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Abstract

Goulden and Jackson (1996) introduced, using Jack symmetric functions, some
multivariate generating series ψ(x,y, z; 1, 1 + β) with an additional parameter β
that may be interpreted as a continuous deformation of the rooted bipartite maps
generating series. Indeed, it has the property that for β ∈ {0, 1}, it specializes to
the rooted, orientable (general, i.e. orientable or not, respectively) bipartite maps
generating series. They made the following conjecture: coefficients of ψ are poly-
nomials in β with positive integer coefficients that can be written as a multivariate
generating series of rooted, general bipartite maps, where the exponent of β is an
integer-valued statistic that in some sense “measures the non-orientability” of the
corresponding bipartite map.

We show that except for two special values of β = 0, 1 for which the combinatorial
interpretation of the coefficients of ψ is known, there exists a third special value
β = −1 for which the coefficients of ψ indexed by two partitions µ, ν, and one
partition with only one part are given by rooted, orientable bipartite maps with
arbitrary face degrees and black/white vertex degrees given by µ/ν, respectively.
We show that this evaluation corresponds, up to a sign, to a top-degree part of
the coefficients of ψ. As a consequence, we introduce a collection of integer-valued
statistics of maps (η) such that the top-degree of the multivariate generating series
of rooted bipartite maps with only one face (called unicellular) with respect to η
gives the top-degree of the appropriate coefficients of ψ. Finally, we show that the
b-conjecture holds true for all rooted, unicellular bipartite maps of genus at most 2.
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1 Introduction

1.1 Maps

Roughly speaking, a map is a graph drawn on a certain topological surface such as the
sphere or the Klein bottle (see Section 2.3 for precise definitions). This simple object
carries both combinatorial and geometric informations so it turned out that maps ap-
pear naturally in many different contexts. In particular, they have deep connections with
various branches of discrete mathematics, algebra, or physics (see e.g. [18, 7] and refer-
ences therein). One of the major steps in the study of maps is developing methods for
their enumeration (either by generating functions, matrix integral techniques, algebraic
combinatorics, or bijective methods) which is now a well established domain on its own.
Moreover, in many areas in mathematics and physics map enumeration is crucial. We
refer to [20] – a great introductory text on the enumeration of maps – which shows how
studying enumerative properties of maps is of great importance in many different contexts.

In this paper we will focus on an interesting connection, explored mainly by Goulden
and Jackson [9], between map enumeration and symmetric functions theory. This con-
nection led to a twenty years old open problem, called b-conjecture, that will be the main
subject of this paper.

1.2 Enumeration of bipartite maps in terms of Jack polynomials

We define a map as a connected graph embedded into a surface (i. e. compact, connected
2-manifold without boundary) in a way that the faces (connected components of the
complement of the graph) are simply connected. A hypermap (and, by duality, bipartite
map) is a face two-colored map (vertex two-colored map), so that each edge separates
faces (vertices) of different colors. A map is rooted by distinguishing the root, that is the
unique side and the beginning of the selected edge. A rooted hypermap (bipartite map,
by duality) has the black root face (vertex, respectively), by convention, where root face
(vertex, respectively) is the unique face (vertex, respectively) incident to the root. An
example of a bipartite map is illustrated in Fig. 1.

Let mτ
µ,ν (m̃τ

µ,ν , respectively) be the number of rooted hypermaps on orientable (all,
respectively) surfaces, such that µ lists the degrees of black faces, ν lists the degrees of
white faces and τ lists the degrees divided by two of vertices (since a map is face two-
colored, all vertex degrees are even numbers). By duality mτ

µ,ν (m̃τ
µ,ν , respectively) is also

the number of rooted bipartite maps on orientable (all, respectively) surfaces, such that
µ lists the degrees of black vertices (we say µ is a black vertex distribution), ν lists the
degrees of white vertices (ν is a white vertex distribution) and τ lists the degrees divided
by two of faces (τ is a face distribution). As standard in enumerative combinatorics, we
will consider the multivariate generating series (m.g.s, for short) for these objects:

M(x,y, z; t) =
∑
n>1

tn
∑

|τ |=|µ|=|ν|=n

mτ
µ,νpτ (x)pµ(y)pν(z), (1)
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Figure 1: Example of a rooted, bipartite non-orientable map with the face distribution
τ = (12, 4), the black vertex distribution ν = (3, 3, 2), and the white vertex distribution
µ = (3, 2, 2, 1). Faces are indicated by blue and red shaded regions and the root is
indicated by a thick beginning of the selected edge with a distinguished side. The map is
drawn on a projective plane: the left side of the square should be glued to the right side,
as well as bottom to top, as indicated by the arrows.

M̃(x,y, z; t) =
∑
n>1

tn
∑

|τ |=|µ|=|ν|=n

m̃τ
µ,νpτ (x)pµ(y)pν(z), (2)

where pτ (x) is a power-sum symmetric function, i.e.

pτ (x) =
∏
i

pτi(x), pk(x) = xk1 + xk2 + · · · for k > 1,

and |µ| := µ1 +µ2 + · · · denotes the size of the list µ. The use of the power-sum symmetric
functions as formal variables in the above m.g.s is justified by the remarkable relation,
explored by Goulden and Jackson, between bipartite maps enumeration, and symmetric
functions theory. Let J

(α)
λ (x) be the Jack symmetric function indexed by a partition λ in

the infinite alphabet x and let 〈·, ·〉α be the α-deformation of the Hall scalar product on
the space of symmetric functions (see Section 2.2 for a precise definition). We also use
Y for the set of all integer partitions. Goulden and Jackson defined in their article [9] a
family of coefficients

(
hτµ,ν(α− 1)

)
µ,ν,τ

by the following equation:

ψ(x,y, z; t, α) := αt
∂

∂t
log

(∑
λ∈Y

J
(α)
λ (x) J

(α)
λ (y) J

(α)
λ (z) t|λ|

〈Jλ, Jλ〉α

)

=
∑
n>1

tn

( ∑
µ,ν,τ`n

hτµ,ν(α− 1) pµ(x) pν(y) pτ (z)

)
, (3)

where µ, ν, τ ` n means that µ, ν and τ are three partitions of size n.
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This rather involved definition is motivated by the below described combinatorial
interpretations of ψ for two particular values of α.

Theorem 1.1 ([11, 10]). The following equalities of the m.g.s. hold true:

M(x,y, z; t) = ψ(x,y, z; t, 1), M̃(x,y, z; t) = ψ(x,y, z; t, 2).

In other words, Theorem 1.1 says that for any partitions µ, ν, τ ` n the coefficient
hτµ,ν(0) = mτ

µ,ν counts some rooted, orientable, bipartite maps and hτµ,ν(1) = m̃τ
µ,ν counts

some rooted, general (i.e. orientable or not), bipartite maps. Thus we may wonder
whether, for a general β := α − 1, the quantity hτµ,ν(β) also admits a nice combinatorial
description. Note that hτµ,ν(β) is a priori a quantity depending on a parameter α, and
describing it as a quantity depending on a different parameter β := α − 1 might seem
be artificial. However, it turned out that this shift seems to be a right one for finding a
combinatorial interpretation of hτµ,ν(β), as suggested by Goulden and Jackson [9] in the
following conjecture.

Conjecture 1.2 (b-conjecture). For all partitions τ, µ, ν ` n > 1 the quantity hτµ,ν(β)
can be expressed as:

hτµ,ν(β) =
∑
M

βη(M), (4)

where the summation index runs over all rooted, bipartite maps M with the face distribu-
tion τ , the black vertex distribution µ, the white vertex distribution ν, and where η(M) is
a nonnegative integer which is equal to 0 if and only if M is orientable.

1.3 b-conjecture and main result

The above conjecture is still to be resolved, but some progress towards determining a
suitable statistic η, based on the combinatorial interpretation of the so-called marginal
sums for maps, has been made in the last two decades. Note that there is a natural
bijection between the set of rooted maps with n edges, which are not necessarily bipartite,
and the set of rooted, bipartite maps with the white vertex distribution given by ν = (2n).
In particular, the following m.g.s

Ψ(x,y; t, 1 + β) :=
∑
n>1

tn
∑
µ,τ`2n

hτµ,(2n)(β)pτ (x)pµ(y)

is of special interest, as Ψ(x,y; t, 1) is the m.g.s. for rooted orientable maps, and Ψ(x,y; t, 2)
is the m.g.s. for all rooted maps. A formula for Ψ(x,y; t, 1 + β) involving the Selberg
integral was found by Goulden, Harer and Jackson [8], who suggested that using their
formula it is possible to find a combinatorial interpretation of the following marginal sum

lrµ(β) =
∑
`(τ)=r

hτµ,(2n)(β)

in terms of a map statistic as in Eq. (4) (here µ, τ ` 2n, and the summation is taken
over all partitions τ which have precisely r nonnegative parts; see Section 2.1 for a precise
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definition). A weaker result was first established by Brown and Jackson [1], who found
some statistics η of maps that describe the total marginal sum

kµ(β) =
∑
r>1

lrµ(β) =
∑
τ`2n

hτµ,(2n)(β).

A simpler description of η was found by La Croix [14], who used it to give a combinatorial
description of lrµ(β), as suggested by Goulden, Harer and Jackson.

However, not much was known about an algebraic or combinatorial structure of hτµ,ν(β)
for arbitrary partitions τ, µ, ν ` n, until very recently we have proved in a joint paper
with Féray [5] the following theorem:

Theorem 1.3. For all partitions τ, µ, ν ` n > 1 the quantity hτµ,ν(β) is a polynomial in
β of degree 2 + n− `(τ)− `(µ)− `(ν) with rational coefficients.

In this paper we are focused on a combinatorial part of b-conjecture, especially in the
case of rooted, bipartite maps, with only one face (called unicellular). Let us fix a positive
integer n, and two partitions µ, ν ` n. According to Conjecture 1.2, there exists some
statistic η on the set of all rooted bipartite maps, such that the quantity h

(n)
µ,ν(β) is given

by the m.g.s. of rooted, unicellular, bipartite maps with the black (white, respectively)
vertex distribution µ (ν, respectively). We show that except two special values of β = 0, 1

for which the combinatorial interpretation of h
(n)
µ,ν(β) was known, there exists a third

special value β = −1 for which we provide a combinatorial interpretation of h
(n)
µ,ν(β). As

a result we prove the following:

Theorem 1.4. For all partitions µ, ν ` n > 1

h(n)
µ,ν(β) =

∑
M

βη(M),

holds true for β ∈ {−1, 0, 1}, where the summation index runs over all rooted, bipartite
unicellular maps M with the black vertex distribution µ, the white vertex distribution ν,
and where η(M) is a nonnegative integer which is equal to 0 if and only ifM is orientable.

