,k,r; q) =

[
n+ k − r

k

]
q

· grFrob(Rn; q) =

[
n+ k − r

k

]
q

·
∑

T∈SYT(n)

sshape(T ), (1.7)

which implies that the quotient Rn,k,r consists of
(
n+k−r

k

)
copies of the coinvariant algebra

Rn, with grading shifts given by a q-binomial coefficient. The authors know of no direct
way to see this from Definition 1.1.

The ideal In,k,r defining the quotient Rn,k,r is of ‘mixed’ type – its generators come in
two flavors: the homogeneous symmetric functions hk+1(xn), hk+2(xn), . . . , hk+n(xn) and
the elementary symmetric functions en(xn), en−1(xn), . . . , en−r+1(xn). Several mixed ide-
als have recently been introduced to give combinatorial generalizations of the coinvariant
algebra.

• Let k 6 n. Haglund, Rhoades, and Shimozono [11] studied the quotient of Q[xn] by
the ideal

〈xk1, xk2, . . . , xkn, en(xn), en−1(xn), . . . , en−k+1(xn)〉. (1.8)

The generators are high degree Sn-invariants en(xn), . . . , en−k+1(xn) together with a
homogeneous system of parameters xk1, . . . , x

k
n of degree k carrying the defining rep-

resentation of Sn. Algebraic properties of the corresponding quotient are controlled
by combinatorial properties of k-block ordered set partitions of {1, 2, . . . , n}.

• Let r > 2 and let Zr o Sn be the group of n × n monomial matrices whose nonzero
entries are rth complex roots of unity (this is the group of ‘r-colored permutations’
of {1, 2, . . . , n}). Let k 6 n be non-negative integers. Chan and Rhoades [3] studied
the quotient of C[xn] by the ideal

〈xkr+1
1 , xkr+1

2 , . . . , xkr+1
n , en(xrn), en−1(xrn), . . . , en−k+1(xrn)〉, (1.9)
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where f(xrn) = f(xr1, . . . , x
r
n) for any polynomial f . The generators here are high de-

gree ZroSn-invariants en(xrn), . . . , en−k+1(xrn) together with a h.s.o.p. xkr+1
1 , . . . , xkr+1

n

of degree kr+1 carrying the dual of the defining representation of Zr oSn. Algebraic
properties of the corresponding quotient are controlled by k-dimensional faces in
the Coxeter complex attached to Zr o Sn.

• Let F be any field and let Hn(0) be the 0-Hecke algebra over F of rank n; the algebra
Hn(0) acts on the polynomial ring F[xn] by isobaric divided difference operators.
Let k 6 n be positive integers. Huang and Rhoades [14] studied the quotient of
F[xn] by the ideal

〈hk(x1), hk(x1, x2), . . . , hk(x1, x2, . . . , xn), en(xn), en−1(xn), . . . , en−k+1(xn)〉. (1.10)

Once again, the generators consist of high degree Hn(0)-invariants

en(xn), . . . , en−k+1(xn)

together with a h.s.o.p. of degree k carrying the defining representation of Hn(0).
Algebraic properties of the quotient are controlled by 0-Hecke combinatorics of k-
block ordered set partitions of {1, . . . , n}.

The novelty of this paper is that our mixed ideals consist of high degree invariants of
different kinds: elementary and homogeneous. It would be interesting to develop a more
unified picture of the algebraic and combinatorial properties of mixed quotients of poly-
nomial rings.

Our analysis of the rings Rn,k,r will share many properties with the analyses of the
previously mentioned mixed quotients. Since the generators In,k,r do not form a regular
sequence of homogeneous polynomials in Q[xn], the usual commutative algebra tools (e.g.
the Koszul complex) used to study the coinvariant algebra Rn are unavailable to us. These
will be replaced by combinatorial commutative algebra tools (e.g. Gröbner theory). We
will see that the ideal In,k,r has an explicit minimal Gröbner basis (with respect to the
lexicographic term order) in terms of Demazure characters. This Gröbner basis will yield
the Hilbert series of Rn,k,r, as well as an identification of its standard monomial basis.
The graded Sn-isomorphism type of Rn,k,r will then be obtainable by constructing an
appropriate short exact sequence to serve as a recursion.

The rest of the paper is organized as follows. In Section 2 we give background
related to symmetric functions and Gröbner bases. In Section 3 we determine the Hilbert
series of Rn,k,r and calculate the standard monomial basis for Rn,k,r with respect to the
lexicographic term order. In Section 4 we determine the graded Sn-isomorphism type of
Rn,k,r. We also view Rn,k,r as a module over the 0-Hecke algebra Hn(0) and calculate its
graded noncommutative and bigraded quasisymmetric 0-Hecke characteristics. We close
in Section 5 with some open problems.
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2 Background

2.1 Words, partitions, and tableaux

Let w = w1 . . . wn be a word in the alphabet of nonnegative integers. An index 1 6
i 6 n − 1 is a descent of w if wi > wi+1. The descent set of w is Des(w) := {1 6
i 6 n − 1 : wi > wi+1} and the major index of w is maj(w) :=

∑
i∈Des(w) i. A pair

of indices 1 6 i < j 6 n is called an inversion of w if wi > wj; the inversion number
inv(w) counts the inversions of w. The word w is called r-tail positive if its last r letters
wn−r+1 . . . wn−1wn are positive.

Let n ∈ Z>0. A partition λ of n is a weakly decreasing sequence λ = (λ1 > · · · > λk)
of positive integers with λ1 + · · ·+λk = n. We write λ ` n to indicate that λ is a partition
of n and use |λ| = n to denote the sum of the parts of λ. The Ferrers diagram of λ
(in English notation) consists of λi left-justified boxes in row i. The Ferrers diagram of
(4, 2, 2) ` 8 is shown below on the left.

1 1 2 5

2 3

3 5

1 2 5 8

3 4

6 7

Let λ ` n. A tableau T of shape λ is a filling of the Ferrers diagram of λ with positive
integers. The tableau T is called semistandard if its entires increase weakly across rows
and strictly down columns. The tableau T is a standard Young tableau if it is semistandard
and its entries consist of 1, 2, . . . , n. The tableau in the center above is semistandard and
the tableau on the right above is standard. We let shape(T ) = λ denote the shape of T
and let SYT(n) denote the collection of all standard Young tableaux with n boxes.

Given a standard tableau T ∈ SYT(n), an index 1 6 i 6 n − 1 is a descent of T if
i+ 1 appears in a lower row of T than i. Let Des(T ) denote the set of descents of T and
let maj(T ) :=

∑
i∈Des(T ) i be the major index of T . If T is the standard tableau above we

have Des(T ) = {2, 5} so that maj(T ) = 2 + 5 = 7.

2.2 Symmetric functions

Let Λ denote the ring of symmetric functions in an infinite variable set x = (x1, x2, . . . )
over the ground field Q(q, t). The algebra Λ is graded by degree: Λ =

⊕
n>0 Λn. The

graded piece Λn has dimension equal to the number of partitions λ ` n.
The vector space Λn has many interesting bases, all indexed by partitions of n. Given

λ ` n, let
mλ, eλ, hλ, pλ, sλ, H̃λ

denote the associated monomial, elementary, homogeneous, power sum, Schur, and mod-
ified Macdonald symmetric function (respectively). As λ ranges over the collection of
partitions of n, all of these form bases for the vector space Λn.

Let f = f(x1, x2, . . . ) ∈ Λ be a symmetric function. We define an eigenoperator
∆f : Λ→ Λ for the modified Macdonald basis of Λ as follows. Given a partition λ, we set

∆f (H̃λ) := f(. . . , qi−1tj−1, . . . ) · H̃λ, (2.1)
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where (i, j) ranges over all matrix coordinates of cells in the Ferrers diagram of λ, and
all other variables appearing in f are set to 0. The symmetry of f guarantees that the
eigenvalue f(. . . , qi−1tj−1, . . . ) is independent of which variables xk are evaluated at which
monomials qi−1tj−1, but we will replace variables by monomials by working along the rows
of λ from left to right, going from top to bottom. The reader familiar with plethysm will
recognize this formula as

∆f (H̃λ) := f [Bλ] · H̃λ. (2.2)

For example, if λ = (3, 2) ` 5, we fill the boxes of λ with monomials

1 q q2

t qt

and see that
∆f (H̃(3,2)) = f(1, q, q2, t, qt) · H̃(3,2).

