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Abstract

In this paper, we give new constructions of disjoint difference families from Galois
rings. The constructions are based on choosing cosets of the unit group of a subring
in the Galois ring GR(p2, p2s). Two infinite families of disjoint difference families
are obtained from the Galois rings GR(p2, p4n) and GR(22, 22s).
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1 Introduction

Let G be an additively written abelian group of order v, and let Di, i = 1, 2, . . . , b, be
disjoint k-subsets of G. We call {Di : i = 1, 2, . . . , b} a disjoint difference family in G
with parameters (v, k, λ, b) if the multiset

{x− y : x, y ∈ Di, x 6= y, i = 1, 2, . . . , b}

covers every nonzero element of G exactly λ times. If b = 1, it is called a (v, k, λ) difference
set in G. If Di’s form a partition of G (or G \ {0}), it is called partition type (or nearly-
partition type, respectively) following the terminologies of [13]. It is clear that a disjoint
difference family with bk = v is of partition type. Furthermore, a disjoint difference family
with bk = v−1 can be transformed to be of nearly-partition type by taking a translation.

For X, Y ⊆ G and a ∈ G, define multisets X + Y := {x + y : x ∈ X, y ∈ Y } and
X + a := {x + a : x ∈ X}. Given disjoint subsets Di’s of G form a disjoint difference
family if and only if

∑b
i=1 |Di ∩ (Di + a)| = λ for every nonzero element a of G.

Disjoint difference families have rich applications to coding theory, communications
and information security. For these connections, we refer the reader to [13] and references
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therein. Disjoint difference families are closely related to other combinatorial objects such
as external difference families (or perfect difference systems of sets) and zero-difference
balanced functions [3, 4, 12]. A zero-difference balanced function is equivalent to a parti-
tion type disjoint difference family. A disjoint difference family such that the union of Di’s
forms a difference set in G is an external difference family. In this sense, a lot of construc-
tions of disjoint difference families have been known [2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 17, 18].
Most of the constructions are based on finite fields, in particular, cyclotomic cosets and
trace functions of finite fields.

In this paper, we are inspired by the following well-known construction of disjoint
difference families. Let Fq be the finite field of order q and C be a multiplicative subgroup
of index e. Then, the family of all cosets of C in the multiplicative group F∗q of Fq forms

a disjoint difference family in (Fq,+). The proof is as follows. We compute
∑e−1

i=0 |γiC ∩
(γiC + a)| for each a ∈ F∗q, where γ is a primitive element of Fq. Since the equation
γix = γiy + a is reformulated as xy−1 = aγ−iy−1 + 1, where x, y ∈ C, we have

e−1∑
i=0

|γiC ∩ (γiC + a)| =
e−1∑
i=0

|C ∩ (aγ−iC + 1)| = |C ∩ (F∗q + 1)|,

which is constant not depending on a. Hence, {γiC : i = 0, 1, . . . , e− 1} forms a disjoint
difference family in (Fq,+).

In this paper, we consider an analogy of this construction. More precisely, we consider
cosets of the unit group of a subring of the Galois ring GR(p2, p2s). Then, we choose
carefully some of the cosets and take the union together with the maximal ideal of the
subring removing the zero. Then, we have a family of subsets of the Galois ring by
multiplying the union by some elements in the Teichmüller set. Our new construction
yields disjoint difference families of nearly-partition type. In particular, we obtain two
infinite families of disjoint difference families in the additive groups of the Galois rings
GR(p2, p4n) and GR(22, 22s) with parameters (v, k, λ, b) = (p4n, (p2n + 1)(pn − 1), p3n −
p2n + pn − 2, pn + 1) and (22s, 2s + 1, 2s, 2s − 1), respectively. In addition, we find one
example of a disjoint difference family with parameters (v, k, λ, b) = (729, 56, 55, 13) from
GR(32, 36).

Note that disjoint difference families with the same parameters above can be con-
structed by using the cosets of the multiplicative subgroups of order (p2n + 1)(pn− 1) and
2s + 1 of the finite field of order p4n and 22s, respectively, as described above while the
groups are distinct; the difference families obtained by the construction using finite fields
are in the groups Z4n

p and Z2s
2 , and our new difference families are in the groups Z2n

p2 and
Zs22 . Furthermore, as far as the author knows, there has been no construction of disjoint
difference families with the parameters above in Galois rings. This will be explained in
the last section.
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2 Preliminaries

In this section, we introduce notations about Galois rings used throughout this paper.
See [15] for general background of Galois rings.