We show that the top-degree part of the polynomial h
(n)
µ,ν(β) is equal, up to a sign, to its

evaluation at β = −1, thus we show that it is given by some rooted, bipartite, unicellular
maps with the black (white, respectively) vertex distribution µ (ν, respectively), which
are called “unhandled” (the origin of this terminology will be clear later, after we define an
appropriate statistic η; see Section 3). We also show that these maps are in a bijection with
rooted, orientable, bipartite maps with the black (white, respectively) vertex distribution
µ (ν, respectively) and with the arbitrary face distribution.

Finally, we show that b-conjecture holds true for an infinite family of rooted, unicellular
bipartite maps of genus at most 2:
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Theorem 1.5. For all partitions µ, ν ` n > 1 satisfying `(µ) + `(ν) > n− 3 and τ = (n)
the b-conjecture holds true, i.e.

h(n)
µ,ν(β) =

∑
M

βη(M),

where the summation index runs over all rooted, bipartite unicellular maps M with the
black vertex distribution µ, the white vertex distribution ν, and η(M) is a nonnegative
integer which is equal to 0 if and only if M is orientable.

1.4 Related problems

We finish this section by mentioning two very similar problems. First, a very similar
conjecture to Conjecture 1.2 was also stated by Goulden and Jackson [9] for power-sum
expansion of the m.g.s that is inside the paranthesis of log in Eq. (3). The latter is
conjecturally a m.g.s. of matchings, where the exponent of β is some combinatorial integer-
valued statistic. Some special cases of the conjecture have been solved by Goulden and
Jackson in their original article [9] and recently by Kanunnikov and Vassilieva [13, 24],
but in general the conjecture is still open. The polynomiality of the coefficients of the
studied m.g.s. was proven by the author of this paper together with Féray [4].

A second related problem is the investigation of Jack characters – suitably normal-
ized coefficients of the power-sum symmetric function expansion of Jack polynomials. It
was suggested by Lassalle that a combinatorial description of these objects might exist.
This combinatorial setup was indicated by some polynomiality and positivity conjectures
that he stated in a series of papers [15, 16]. Although these conjectures are not fully
resolved, it was proven by us together with Śniady [6] that in some special cases bipartite
maps together with some statistics that “measures their non-orientability” give the de-
sired combinatorial setup. Even more, Śniady [22] found the top-degree part of the Jack
character indexed by a single partition with respect to some gradation. His result states
that this top-degree part can be written as a linear combination of certain functionals,
where the index set is the set of rooted, orientable, bipartite maps with the arbitrary face
distribution. While conjecturally it should be expressed as a linear combination of the
same functionals, where the index set is a set of some special rooted, unicellular, bipar-
tite maps. Śniady was able to find a bijection between these two index sets [21], which
inspired us to investigate the combinatorial side of b-conjecture in the case of unicellular
maps, presented in this paper.

Note added in revision: After submission of the current paper, the aforementioned
result of Śniady appeared in a joint paper with Czyżewska-Jankowska [3].

We cannot resist stating that there must be a deep connection between all these
problems, and understanding it would be of great interest.

1.5 Organization of the paper

In Section 2 we describe all necessary definitions and background. Then, we introduce a
family of statistics of the maps and we study their properties in Section 3. Section 4 is
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devoted to the proof of Theorem 1.4 and its consequence, which says that the family of
statistics presented in the previous section describes the top-degree part of the polynomial
h

(n)
µν (β) associated with unicellular maps. In Section 5 we introduce some special subfamily

of the statistics presented in Section 3, we study their properties and we give a proof of
Theorem 1.5. We finish this paper by stating some concluding remarks and questions in
Section 6.

2 Preliminaries

2.1 Partitions

We call λ := (λ1, λ2, . . . , λl) a partition of n if it is a weakly decreasing sequence of positive
integers such that λ1 + λ2 + · · · + λl = n. Then n is called the size of λ while l is its
length. As usual we use the notation λ ` n, or |λ| = n, and `(λ) = l. We denote the set
of partitions of n by Yn and we define a partial order on Yn, called the dominance order,
in the following way:

λ 6 µ ⇐⇒
∑
i6j

λi 6
∑
i6j

µi for any positive integer j.

Given two partitions λ ∈ Yn and µ ∈ Ym we can construct a new partition λ ∪ µ ∈ Yn+m

obtained by merging parts of λ and µ and ordering them in a decreasing fashion.

2.2 Jack polynomials

In this section we recall the definition of Jack polynomials and present several known
results about them. Since they are well-established (mostly in a seminal work of Stanley
[23]), we do not give any proof, but explicit references.

Consider the vector space Sym of the symmetric functions Λ over the field of ratio-
nal functions Q(α) and endow it with a scalar product 〈·, ·〉α defined on the power-sum
symmetric functions basis by the following formula (and then extended by bilinearity):

〈pλ, pµ〉α = zλα
`(λ)δλ,µ,

where
zλ :=

∏
i>1

imi(λ)mi(λ)!. (5)

Here, mi(λ) denotes the number of parts of λ equal to i. This is a classical deformation
of the Hall scalar-product (which corresponds to α = 1).

Now, Jack polynomials J
(α)
λ are symmetric functions with an additional parameter α

uniquely determined (see [19, Section VI,10]) by the following conditions:

(C1) J
(α)
λ =

∑
µ6λ a

λ
µmµ, where αλµ ∈ Q(α);
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(C2) [m1|λ| ]J
(α)
λ := αλ

1|λ| = |λ|!;

(C3) 〈J (α)
λ , J

(α)
µ 〉α = 0 for λ 6= µ;

where mλ denotes the monomial symmetric function.

2.2.1 Basic properties

We present here several well-known identities for Jack polynomials that will be useful for
us later.

〈J(n), J(n)〉α = (1 + α)(1 + 2α) · · · (1 + (n− 1)α)αnn!, (6)

J
(α)
(n) =

∑
µ`n

n!αn−`(µ)

zλ
pµ, (7)

J
(α)
λ ((t, 0, 0, . . . )) =

{
(1 + α)(1 + 2α) · · · (1 + (n− 1)α)tn for λ = (n),

0 for `(λ) > 1.
(8)

Eq. (6) and Eq. (7) are proved in [23, Proposition 2.2], and Eq. (8) is a consequence of
the monomial basis expansion given in [12].

2.3 Surfaces, graphs, and maps

A map is an embedding of a connected graph G into a surface S (i.e. compact, connected,
2-dimensional manifold) in a way that the connected components of S \ G, called faces,
are simply connected. Our graphs may have loops and multiple edges. Maps are always
considered up to homeomorphisms. A map is unicellular if it has a single face. Unicellular
maps are also called one-face maps. We will call a map orientable if the underlying surface
is orientable; otherwise we will call it non-orientable. In this paper we will be mostly
focused on non-orientable maps.

S(M)

(a)

M

(b)

Figure 2: The map M from Fig. 1 is depicted on (b) as a ribbon graph. (a) shows stars
S(M) associated with M .
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For the purposes of the current paper it is sometimes convenient to represent a map
as a ribbon graph as follows: each vertex is represented as a small disc and each edge is
represented by a thin strip connecting two discs in a way that a walk along the boundary
of the ribbons corresponds to the walk along the boundary of the faces of a given map. To
draw such a picture it is helpful to do it in the following steps: we first draw vertices (as
small discs) together with thin strips attached around them, which represent associated
half-edges. By definition half-edges are obtained by removing middle-points of all the
edges (each edge consists of exactly two half-edges). We call this data the stars of the
map M and we denote it by S(M). See Fig. 2a for an example of S(M) associated with
the map M from Fig. 1. Next, for each edge e of M , we can connect the borders of the
strips representing two half-edges belonging to e in two possible ways (see Fig. 5). We
connect them in a way so that after connecting all the strips from S(M) the walk along
the boundary of the ribbons corresponds to the walk along the boundary of the faces of
a given map. Fig. 2b presents the map M from Fig. 1 represented as a ribbon graph.

A map is rooted if it is equipped with a distinguished half-edge called the root, together
with a distinguished side of this half-edge. The vertex incident to the root is called the
root vertex, and the edge containing the root is called the root edge. There is an equivalent
way to root a map by choosing a corner (called the root corner) and its orientation, where
a corner in a map is an angular sector determined by a vertex, and two half-edges which
are consecutive around it. One can then define the root half-edge as the one lying to
the left of the root corner (viewed from the root vertex and according to the root corner
orientation). In this paper we will use both conventions depending on the situation, and
we will represent rooted maps by shading the root corner and/or by indicating the root
that is incident to it.

The degree of a vertex is the number of incident half-edges, or equivalently the number
of incident corners, while the degree of a face is the number of corners lying in that face, or
equivalently the number of edges incident to it, with the convention that an edge incident
to the same face on both sides counts for two.

If M is a map, we let V (M), E(M) and F (M) be its sets of vertices, edges and faces.
Their cardinalities v(M), e(M) and f(M) satisfy the Euler formula:

e(M) = v(M) + f(M)− 2 + 2g(M), (9)

where g(M) denotes the genus of a map M , that is the genus of the underlying surface. We
recall that the Euler characteristic of the surface is 2−2g(M), thus g(M) is a nonnegative
integer when M is orientable or half-integer when M is non-orientable. We also denote
by C(M) the set whose elements are indexed by faces of M . For a fixed face f ∈ F (M)
the associated element in C(M) is the set of all corners belonging to f .

A map is bipartite if its vertices can be colored in two colors in such a way that adjacent
vertices have different colors (say black and white). For a rooted, bipartite map, the color
of its root vertex is always taken to be black, by convention.