When f = en, the restriction of the delta operator ∆en to the space Λn of homogeneous
degree n symmetric functions is more commonly denoted ∇:

∆en |Λn= ∇. (2.3)

In particular, we have ∆enen = ∇en.
Given a partition λ ` n, let Sλ denote the associated irreducible representation of the

symmetric group Sn; for example, we have that S(n) is the trivial representation and S(1n)

is the sign representation. Given any finite-dimensional Sn-module V , there exist unique
integers cλ such that V ∼=Sn

⊕
λ`n cλS

λ. The Frobenius character of V is the symmetric
function

Frob(V ) :=
∑
λ`n

cλ · sλ (2.4)

obtained by replacing the irreducible Sλ with the Schur function sλ.
If V =

⊕
d>0 Vd is a graded vector space, the Hilbert series of V is the power series

Hilb(V ; q) =
∑
d>0

dim(Vd) · qd. (2.5)

Similarly, if V =
⊕

d>0 Vd is a graded Sn-module, the graded Frobenius character of V is

grFrob(V ; q) =
∑
d>0

Frob(Vd) · qd. (2.6)

2.3 Quasisymmetric and nonsymmetric functions

The space Λ of symmetric functions has many generalizations; in this paper we will also use
the spaces QSym of quasisymmetric functions and NSym of noncommutative symmetric
functions. We briefly review their definition below, as well as their relationship with the
0-Hecke algebra Hn(0); for more details see [13, 14].
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Let n be a positive integer. A (strong) composition α of n is a sequence (α1, . . . , αk) of
positive integers with α1+· · ·+αk = n. We write α |= n to indicate that α is a composition
of n and |α| = n to denote the sum of the parts of α. The map α = (α1, . . . , αk) 7→
{α1, α1 + α2, . . . , α1 + · · · + αk−1} provides a bijection between compositions of n and
subsets of [n− 1]; we will find it convenient to identify compositions with subsets.

Let S ⊆ [n − 1] be a subset. The Gessel fundamental quasisymmetric function FS =
FS,n attached to S is the degree n formal power series

FS = FS,n :=
∑

i16i26···6in
j∈S ⇒ ij<ij+1

xi1 · · ·xin . (2.7)

The space QSym of quasisymmetric functions is the Q(q, t)-algebra of formal power series
with basis given by {FS,n : n > 0, S ⊆ [n− 1]}. If a subset S ⊆ [n− 1] corresponds to a
composition α, we set Fα := FS,n.

For any composition α |= n, define a symbol sα (the noncommutative ribbon Schur
function), formally defined to have homogeneous degree n. Let NSymn be the 2n−1-
dimensional Q(q, t)-vector space with basis {sα : α |= n} and let NSym be the graded
vector space NSym :=

⊕
n>0 NSymn. The space NSym is the space of noncommutative

symmetric functions. Although there is more structure on NSym (and on QSym) than
the graded vector space structure (namely, they are dual graded Hopf algebras), only the
vector space structure will be relevant in this paper.

Let F be an arbitrary field. The 0-Hecke algebra Hn(0) of rank n over F is the unital
associative F-algebra with generators T1, . . . , Tn−1 and relations

T 2
i = Ti 1 6 i 6 n− 1

TiTj = TjTi |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 1 6 i 6 n− 2.

(2.8)

For all 1 6 i 6 n− 1, let si := (i, i+ 1) ∈ Sn be the corresponding adjacent transposi-
tion. Given a permutation π ∈ Sn, we define Tπ := Ti1 · · ·Tik ∈ Hn(0), where π = si1 · · · sik
is a reduced (i.e., as short as possible) expression for π as a product of adjacent trans-
positions. The element Tπ ∈ Hn(0) is independent of the choice of reduced expression
π = si1 · · · sik since any two such reduced expressions may be connected by ‘braid moves’
mirroring the defining relations of Hn(0) (see, for example, [15]). It can be shown that
{Tπ : π ∈ Sn} is a F-basis for Hn(0), so that Hn(0) has dimension n! as a F-vector space
and may be viewed as a deformation of the group algebra F[Sn]. The algebra Hn(0) is
not semisimple, even when the field F has characteristic zero, so its representation theory
has a different flavor from that of Sn.

The indecomposable projective representations of Hn(0) are naturally labeled by com-
positions α |= n (see [13, 14]). For α |= n, we let Pα denote the corresponding indecom-
posable projective and let

Cα := top(Pα) = Pα/rad(Pα) (2.9)
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be the corresponding irreducible Hn(0)-module. The set {Cα : α |= n} forms a complete
set of nonisomorphic irreducible Hn(0)-modules.

The Grothendieck group G0(Hn(0)) is the Z-module generated by all isomorphism
classes [V ] of finite-dimensional Hn(0)-modules with a relation [V ]−[U ]−[W ] = 0 for every
short exact sequence 0→ U → V → W → 0 of Hn(0)-modules. The Z-module G0(Hn(0))
is free with basis given by (isomorphism classes of) the irreducibles {Cα : α |= n}. The
quasisymmetric characteristic map Ch is defined on G0(Hn(0)) by

Ch : Cα 7→ Fα. (2.10)

If a Hn(0)-module V has composition factors Cα(1) , . . . , Cα(k) , then Ch(V ) = Fα(1) + · · ·+
Fα(k) . Since Hn(0) is not semisimple, the characteristic Ch(V ) does not determine V up
to isomorphism.

Let K0(Hn(0)) be the Z-module generated by all isomorphism classes [P ] of finite-
dimensional projective Hn(0)-modules with a relation [P ]− [Q]− [R] = 0 for every short
exact sequence 0 → Q → P → R → 0 of projective modules. The Z-module K0(Hn(0))
is free with basis given by (isomorphism classes of) the projective indecomposable {Pα :
α |= n}. The noncommutative characteristic map ch is defined on K0(Hn(0)) by

ch : Pα 7→ sα, (2.11)

This extends to give a noncommutative symmetric function ch(P ) for any projective
Hn(0)-module P . Since any short exact sequence 0 → U → V → W → 0 of projective
Hn(0)-modules splits, a projective module P is determined by ch(P ) up to isomorphism.

There are graded refinements of the maps Ch and ch. Let V =
⊕

d>0 Vd be a graded
Hn(0)-module with each Vd finite-dimensional. The degree-graded quasisymmetric char-
acteristic is Chq(V ) :=

∑
d>0 Ch(Vd) · qd. If each Vd is projective, the degree-graded

noncommutative characteristic is chq(V ) :=
∑

d>0 ch(Vd) · qd.
The quasisymmetric characteristic Ch admits a bigraded refinement as follows. The

0-Hecke algebra Hn(0) has a length filtration

Hn(0)(0) ⊆ Hn(0)(1) ⊆ Hn(0)(2) ⊆ · · · (2.12)

where Hn(0)(`) is the subspace of Hn(0) with F-basis {Tπ : π ∈ Sn, inv(π) > `}. If
V = Hn(0)v is a cyclic Hn(0)-module with distinguished generator v, we get an induced
length filtration of V by

V (`) := Hn(0)(`)v. (2.13)

The length-graded quasisymmetric characteristic is given by

Cht(V ) :=
∑
`>0

Ch(V (`)/V (`−1)) · t`. (2.14)

Now suppose V =
⊕

d>0 Vd is a graded Hn(0)-module which is also cyclic. We get a

bifiltration of V consisting of the modules V (`,d) := V (`) ∩ Vd for `, d > 0. The length-
degree-bigraded quasisymmetric characteristic is

Chq,t(V ) :=
∑
`,d>0

Ch(V (`,d)/V (`−1,d)) · qdt`. (2.15)
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More generally, if V is a direct sum of graded cyclic Hn(0)-modules, we define Chq,t(V )
by applying Chq,t to its cyclic summands. This may depend on the cyclic decomposition
of the module V . 1

2.4 Gröbner theory

A total order < on the monomials in the polynomial ring Q[xn] is called a term order if

• we have 1 6 m for all monomials m, and

• m 6 m′ implies m ·m′′ 6 m′ ·m′′ for all monomials m,m′,m′′.

The term order used in this paper is the lexicographic term order given by xa11 · · ·xann <
xb11 · · · xbnn if there exists an index i with a1 = b1, . . . , ai−1 = bi−1 and ai < bi.