Let p be a prime and let g(x) ∈ Zp2 [x] be a primitive basic irreducible polynomial
of degree s and denote a root of order ps − 1 of g(x) by ξ. Then Zp2 [x]/〈g(x)〉 is
called a Galois ring of characteristic p2 and of an extension degree s, and denoted by
GR(p2, p2s). The algebraic extension of Zp2 obtained by adjoining ξ is isomorphic to
Zp2 [x]/〈g(x)〉. GR(p2, p2s) has a unique maximal ideal Ips = pGR(p2, p2s) and the residue
ring GR(p2, p2s)/Ips is isomorphic to Fps . We take Tps = {0, 1, ξ, . . . , ξps−2} as a set
of representatives of GR(p2, p2s)/Ips , called the Teichmüller set. An arbitrary element
α ∈ GR(p2, p2s) is uniquely represented as α = α0 + pα1, α0, α1 ∈ Tps . We denote the set
of all units in GR(p2, p2s) by GR(p2, p2s)∗ and also denote I∗ps := Ips \ {0}.

We define the map τ : GR(p2, p2s)∗ → T ∗ps(:= Tps \ {0}) as τ(α) = αp
s
. The kernel

of τ is the group Pps of principal units, which are elements of the form 1 + pβ, β ∈ Tps ,
i.e., Pps = 1 + Ips = 1 + pTps . By noting that (1 + pα)(1 + pβ) = 1 + p(α + β) ∈ Pps
for any α, β ∈ Tps , Pps is isomorphic to the additive group of Fps by the isomorphism
1 + pa ∈ Pps 7−→ a + pTps ∈ GR(p2, p2s)/Ips . It is clear that GR(p2, p2s)∗ is the direct
product of Pps and the cyclic group T ∗ps of order ps − 1. In other words, every element of
GR(p2, p2s)∗ is uniquely represented as α0(1 + pα1), α0, α1 ∈ Tps , α0 6= 0.

In Section 3, we treat the case where s is even, say, s = 2n. In Section 4, we treat the
case where p = 2 and s an arbitrary positive integer.

3 Disjoint difference families from GR(p2, p4n)

In this section, we follow the notations of Section 2. In particular, we set s = 2n and
consider the unique subring GR(p2, p2n) of GR(p2, p4n).

Recall that
Tp2n = {0, 1, ξ, ξ2, . . . , ξp2n−2},

which is a system of representatives for GR(p2, p4n)/Ip2n . Hence,

GR(p2, p4n) = {s+ t : s ∈ Tp2n , t ∈ Ip2n}.

On the other hand, any element of GR(p2, p4n) can be uniquely expressed as

a0 + a1ξ, a0, a1 ∈ GR(p2, p2n),

i.e., GR(p2, p4n) is an extension ring of GR(p2, p2n) obtained by adjoining ξ. Define a
subset of Tp2n :

Tpn = {0, 1, ξpn+1, ξ2(p
n+1), . . . , ξ(p

n−2)(pn+1)},

which is the Teichmüller set of the subring GR(p2, p2n) [15, Corollary 14.28]. Hence,

Rpn = {a(1 + pb) : a ∈ T ∗pn , b ∈ Tpn}
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is the unit group GR(p2, p2n)∗ of GR(p2, p2n), and pTpn is the maximal ideal Ipn of
GR(p2, p2n).

Note that the additive group of Ip2n is isomorphic to (Fp2n ,+). Let pS be a system
of representatives for Ip2n/Ipn(' Fp2n/Fpn). Since Ip2n = pTp2n and Ipn = pTpn , each
element of pS can be written as px for x ∈ Tp2n , i.e., pS = {px : x ∈ S} for some subset
S of Tp2n . Write S = {xi : i = 0, 1, . . . , pn − 1} ⊆ Tp2n . Define

P = {pξj(pn+1)+pn : j = 0, 1, . . . , pn − 2}.