Let µ, ν, τ be integer partitions. We say that a rooted bipartite map M has type
(µ, ν; τ) if µ lists the degrees of black vertices (we say µ is the black vertex distribution),
ν lists the degrees of white vertices (ν is the white vertex distribution) and τ lists the
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degrees of faces divided by two (τ is the face distribution). We denote the set of rooted

bipartite maps of type (µ, ν; τ) on orientable (all, respectively) surfaces by Mτ
µ,ν (M̃τ

µ,ν ,
respectively). Note that all three partitions µ, ν, τ have necessarily the same size n, which
is equal to the number of edges of the corresponding map, while its lengths correspond to
the number of black and white vertices and the number of faces, respectively.

From now on, all the maps are rooted, and bipartite, thus by saying a “map”, what we
really mean is a “rooted, bipartite map”.

3 Measure of non-orientability in b–conjecture

In this section we are going to construct a function that associates with a mapM a nonneg-
ative integer η(M) which, in some sense, measures its non-orientability. This “measure of
non-orientability” gives, in some special cases, a correct answer to b-conjecture, i.e. Eq. (4)
holds true.

The construction presented in this section is due to La Croix [14] who used it to prove
that the following marginal sum

lrµ(β) =
∑
`(τ)=r

hτµ,(2n)(β)

can be expressed in the same form as the right hand side of Eq. (4), where the maps in the
summation index are not necessarily bipartite, have r faces and the vertex distribution µ.
The construction of La Croix was originally defined for all (not necessarily bipartite) maps,
but in this paper we are dealing with the case of bipartite maps, thus in the following all
maps will be rooted and bipartite.

3.1 Root-deletion procedure as measure of non-orientability

Let e be the root edge of the map M . Note that by deleting e from M we create a new
map or, possibly, two new maps and we canonically choose how to root them. Recall that
rooting a map is the same as distinguishing an oriented corner (called the root corner),
see Section 2.3. The root corner of M is contained in the unique corner c of M \ {e} and
we set it as the root corner of the connected component of M \ {e} containing c with an
orientation inherited from the root corner of M . In the case where deleting e from M
decomposes it into two connected components, we additionally distinguish the first corner
in the root face of M following the root corner and we notice that it is contained in the
unique corner c′ of M \ {e} that belongs to the different connected component of M \ {e}
than the corner c. We equip it with the same orientation as the root face of M and we
define it as the root corner of the second component of M \ {e}, see Fig. 3.

Now, we can classify the root edges e of the map M in the following manner:

• if e disconnects M (i.e. M \{e} has two connected components), e is called a bridge;

• otherwise M \ {e} is connected and there are following possibilities:
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M M2 M1

Figure 3: A rooted map M on the left hand side and two rooted maps M1 and M2 obtained
from M by removing its root edge. Root corners are indicated by dark grey areas.

– the number of faces of M \ {e} is smaller by 1 than the number of faces of M
– in that case e is called a border ;

– the number of faces of M \ {e} is equal to the number of faces of M – in that
case e is called a twisted edge;

– the number of faces of M \ {e} is greater by 1 than the number of faces of M
– in that case e is called a handle.

We are now ready to define a statistic η introduced by La Croix.

Definition 3.1. [14, Definition 4.1] A measure of non-orientability is an invariant η(M)
defined for all rooted maps M such that for any map M the invariant η(M) associated
with it satisfies the following properties:

• If M has no edges, then η(M) = 0;

• Otherwise, let e be the root edge of M . We have following possibilities:

– e is a bridge. Then η(M) = η(M1) + η(M2), where M \ {e} = M1 ∪M2;

– e is a border. Then η(M) = η(M \ {e});
– e is twisted. Then η(M) = η(M \ {e}) + 1;

– e is a handle. Then there exists a unique map M ′ with the root edge e′

constructed by twisting the edge e in M such that e′ is a handle and such
that M \ {e} = M ′ \ {e′}. See Fig. 4. In this case we have

{η(M), η(M ′)} = {η(M \ {e}), η(M \ {e}) + 1}.

Moreover, at most one of M and M ′ is orientable, and its measure of non-
orientability is equal to 0 while a measure of non-orientability of the other
(nonorientable) map is equal to 1.

Remark. Note that there are many function η satisfying all the conditions given by Def-
inition 3.1. Thus, the above definition gives a whole class of functions, and any such
function is called a measure of non-orientability.
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M

e

(a)

M ′

e′

(b)

Figure 4: (a) represents diagrammatically a map M , where the root edge e is a handle,
and (b) represents diagrammatically a map M ′ obtained from M by twisting its root edge
e, i.e. the unique map M ′ different from M such that M \ {e} = M ′ \ {e′}, where e′ is the
root edge of M ′ and such that two distinct corners of M \ {e} containing two half-edges
of e are the same as two distinct corners of M ′ \ {e′} containing two half-edges of e′. Two
white areas on (a) ((b), respectively) represents two different faces of M \ {e} = M ′ \ {e′}
merged by a root e (e′, respectively). To help the reader noticing the difference between
M and M ′, we shade in dark grey and orient according with the root orientation the first
visited corner after the root corner in both maps.

Let M be a rooted map. We label all its edges according to their appearance in
the root-deletion procedure. That is, the root edge of M has label 1, the root edge of
M \ {e} has label 2, etc. Here, there must be a convention chosen in which connected
component should be treated first, after removing a bridge. Our convention is that we
first decompose the connected component with the root corner that contained the root
corner of the previous map. That is, we first decompose the map M1 from Fig. 3.

From now on, we are going to use the following notation: for the rooted map M , and
for any 1 6 i 6 e(M) we denote by ei(M) the edge with the label i and we set M i+1 for
the rooted map, which is the connected component of M i \ {ei(M)} containing ei+1(M).
M1 := M and M e(M)+1 is the unique map with no edges, by convention.

For a given positive integer n and partitions µ, ν, τ ` n we can decompose the set
M̃τ

µ,ν of maps of type (µ, ν; τ) in the following manner:

M̃τ
µ,ν =

⋃
i>0

M̃τ
µ,ν;i, (10)

where M̃τ
µ,ν;i is the set of maps of type (µ, ν; τ) such that exactly i handles appeared

during their root-deletion process. In other words, it is the set of rooted maps M of type
(µ, ν; τ) such that for all natural numbers k ∈ N, except i, the root of Mk is not a handle.

We call maps from the set M̃τ
µ,ν;0 unhandled. Finally, we denote the finite set {1, 2, . . . , n}

by [n]. Here, we present a classical, but important for us, relation between a genus of a
given map and its root-deletion procedure.
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Lemma 3.2. Let M ∈ M̃τ
µ,ν;i be a rooted map with n edges, and let j(M) denotes the

number of positive integers j ∈ [n] for which the root of M j is twisted. Then the following
equality holds true:

j(M) + 2i = 2g(M), (11)

where g(M) is a genus of the map M .

Proof. We are going to prove that Eq. (11) holds true for all maps by an induction on the
number of edges of M .

It is straightforward to check that there is only one rooted, bipartite map with one
edge. Its root edge is a bridge and it is planar (i.e. its genus is equal to 0). Thus,
Eq. (11) holds true in this case. Now, we fix n > 2 and we assume that Eq. (11) holds

true for all maps with at most n − 1 edges. Let M ∈ M̃τ
µ,ν;i be a map with n edges

and let i(M) denotes the number of handles appearing in the root-deletion process of M ,
i.e. i(M) = i. We are going to analyze how the Euler characteristic varies during the
root-deletion process. It is straightforward from the classification of root edges and from
Eq. (9) that we have following possibilities:

• e is a bridge. Then g(M) = g(M1) + g(M2), i(M) = i(M1) + i(M2), and j(M) =
j(M1) + j(M2), where M \ {e} = M1 ∪M2. Thus, by an inductive hypothesis

j(M)+2i(M) = j(M1)+j(M2)+2 (i(M1) + i(M2)) = 2g(M1)+2g(M2) = 2g(M);

• e is a border. Then g(M) = g(M \{e}), i(M) = i(M \{e}), and j(M) = j(M \{e}).
Thus, by an inductive hypothesis

j(M) + 2i(M) = j(M \ {e}) + 2i(M \ {e}) = 2g(M \ {e}) = 2g(M);

• e is twisted. Then g(M) = g(M \ {e}) + 1/2, i(M) = i(M \ {e}), and j(M) =
j(M \ {e}) + 1. Thus, by an inductive hypothesis

j(M) + 2i(M) = j(M \ {e}) + 2i(M \ {e}) + 1 = 2g(M \ {e}) + 1 = 2g(M);

• e is a handle. Then g(M) = g(M \ {e}) + 1, i(M) = i(M \ {e}) + 1, and j(M) =
j(M \ {e}) + 1. Thus, by an inductive hypothesis

j(M) + 2i(M) = j(M \ {e}) + 2i(M \ {e}) + 2 = 2g(M \ {e}) + 2 = g(M).

Since these are all possible cases, we proved by induction that Eq. (11) holds true for any
rooted, bipartite map M , which finishes the proof.

Corollary 3.3. Let M ∈ M̃τ
µ,ν;i be a rooted map with n edges. Then

0 6 n + 2 − (`(µ) + `(ν) + `(τ)) − 2i 6 η(M) 6 n + 2 − (`(µ) + `(ν) + `(τ)) − i.

the electronic journal of combinatorics 24(3) (2017), #P3.24 13



Proof. The Euler formula given by Eq. (9) yields

2g(M) = 2 + e(M)− f(M)− v(M) = n+ 2− (`(µ) + `(ν) + `(τ)) .

Combining it with Eq. (11) we have the following formula:

0 6 j(M) = n+ 2− (`(µ) + `(ν) + `(τ))− 2i(M).

It is now enough to notice an obvious inequality which comes strictly from the definition
Definition 3.1 of η:

0 6 n+ 2− (`(µ) + `(ν) + `(τ))− 2i(M) = j(M)

6 η(M) 6 j(M) + i(M) = n+ 2− (`(µ) + `(ν) + `(τ))− i(M),

which finishes the proof.

3.2 Twist involution

Let M be a rooted map such that its root edge e is a handle. We recall that there exists the
unique rooted map M ′ different from M with the root edge e′ which is a handle, too, and
such that the half-edges belonging to e are lying in the same corners of M \{e} = M ′\{e′},
as the half-edges belonging to e′. Notice that the map M ′ is, roughly speaking, obtained
from M by “twisting” its root. In this section we are going to formalize and generalize
the concept of “twisting edges”.