If < is any term order any f ∈ Q[xn] is any nonzero polynomial, let in<(f) be the
leading (i.e., greatest) term of f with respect to the order <. If I ⊆ Q[xn] is any ideal,
the associated initial ideal is

in<(I) := 〈in<(f) : f ∈ I − {0}〉. (2.16)

A finite collection G = {g1, . . . , gr} of nonzero polynomials in an ideal I ⊆ Q[xn] is
called a Gröbner basis of I if we have the equality of monomial ideals

in<(I) = 〈in<(g1), . . . , in<(gr)〉. (2.17)

If G is a Gröbner basis of I it follows that I = 〈G〉. A Gröbner basis G = {g1, . . . , gr} is
called minimal if the <-leading coefficient of each gi is 1 and in(gi) - in(gj) for all i 6= j.
A minimal Gröbner basis G = {g1, . . . , gr} is called reduced if in addition, for all i 6= j,
no term of gj is divisible by in<(gi). After fixing a term order, every ideal I ⊆ Q[xn] has
a unique reduced Gröbner basis (see [5, Prop. 6, p. 92]).

Let I ⊆ Q[xn] be an ideal and let G be a Gröbner basis for I. The set of monomials
in Q[xn]

{m : in<(f) - m for all f ∈ I − {0}} = {m : in<(g) - m for all g ∈ G} (2.18)

descends to a vector space basis for the quotient Q[xn]/I (see [5, Prop. 1, p. 230]). This
is called the standard monomial basis; it is completely determined by the ideal I and the
term order <. If I is a homogeneous ideal, the Hilbert series of Q[xn]/I is given by

Hilb(Q[xn]/I; q) =
∑
m

qdeg(m), (2.19)

where the sum is over all monomials in the standard monomial basis.

1Our conventions for q and t in the definitions of chq and Chq,t are reversed with respect to those in
[13, 14] and elsewhere. We make these conventions so as to be consistent with the case of the graded
Frobenius map on Sn-modules.
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3 Hilbert series

In this section we will derive the Hilbert series and ungraded isomorphism type of the Sn-
module Rn,k,r. The method that we use dates back to Garsia and Procesi in the context
of Tanisaki ideals and quotients [7].

Let Y ⊆ Qn be any finite set of points 2 and consider the ideal I(Y ) ⊆ Q[xn] of
polynomials which vanish on Y . That is, we have

I(Y ) = {f ∈ Q[xn] : f(y) = 0 for all y ∈ X}. (3.1)

We may identify ([7, p. 95]) the quotient Q[xn]/I(Y ) with the collection of all (polynomial)
functions Y → Q; since Y is finite we have

|Y | = dim(Q[xn]/I(Y )). (3.2)

If Y is stable under the coordinate permutation action of Sn, we have the further identi-
fication of Sn-modules

Q[Y ] ∼=Sn Q[xn]/I(Y ). (3.3)

The ideal I(Y ) is usually not homogeneous; we wish to replace it by a homogeneous
ideal so that the associated quotient is graded. For any nonzero polynomial f ∈ I(X),
write f = fd+ · · ·+f1 +f0 where fi is homogeneous of degree i and fd 6= 0. Let τ(f) = fd
be the top homogeneous component of f . The ideal T(Y ) ⊆ Q[xn] is given by

T(Y ) := 〈τ(f) : f ∈ I(Y )− {0}〉. (3.4)

By construction the ideal T(Y ) is homogeneous, so that the quotient Q[xn]/T(Y ) is
graded. Furthermore, we still have the dimension equality

|Y | = dim(Q[xn]/I(Y )) = dim(Q[xn]/T(Y )) (3.5)

and the Sn-module isomorphism

Q[Y ] ∼=Sn Q[xn]/I(Y ) ∼=Sn Q[xn]/T(Y ) (3.6)

whenever the point set Y is Sn-stable (see [7, Thm. 3.2]).
Recall that Sn,k,r consists of all rearrangements π = π1 . . . πn+k of the multiset

{0k, 1, 2, . . . , n}

whose r-tail is positive. The symmetric group Sn acts on Sn,k,r by permuting the positive
letters 1, 2, . . . , n. We aim to prove that Rn,k,r

∼= Q[Sn,k,r] as ungraded Sn-modules. To
do this, our strategy is as follows.

1. Find a point set Yn,k,r ⊆ Qn which is stable under the action of Sn such that there
is a Sn-equivariant bijection from Yn,k,r to Sn,k,r.

2See [7, Sec. 3] for a more leisurely introduction when the point set Y is a single Sn-orbit; the relevant
facts and their proofs remain unchanged.
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2. Prove that In,k,r ⊆ T(Yn,k,r) by showing that the generators of In,k,r arise as top
degree components of polynomials in I(Yn,k,r).

3. Prove that

dim(Rn,k,r) = dim(Q[xn]/In,k,r) 6 |Sn,k,r| = dim(Q[xn]/T(Yn,k,r))

and use the relation In,k,r ⊆ T(Yn,k,r) to conclude that In,k,r = T(Yn,k,r).

The point set Yn,k,r which accomplishes Step 1 is the following.

Definition 3.1. Fix n + k distinct rational numbers α1, α2, . . . , αn+k ∈ Q. Let Yn,k,r be
the set of points (y1, y2, . . . , yn) ∈ Qn such that

• the coordinates y1, y2, . . . , yn are distinct and lie in {α1, α2, . . . , αn+k}, and

• the numbers αn+k−r+1, . . . , αn+k−1, αn+k all appear as coordinates of (y1, y2 . . . , yn).

It is clear that Yn,k,r is stable under the action of Sn. We have a natural identification
of Yn,k,r with permutations in Sn,k,r given by letting a copy of αi in position j of (y1, . . . , yn)
correspond to the letter j in position i of the corresponding permutation in Sn,k,r. For
example, if (n, k, r) = (4, 3, 2) then

(α7, α2, α4, α6)↔ 0203041.

This bijection Yn,k,r ↔ Sn,k,r is clearly Sn-equivariant, so Step 1 of our strategy is accom-
plished. Step 2 of our strategy is achieved in the following lemma.

Lemma 3.2. We have In,k,r ⊆ T(Yn,k,r).

Proof. We show that every generator of In,k,r arises as the leading term of a polynomial
in I(Yn,k,r). We begin with the elementary symmetric function generators

en−r+1(xn), . . . , en−1(xn), en(xn).

Consider the rational function in t given by

(1− x1t)(1− x2t) · · · (1− xnt)
(1− αn+k−r+1t) · · · (1− αn+k−1t)(1− αn+kt)

=
∑
i,j>0

(−1)iei(xn)hj(αn+k−r+1, . . . , αn+k)·ti+j.

(3.7)
If (x1, . . . , xn) ∈ Yn,k,r, the r factors in the denominator cancel with r factors in the
numerator, so that this rational expression is a polynomial in t of degree n − r. In
particular, for n− r + 1 6 m 6 r taking the coefficient of tm on both sides gives

m∑
i=0

(−1)iei(xn)hm−i(αn+k−r+1, . . . , αn+k) ∈ I(Yn,k,r), (3.8)

so that em(xn) ∈ T(Yn,k,r).
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A similar trick shows that the homogeneous symmetric functions hk+1(xn), . . . , hk+n(xn)
lie in T(Yn,k,r). Consider the rational function

(1− α1t)(1− α2t) · · · (1− αn+kt)

(1− x1t)(1− x2t) · · · (1− xnt)
=
∑
i,j>0

(−1)jhi(xn)ej(α1, . . . , αn+k)t
i+j. (3.9)

If (x1, . . . , xn) ∈ Yn,k,r the n factors in the denominator cancel with n factors in the
numerator, giving a polynomial in t of degree k. For m > k + 1, taking the coefficient of
tm on both sides gives

m∑
i=0

(−1)ihm−i(xn)ei(α1, . . . , αn+k) ∈ I(Yn,k,r), (3.10)

so that hm(xn) ∈ T(Yn,k,r).

Step 3 of our strategy will take more work. To begin, we identify a convenient collection
of monomials in the initial ideal in<(In,k,r) with respect to the lexicographic term order.
Given a subset S = {s1 < · · · < sm} ⊆ [n] the corresponding skip monomial (see [11])
x(S) is given by

x(S) := xs1s1x
s2−1
s2
· · ·xsm−m+1

sm . (3.11)

In particular, if n = 8 we have x(2458) = x2
2x

3
4x

3
5x

5
8. The adjective ‘skip’ refers to the fact

that the exponent sequence of a skip monomial x(S) increases whenever the set S skips
an element of [n].

Lemma 3.3. Let < be the lexicographic term order on Q[xn]. If S ⊆ [n] satisfies |S| =
n−r+1 we have x(S) ∈ in<(In,k,r). Moreover, we have xk+1

1 , xk+2
2 , . . . , xk+n

n ∈ in<(In,k,r).