Then, P = ξp
nI∗pn = pξp

nT ∗pn , that is, a coset of I∗pn in I∗p2n .

Theorem 1. Let

Di = ξi

(
P ∪

(
pn−1⋃
j=0

ξj(1 + pxj)Rpn

))
, 0 6 i 6 pn. (1)

Then, {D0, D1, . . . , Dpn} forms a disjoint difference family in (GR(p2, p4n),+) with pa-
rameters (v, k, λ, b) = (p4n, (p2n + 1)(pn − 1), p3n − p2n + pn − 2, pn + 1).

It is clear that
⋃pn

i=0 ξ
iP =

⋃pn

i=0 ξ
iI∗pn = I∗p2n . Furthermore,

pn⋃
i=0

pn−1⋃
j=0

ξi+j(1 + pxj)Rpn =

(
pn⋃
i=0

ξiT ∗pn

)(
pn−1⋃
j=0

(1 + pxj)(1 + pTpn)

)
=T ∗p2n(1 + p(S + Tpn)) = GR(p2, p4n)∗.

Hence, Di, i = 0, 1, . . . , pn, partition GR(p2, p4n) \ {0}.

Example 2. Consider the case where p = 3 and n = 1. The polynomial x2+4x+8 ∈ Z9[x]
is a monic basic irreducible polynomial having a root ξ of order 32 − 1 = 8. Then,

T9 = {0, 1, ξ, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7}.

Let
S = {0, ξ, ξ2}.

Then, 1 + pS forms a system of representatives for P32/P3. Define

R3 := {1, 2, 4, 5, 7, 8}(= Z∗9)

and
P = {3ξ3, 3ξ7}.

Then, the sets

Di = ξi(R3 ∪ ξ(1 + 3ξ)R3 ∪ ξ2(1 + 3ξ2)R3 ∪ P ), 0 6 i 6 3,

form a disjoint difference family in (GR(32, 34),+) ' Z2
9 with parameters (v, k, λ, b) =

(81, 20, 19, 4).
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3.1 Proof of Theorem 1

It is clear that |Di| = p2n(pn − 1) + (pn − 1) = (p2n + 1)(pn − 1). We expect that
λ = p3n − p2n + pn − 2. So, we show that for any nonzero a ∈ GR(p2, p4n)

pn∑
i=0

|Di ∩ (Di + a)| = λ = p3n − p2n + pn − 2 (2)

by a series of lemmas below.

Lemma 3. If ξx(1 + py) 6∈ Rpn and ξx 6∈ Tpn,

Rpn + ξx(1 + py)Rpn = GR(p2, p4n) \
(
Ip2n ∪ {u(1 + pv) : u ∈ T ∗pn , v ∈ Tp2n}

∪{ξxu(1 + pv) : u ∈ T ∗pn , v ∈ Tp2n}
)
.

Proof. It is clear that

Rpn + ξx(1 + py)Rpn = GR(p2, p4n) \
((
Ipn + Ipnξx(1 + py)

)
∪
(
Rpn + Ipnξx(1 + py)

)
∪
(
Ipn +Rpnξ

x(1 + py)
))
.

On the other hand, we have

Ipn + Ipnξx(1 + py) = {pu+ pvξx : u, v ∈ Tpn}
= {p(u+ vξx) : u, v ∈ Tpn} = Ip2n .

Furthermore, we have

Rpn + Ipnξx(1 + py) = {u(1 + pc) + pdξx : u ∈ T ∗pn , c, d ∈ Tpn}
= {u(1 + p(c+ dξx)) : u ∈ T ∗pn , c, d ∈ Tpn}
= {u(1 + pv) : u ∈ T ∗pn , v ∈ Tp2n}

and

Ipn +Rpnξ
x(1 + py) = {pd+ u(1 + pc)ξx(1 + py) : u ∈ T ∗pn , c, d ∈ Tpn}

= {uξx(1 + p(c+ y + dξ−x)) : u ∈ T ∗pn , c, d ∈ Tpn}
= {uξx(1 + pv) : u ∈ T ∗pn , v ∈ Tp2n}.

This completes the proof of the lemma.