Definition 3.4. Let M be a rooted map with n edges and let us fix an integer i ∈ [n].
We denote by hi(M) the root of M i and by hi(M)′ the second half-edge belonging to
ei(M). Let c1 and c̃1 be two corners adjacent to hi(M) and oriented towards hi(M)′. We
denote by τiM the map whose ribbon graph is obtained from the ribbon graph of M by
“twisting” the edge ei(M). That is, by connecting the half-edges hi(M) and hi(M)′ in the
(unique!) different way than they are connected in M . One can describe this construction
in a more formal way as follows. Let c2 (c̃2, respectively) be the unique oriented corner
adjacent to hi(M)′, which is the first corner visited after c1 (c̃1, respectively) – see Fig. 5a.
There exists a unique map τiM obtained from M by replacing the edge ei(M) by the edge
e′i connecting hi(M) with hi(M)′ in τiMsuch that the oriented corner adjacent to hi(M)′

and visited after c1 (c̃1, respectively) is the corner c̃2 (c2, respectively) – see Fig. 5b. We
call the operator τi twisting of i-th edge of M .

Remark. Note that M and τiM are the same graphs (thus the sets E(M), and E(τiM)
are the same, and it makes sense to compare properties of an edge e in M to its properties
in τiM), but it is not true in general that τiτjM is the same map as τjτiM . The following
proposition resolves when the twisting operators commute.

Proposition 3.5. Fix a positive integer n, partitions µ, ν ` n, and a map M with n
edges. Then
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c1 c2

c̃1 c̃2

ei(M)

hi(M) hi(M)′

(a)

c̃2

c1 c2

c̃1

e′i
hi(M) hi(M)′

(b)

Figure 5

1. for any i ∈ [n] the operator τi is an involution on the set of maps with black (white,
respectively) vertex distribution µ (ν, respectively),

2. let I = {i1 < · · · < ik} be a non-empty subset of [n] such that for all i ∈ I
the root edge of M i is not a bridge. Then, for any permutation σ ∈ SI the map
τσ(i1) · · · τσ(ik)M is the same, the labels of the edges in M and in τσ(i1) · · · τσ(ik)M
coincide, and for any j ∈ [n] the root edge of M j is a bridge iff the root edge of
(τi1 · · · τikM)j is a bridge.

Proof. Let us fix i ∈ [n]. It is clear from the construction that the operator τi preserves
white and black vertex distributions. Now, notice that twisting an i-th edge in any map
M does not change the labels of the first i edges and it may change the labels of the other
edges only if the edge ei(M) is a bridge in M i. Thus, the first i labels of the edges in
both maps M and τiM are the same, so τ 2

iM = M .
We are going to prove the second item by an induction on size of the set I. We have

already proved above that the inductive assertion holds true for |I| = 1, so let us fix an
integer 1 < k 6 n. We assume that the inductive assertion holds true for all subsets
I ⊂ [n] of size smaller then k. Let I = {i1 < · · · < ik} be a non-empty subset of [n] such
that for all i ∈ I the root edge of M i is not a bridge and let σ ∈ SI . Then, there exists
an integer l ∈ [k] and a permutation π ∈ S[k]\{l} such that

τσ(i1) · · · τσ(ik)M = τil

(
τiπ(1) · · · τ̂iπ(l) · · · τiπ(k)M

)
,

where we use a standard notation that the word a1 · · · ai−1âiai+1 · · · an is obtained from
the word a1 · · · ai−1aiai+1 · · · an by removing the letter ai. If l = 1, then the labels in M

and
(
τiπ(1) · · · τ̂iπ(l) · · · τiπ(k)M

)
coincide, and the root edge of

(
τiπ(1) · · · τ̂iπ(l) · · · τiπ(k)M

)i1
is not a bridge since the root edge of M i1 is not a bridge, by the inductive assertion. Thus,
the labels in M , and in τσ(i1) · · · τσ(ik)M coincide, too. If l > 1, then the inductive assertion
says that the labels of M and τj1 · · · τjmM are the same for all subsets {j1, . . . , jm} ⊂ I
of size m < k, so

τil

(
τiπ(1) · · · τ̂iπ(l) · · · τiπ(k)M

)
= τil (τi1 · · · τ̂il · · · τikM)

= τi1 (τilτi2 · · · τ̂il · · · τikM) = τi1 · · · τikM (12)
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by the inductive hypothesis. Moreover, again by the inductive hypothesis, the labels in
the maps were not changed when we were swapped operators τ with different indices.
Finally, for any j ∈ [n], the graphs M j and (τi1 · · · τikM)j are the same. Since being a
bridge is the same as being a disconnecting edge of the graph, the proof is finished.

Lemma 3.6. Let η be a measure of non-orientability. Then, for all positive integers n, i
and partitions µ, ν ` n, there exists an involution ση on the set M̃(n)

µ,ν;i, which has the
property that

(−1)η(ση(M)) = (−1)η(M)+1.

Moreover, for each M ∈ M̃(n)
µ,ν;i there exist natural numbers 1 6 i1 < · · · < ik 6 n such

that ση(M) = τik · · · τi1M and such that for each j ∈ [k] the root of M ij is not a bridge.

Proof. We are going to construct ση by induction on n. For n = 1 all rooted bipartite
maps with n edges are unhandled so we set ση as an empty map.

We denote by i(M) the number of handles appearing in the root-deletion process of
M . We fix n > 1 and we assume that the involution ση is already defined for all unicellular
maps with at most n edges which are not unhandled. Let M be a unicellular map with
n + 1 edges. Since M has a unique face, e1(M) cannot be a border so there are the
following possibilities:

• e1(M) is a handle. In this case we set ση(M) = τ1M . Clearly (−1)η(M) =
(−1)η(ση(M))+1 and i(M) = i(ση(M));

• e1(M) is twisted. In this case M2 is a unicellular map with n edges. Thus, by the
inductive hypothesis there exist natural numbers 1 6 i1 < · · · < ik 6 n such that
i(M2) = i(τik · · · τi1M2) and such that

(−1)η(τik ···τi1M
2) = (−1)η(M2)+1.

Let us consider two rooted maps M1 = τik+1 · · · τi1+1M and M2 = τik+1 · · · τi1+1τ1M .
Both maps M1 and M2 have a property that after deletion of its root we obtain the
same rooted map M2

1 = M2
2 = τik · · · τi1M2 (Proposition 3.5 asserts that the labels

in M2
1 and in M2

2 , respectively, correspond to the labels of M1 and M2, respectively,
shifted by 1). Thus, exactly one map from M1 and M2 is a map M ′ with the unique
face (and its root is twisted) while the second one has two faces (and its root is a
border) and we set ση(M) = M ′. Strictly from the construction, one has

(−1)η(ση(M)) = (−1)η(ση(M2))+1 = (−1)η(M2) = (−1)η(M)+1

and
i(M) = i(M2) = i(ση(M

2)) = i(ση(M)2) = i(ση(M));

• e1(M) is a bridge. In this case M2 = M1 ∪M2 is a disjoint sum of two unicellular
maps (and we recall the convention for labeling: the edge e2(M) belongs to M1).
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If M1 is not unhandled, then there exists a positive integer k and natural numbers
1 6 i1 < · · · < ik 6 e(M1) such that i(τik · · · τi1M1) = i(M1) and such that

(−1)η(τik ···τi1M1) = (−1)η(M1)+1.

In this case we set ση(M) := τik+1 · · · τi1+1M and since ση(M)2 = ση(M1)∪M2 it is
clear that (−1)η(ση(M)) = (−1)η(M)+1 and

i(M) = i(M1) + i(M2) = i(ση(M1)) + i(M2) = i(ση(M)).

If the map M1 is unhandled, then the map M2 is not unhandled and there exist
a positive integer k and natural numbers 1 6 i1 < · · · < ik 6 e(M2) such that
i(τik · · · τi1M1) = i(M1) and such that

(−1)η(τik ···τi1M2) = (−1)η(M2)+1.

In this case we set ση(M) := τik+e(M1)+1 · · · τi1+e(M1)+1M . Since (ση(M))2 = M1 ∪
ση(M2) it is clear that (−1)η(ση(M)) = (−1)η(M)+1 and

i(M) = i(M2) = i(ση(M2)) = i(ση(M)).

Now it is straightforward from the construction and from the inductive hypothesis that if
ση(M) associated with the rooted map M is of the form τik · · · τi1M , then ση(ση(M)) is
of the same form, i.e. ση(ση(M)) = τik · · · τi1ση(M). But for each j ∈ [k] the root edge of
M ij is not a bridge. Thus

ση(ση(M)) = τik · · · τi1(τik · · · τi1M) = τik · · · τi1(τi1 · · · τikM) = M,

where the last equalities come from Proposition 3.5, which finishes the proof.

3.3 Algebraic properties of a measure of non-orientability

Let η be a measure of non-orientability and let µ, ν, τ be partitions of a positive integer
n. We define the following statistic associated with η:

(Hη)
τ
µ,ν (β) :=

∑
M∈M̃τ

µ,ν

βη(M). (13)

The main purpose of this section is to investigate algebraic properties of (Hη)
τ
µ,ν that

will be of the great importance in the proof of Theorem 1.4. From now on, we fix a
positive integer n, partitions µ, ν, τ ` n, and a measure of non-orientability η.

Proposition 3.7. Let g := n+2−(`(µ) + `(ν) + `(τ)). Then, for any nonnegative integer
i, the following quantity

(aη)
τ
µ,ν;i (β) :=

∑
M∈M̃τ

µ,ν;i

βη(M)+2i−g (14)

is a polynomial in β of degree at most i.
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Proof. It is a direct consequence of Corollary 3.3, which says that for any map M ∈ M̃τ
µ,ν;i

the following inequalities hold:

0 6 η(M) + 2i− g 6 i.

Corollary 3.8. The quantity (Hη)
τ
µ,ν (β) is a polynomial in β with positive integer coef-

ficients. Moreover, it has the following form:

(Hη)
τ
µ,ν (β) =

∑
06i6[g/2]

(aη)
τ
µ,ν;i (β)βg−2i, (15)

where g := n+ 2− (`(µ) + `(ν) + `(τ)).