Proof. The assertion regarding skip monomials comes from combining [11, Lem. 3.4]
(and in particular [11, Eqn. 3.5]) and [11, Lem. 3.5]. To prove the second assertion, the
identities

hm+1(xi, xi+1, . . . , xn)− xi · hm(xi, xi+1, . . . , xn) = hm+1(xi+1, . . . , xn) (3.12)

(for 1 6 i 6 n and m > 0) imply that

hk+1(x1, . . . , xn), hk+2(x2, . . . , xn), . . . , hk+n(xn) ∈ In,k,r, (3.13)

so that xk+1
1 , xk+2

2 , . . . , xk+n
n ∈ in<(In,k,r).

The initial terms provided by Lemma 3.3 will be all we need. We name the monomials
m ∈ Q[xn] which are not divisible by any of these initial terms as follows.

Definition 3.4. A monomial m ∈ Q[xn] is (n, k, r)-good if

• we have x(S) - m for all S ⊆ [n] with |S| = n− r + 1, and

• we have xk+i
i - m for all 1 6 i 6 n.
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Let Mn,k,r denote the set of all (n, k, r)-good monomials.

By Lemma 3.3, the monomials inMn,k,r contain the standard monomial basis of Rn,k,r,
and so descend to a spanning set of Rn,k,r. We will see thatMn,k,r is in fact that standard
monomial basis of Rn,k,r. We will do this using the following combinatorial result.

Lemma 3.5. There is an bijection Ψ : Sn,k,r →Mn,k,r with the property that deg(Ψ(π)) =
inv(π) for all π ∈ Sn,k,r.

Proof. The map Ψ will essentially be the inversion code. Let π = π1 . . . πn+k ∈ Sn,k,r be a
r-tail positive permutation of the multiset {0k, 1, 2, . . . , n}. The code of π is the sequence
(c1, . . . , cn) where

ci = the number of letters 0, 1, 2, . . . , i− 1 to the right of i in π. (3.14)

For example, if π = 40130052 the code is (c1, c2, c3, c4, c5) = (2, 0, 3, 6, 1). It is clear
that the sum of the code of π gives the inversion number inv(π). If π ∈ Sn,k,r has code
(c1, . . . , cn), we define Ψ(π) := xc11 · · ·xcnn .

We argue that Ψ is a well defined function Sn,k,r → Mn,k,r, that is, we have Ψ(π) ∈
Mn,k,r for all π ∈ Sn,k,r. Let π ∈ Sn,k,r have code (c1, . . . , cn). Since π contains k copies
of 0, it is clear that ci < k + i for all 1 6 i 6 n, so that xk+i

i - Ψ(π) for all 1 6 i 6 n.
Now let S = {s1 < · · · < sn−r+1} ⊆ [n] and suppose x(S) | Ψ(π). This means that

csi > si− i+1 for all 1 6 i 6 n−r+1. Let T = {πn+k−r+1, . . . , πn+k−1, πn+k} be the r-tail
of π; since π ∈ Sn,k,r the set T consists of r positive numbers. We argue that S ∩ T = ∅
as follows.

• If s1 ∈ T we would have cs1 6 s1 − 1 (since s1 could form inversions with only
1, 2, . . . , s1 − 1), contradicting the inequality cs1 > s1. We conclude that s1 /∈ T .

• If s1, . . . , si−1 /∈ T and si ∈ T , we would have csi 6 si − i (since si can only form
inversions with those letters in 1, 2, . . . , si − 1 which lie in T ), contradicting the
inequality csi > si − i+ 1. We conclude that si /∈ T .

Induction gives the result that S ∩ T = ∅. However, this contradicts the facts that
|S| = n − r + 1, |T | = r, and that there are a total of n positive letters in π. This
concludes the proof that the map Ψ : Sn,k,r →Mn,k,r is well defined.

The relation deg(Ψ(π)) = inv(π) is clear from construction. The fact that Ψ is an
injection is equivalent to the fact that a permutation π = π1 . . . πn+k ∈ Sn,k,r is determined
by its code (c1, . . . , cn). This assertion is true more broadly for any permutation of the
multiset {0k, 1, 2, . . . , n} (whether or not it is r-tail positive); we leave the verification to
the reader.

It remains to show that Ψ is surjective; we do this by induction on n. Let m =
xa11 · · ·x

an−1

n−1 x
an
n be an (n, k, r)-good monomial. Then m′ := xa11 · · ·x

an−1

n−1 is an (n −
1, k, r − 1)-good monomial, so there exists a word π′ = π′1π

′
2 . . . π

′
n+k−1 ∈ Sn−1,k,r−1

with Ψ(π′) = m′. Equivalently, the code (c1, . . . , cn−1) of π′ is (a1, . . . , an−1). Let

the electronic journal of combinatorics 24(3) (2017), #P3.21 13



π = π1 . . . πn+k be the word obtained from π′ by inserting n just before the length an
suffix π′n+k−an . . . π

′
n+k−1π

′
n+k−1 of π′. That is, we have (with dots inserted for legibility)

π = π′1π
′
2 . . . π

′
n+k−an−1 · n · π′n+k−an . . . π

′
n+k−1.

If we can show that π ∈ Sn,k,r, then Ψ(π) = m, completing the proof of the lemma.
This amounts to showing that every letter in the r-tail of π is positive. Since every letter
in the (r− 1)-tail of π′ is positive, this is true if an < r or if π′n+k−r is positive, so we may
assume an > r and π′n+k−r = 0.

Let S = {π′1, . . . , π′n+k−r−1} ∩ {1, 2, . . . , n − 1} be the set of positive letters in π′

which do not lie in its r-tail, so that |S| = n − r and |S ∪ {n}| = n − r + 1. We
claim that x(S ∪ {n}) | m, contradicting the assumption that m is (n, k, r)-good. To do
this, write S = {s1 < · · · < sn−r}, so that x(S ∪ {n}) = xs1s1x

s2−1
s2
· · ·xsn−r−n+r+1

sn−r
xrn. Since

m = xa11 · · · xann and an > r, the exponent of xn in m is > the exponent of xn in x(S∪{n}).
For 1 6 i 6 n− r, we have that

(exponent of xsi in m) = (exponent of xsi in m′)

= (number of letters to the right of si in π′ which are < si)

6 |{π′n+k−r+1, π
′
n+k−r+2, . . . , π

′
n+k−1} ∩ {1, 2, . . . , si − 1}|+ 1

= si − i+ 1

= (exponent of xsi in x(S ∪ {n}))

where the first equality uses si < n, the second is the definition of Ψ, the inequality
considers only those inversions arising from the r-tail 0π′n+k−r+1 . . . π

′
n+k−1 of π′, and the

penultimate equality follows from the definition of S. We conclude that x(S ∪ {n}) | m,
which was the desired contradiction.

We are ready to derive the Hilbert series of Rn,k,r.

Theorem 3.6. Endow monomials in Q[xn] with the lexicographic term order. The stan-
dard monomial basis of Rn,k,r is Mn,k,r. The Hilbert series of Rn,k,r is given by

Hilb(Rn,k,r; q) =

[
n+ k − r

k

]
q

· [n]!q. (3.15)

Proof. Let BT be the standard monomial basis of Q[xn]/T(Yn,k,r) and let BJ be the stan-
dard monomial basis of Rn,k,r = Q[xn]/In,k,r. We know that |Sn,k,r| = |BT|. Lemma 3.2
implies that BT ⊆ BJ . Lemma 3.3 further implies the containment BJ ⊆Mn,k,r. Finally,
Lemma 3.5 gives the relation |Mn,k,r| = |Sn,k,r|. Putting these facts together gives

BT = BJ =Mn,k,r, (3.16)

and the fact that all of these sets have size |Sn,k,r|. In particular, the standard monomial
basis of Rn,k,r is Mn,k,r.
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By Lemma 3.5

Hilb(Rn,k,r; q) =
∑

m∈Mn,k,r

qdeg(m) =
∑

π∈Sn,k,r

qinv(π). (3.17)

Given any fixed permutation π ∈ Sn, we can insert k copies of 0 among the letters of π
while preserving a positive r-tail in

(
n+k−r

k

)
ways. If we keep track of the effect of these

0’s on inversion counts, we see
∑

π′ q
inv(π′) =

[
n+k−r

k

]
q
· qinv(π), where π′ runs over all of

the elements of Sn,k,r so obtained from π. Applying the equality
∑

π∈Sn
qinv(π) = [n]!q, we

obtain ∑
π∈Sn,k,r

qinv(π) =

[
n+ k − r

k

]
q

· [n]!q, (3.18)

as desired.

We can also derive the ungraded Sn-isomorphism type of the quotient Rn,k,r.