Lemma 4. For j, j′ = 0, 1, . . . , pn − 1 with j 6= j′ and any a ∈ GR(p2, p4n)∗,

pn∑
i=0

|ξi+j(1 + pxj)Rpn ∩ (ξi+j
′
(1 + pxj′)Rpn + a)| = pn − 1.
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Proof. It is enough to compute the frequency of an element a ∈ GR(p2, p4n)∗ appearing
in the multiset

A :=

pn⋃
i=0

(
ξi+j(1 + pxj)Rpn − ξi+j

′
(1 + pxj′)Rpn

)
.

Then, since Rpn = −Rpn , we have

A =

pn⋃
i=0

ξi+j
(
(1 + pxj)Rpn + ξj

′−j(1 + pxj′)Rpn
)
. (3)

Furthermore, since ξi+j, i = 0, 1, . . . , pn, form a system of representatives for T ∗p2n/T ∗pn ,
the right hand side of (3) is rewritten as

pn⋃
i=0

ξi(1 + pxj)
(
Rpn + (ξj

′−j(1 + p(xj′ − xj))Rpn
)
. (4)

Since j′−j 6= 0 and ξj
′−j(1+p(xj′−xj)) 6∈ Rpn , continuing from (3), we have by Lemma 3

that

A =

pn⋃
i=0

ξi
(

GR(p2, p4n) \
(
Ip2n ∪ {u(1 + pv) : u ∈ T ∗pn , v ∈ Tp2n}

∪ {ξj′−ju(1 + pv) : u ∈ T ∗pn , v ∈ Tp2n}
))
.

Hence, each element a ∈ GR(p2, p4n)∗ appears in A exactly pn − 1 times.

Lemma 5. For any nonzero element a ∈ GR(p2, p4n),

pn∑
i=0

pn−1∑
j=0

|ξi+j(1 + pxj)Rpn ∩ (ξi+j(1 + pxj)Rpn + a)| =
{
p2n(pn − 1), if a ∈ I∗p2n ,
pn(pn − 2), if GR(p2, p4n)∗,

where I∗p2n = Ip2n \ {0}.

Proof. We consider the following set:

{ξi+j(1 + pxj)x− ξi+j(1 + pxj)y : x, y ∈ Rpn , x 6= y, i = 0, 1, . . . , pn, j = 0, 1, . . . , pn − 1}.
(5)

If x and y have the form x = ξu(1 + ps) and y = ξu(1 + pt) with s 6= t, respectively, we
have

ξi+j(1 + pxj)x− ξi+j(1 + pxj)y = pξi+j+u(s− t) ∈ I∗p2n .
Hence, each element of I∗p2n appears in the multiset (5) exactly p2n(pn − 1) times.

If x and y have the form x = ξu(1 + ps) and y = ξv(1 + pt) with u 6= v, respectively,
we have

ξi+j(1 + pxj)x− ξi+j(1 + pxj)y = ξi+j(1 + pxj)(ξ
u(1 + ps)− ξv(1 + pt)) ∈ GR(p2, p4n)∗.

Since ξu(1+ps), ξv(1+pt) ∈ GR(p2, p2n)∗, the differences ξu(1+ps)− ξv(1+pt) represent
every element of GR(p2, p2n)∗ exactly pn(pn − 2) times.
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Lemma 6. For any a ∈ GR(p2, p4n)∗,

pn∑
i=0

pn−1∑
j=0

∣∣ξi+j(1 + pxj)Rpn ∩ (ξiP + a)
∣∣ = pn − 1.

Proof. We compute the frequency of an element a ∈ GR(p2, p4n)∗ appearing in the multiset

B :=

pn⋃
i=0

pn−1⋃
j=0

(ξi+j(1 + pxj)Rpn − ξiP ).

Let u ∈ Tpn and ξs, v ∈ T ∗pn . Since

ξi+j+s(1 + pxj)(1 + pu)− pvξi+pn = ξi+j+s(1 + p(xj + u− vξpn−j−s)),

we have

ξi+j(1 + pxj)Rpn − ξiP =
{
ξi+j+s(1 + p(xj + u− vξpn−j−s)) : ξs ∈ T ∗pn , u, v ∈ Tpn

}
\
{
ξi+j+s(1 + p(xj + u)) : ξs ∈ T ∗pn , u ∈ Tpn

}
.