Proof. Strictly from the definition of (Hη)
τ
µ,ν (β) given by Eq. (13), one has the following

formula:
(Hη)

τ
µ,ν (β) =

∑
i>0

∑
M∈M̃τ

µ,ν;i

βη(M) =
∑

06i6[g/2]

(aη)
τ
µ,ν;i (β)βg−2i,

where the last equality is simply a definition of aτµ,ν;i(β) given by Eq. (14).

Proposition 3.9. For any positive integer i > 1 one has

(aη)
(n)
µ,ν;i (−1) = 0.

Proof. Plugging β = −1 into Eq. (14) one has

(−1)n+1−`(µ)−`(ν) (aη)
(n)
µ,ν;i (−1) =

∑
M∈M̃(n)

µ,ν;i

(−1)η(M).

Lemma 3.6 says that for each i > 1 there exists an involution ση on the set M̃(n)
µ,ν;i which

has a property that (−1)η(ση(M)) = (−1)η(M)+1. This means that∑
M∈M̃(n)

µ,ν;i

(−1)η(M) =
∑

M∈M̃(n)
µ,ν;i

(−1)η(ση(M)) = −
∑

M∈M̃(n)
µ,ν;i

(−1)η(M) = 0.

Thus, (aη)
(n)
µ,ν;i (−1) = 0 which finishes the proof.

Corollary 3.10. The following equality holds true:

(−1)n+1−`(µ)−`(ν) (Hη)
(n)
µ,ν (−1) = (aη)

(n)
µ,ν;0 (−1) = #M̃(n)

µ,ν;0. (16)

Proof. It is enough to plug β = −1 into Eq. (15) to obtain

(−1)g (Hη)
(n)
µ,ν (−1) =

∑
i>0

(aη)
(n)
µ,ν;i (−1) = (aη)

(n)
µ,ν;0 (−1),

where g := n+ 1− `(µ)− `(ν) and the last equality is a consequence of Proposition 3.9.
An equality

(aη)
(n)
µ,ν;0 (−1) = #M̃(n)

µ,ν;0

is obvious from Corollary 3.3.
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4 b–conjecture for unicellular maps and measure of non-orientability

4.1 Marginal sum

We are going to prove that fixing white and black vertex distributions and allowing any
face distribution, the corresponding sum of coefficients in ψ(x,y, z; t, 1 + β) is given by a
measure of non-orientability of the appropriate maps. The developments in this section
are similar to that of [1, Section 3.5] except that here we work in a more general setup (in
[1, Section 3.5] ν = (2n/2) with n even, while here ν is an arbitrary partition) and with a
slightly different function η. We start with the following proposition.

Proposition 4.1. For any positive integer n and for any partitions µ, ν ` n, the following
identity holds true: ∑

τ`n

hτµ,ν(β) = (1 + β)n+1−`(µ)−`(ν)
∑
τ`n

hτµ,ν(0).

Proof. We know that∑
τ`n

hτµ,ν(β) = [tnpµ(x)pν(y)]ψ(x,y, z; t, α)

∣∣∣∣
z=(1,0,0... )

because of the trivial identity

J
(α)
λ (1, 0, 0, . . . ) = J

(α)
λ (x)

∣∣∣∣
p1(x)=p2(x)=···=1

.

Using Eq. (8) and replacing the scalar product by its expression given in Eq. (6), we
obtain ∑

τ`n

hτµ,ν(β) = [tnpµ(x)pν(y)](1 + β)t
∂

∂t
log

(∑
n>0

tn
J

(α)
(n) (x)J

(α)
(n) (y)

αnn!

)
. (17)

The formula for Jack polynomials indexed by one-part partitions given in Eq. (7) leads
to the following equality:

∑
τ`n

hτµ,ν(β) = (1 + β)[tnpµ(x)pν(y)]t
∂

∂t
log

∑
n>0

tn
∑

λ1,λ2`n

αn−`(λ
1)−`(λ2)n!pλ1(x)pλ2(y)

zλ1zλ2


= (1 + β)n+1−`(µ)−`(ν)[tnpµ(x)pν(y)]t

∂

∂t
log

∑
n>0

tn
∑

λ1,λ2`n

n!pλ1(x)pλ2(y)

zλ1zλ2

 .

But the last expression is simply equal to

(1 + β)n+1−`(µ)−`(ν)[tnpµ
(
x)pν(y)] ψ(x,y, z = (1, 0, 0 . . . ); t, 1

)
(1 + β)n+1−`(µ)−`(ν)

∑
τ`n

hτµ,ν(0),

which finishes the proof.
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We can prove now that the following marginal sum is given by a measure of non-
orientability:

Theorem 4.2. For any measure of non-orientability η, for any positive integer n, and
for any partitions µ, ν ` n, the following identity holds true:∑

τ`n

hτµ,ν(β) =
∑
τ`n

(Hη)
τ
µ,ν (β), (18)

where (Hη)
τ
µ,ν (β) are given by Eq. (13).

Proof. We recall that (Hη)
τ
µ,ν (β) is defined as a weighted sum of some rooted, bipartite

maps (see Eq. (13)). Thus, one can define a statistic (Hη)µ,ν;i (β) as the right hand side
of (18) with a summation restricted to the maps with the root vertex of degree i. We are
going to prove a stronger result, namely

(Hη)µ,ν;i (β) = (1 + β)n+1−`(µ)−`(ν)H̃µ,ν;i, (19)

where H̃µ,ν;i is the number of orientable maps with the root vertex of degree i, the black
vertex distribution µ, and the white vertex distribution ν. If Eq. (19) holds true, then∑

τ`n

(Hη)
τ
µ,ν (β) =

∑
i>1

(Hη)µ,ν;i (β) = (1 + β)n+1−`(µ)−`(ν)
∑
i>1

H̃µ,ν;i

= (1 + β)n+1−`(µ)−`(ν)
∑
τ`n

hτµ,ν(0) =
∑
τ`n

hτµ,ν(β).

The third equality uses the combinatorial interpretation of hτµ,ν(0) (see Theorem 1.1) while
the last equality comes from Proposition 4.1. In this way we have shown that Eq. (19)
implies Eq. (18). Thus, it is sufficient to prove Eq. (19).

Before we start a proof we introduce some notation. Let r1, . . . , rk be some positive
integers such that r1 + · · ·+ rk = n. Let us fix a partition µ ` n. We define Sp(r1,...,rk)(µ)
as the set of sequences of partitions (µ1, . . . , µk) such that µ1 ` r1, . . . , µ

k ` rk and such
that their sum gives the fixed partition µ. That is,

⋃
16i6k µ

i = µ. Moreover, for any
positive integer i > 1 and partition µ containing a part equal to i, we set

µ↓(i) =
(
µ \ (i)

)
∪ (i− 1).

We are going to prove Eq. (19) by induction on n. Let n = 1; there exists only one
partition of size n. That is, µ = ν = (1). Moreover, there is only one map with one edge,
and it is planar, so clearly H(1),(1);1(β) = 1 = H̃(1),(1);1. Let us fix n > 2 and assume now
that the inductive assertion holds true for all partitions of size smaller than n and all
integers i > 1. Let us fix two partitions µ, ν ` n and an integer i > 1. Let M be a map
with the root vertex of degree i, and the black (white, respectively) vertex distribution
µ (ν, respectively). We are going to understand the structure of M \ {e}, where e is the
root edge of M . There are two possibilities:
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• M \{e} is a disjoint sum of two maps M1 and M2 (they are ordered, i.e. their indices
matter) with root vertices of degrees i− 1, and j − 1, respectively, the black vertex
distributions µ1, and µ2, respectively, and the white vertex distributions ν1, and ν2,
respectively, where

(µ1, µ2) ∈ Sp(l,n−l−1)(µ↓(i)),

(ν1, ν2) ∈ Sp(l,n−l−1)(ν↓(j)),

and 1 6 j, l + 1 6 n are some integers;

• M \ {e} is a single map M ′ with the root vertex of degree i − 1, the black vertex
distribution µ↓(i), and the white vertex distribution ν↓(j), where 2 6 j 6 n is some
integer.

Moreover,

• for any ordered pair of maps M1, and M2 with root vertices of degrees i − 1, and
j − 1, respectively, the black vertex distribution µ1, and µ2, respectively, and the
white vertex distribution ν1, and ν2, respectively, where

(µ1, µ2) ∈ Sp(l,n−l−1)(µ↓(i)),

(ν1, ν2) ∈ Sp(l,n−l−1)(ν↓(j)),

and 1 6 j, l + 1 6 n are some integers, there exists the unique map M with the
root vertex of degree i and the black (white, respectively) vertex distribution µ (ν,
respectively), such that M1 = M1 ∪M2. In this case η(M) = η(M1) + η(M2);

• for any map M ′ with the root vertex of degree i − 1, the black vertex distribution
µ \ (i) ∪ (i− 1) and the white vertex distribution ν \ (j) ∪ (j − 1), where 2 6 j 6 n
is some integer, there exists

2(j − 1)mj−1(ν) + 2(j − 1)

maps with the root vertex of degree i and the black (white, respectively) vertex
distribution µ (ν, respectively), such that removing its root edge gives a map M ′.
Indeed, each map with n edges and these properties is obtained by adding an edge
to M ′, which connects the root corner r of M ′ to some corner c of M ′ incident to a
white vertex of degree j − 1. There are (j − 1)mj−1(ν) + (j − 1) such corners (since
there are mj−1(ν) + 1 white vertices of degree j − 1 in the map M ′) and for each
chosen corner there are exactly two ways to connect it with the root corner of M ′ by
an edge (these two ways correspond to construction of maps M and τ1M – we recall
that τ1M is a map obtained from M by twisting its root edge; see Definition 3.4).
Now, notice that there are following possibilities:

– if the root corner r of M ′ and the corner c belong to the same face of M ′ then
exactly one rooted bipartite map from {M, τ1M} has the twisted root edge,
while the second one has the root edge which is a border. Thus

{η(M), η(τ1M)} = {η(M ′), η(M ′) + 1};
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– if the root corner r of M ′ and the corner c belong to different faces of M ′ then
both root edges of M and τ1M are handles. Thus, strictly from the definition
of η, one has

{η(M), η(τ1M)} = {η(M ′), η(M ′) + 1}.