Corollary 3.7. As an ungraded Sn-module we have Rn,k,r
∼=Sn Q[Sn,k,r].

Proof. Lemma 3.2 and Theorem 3.6 give the isomorphisms

Rn,k,r
∼= Q[xn]/T(Yn,k,r) ∼= Q[xn]/I(Yn,k,r) ∼= Q[Sn,k,r] (3.19)

of ungraded Sn-modules.

We describe a minimal Gröbner basis for the ideal In,k,r. Given a subset S = {s1 <
· · · < sm} ⊆ [n], let γ(S) = (γ(S)1, . . . , γ(S)n) be the length n skip vector of nonnegative
integers given by

γ(S)i =

{
sj − j + 1 i = sj

0 i /∈ S.
(3.20)

Let γ(S)∗ = (γ(S)n, . . . , γ(S)1) be the reversal of the vector γ(S). If γ = (γ1, . . . , γn)
is any length n vector of nonnegative integers, let κγ(xn) ∈ Q[xn] be the associated
Demazure character (see [11, Sec. 2] for its definition). Finally, if f(xn) ∈ Q[xn] is any
polynomial, let f(x∗n) be the polynomial obtained by reversing the variables in f(xn) so
that

f(x∗n) = f(xn, xn−1, . . . , x1). (3.21)

Corollary 3.8. Endow monomials in Q[xn] with the lexicographic term order. A Gröbner
basis for the ideal In,k,r consists of the polynomials

hk+1(x1, x2, . . . , xn), hk+2(x2, . . . , xn), . . . , hk+n(xn)

together with the polynomials
κγ(S)∗(x

∗
n),

where S ranges over all n − r + 1-element subsets of [n]. When r < n and k > 0 this
Gröbner basis is minimal.
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The Gröbner basis in Corollary 3.8 is typically not reduced.

Proof. The proof of Lemma 3.3 shows that the polynomial hk+i(xi, xi+1, . . . , xn) lies in
the ideal In,k,r. By [11, Lem. 3.4] (and in particular [11, Eqn. 3.5]) the relevant variable
reversed Demazure characters lie in In,k,r.

Let < be the lexicographic term order on Q[xn]. We have in<(hk+i(xi, xi+1, . . . , xn)) =
xk+i
i and in<(κγ(S)∗(x

∗
n) = x(S) (see [11, Lem. 3.5]). Since Theorem 3.6 tells us that

Mn,k,r is the standard monomial basis of Rn,k,r, the definition ofMn,k,r shows that these
initial terms generate in<(In,k,r), proving the assertion about the claimed collection of
polynomials being a Gröbner basis. When r < n and k > 0, none of the relevant skip
monomials x(S) are divisible by any of the variable powers xk+1

1 , . . . , xk+n
n . This proves

the claim about minimality.

For example, consider the case (n, k, r) = (5, 2, 3). A minimal Gröbner basis for J5,2,3

is given by the polynomials

h3(x1, x2, x3, x4, x5), h4(x2, x3, x4, x5), h5(x3, x4, x5), h6(x4, x5), h7(x5)

together with the variable reversed Demazure characters

κ(0,0,1,1,1)(x
∗
5), κ(0,2,0,1,1)(x

∗
5), κ(3,0,0,1,1)(x

∗
5), κ(0,2,2,0,1)(x

∗
5), κ(3,0,2,0,1)(x

∗
5),

κ(3,3,0,0,1)(x
∗
5), κ(0,2,2,2,0)(x

∗
5), κ(3,0,2,2,0)(x

∗
5), κ(3,3,0,2,0)(x

∗
5), κ(3,3,3,0,0)(x

∗
5).

Theorem 3.6 describes the standard monomial basis Mn,k,r of Rn,k,r in terms of di-
visibility by skip monomials. However, a more direct characterization of this standard
monomial basis is available. Let k > 0 and r 6 n. For any (n−r)-element subset T ⊆ [n],
define a length n sequence δ(T ) := (δ(T )1, . . . , δ(T )n) by the formula

δ(T )i :=

{
i+ k − 1 i ∈ T
j − 1 i /∈ T and i = sj,

(3.22)

where [n]− T = {s1 < · · · < sr}. Any of the
(
n
r

)
sequences which can be obtained in this

way is an (n, k, r)-staircase. For example, the (5, 2, 3)-staircases are

(0, 1, 2, 5, 6), (0, 1, 4, 2, 6), (0, 3, 1, 2, 6), (2, 0, 1, 2, 6), (0, 1, 4, 5, 2),
(0, 3, 1, 5, 2), (2, 0, 1, 5, 2), (0, 3, 4, 1, 2), (2, 0, 4, 1, 2), (2, 3, 0, 1, 2).

Proposition 3.9. Endow monomials in Q[xn] with the lexicographic term order. The
standard monomial basis Mn,k,r of Rn,k,r consists of those monomials in Q[xn] whose
exponent vectors are componentwise 6 at least one (n, k, r)-staircase.

Proof. Let Nn,k,r be the collection of monomials in Q[xn] whose exponent vectors are
componentwise 6 at least one (n, k, r)-staircase. Let δn(T ) = (a1, . . . , an) be an (n, k, r)-
staircase for some (n−r)-element set T ⊆ [n] and let m = xa11 · · ·xann be the corresponding
monomial. We claim that ai < k + i for all 1 6 i 6 n, so that xk+i

i - m; indeed

• if i ∈ T then ai = i+ k − 1 < k + i, and
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• if i /∈ T then ai = |{1, 2, . . . , i− 1} − T | < i < k + i.

If S = {s1 < · · · < sn−r+1} ⊆ [n] satisfies |S| = n − r + 1 then at least element sj ∈ S
satisfies sj /∈ T ; choose j minimal such that sj /∈ T . Since the exponent of xsj in x(S) is
sj−j+1 and the exponent of xsj in m is |{1, 2, . . . , sj−1}−T | = (sj−1)−(j−1) = sj−j
(by the minimality of j), we conclude x(S) - m. It follows that Nn,k,r ⊆Mn,k,r.

On the other hand, we may construct a map

Φ : Sn,k,r → Nn,k,r (3.23)

by letting Φ(π) = (c1, . . . , cn) be the code of any r-tail positive permutation π ∈ Sn,k,r. To
see that Φ is well defined, let π = π1 . . . πn+k ∈ Sn,k,r; we must show the code (c1, . . . , cn)
of π is componentwise 6 some (n, k, r)-staircase. Indeed, let T = [n]∩{π1, π2, . . . , πn+k−r}
be the set of positive letters in π which are not contained in its r-tail, so that |T | = n− r
and write δ(T ) = (a1, . . . , an). We claim that ci 6 ai for all i; indeed

• if i ∈ T then ai = k + i − 1, but in π the letter i can only form inversions with
1, 2, . . . , i− 1 and any of the k copies of 0, forcing ci 6 k + i− 1, and

• if i /∈ T then i belongs to the r-tail of π so that i can only form inversions with the
letters in 1, 2, . . . , i − 1 which also lie in the r-tail of π, forcing ci 6 |{1, 2, . . . , i −
1} − T | = ai.

It is clear that Φ is injective, so that

|Sn,k,r| 6 |Nn,k,r| 6 |Mn,k,r| = |Sn,k,r| (3.24)

and we have Nn,k,r =Mn,k,r, as desired.

For example, if (n, k, r) = (2, 2, 1) the (2, 2, 1)-staircases are (0, 3) and (2, 0) so that

M2,2,1 = {1, x1, x
2
1, x2, x

2
2, x

3
2}.

4 Frobenius series

In this section we derive the Frobenius series of Rn,k,r. Our first lemma is a short exact
sequence which establishes a Pascal-type recursion for grFrob(Rn,k,r; q).

Lemma 4.1. Suppose n, k, r > 0 with r < n and k > 0. There is a short exact sequence
of Sn-modules

0→ Rn,k−1,r → Rn,k,r → Rn,k,r+1 → 0, (4.1)

where the first map is homogeneous of degree n − r and the second map is homogeneous
of degree 0. Equivalently, we have the equality of graded Frobenius characters

grFrob(Rn,k,r; q) = grFrob(Rn,k,r+1; q) + qn−r · grFrob(Rn,k−1,r; q). (4.2)
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Proof. We have the inclusion of ideals In,k,r ⊆ In,k,r+1; we let the second map be the
canonical projection π : Rn,k,r � Rn,k,r+1. We have a homogeneous map ϕ̃ : Q[xn] →
Rn,k,r of degree n−r given by multiplication by en−r(xn), and then projecting onto Rn,k,r.