Since ξp
n−j−s 6∈ T ∗pn , we have

{p(u− vξpn−j−s) : u, v ∈ Tpn} = pTp2n .

Hence,{
ξi+j+s(1 + p(xj + u− vξpn−j−s)) : ξs ∈ T ∗pn , u, v ∈ Tpn

}
= ξi+jT ∗pn(1 + pTp2n).

It is clear that
pn⋃
i=0

pn−1⋃
j=0

ξi+jT ∗pn(1 + pTp2n)

contains every element of GR(p2, p4n)∗ exactly pn times. On the other hand, we have

pn⋃
i=0

pn−1⋃
j=0

{
ξi+j+s(1 + p(xj + u)) : ξs ∈ T ∗pn , u ∈ Tpn

}
= T ∗p2n

pn−1⋃
j=0

{(1 + p(xj + u)) : u ∈ Tpn} ,

which contains every element of GR(p2, p4n)∗ exactly once. Hence, B contains every
element of GR(p2, p4n)∗ exactly pn − 1 times.

Lemma 7. For any a ∈ I∗p2n,

pn∑
i=0

|ξiP ∩ (ξiP + a)| = pn − 2.
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Proof. We consider the multiset

C :=

pn⋃
i=0

{ξi+pnpξ(pn+1)s − ξi+pnpξ(pn+1)t : s, t = 0, 1, . . . , pn − 2, s 6= t}.

Since the multiset {p(ξ(pn+1)s−ξ(pn+1)t) : s, t = 0, 1, . . . , pn−2, s 6= t} covers every element
of I∗pn exactly pn − 2 times, C covers every element of I∗p2n exactly pn − 2 times.

We are now ready for proving Theorem 1.

Proof of Theorem 1. For any nonzero a ∈ GR(p2, p4n), by Lemmas 4–7, we have

pn∑
i=0

|Di ∩ (Di + a)| =
pn−1∑

j 6=j′;j,j′=0

pn∑
i=0

|ξi+j(1 + pxj)Rpn ∩ (ξi+j
′
(1 + pxj′)Rpn + a)|

+

pn∑
i=0

pn−1∑
j=0

|ξi+j(1 + pxj)Rpn ∩ (ξi+j(1 + pxj)Rpn + a)|

+

pn∑
i=0

pn−1∑
j=0

∣∣ξi+j(1 + pxj)Rpn ∩ (ξiP + a)
∣∣

+

pn∑
i=0

pn−1∑
j=0

∣∣ξiP ∩ (ξi+j(1 + pxj)Rpn + a)
∣∣+

pn∑
i=0

|ξiP ∩ (ξiP + a)|

=

{
p2n(pn − 1) + pn − 2, if a ∈ Ip2n ,
pn(pn − 1)(pn − 1) + pn(pn − 2) + 2(pn − 1), if GR(p2, p4n)∗,

= p3n − p2n + pn − 2.

This completes the proof of Theorem 1.

4 Disjoint difference families from GR(22, 22s)

In this section, we follow the notations of Section 2. In particular, we treat the case
where p = 2 and s an arbitrary positive integer. We present an infinite family of disjoint
difference families from GR(22, 22s) by using cosets of the unit group {1, 3} of the subring
GR(22, 22).

4.1 A bijection between F2s/F2 and a (2s − 1, 2s−1, 2s−2) difference set in F∗
2s

We begin with finding a “good” bijection from F2s/F2 to a (2s − 1, 2s−1, 2s−2) difference
set in F∗2s .

Let r be a fixed element of F2s such that Tr2s/2(r) = 1, where Tr2s/2 is the trace
function from F2s to F2. It is clear that

{x : Tr2s/2(x) = 1, x ∈ F∗2s} = {β2 + β + r : β ∈ F2s}. (6)

the electronic journal of combinatorics 24(3) (2017), #P3.23 8



Note that the set (6) forms a difference set in F∗2s [14, Theorem 2.1.1]. Then, we consider
the following bijection g from F2s/F2 to the (2s − 1, 2s−1, 2s−2) difference set D := {x−1 :
Tr2s/2(x) = 1, x ∈ F∗2s}:

g(β + F2) = (β2 + β + r)−1.