Above analysis leads us to the following recursion obtained by removing root edges
from the maps appearing in the summation index in the definition of (Hη)µ,ν;i (β) given
by Eq. (13):

(Hη)µ,ν;i (β) =
∑

16j,l6n

∑
(µ1,µ2)∈Sp(l−1,n−l)(µ↓(i)),

(ν1,ν2)∈Sp(l−1,n−l)(ν↓(j))

(Hη)µ1,ν1;i−1 (β) (Hη)ν2,µ2;j−1 (β)

+ (1 + β)
∑

26j6n

(j − 1)(mj−1(ν) + 1) (Hη)µ↓(i),ν↓(j);i−1 (β).

Using the inductive assertion, we obtain:

(Hη)µ,ν;i (β) = (1 + β)n+1−`(µ)−`(ν)


∑

16j,l6n

∑
(µ1,µ2)∈Sp(l−1,n−l)(µ↓(i)),

(ν1,ν2)∈Sp(l−1,n−l)(ν↓(j))

H̃µ1,ν1;i−1H̃ν2,µ2;j−1

+
∑

26j6n

(j − 1)(mj−1(ν) + 1)H̃µ↓(i),ν↓(j);i−1

)
.

To finish the proof, it is enough to notice that the following recursion holds true:

H̃µ,ν;i =


∑

16j,l6n

∑
(µ1,µ2)∈Sp(l−1,n−l)(µ↓(i)),

(ν1,ν2)∈Sp(l−1,n−l)(ν↓(j))

H̃µ1,ν1;i−1H̃ν2,µ2;j−1

+
∑

26j6n

(j − 1)(mj−1(ν) + 1)H̃µ↓(i),ν↓(j);i−1

)
.

Above relation comes from the analysis of the process of removing the root edge from an
orientable map with the root vertex of degree i, the black vertex distribution µ, and the
white vertex distribution ν. Such analysis is almost identical to the analysis we did in the
general case, and we leave it as an easy exercise.

4.2 Some consequences of the polynomiality and the marginal sum results

We start with an observation that polynomials hτµ,ν(β) have some specific form:
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Lemma 4.3. For any positive integer n and any partitions µ, ν, τ ` n one has the follow-
ing expansion:

hτµ,ν(β) =

{∑
06i6[g/2] a

τ
µ,ν;iβ

g−2i(β + 1)i for `(µ) + `(ν) + `(τ) 6 2 + n,

0 otherwise ;

where g := 2 + n− (`(µ) + `(ν) + `(τ)) and aτµ,ν;i ∈ Q.

Proof. La Croix proved in [14, Corollary 5.22] that Lemma 4.3 holds true, assuming
polynomiality of hτµ,ν(β) (that he was not able to prove). Theorem 1.3 completes the
proof.

We are now ready to prove Theorem 1.4

Proof of Theorem 1.4. Theorem 1.1 already says that the cases β = 0, 1 correspond to
counting maps on orientable, and all (orientable or non-orientable), respectively, surfaces.
Thus, we need to establish the remaining identity:

h(n)
µ,ν(−1) = (Hη)

(n)
µ,ν (−1).

Note now that for fixed partitions µ, ν ` n the variable g := 2 + n− (`(µ) + `(ν) + `(τ))
taken over all partitions τ ` n realizes a maximum for τ = (n). Hence

[β1+n−(`(µ)+`(ν))]
∑
τ`n

hτµ,ν(β) = [β1+n−(`(µ)+`(ν))]h(n)
µ,ν(β) = (−1)1+n−(`(µ)+`(ν))h(n)

µ,ν(−1)

by Lemma 4.3 and, similarly,

[β1+n−(`(µ)+`(ν))]
∑
τ`n

(Hη)
τ
µ,ν (β) = [β1+n−(`(µ)+`(ν))] (Hη)

(n)
µ,ν (β)

= (−1)1+n−(`(µ)+`(ν)) (Hη)
(n)
µ,ν (−1)

by Eq. (15) and Proposition 3.9. By Theorem 4.2 the following equality holds

[β1+n−(`(µ)+`(ν))]
∑
τ`n

hτµ,ν(β) = [β1+n−(`(µ)+`(ν))]
∑
τ`n

(Hη)
τ
µ,ν (β)

which implies the desired result.

Remark. The equality

[β1+n−(`(µ)+`(ν))]
∑
τ`n

hτµ,ν(β) = [β1+n−(`(µ)+`(ν))]
∑
τ`n

(Hη)
τ
µ,ν (β),

combined with Proposition 4.1, Proposition 3.9 and Lemma 4.3 says that the top degree
coefficient of h

(n)
µ,ν(β) is enumerated by unhandled maps of type (µ, ν; (n)), but it is also

enumerated by orientable maps with the black (white, respectively) vertex distribution µ
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(ν, respectively) and the arbitrary face degree. In fact, one can use the proof of Proposi-
tion 4.1 to construct a bijection between these two sets recursively. An interesting result
of Śniady [22, Corollary 0.5] states that the top-degree part of Jack characters indexed by
a one-part partition can be also expressed as a linear combination of certain functions in-
dexed by orientable maps. Śniady informed us in private communication [21] that he can
construct a similar bijection, but for different “measure of non-orientability”, which in-
spired us to initiate a research presented in this section. The connection between striking
similarities in both results seems to be far from being understood.

5 Low genera cases and orientations

In this section we are going to prove Theorem 1.5. In fact, we are going to show that
there is an infinite family of measures of non-orientability for which, in low genera cases,
b-conjecture holds true.

5.1 A measure of non-orientability given by orientations

Let M be a map. We say that O is an orientation of M if it defines an orientation of
each face of M such that

• the orientation of the root face given by O is consistent with the orientation given
by the root;

• if M is orientable then O is the canonical orientation of M , that is the orientation
for which each face of M is oriented clockwise (counterclockwise, respectively) iff
the root face is oriented clockwise (counterclockwise, respectively).

Let O be a set of orientations of all rooted maps (set of orientations, for short),
i.e. for any map M there exists the unique orientation O of M such that O ∈ O. We are
going to define a function ηO associated with O that takes as values maps and returns a
nonnegative integer that, in some sense, “measures non-orientability” of the given map.
This function will be defined recursively using the same procedure of deleting the root
edge from the given map, as in Definition 3.1.

Definition 5.1. Let O be a set of orientations. We set ηO(M) = 0 for M without edges,
we fix a positive integer n, and we assume that ηO(M) is already defined for all maps
with at most n−1 edges. Let M be a map with n edges and let O ∈ O be the orientation
associated with M2 (in the case where M2 is a disjoint sum of two maps M1,M2, we
are taking two associated orientations O1, O2 ∈ O, respectively). Let c′ be the unique
corner of M2 containing the first corner c of M visited after the root corner of M and
c′ inherits an orientation from the corner c. We set ηO(M) := ηO(M2) if the orientation
of c′ is consistent with the orientation given by O and we say that e is of the first kind ;
otherwise we set ηO(M) := ηO(M2) + 1 and we say that e is of the second kind (in the
case where M2 = M1 ∪M2 is a disjoint sum of two rooted maps we set, by convention,
ηO(M) := ηO(M1) + ηO(M2) and we set e to be of the first kind).
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It is easy to see that for each set of orientations O, the following holds true:

• if the root edge e of M is a bridge then ηO(M) = ηO(M \ {e}),

• if the root edge e of M is a border then ηO(M) = ηO(M \ {e}),

• if the root edge e of M is a twisted edge then ηO(M) = ηO(M \ {e}) + 1,

• if the root edge e of M is a handle then {ηO(M), ηO(τ1M)} = {ηO(M \{e}), ηO(M \
{e}) + 1}.

In other words, for any orientationO of all rooted maps, the measure of non-orientability
ηO associated with O is also a measure of non-orientability given by Definition 3.1. How-
ever, the converse statement is not true, i.e. there are many measures of non-orientability
η which are not given by any set of orientations of all rooted maps.

Remark. Note that we use two different ways to make a distinction between edges: the
first way is by determining their type which can be a bridge, a border, a twisted edge,
or a handle. The second way is by determining their kind which can be the first or the
second. Each type of edges has uniquely determined kind except a handle which can be
both of the first and of the second kind. With this notation, invariant ηO(M) associated
with the rooted map M is equal to the number of edges of the second kind appearing in
its root-deletion process.

We are ready to restate Theorem 1.5 in the more general form:

Theorem 5.2. For a set O of orientations, for any positive integer n, and for any
partitions µ, ν ` n such that `(µ) + `(ν) > n− 3 the following equality holds true:

h(n)
µ,ν(β) = (HηO)(n)

µ,ν (β).

The next subsections are devoted to its proof.

5.2 Unicellular maps of low genera with two handles

In this section we are going to analyze the structure of the unicellular maps of low genera
with two handles, which is necessary for the proof of Theorem 5.2. Since this section is
very technical, we would like to precede it by a description of the main idea of the proof
of Theorem 5.2. We should try to keep it light and a bit informal to motivate the reader
to understand all the technicalities that will appear after this introduction and that are
necessary to present the formal proof of Theorem 5.2.

5.2.1 General idea

Let O be a set of orientations and let us fix a positive integer n and partitions µ, ν ` n
such that `(µ) + `(ν) = n− 3. The most important construction in this section gives an
involution

σO : M̃(n)
µ,ν;2 → M̃(n)

µ,ν;2
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such that
ηO (σO(M)) = 2− ηO(M).

It is an easy exercise (later on it will be explained in details) that having the above
mentioned involution we can use a simple polynomial interpolation argument to prove
Theorem 5.2, thus in the following we are going to focus on the construction of such
involution.

Firstly, we need to understand how a map M ∈ M̃(n)
µ,ν;2 can look like. This map has a

unique face, genus 2, and exactly 2 handles appear during its root-deletion process that
correspond to edges ei(M) and ej(M) with labels j > i. Moreover, Lemma 3.2 asserts that
no twisted edges appear during the root-deletion process of M , thus ηO(M) ∈ {0, 1, 2}
and it depends only on the fact wether the root edges of M i and M j are handles of the
first kind or of the second kind. The most natural idea of how to construct the map
σO(M) is to reverse somehow the root-deletion process of M in a way that the edges of
M and σO(M) with the same labels have the same types and such that the root edges of
σO(M)i and M i are handles of different kinds. Similarly the root edges of σO(M)j and M j

are handles of different kinds. This suggests that the map σO(M) might be constructed
by twisting some of the edges of M in the appropriate way, similar to how it was done
in Lemma 3.6. However, it turned out that in some cases it is impossible and one needs
a deeper analysis of the structure of the map M . In the following section, we present an
example where twisting some edges never works, and we show on this specific example
how to overcome this problem. We believe that this example is the accurate toy-example
of the general case.