We claim that ϕ̃(In,k−1,r) = 0, so that ϕ̃ induces a well defined map ϕ : Rn,k−1,r →
Rn,k,r. This is equivalent to showing that hk(xn) ·en−r(xn) ∈ In,k,r. The Pieri Rule implies
that

hk(xn) · en−r(xn) = s(k,1n−r)(xn) + s(k+1,1n−r−1)(xn); (4.3)

we will show that both terms on the right hand side lie in In,k,r.
To see that s(k,1n−r)(xn) ∈ In,k,r, observe that, for 1 6 i 6 r we have

hk−r+i(xn) · en−i+1(xn) = s(k−r+i,1n−i+1)(xn) + s(k−r+i+1,1n−i)(xn) ∈ In,k,r. (4.4)

It follows that modulo In,k,r we have the congruences

s(k,1n−r)(xn) ≡ −s(k+1,1n−r−1)(xn) ≡ s(k+2,1n−r−2)(xn) ≡ · · · ≡ ±s(k+n−r)(xn) ≡ 0, (4.5)

where the last congruence used the fact that s(k+n−r)(xn) = hk+n−r(xn) ∈ In,k,r since
r < n. This chain of congruences also shows that s(k+1,1n−r−1)(xn) ∈ In,k,r.

By the last paragraph, we have a well defined induced map ϕ : Rn,k−1,r → Rn,k,r. It is
clear that Im(ϕ) = Ker(π). Moreover, the Pascal relation implies that

|Sn,k−1,r|+ |Sn,k,r+1| = |Sn,k,r|, (4.6)

so that by Theorem 3.6 we have

dim(Rn,k−1,r) + dim(Rn,k,r+1) = dim(Rn,k,r). (4.7)

Since π is a surjection, this forces the sequence

0→ Rn,k−1,r
ϕ−→ Rn,k,r

π−→ Rn,k,r+1 → 0 (4.8)

to be exact. To finish the proof, observe that the maps ϕ and π commute with the action
of Sn.

We are ready to state the graded Frobenius image of Rn,k,r. We will give several for-
mulas for this image. For any word w over the nonnegative integers, define the monomial
xw to be

xw := x# of 1’s in w
1 x# of 2’s in w

2 · · · ; (4.9)

in particular, any copies of 0 in w do not affect xw.

Theorem 4.2. The graded Frobenius image of Rn,k,r is given by

grFrob(Rn,k,r; q) =

[
n+ k − r

k

]
q

·
∑

T∈SYT(n)

qmaj(T ) · sshape(T ) (4.10)

=
∑
w

qinv(w)xw. (4.11)

The last sum ranges over all length n + k words w = w1 . . . wn+k in the alphabet of
nonnegative integers which contain precisely k copies of 0 and are r-tail positive.
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Proof. By considering the placement of the k copies of 0 in a r-tail positive word w
appearing in the final sum, we see that∑

w

qinv(w)xw =

[
n+ k − r

k

]
q

·
∑

v=v1...vn
vi∈Z>0

qinv(v)xv. (4.12)

On the other hand, we have∑
v=v1...vn
vi∈Z>0

qinv(v)xv =
∑

v=v1...vn
vi∈Z>0

qmaj(v)xv =
∑

T∈SYT(n)

qmaj(T ) · sshape(T ) = grFrob(Rn; q), (4.13)

where the first equality uses the equidistribution of the statistics inv and maj on permu-
tations of a fixed multiset of positive integer, the second follows from standard properties
of the RSK correspondence, and the third is a consequence of the work of Lusztig-Stanley
[18].

By the last paragraph, it suffices to prove the first equality asserted in the statement
of the theorem. If r > n or k = 0 then Rn,k,r = Rn and this equality is trivial. Otherwise,
we have the q-Pascal relation[

n+ k − r
k

]
q

=

[
n+ k − r − 1

k

]
q

+ qn−r ·
[
n+ k − r − 1

k − 1

]
q

, (4.14)

so that the theorem follows from Lemma 4.1 and induction.

The short exact sequence in Lemma 4.1 gives a recipe for constructing bases of Rn,k,r

from bases of the classical coinvariant algebra Rn. We switch from working over Q to
working over an arbitrary field F, so that the ideals In,k,r, In are defined inside the ring
F[xn] := F[x1, . . . , xn] and we have Rn,k,r := F[xn]/In,k,r, Rn := F[xn]/In.

Theorem 4.3. Let Cn = {bπ(xn) : π ∈ Sn} be a collection of polynomials in F[xn] indexed
by permutations in Sn which descends to a basis of Rn. The collection of polynomials

Cn,k,r := {bπ(xn) · eλ(xn) : π ∈ Sn, λ1 6 n− r, and λ has 6 k parts} (4.15)

in F[xn] descends to a basis of Rn,k,r.

Proof. This is trivial when k = 0 or r > n, so we assume k > 0 and r < n.
The arguments of Section 3 apply to show that dim(Rn,k,r) = |Sn,k,r| when working

over the arbitrary field F. 3 The proof of Lemma 4.1 then applies over F to give a short
exact sequence of graded F-vector spaces

0→ Rn,k−1,r
·en−r(xn)−−−−−→ Rn,k,r

π−→ Rn,k,r+1 → 0, (4.16)

3If F is a finite field, there might not be enough elements in F for the point set Yn,k,r of Definition 3.1
to make sense. To get around this, we may apply [14, Lem. 3.1] to harmlessly replace F by an extension
field K.
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where π is the canonical projection. We may inductively assume that Cn,k−1,r descends to
a F-basis of Rn,k−1,r and that Cn,k,r+1 descends to a F-basis of Sn,k,r+1. Exactness implies
that

{f(xn) : f(xn) ∈ Cn,k,r+1} ∪ {g(xn) · en−r(xn) : g(xn) ∈ Cn,k−1,r} = Cn,k,r (4.17)

descends to an F-basis of Rn,k,r.

Theorem 4.3 reinforces the fact that Rn,k,r consists of
(
n+k−r

k

)
copies of Rn, graded

by the q-binomial coefficient
[
n+k−r

k

]
q
. Interesting bases Cn to which Theorem 4.3 can be

applied include

• the Artin basis [2]
Cn = {xi11 · · ·xinn : 0 6 ij < j} (4.18)

(which is connected to the inv statistic on permutations in Sn) and

• the Garsia-Stanton basis (or the descent monomial basis) [6, 8] Cn = {gsπ : π ∈ Sn}
where

gsπ =
∏

πi>πi+1

xπ1 · · ·xπi (4.19)

(which is connected to the maj statistic on permutations in Sn).

The GS basis above can be deformed somewhat to describe the isomorphism type of
Rn,k,r as a module over the 0-Hecke algebra. The algebra Hn(0) acts on the polynomial
ring F[xn] by letting the generator Ti act by the Demazure operator σi, where

σi.f :=
xif − xi+1si(f)

xi − xi+1

. (4.20)

Here si(f) is the polynomial obtained by interchanging xi and xi+1 in f(xn). It can be
shown that if f ∈ F[xn]Sn is any symmetric polynomial and g ∈ F[xn] is an arbitrary
polynomial then

σi(fg) = fσi(g). (4.21)

Therefore, any ideal I ⊆ F[xn] generated by symmetric polynomials is stable under the
action of Hn(0). In particular, the ideal In,k,r is stable under the action of Hn(0), and the
quotient Rn,k,r = F[xn]/In,k,r carries the structure of an Hn(0)-module.

Huang [13] studied the coinvariant ring Rn as a graded module over the 0-Hecke algebra
Hn(0). We apply Theorem 4.3 to generalize Huang’s results to the quotient Rn,k,r. If V is
any graded Hn(0)-module, we let V (i) denote the graded Hn(0)-module with components
V (i)j := Vi+j, for all j > −i.

Theorem 4.4. Let n, k, and r be nonnegative integers with r 6 n. We have an isomor-
phism of graded Hn(0)-modules

Rn,k,r
∼=

⊕
λ⊆(n−r)×k

Rn(−|λ|). (4.22)
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Here the direct sum is over all partitions λ which satisfy λ1 6 n− r and have at most k
parts. The module Rn = F[xn]/In is the coinvariant algebra viewed as a graded Hn(0)-
module.