Put f := g−1. Let γ be a fixed primitive element of F2s . For each γi, 1 6 i 6 2s − 2,
there are 2s−2 pairs (u, v) ∈ D2 such that uv−1 = γi. Let Pi be the set of such pairs, i.e.,
Pi := {(u, v) ∈ D2 : uv−1 = γi}.

Lemma 8. The bijection f : D → F2s/F2 defined above satisfies that for each i,⋃
(u,v)∈Pi

(f(u)γi + f(v)) = F2s . (7)

Proof. We compute the frequency of each element t ∈ F2s appearing in the multiset⋃
(u,v)∈Pi

(f(u)γi + f(v)). This number can be described in terms of characters as follows:

1

22s

∑
x,y∈F2s

∑
α,β∈F2s

ψ(y(βγi + α + t))ψ(x((β2 + β + r)γi − (α2 + α + r)))

=
1

22s

∑
x,y∈F2s

∑
α,β∈F2s

ψ(xα2 + xα + yα)ψ(xβ2γi + xβγi + yβγi)ψ(yt+ xrγi + xr),

where ψ is the canonical additive character of F2s . Here,∑
α∈F2s

ψ(xα2 + xα + yα) =

{
2s, if x = (x+ y)2,
0, otherwise,

and ∑
β∈F2s

ψ(xβ2γi + xβγi + yβγi) =

{
2s, if xγi = (xγi + yγi)2,
0, otherwise.

By noting that i 6= 0, since x = (x + y)2 and xγi = (xγi + yγi)2 can not happen
simultaneously except for the trivial case x = y = 0, we have

1

22s

∑
x,y∈F2s

∑
α,β∈F2s

ψ(xα2 + xα + yα)ψ(xβ2γi + xβγi + yβγi)ψ(yt+ xrγi + rx) = 1.

This completes the proof of the lemma.

Lemma 9. The bijection f : D → F2s/F2 satisfies that⋃
u∈D

(f(u)− u−1) = F2s . (8)

Proof. The assertion follows from the following transformation:⋃
u∈D

(f(u)− u−1) = {β − (β2 + β + r) : β ∈ F2s} = {β2 + r : β ∈ F2s} = F2s .
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4.2 Construction and proof

The bijection f : D → F2s/F2 defined in the previous subsection also induces a bijection
between a difference set X in T ∗2s and I2s/I2 via the following maps: σ1 : F∗2s → T ∗2s
defined by σ1(γ

i) = ξi and σ2 : F2s/F2 → I2s/I2 defined by σ2(γ
i + F2) = 2(ξi + T2). Let

h be the induced map from X to I2s/I2.
Consider the set

Di = ξi

(
P ∪

(⋃
x∈X

x(1 + h(x))

))
, 0 6 i 6 2s − 2, (9)

where P = {2}.

Theorem 10. Let h be the bijection from X to I2s/I2 defined above. Then, the sets Di,
i = 0, 1, . . . , 2s − 2, defined in (9) form a disjoint difference family in (GR(22, 22s),+)
with parameters (v, k, λ, b) = (22s, 2s + 1, 2s, 2s − 1).

It is clear that
⋃2s−2
i=0 ξiP = I∗2s . Furthermore, since

⋃
x∈X(1 + h(x)) = P2s by the

definition of h, we have

2s−2⋃
i=0

⋃
x∈X

ξix(1 + h(x)) =

(
2s−2⋃
i=0

ξi

)(⋃
x∈X

(1 + h(x))

)
= T ∗2sP2s = GR(22, 22s)∗.

Hence, Di, i = 0, 1, . . . , 2s − 2, partition GR(22, 22s) \ {0}.
We now prove this theorem by the following two lemmas.

Lemma 11. Let P ′i := {(x, y) ∈ X2 : xy−1 = ξi}. For each i = 1, 2, . . . , 2s − 2,

T ∗2s
⋃

(x,y)∈P ′
i

(x(1 + h(x)) + y(1 + h(y))) = GR(22, 22s)∗.

Proof. Note that

T ∗2s
⋃

(x,y)∈P ′
i

(x(1 + h(x)) + y(1 + h(y))) = T ∗2s
⋃

(x,y)∈P ′
i

(ξi(1 + h(x)) + (1 + h(y))).