5.2.2 Example

Let us consider the following map M ∈ M̃(5)
(5),(5);2 presented in Fig. 6a. Types of the root

edges of the consecutive maps obtained in the root-deletion process of M are as follows:
e1(M) is a handle (of the first kind), e2(M) is a border, e3(M) is a handle (of the first
kind), e4(M) is a border again, and e5(M) is a bridge. We would like to construct σO(M)
by reversing the root-deletion process of M somehow in a way that:

• the edges of M and σO(M) with the same labels have same types

• the root edges of σO(M)3 and M3 are handles of different kinds. Similarly, the root
edges of σO(M)1 and M1 are handles of different kinds.

Thus, σO(M)5 = M5 and σ(M)4 = M4. Since the root edges of σO(M)3 and M3 are
handles of different kinds, σO(M)3 is obtained from M3 by twisting its root edge. Thus,
if we would like to build σ(M) by twisting edges of M , it has to be of the following form:
σ(M) = τ ε11 τ

ε2
2 τ3M , where ε1, ε2 ∈ {0, 1}. However, for all these possible choices of ε1, ε2

the map τ ε11 τ
ε2
2 τ3M does not satisfy above required properties. Indeed, the root edge of the

map (τ ε11 τ2M)2 = τ2M
2 is twisted. See Fig. 6b, which is a problem since we want this root

edge to be a border. If we twist it, that is we consider the map (τ ε11 τ2τ3M)2 = τ1τ2M
2,

then its root edge is a border, so we fix previous problem. However, we encounter another
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e1(M)

e2(M)

e3(M)

e4(M)

e5(M)

M

(a)

(τ ε1τ3M)2 = τ2M
2

(b)

(τ ε1τ2τ3M)2 = τ1τ2M
2

(c)

Figure 6: (a) shows the map M ∈ M̃(5)
(5),(5);2 analyzed in this section. (b) shows that the

map (τ ε1)τ3M)2 is unicellular and its root edge is twisted. (c) shows the map (τ ε1)τ2τ3M)2,
which has two faces and the corners lying in the same face have the same color.

case: half-edges h1(τ ε11 τ2τ3M) and h1(τ ε11 τ2τ3M)′ lie in the same face of τ1τ2M
2, thus the

root edge of τ ε11 τ2τ3M cannot be a handles, see Fig. 6b.
A crucial observation which helps to overcome the problem is the following: the set

of corners lying in the root face of τ1τ2M
2 differs from the set of corners lying in the

root face of M2 (compare Fig. 6c to Fig. 7a). We would like to fix this. One can show
that if we erase the edges e1(M2) and e2(M2) from the map M2, but we do not erase
the corresponding half-edges h1(M2), h1(M2)′, h2(M2), h2(M2)′, then there is a unique
way to choose two pairs from these four half-edges and draw two new edges connecting
half-edges in each pair to obtain a map M ′ different from M2 such that:

• its root edge is a border,

• the set of corners lying in its root face is exactly the same as the set of corners lying
in the root face of M2.

This map is shown in Fig. 7b. Moreover, the root edge of (M ′)2 is a handle of the different
kind than the root edge of M3. Now, we can finish the construction of σO(M). The set
of corners lying in the root face of M ′ is the same as the set of corners lying in the root
face of M2. Thus, if we connect the corners of M ′ corresponding to the root edge of
M by a new edge we will always create a handle (of two possible kinds). Thus, it is
enough to connect these corners by a handle of different kind than the root edge of M
to construct σO(M). In our case it is a handle of the second kind and this map is shown
in Fig. 7c. It is straightforward from this construction that if we repeat this recipe to
construct σO(σO(M)), we construct exactly the map M .

It turned out that the general situation is basically the same. The next section is
devoted to the description of the structure of a map M in a general case when we cannot
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M2

(a)

M ′

(b)

σO(M)

(c)

Figure 7: Comparing (a) to (b) we can see that both maps M2 and M ′ have two faces,
and the corners in the same face have the same colors (red or blue), thus C(M2) = C(M ′).
(c) shows the map σO(M) obtained from M ′ by connecting h1(M) with h1(M ′) in the
appropriate way.

construct σO(M) simply by twisting some edges of M . This description, which is given
in Lemma 5.3 and its proof are very technical. However, the reader should think that a
general picture looks almost the same as the picture from this section: a map M might
have a lot of edges, but only three edges play important role in the construction of σO(M)
and their role is the same as the role of e1(M), e2(M), and e3(M) in the above example.

5.2.3 Details

Let us fix a positive integer n, and partitions µ, ν ` n such that `(µ) + `(ν) = n− 3. Let

M ∈ M̃(n)
µ,ν;2. Then Eq. (11) states that there are no twisted edges in the root-deletion

process of M (since `(µ) + `(ν) = n − 3). Thus, for all positive integers k < i the root
edge of Mk is a bridge and there are two possible situations:

• for all positive integers i < k < j the root edge of Mk is a bridge;

• there exists a unique positive integer i < k < j such that the root edge of Mk is a
border. Then there are still two possible cases:

– C(Mk) = C((τjM)k);

– C(Mk) 6= C((τjM)k).

Note that the map M presented in Section 5.2.2 was exactly the second case of the
second case in the above analysis. We start with a technical lemma that treats this case
in general. All the symbols n, i, j, µ, ν are as above and we recall that for any m ∈ [n] the
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half-edge hm(M) is the root of Mm and hm(M)′ is the second half-edge belonging to the
root edge em(M).

Lemma 5.3. Let M ∈ M̃(n)
µ,ν;2. We assume that there exists a positive integer i < k < j

such that the root edge of Mk is a border and such that C(Mm) = C((τjM)m) for all
positive integers m > k, but C(Mk) 6= C((τjM)k). Then:

(P1) if M ′ is the map created from M by erasing edges ek(M) and ej(M), and merging
pairs of half edges {hk(M), hj(M)′} and {hj(M), hk(M)′} into edges e′k and e′j,
respectively (in arbitrary way), then for all m ∈ [n] the root edge of Mm is a bridge
iff the root edge of (M ′)m is a bridge and hm(M) = hm(M ′);

(P2) there is a unique way to construct a map M ′ as in (P1) such that C((M ′)k) =
C(Mk); then for all m ∈ [n] types of the root edges of Mm and (M ′)m coincide and
for any set O of orientations of all rooted maps the edges ej(M) and ej(M

′) are
handles of different kinds. That is,

{ηO(M j), ηO((M ′)j)} = {0, 1}.

Proof. Let M ′ be a map constructed from M as in (P1). Strictly from the construction
of root-deletion process – see Section 3.1 – it is clear that if m ∈ [n], and the root edges
of both Mm and (M ′)m are not bridges, then the roots of Mm and (M ′)m coincide. It is
also clear that if the root edges of both Mm, and (M ′)m are bridges, and if the second
visited corner after the root corner in both maps Mm+1 and (M ′)m+1 coincide, then the
root of Mm+1 and (M ′)m+1 coincide, too. So in order to prove (P1) it is enough to show
that for all m ∈ [n] the root edge of Mm is a bridge iff the root edge of (M ′)m is a bridge.
We claim that

(?) if one removes the edges containing hk(M) and hj(M) from Mk then the resulting
object F is connected. Moreover, F is obtained by planting some maps into some
corners of M j+1.

This claim easily implies the fact that for all m ∈ [n] the root edge of Mm is a bridge
iff the root edge of (M ′)m is a bridge. This may be shown by induction on m. Assume
that the root edge of Mm is a bridge iff the root edge of (M ′)m is a bridge for all m <
l 6 n. This implies that for all m < l the root hm(M ′) of (M ′)m is equal to the root
hm(M) of Mm. Note that (?) implies that the number of connected components of the
graph M \ {e1(M), . . . , el(M)} is the same as the number of connected components of
M \ {ek(M), ej(M)} \ {e1(M), . . . , el(M)}. But strictly from the definition of M ′, the
last set is equal to M ′ \ {e′k, e′j} \ {e1(M ′), . . . , el(M

′)} which has the same number of
connected components as M ′ \ {e1(M ′), . . . , el(M

′)} by (?). Thus, the root edge of M l is
a bridge iff the root edge of (M ′)l is a bridge, which finishes the proof of (P1).

In order to prove (?), we need to analyze the structure of the map Mk+1. This analysis
will be also crucial in proving (P2), (the structure of the map Mk+1 is shown on Fig. 8).
First of all, it is clear from the classification of types of edges – see Section 3.1 – that
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Mk+1

(a)

Mk+1

ej(M) hj(M)

hj(M)′ f1

f2

l1l2

(b)

Figure 8: (a) shows that the unicellular map Mk+1 is obtained from the unicellular map
M j of genus 1 by planting a collection of trees. (b) represents diagrammatically the
unicellular map Mk+1 – the edge ej(M) is its handle, and two areas f1, f2 represents two
faces of the map Mk+1 \ {ej (M)}, and two oriented arcs l1, l2 correspond to the words
given by reading consecutive corners visited in the root face.

• for all m ∈ [i] both maps Mm, and (τjM)m are unicellular,

• for i < m 6 k both maps Mm, and (τjM)m have two faces iff they contain a
half-edge hk(M) (otherwise they are unicellular),

• for k < m 6 j both maps Mm, and (τjM)m are unicellular.

As a result, all of the connected components of M \ {e1(M), . . . , ej−1(M)} are planar and
unicellular (thus they are trees), except for the component containing the edge ej(M)
which is also unicellular but has genus equal to 1. Indeed, it follows immediately from
Euler formula Eq. (9) and from the definition of types of edges given in Section 3.1. Since
the root edges of all the maps Mm are bridges for k < m < j, the map Mk+1 is obtained
from the unicellular map M j by planting some trees into some corners of it. In particular,
the edge containing hj(M) has the same type in both maps M j and Mk. Thus, it is a
handle. We conclude that Mk+1 \ {ej(M)} is a map with two faces – in particular it is
connected which proves our claim (?).