Proof. Huang [13] introduced the following modified GS basis of Rn. For 1 6 i 6 n− 1,
define an operator σ̄i on F[xn] by the rule σ̄i := σi − 1. For any permutation π ∈ Sn,
define σ̄π := σ̄i1 · · · σ̄ik where si1 · · · sik is any reduced word for π. Finally, given π ∈ Sn,
let xDes(π) be the monomial

xDes(π) :=
∏

i∈Des(π)

(x1x2 · · ·xi). (4.23)

For example, we have x21543 = (x1) · (x1x2x3) · (x1x2x3x4). Huang proved [13, Thm. 4.5]
that the collection of polynomials

Cn := {σ̄π.xDes(π) : π ∈ Sn} (4.24)

in F[xn] descends to a F-basis for Rn.
Applying Theorem 4.3 to Huang’s basis of Rn, we get a collection of polynomials Cn,k,r

given by
Cn,k,r := {eλ(xn) · σ̄π.xDes(π) : π ∈ Sn and λ ⊆ (n− r)× k} (4.25)

which descends to a basis of Rn,k,r. The symmetric polynomial eλ(xn) has degree |λ| and
the symmetry of eλ(xn) gives

σi.(eλ(xn) · σ̄π.xDes(π)) = eλ(xn)σi.(σ̄π.xDes(π)). (4.26)

It follows that, for λ ⊆ (n− r)× k fixed, the collection of polynomials

Cn,k,r(λ) := {eλ(xn) · σ̄π.xDes(π) : π ∈ Sn} (4.27)

descends inside Rn,k,r to a F-basis of a copy of Rn with degree shifted up by |λ|.

Theorem 4.4 leads immediately to the fact that Rn,k,r is a projective Hn(0)-module
and formulas for the characteristics Chq,t(Rn,k,r),Chq(Rn,k,r), and chq(Rn,k,r).

Corollary 4.5. Let n, k, and r be nonnegative integers with r 6 n.

1. The length-degree bigraded quasisymmetric characteristic Chq,t(Rn,k,r) is given by

Chq,t(Rn,k,r) =

[
n+ k − r

k

]
q

·Chq,t(Rn) =

[
n+ k − r

k

]
q

·
∑
π∈Sn

qmaj(π)tinv(π)FDes(π−1),n,

(4.28)
where FDes(π−1),n is the fundamental quasisymmetric function.
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2. The degree graded quasisymmetric characteristic Chq(Rn,k,r) is in fact symmetric
and given by

Chq(Rn,k,r) =

[
n+ k − r

k

]
q

· Chq(Rn) =

[
n+ k − r

k

]
q

·
∑

T∈SYT(n)

qmaj(T )sshape(T ).

(4.29)
In particular, we have

Chq(Rn,k,r) = grFrob(Rn,k,r; q). (4.30)

3. The Hn(0)-module Rn,k,r is projective. Its degree graded noncommutative character-
istic chq(Rn,k,r) is

chq(Rn,k,r) =

[
n+ k − r

k

]
q

· chq(Rn) =

[
n+ k − r

k

]
q

·
∑
α

qmaj(α)sα, (4.31)

where α ranges over all strong compositions of n, the major index is

maj(α) = maj(α1, . . . , α`) =
`−1∑
j=1

(α1 + · · ·+ αj),

and sα is the noncommutative ribbon Schur function.

Proof. Parts 1 and 2 follow from the work of Huang [13, Cor. 4.9] and Theorem 4.4.
Since Rn is a projective Hn(0)-module (see [13, Thm. 4.5]) and direct sums of projective
modules are projective, we can apply [13, Cor. 8.4, µ = (1n)] to get Part 3.

We remark here (and thank an anonymous referee for pointing this out) that Lemma 4.1
may be used to give a more conceptual proof of Theorem 4.4 and Corollary 4.5 without
direct reference to Theorem 4.3. If W is any projective Hn(0)-module, then any short
exact sequence

0→ U → V → W → 0

of Hn(0)-modules ending in W splits, giving an isomorphism V ∼= U ⊕W . Lemma 4.1
gives a short exact sequence

0→ Rn,k−1,r → Rn,k,r → Rn,k,r+1 → 0 (4.32)

for all n, k, r > 0 with r < n and k > 0. Since Rn,0,r = Rn,k,n = Rn and the classical
coinvariant ring Rn is known [13] to be a projective Hn(0)-module, we see inductively
that

• the short exact sequences of (4.32) always split, and

• the Hn(0)-modules Rn,k,r
∼= Rn,k−1,r ⊕Rn,k,r+1 are always projective.
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In particular, the noncommutative characteristic cht(Rn,k,r) makes sense. The splitting
of (4.32), together with the degrees of the maps involved in Lemma 4.1, gives the graded
Hn(0)-module decomposition Rn,k,r

∼=
⊕

λ⊆(n−r)×k Rn(−|λ|) and the characteristics in
Corollary 4.5 as before.

Although Theorem 4.3 gives a collection of polynomials in F[xn] generalizing the GS
monomials which descend to a basis of Rn,k,r, the authors have been unable to find a
collection of monomials in F[xn] which generalizes the GS monomials and descends to
a basis of Rn,k,r (such monomial bases were found for the quotients appearing in the
work of Haglund-Rhoades-Shimozono and Huang-Rhoades [11, 14]). Judging from the
construction in [11, Sec. 5] and the Hilbert series of Rn,k,r, one might expect that the set
of monomials

{gsπ · xi1π1 · · ·x
in−r
πn−r

: π ∈ Sn and k > i1 > · · · > in−r > 0} (4.33)

would descend to a basis of Rn,k,r, but this set of monomials is linearly dependent in the
quotient in general. A potential combinatorial obstruction to finding a GS monomial basis
for Rn,k,r is the fact that the statistics inv and maj do not share the same distribution on
Sn,k,r.

5 Open problems

5.1 Bivariate generalization for r = 1

We propose a relationship between our quotient ring Rn,k,r and the theory of Macdonald
polynomials. In particular, consider the ideal I ′n,k,r ⊆ Q[xn] given by

I ′n,k,r := 〈pk+1(xn), pk+2(xn), . . . , pk+n(xn), en(xn), en−1(xn), . . . , en−r+1(xn)〉 (5.1)

and let R′n,k,r := Q[xn]/In,k,r be the corresponding quotient. The ideal I ′n,k,r is obtained
from the ideal In,k,r by replacing the homogeneous symmetric functions with power sum
symmetric functions.

As with the quotientRn,k,r, the quotientR′n,k,r has the structure of a graded Sn-module.
Although the ideals In,k,r and I ′n,k,r are not equal in general, we present

Conjecture 5.1. There is an isomorphism of graded Sn-modules Rn,k,r
∼= R′n,k,r.

The main reason for preferring the quotient rings R′n,k,r over the quotient rings Rn,k,r

is that they generalize more readily to two sets of variables. Let xn = (x1, . . . , xn) and
yn = (y1, . . . , yn) be two sets of n variables and let Q[xn,yn] be the polynomial ring
in these variables. The symmetric group Sn acts on Q[xn,yn] by the diagonal action
π.xi = xπi , π.yi = yπi .

For any a, b > 0, let pa,b(xn,yn) be the polarized power sum

pa,b(xn,yn) :=
n∑
i=1

xai y
b
i . (5.2)
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Moreover, letMn be the set of the 2n monomials z1 . . . zn in Q[xn,yn] where zi ∈ {xi, yi}
for all 1 6 i 6 n. For example, we have

M2 = {x1x2, x1y2, y1x2, y1y2}.

For a nonnegative integer k, let DIn,k ⊆ Q[xn,yn] be the ideal generated by the
polarized power sums pa,b(xn,yn) with a + b > k + 1 together with the monomials in
Mn. Let DRn,k := Q[xn,yn]/DIn,k be the corresponding quotient, which is a bigraded
Sn-module.

Conjecture 5.2. The bigraded Frobenius image of DRn,k is given by the delta operator
image

grFrob(DRn,k; q, t) = ∆hkenen = ∆sk+1,1n−1en = ∆hk∇en.

The latter three quantities in the conjecture are trivially equal by the definition of the
delta operator. When k = 0, the ring DRn,0 is the classical diagonal coinvariant ring DRn,
so that Conjecture 5.2 reduces to Haiman’s celebrated result [12] that grFrob(DRn) =
∆enen. Setting the yn variables equal to zero in the quotient DRn,k yields the ring R′n,k,1,
so that the ring R′n,k,1 conjecturally gives the analog of the coinvariant ring (for one set
of variables) attached to the operator ∆hken .

The following proposition states that our module Rn,k,1 has graded Frobenius series
which agrees with any of the delta operator expressions in Conjecture 5.2 upon setting
q = 0 and t = q.

Proposition 5.3. We have

grFrob(Rn,k,1; t) = ∆hkenen |q=0= ∆sk−1,1n−1en |q=0= ∆hk∇en |q=0 .