Write h(x) = 2(x′+T2) and h(y) = 2(y′+T2). Then, ξi(1+h(x))+(1+h(y)) is expressed
as

ξi(1 + 2x′ + 2T2) + (1 + 2y′ + 2T2) = ξi + 1 + 2(ξi(x′ + T2) + y′ + T2).

Put ξi + 1 = ξki(1 + 2`i). Then,

ξi + 1 + 2(ξi(x′ + T2) + y′ + T2) = ξki(1 + 2(`i + ξ−ki(ξi(x′ + T2) + y′ + T2))).
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We now consider the set
⋃

(x,y)∈P ′
i
2(ξi(x′+ T2) + y′+ T2). By the isomorphism σ from I2s

to F2s mapping 2ξi to γi, 0 6 i 6 2s − 2, and 0 ∈ I2s to 0 ∈ F2s , we have

σ(
⋃

(x,y)∈P ′
i

2(ξi(x′ + T2) + y′ + T2)) =
⋃

(u,v)∈Pi

(γif(u) + f(v)).

By Lemma 8, this set coincides with F2s . In other words,
⋃

(x,y)∈P ′
i
2(ξi(x′+T2)+y′+T2)) =

I2s . This completes the proof of the lemma.

Lemma 12. It holds that

T ∗2s
⋃
x∈X

(x(1 + h(x)) + P ) = GR(22, 22s)∗.

Proof. Write h(x) = 2(x′ + T2). Then, T ∗2s
⋃
x∈X(x(1 + h(x)) + P ) is expressed as

T ∗2s
⋃
x∈X

x(1 + 2(x′ + T2 − x−1)).

We now consider the set
⋃
x∈X 2(x′ + T2 − x−1). By the isomorphism σ, we have

σ(
⋃
x∈X

2(x′ + T2 − x−1)) =
⋃
u∈D

(f(u)− u−1).

By Lemma 9, this set coincides with F2s . In other words,
⋃
x∈X 2(x′ + T2 − x−1) = I2s .

This completes the proof of the lemma.

We are now ready for proving our main theorem of this section.

Proof of Theorem 10. For each nonzero a ∈ GR(22, 22s), we compute the number

2s−2∑
i=0

|Di ∩ (Di + a)|.

By Lemma 11, for each a ∈ GR(22, 22s)∗, we have

2s−2∑
i=0

∣∣∣ξi ⋃
x∈X

x(1 + h(x)) ∩
(
ξi
⋃
x∈X

x(1 + h(x)) + a
)∣∣∣ = 2s − 2.

On the other hand, since the number of elements in I∗2s occurring as differences between
elements in xh(x) is two, for each a ∈ I∗2s

2s−2∑
i=0

∣∣∣ξi ⋃
x∈X

x(1 + h(x)) ∩
(
ξi
⋃
x∈X

x(1 + h(x)) + a
)∣∣∣ = 2s.

Finally, by Lemma 12, for each a ∈ GR(22, 22s)∗, we have

2s−2∑
i=0

∣∣∣ξi ⋃
x∈X

x(1 + h(x)) ∩
(
ξiP + a

)∣∣∣+
2s−2∑
i=0

∣∣∣ξiP ∩ (ξi ⋃
x∈X

x(1 + h(x)) + a
)∣∣∣ = 2.

This completes the proof of Theorem 10.
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x ∈ T ∗33/T ∗3 T ∗3 ξ2 T ∗3 ξ4 T ∗3 ξ5 T ∗3 ξ6 T ∗3 ξ7
h(x) ∈ I33/I3 3ξ17 + I3 3ξ6 + I3 3ξ2 + I3 3ξ15 + I3 3ξ4 + I3

x ∈ T ∗33/T ∗3 T ∗3 ξ8 T ∗3 ξ10 T ∗3 ξ11 T ∗3 ξ12
h(x) ∈ I33/I3 3ξ8 + I3 3ξ5 + I3 3ξ + I3 I3

Table 1: A bijection between a (13, 9, 6) difference set in T ∗33/T ∗3 and I33/I3

5 Disjoint difference families from GR(32, 36)

In this section, we consider a generalization of the construction of disjoint difference
families given in Section 4. Let p be a prime and s, n be positive integers such that n | s.
Let X be a ( p

s−1
pn−1 , p

s−n, ps−2n(pn − 1)) difference set on T ∗ps/T ∗pn and set Y = Ips/Ipn . Let
h be a bijection from X to Y . Consider the set

Di = ξi

(
P ∪

(⋃
x∈X

x(1 + h(x))

))
, 0 6 i 6

ps − pn

pn − 1
, (10)

where P = pT ∗pn .

Problem 13. Find a bijection h such that {D0, D1, . . . , D(ps−pn)/(pn−1)} forms a disjoint
difference family in (GR(p2, p2s),+).

We checked by computer that such a disjoint difference family exists in the case where
(p, s, n) = (3, 3, 1). The polynomial x3 + 2x2 + 3 + 1 ∈ Z9[x] is a monic basic irreducible
polynomial having a root ξ of order 33 − 1 = 26. Then, T33 = {0, 1, ξ, , . . . , ξ25} and
P = {3, 6}. Let

S = {0, ξ, ξ2, ξ4, ξ5, ξ6, ξ8, ξ15, ξ17}.

Then, 1 + 3S forms a system of representatives for P33/P3. Furthermore, the set

X := T ∗3 {ξ2, ξ4, ξ5, ξ6, ξ7, ξ8, ξ10, ξ11, ξ12}

is a (13, 9, 6) difference set in T ∗33/T ∗3 . Define the map h : X → I33/I3 as in Table 1.
Then, the sets

Di = ξi
(
P ∪

( ⋃
x∈X

x(1 + h(x))
))
, 0 6 i 6 12,

form a disjoint difference family in (GR(32, 36),+) ' Z3
9 with parameters (v, k, λ, b) =

(729, 56, 55, 13).

Remark 14. We could not generalize this example into an infinite family. When we try
to generalize the example, it is natural to consider the equality

{x ∈ Fps : Trps/pn(x) = 1} = {βpn − β + r : β ∈ Fps},
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where r is a fixed element of Fps satisfying Trps/pn(r) = 1, similarly to (6). Then, analogous
to the construction given in Section 4, we can consider the map g from Fps/Fpn to the
difference set {x−1F∗pn : Trps/pn(x) = 1, x ∈ Fps} ⊆ F∗ps/F∗pn defined by

g(β + Fpn) = (βp
n − β + r)−1F∗pn .

However, this map does not yield a disjoint difference family in (GR(32, 36),+). Hence,
we need a modification of this construction. We leave this as an open problem to the
readers.

6 Concluding remarks

In this paper, we give two constructions of disjoint difference families from Galois rings
by carefully choosing cosets of the unit group of a subring. In this section, we explain
how our constructions are related to known constructions of disjoint difference families in
finite rings.

As far as the author knows, two general constructions of disjoint difference families
in finite rings (not finite fields) have been known; one is a recursive construction using
difference matrices, and the other is a construction using cosets of a unit subgroup of the
ring similarly to our construction. However, both of the constructions can not fit with
our constructions as explained below.

A typical recursive construction given in [1] assumes the existence of two difference
families in groups of order u and u′, respectively, with the same block size k 6 u, u′ and a
combinatorial object, called a difference matrix. Then, the resulting difference family is
of order v = uu′ and with block size k. In this case, it is clear that v > k2. On the other
hand, our new difference families satisfy that v < k2. Hence, our difference families can
not be obtained from the recursive construction.

Also, the following basic construction of disjoint difference families in finite rings was
given in [11, Theorem 3.7] (see also [10, Theorem 3.3]). Let R be a finite commutative ring
with an identity and B be a subgroup of the unit group U of R such that the differences
occurring in B are all in U . Define a relation “x ∼ y” for x, y ∈ R\{0} by xB = yB, which
gives an equivalence relation. Let S be a system of representatives for the equivalence
classes modulo B in R \ {0}. Then, {sB : s ∈ S} forms a disjoint difference family in
(R,+). On the other hand, each block of our difference family is a union of cosets of
the unit group of a subgring together with a coset of the maximal ideal of the subring
removing the zero. Hence, the known construction can not fit with our new construction.
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