Proof. In this proof we will use the notation of plethysm; we refer the reader to [9] for
the relevant details on plethysm and symmetric functions.

Let revt be the operator which reverses the coefficient sequences of polynomials with
respect to the variable t. For a partition λ ` n, let Q′λ = Q′λ(x; t) be the correspond-
ing Hall-Littlewood symmetric function. It is well known that the modified Macdonald
polynomial H̃λ = H̃λ(x; q, t) satisfies

H̃λ |q=0= revt(Q
′
λ). (5.3)

This means that, for any symmetric function f and any partition λ ` n, we have

∆f (H̃λ) |q=0= f(1, t, t2, . . . , t`(λ)−1) · revt(Q
′
λ), (5.4)

where `(λ) is the number of parts of λ.
In order to exploit Equation 5.4, we need to express en in terms of the modified

Macdonald basis. This expansion is found in [9, Eqn. 2.72]: we have

en =
∑
λ`n

MBλΠλH̃λ

wλ
, (5.5)

where
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• M = (1− q)(1− t),

• Bλ =
∑

c=(i,j)∈λ q
i−1tj−i, where the sum is over all cells c with matrix coordinates

(i, j) in the Ferrers diagram of λ,

• Πλ =
∏

c=(i,j)6=(0,0)(1− qi−1tj−1), where c = (i, j) is a cell in λ other than the corner

(0, 0),

• wλ =
∏

c∈λ(q
a(c) − tl(c)+1)(tl(c) − qa(c)+1), where the product is over all cells c in the

Ferrers diagram of λ and a(c), l(c) denote the arm and leg lengths of λ at c.

We apply the operator ∆hken = ∆hk∆en to both sides of Equation 5.5 to get

∆hkenen =
∑
λ`n

hk[Bλ]en[Bλ]
MBλΠλH̃λ

wλ
. (5.6)

Setting q = 0 on both sides of Equation 5.6 gives

∆hkenen |q=0=

[∑
λ`n

hk[Bλ]en[Bλ]
MBλΠλH̃λ

wλ

]
q=0

. (5.7)

For any λ ` n and any symmetric function f , we have f [Bλ] |q=0= f(1, t, t2, . . . , t`(λ)−1).
In particular, we have en[Bλ] = 0 unless λ = (1n) and Equation 5.7 reduces to

∆hkenen |q=0= hk(1, t, . . . , t
n−1) · en(1, t, . . . , tn−1) ·

[
MB(1n)Π(1n)H̃(1n)

w(1n)

]
q=0

. (5.8)

The right hand side of Equation 5.8 simplifies to[
n+ k − 1

k

]
t

· revt(Q
′
(1n)) = grFrob(Rn,k,1; t) (5.9)

where we used Theorem 4.2 at r = 1 and the well known fact that the graded Frobenius
image of the classical coinvariant algebra Rn is grFrob(Rn; t) = revt(Q

′
(1n)).

5.2 Other bivariate generalizations

One may wonder if there is a bivariate generalization of the entire ring Rn,k,r, as we
have only discussed the r = 1 case so far. While we have not been able to find a full
generalization, there is some progress in the Hilbert series case. The skewing operator
acts on a symmetric function f of degree d uniquely so that

〈∂f, g〉 = 〈f, p1g〉 (5.10)

for all symmetric functions g of degree d − 1, where the inner product is the usual Hall
inner product on symmetric functions.
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Given a vector α = (α1, . . . , αn) of n positive integers, an α-Tesler matrix U =
(ui,j)16i,j6n is an n × n upper triangular matrix with nonnegative integer entries such
that, for i = 1 to n,

ui,i + ui,i+1 + . . .+ ui,n − (u1,i + u2,i + . . .+ ui−1,i) = αi. (5.11)

We write U ∈ T (α). For example, the matrix

U =


0 2 0 1
0 3 1 0
0 0 1 2
0 0 0 6


satisfies U ∈ T (3, 2, 2, 3). The weight of an n× n α-Tesler matrix U is equal to

wt(U ; q, t) = (−(1− q)(1− t))pos(U)−n
∏
ui,j>0

[ui,j]q,t (5.12)

where pos(U) is the number of positive entries in U and [k]q,t is the usual q, t-integer, i.e.

[k]q,t = qk−tk
q−t . For example, if U is the Tesler matrix shown above, we have pos(U) = 7

and
wt(U ; q, t) = (−(1− q)(1− t))7−4[2]2q,t[3]q,t[6]q,t.

Finally, the α-Tesler polynomial is

Tes(α; q, t) =
∑

U∈T (α)

wt(U ; q, t). (5.13)

This corollary follows from work in [1, 10, 16].

Corollary 5.4.

Hilb(Rn,k,r; q) =

[
n+ k − r

k

]
q

· [n]!q (5.14)

= ∂n−r+1∆hk∂
r−1∇en

∣∣
t=0

(5.15)

=
∑
α�n+k
`(α)=n

α1=...=αr=1

Tes(α; q, 0) (5.16)

It would be interesting to find an extension of this corollary to the entire graded
Frobenius series of Rn,k,r for general r.

5.3 A Schubert basis

There is also a basis for Rn,k,r given by certain Schubert polynomials. We let Πn,k,r be all
the permutations π of {1, 2, . . . , n+ k} that satisfy
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• all descents in π occur weakly left of position n, and

• 1, 2, . . . , r all appear in π1π2 . . . πn.

If π ∈ Πn,k,r is a permutation, let Sπ(xn) be the Schubert polynomial attached to π.
Note that, since each π has no descents after position n, there are at most n variables
that appear in the Schubert polynomial associated to π, so we have not truncated the
variable set in any meaningful way. We will show that {Sπ(x∗n) : π ∈ Πn,k,r} is a basis
for Rn,k,r, where the asterisk represents the reversal of the vector of variables. This will
follow from the fact that the leading terms are all (n, k, r)-good monomials.

Proposition 5.5. Let < be the lexicographic monomial order and let

LT n,k,r = {in<(Sπ(x∗n)) : π ∈ Πn,k,r}.

Then LT n,k,r =Mn,k,r.

Proof. We will construct a bijection Φ : Πn,k,r →Mn,k,r that satisfies Φ(π) = in<(Sπ(x∗n)).
The bijection itself is

Φ(π) =
n∏
i=1

xdin−i+1 (5.17)

where di counts the number of j > i such that πi > πj. The fact that Φ(π) = in<(Sπ(x∗n))
follows directly from the definition of the Schubert polynomial. We need to show that
m = Φ(π) ∈ Mn,k,r and to construct its inverse. Our proof will be similar to that of
Lemma 3.5. First, we check that

• we have x(S) - m for all S ⊆ [n] with |S| = n− r + 1, and

• we have xk+i
i - m for all 1 6 i 6 n.

To check the first condition, we recall that x(S) = xs1s1x
s2−1
s2

. . . xsn−r+1−n+r
sn−r+1

if S = {s1 <
s2 < . . . < sn−r+1}. Since S ⊆ [n] and the entries 1 through r all appear in π1 through πn,
there is some si such that πsi 6 r. Choose i as large as possible such that πsi 6 r. Since
j > n implies πj > r, πsi can only be greater than at most n− si entries to its right, i.e.
dsi 6 n− si. Hence the power of xn−si+1 in m is at most n− si, which means x(S) - m.
The second condition follows from the definition of m.

Given a monomial m ∈Mn,k,r, we would like to construct Φ−1(m). This can be done
using the usual bijection from codes (d1, d2, . . . , dn) to permutations. For i = 1 to n, we
choose πi such that it is greater than exactly di of the entries in [n + k] that have not
already been placed to the left of position i in π. The second condition for (n, k, r)-good
monomials implies that the result is an honest permutation, and the first condition implies
that 1, 2, . . . , r all appear in the first n entries.

Corollary 5.6. {Sπ(x∗n) : π ∈ Πn,k,r} descends to a basis for Rn,k,r.
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It would be interesting to explore if this Schubert basis maintains many of the prop-
erties of the Schubert basis for the usual ring of coinvariants. For example, the following
suggests that the structure constants of this Schubert basis are positive modulo Rn,k,r.

Question 5.7. For two permutations π, π′ ∈ Πn,k,r, is it always true that the product

Sπ(x∗n) ·Sπ′(x
∗
n) (5.18)

has positive integer coefficients when expanded in the basis {Sπ(x∗n) : π ∈ Πn,k,r} modulo
In,k,r? Using Sage, we have checked that this is true for 1 6 n, k 6 4 and 0 6 r 6 n. If
so, do these coefficients count intersections in some family of varieties?
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