Above analysis says that if one removes the edge containing hj(M) from the map Mk+1

but does not remove the corresponding half-edges hj(M) and hj(M)′, the resulting object
is a map with two faces f1, and f2 and with two additional half-edges hj(M), hj(M)′ such
that hj(M) lies in some corner belonging to f1, and hj(M)′ lies in some corner belonging
to f2 (see Fig. 8). Let l1 (l2, respectively) be the word given by reading consecutive
corners of the face f1 with additional half-edge hj(M) (f2 with additional half-edge hj(M)′,
respectively) in a way that the word given by reading consecutive corners of the unique
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Mk

ej(M)

ek(M)

hk(M)′

hj(M)

hj(M)′

l′1

l′′1

hk(M)

l′2
l′′2

(a)

(M ′)k

←−
l′′2

l′′1

l′1

←−
l′2

e′k

e′j

hk(M)′

hj(M)

hj(M)′
hk(M)

(b)

Figure 9: (a) represents diagrammatically a map Mk and (b) represents diagrammatically
a map (M ′)k. Indices of edges e′k = e1

(
(M ′)k

)
and e′j = ej−k+1

(
(M ′)k

)
distinguished in

(b) correspond to their labels in M ′.

face of the map Mk+1 with respect to the root orientation is given by the concatenation
l1 · l2 of the words l1 and l2. See Fig. 8. For a given word w, we denote by ←−w the word
obtained from w by reading it backwards (from right to left). Then the word given by
reading consecutive corners of the unique face of (τjM)k+1 = τj−k M

k+1 with respect to

the root orientation is given by the concatenation l1 ·
←−
l2 .

Now, we recall our assumption that C(Mk) 6= C((τjM)k). This is equivalent to saying
that the set of corners belonging to the root face of Mk is different than the set of corners
belonging to the root face of (τjM)k (since both Mk and (τjM)k have exactly two faces).
Thus, the half-edge hk(M) is lying in some corner belonging to l1 and incident to hk+1(M)
and hk(M) divides this corner into two new corners. Similarly hk(M)′ is lying in some
corner belonging to l2 and divides it into two new corners (indeed, if both half-edges
hk(M), and hk(M)′ are lying in l1, then, clearly, the sets of corners belonging to the
root face of Mk and to the root face of (τjM)k coincide, which gives a contradiction
with our assumption). Let l′1, l

′′
1 and l′2, l

′′
2 , respectively be two new words obtained by

reading consecutive corners between hk(M) and hj(M) and between hk(M)′ and hj(M)′,
respectively, as depicted in Fig. 9a. In other words, l1 is a concatenation of (l′1)−, a letter
c1 which corresponds to the corner of Mk+1 containing hk(M), and −(l′′1), where w− (−w,
respectively) is a word obtained from w by removing its last (first, respectively) letter.
Similarly, l2 is a concatenation of (l′2)−, a letter c2 which correspond to the corner of Mk+1

containing hk(M)′, and −(l′′2). Then the word given by reading consecutive corners of the
root face of Mk, starting from the first corner visited after the root corner, is given by the
concatenation l′′2 · l′1, while the word obtained by reading the corners visited consecutively
in the root face of (τjM)k, starting from the first corner visited after the root corner, is

given by the concatenation l′′2 ·
←−
l′′1 ·
←−
l′2 · l′1. In particular, the map (τjM)k is unicellular,
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and its root is twisted, which shows that C(Mk) 6= C((τjM)k), as we assumed.

Finally, in order to construct a map M ′ as in (P1) such that C((M ′)k) = C(Mk)
we need to merge hk(M) with hj(M)′ and hj(M) with hk(M)′ in a way such that the
word given by reading consecutive corners of the root face of (M ′)k with respect to the
root orientation and starting from the first visited corner after the root corner is given

by the concatenation of
←−
l′′2 and l′1. See Fig. 9b. We recall that for k + 1 6 m 6 j, if

the unicellular map Mm ((M ′)m, respectively) contains hj(M), then the edge containing
hj(M) is a handle. Moreover, if we equip two faces f1, f2 of Mm \ {ej (Mm)} (f ′1, f

′
2

of (M ′)m \ {ej (Mm)}, respectively), where f1 (f ′1, respectively) is the root face, into
the orientation inherited from the the root face of Mm ((M ′)m, respectively), then the
orientations of f1, and f ′1 are the same, while the orientations of f2 and f ′2 are opposite
to each other (compare Fig. 9a to Fig. 9b). By Definition 5.1

{ηO(M j), ηO((M ′)j)} = {0, 1}.

Thus, ej(M) and ej(M
′) are handles of dfferent kinds. In particular, for all integers m > k

the types of the root edges of Mm and (M ′)m are the same. Since C((M ′)k) = C(Mk)
and since for all m ∈ [k − 1] the root edges of Mm and (M ′)m contain the same pairs of
half-edges and are not twisted nor bridges, they have the same types, which finishes the
proof.

Now we are going to show that the assumption of Lemma 5.3 that the root edge of
Mk is a border is in fact implied by the assumption that C(Mk) 6= C((τjM)k).

Lemma 5.4. Let M ∈ M̃(n)
µ,ν;2, let i < j be the labels of the edges that are handles in

the root-deletion process of M , and let k < j be the largest positive integer such that
C(Mk) 6= C((τjM)k) (we assume that it exists). Then necessarily i < k < j and the root
edge of Mk is a border.

Proof. We recall from the beginning of Section 5.2.3 that there are two possible cases:

• for all positive integers m ∈ [j] \ {i, j} the root edge of Mm is a bridge;

• there exists the unique positive integer i < k < j such that the root edge of Mk

is a border and for all positive integers m ∈ [j] \ {i, k, j} the root edge of Mm is a
bridge.

We are going to compare the sets C(Mm+1) and C(Mm) in the following cases:

• the root edge of Mm is a bridge: there exists l > m+ 1 such that Mm \ {em (M)} =
Mm+1 ∪M l and there exist two corners c1 ∈ f1 ∈ C(Mm+1), and c2 ∈ f2 ∈ C(M l)
which correspond to the root corners of Mm+1 and M l, respectively, and which are
divided by hm(M) and hm(M)′, respectively, into two pairs of new corners c′1, c

′′
1,
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and c′2, c
′′
2 such that

C(Mm) = C(Mm+1) \ {f1}︸ ︷︷ ︸
the set of corners belonging to the faces of Mm+1 different than the root face

∪ C(M l) \ {f2}︸ ︷︷ ︸
the set of corners belonging to the faces of M l different than the root face

∪ {f1 \ {c1} ∪ f2 \ {c2} ∪ {c′1, c′′1, c′2c′′2}}.︸ ︷︷ ︸
the set of corners belonging to the root face of Mm obtained by merging root faces of Mm+1 and M l

• the root edge of Mm is a handle: there exist two corners c1 ∈ f1 ∈ C(Mm+1), and
c2 ∈ f2 ∈ C(Mm+1) containing hm(M) and hm(M)′, respectively, such that f1 6= f2,
and hm(M), hm(M)′, respectively, divides c1 and c2 into two pairs of new corners
c′1, c

′′
1, and c′2, c

′′
2, respectively. Thus,

C(Mm) = C(Mm+1) \ {f1, f2}︸ ︷︷ ︸
the set of corners belonging to the faces of Mm+1 different from the faces merged by a handle em(M)

∪ {f1 \ {c1} ∪ f2 \ {c2} ∪ {c′1, c′′1, c′2c′′2}}.︸ ︷︷ ︸
the set of corners belonging to the root face of Mm obtained by merging faces f1 and f2

If for allm ∈ [j]\{i, j} the root edge ofMm is a bridge then by Proposition 3.5 also the root
edge of (τjM)m is a bridge thus for all m 6 j types of the root edges of Mm and (τjM)m

coincide and they are either bridges or handles. Since for all m > j the maps Mm and
(τjM)m are the same, above analysis gives immediately that C(Mm) = C((τjM)m) holds
true for all m ∈ [n]. This proves that if there exists k ∈ [n] such that C(Mk) 6= C((τjM)k)
and such that k is the greatest possible, then necessarily i < k < j and the root edge of
Mk is a border, which proves Lemma 5.4.

We are finally ready to construct the promised involution.

Lemma 5.5. Let O be a set of orientations and let us fix a positive integer n and partitions
µ, ν ` n such that `(µ) + `(ν) = n− 3. Then, there exists an involution

σO : M̃(n)
µ,ν;2 → M̃(n)

µ,ν;2

such that
ηO (σO(M)) = 2− ηO(M).

Proof. Let us fix M ∈ M̃(n)
µ,ν;2 and let i < j be the labels of the edges that are handles in

the root-deletion process of M .
There are two possible cases: for all positive integers m sets C(Mm) and C((τjM)m)

are the same, or not. If they coincide, we consider two maps: M1 := τiτjM , and M2 :=
τjM . Proposition 3.5 ensures that labels in M1, and M2 are the same as in M . Thus,

the electronic journal of combinatorics 24(3) (2017), #P3.24 33



types of the root edges of all three maps Mm,Mm
1 , and Mm

2 coincide, too. In particular,
the root edges of M j, and M j

1 = M j
2 = τ1(M j) are handles so we have

{ηO(M j), ηO(τ1M
j)} = {0, 1}. (20)

Moreover, the root edge of both M i
1, and M i

2 is a handle and

{ηO(M i
1), ηO(M i

2)} = {ηO(τ1(τjM)i), ηO((τjM)i)} = {ηO((τjM)i+1), ηO((τjM)i+1)+1}.

Combining this with Eq. (20), we obtain that there exists an integer l ∈ {1, 2} such that

ηO(Ml) = 2− ηO(M).

In other words, there exists ε ∈ {0, 1} such that Ml = τ εi τjM . We define:

σO(M) := τ εi τjM.

Now, it is straightforward from the construction that σO(M) ∈ M̃(n)
µ,ν;2 and σO(σO(M)) is

again of the same form. That is, σO(σO(M)) := τ εi τjσO(M). Thus, by Proposition 3.5,

σO(σO(M)) = τ 2ε
i τ

2
jM = M,

which finishes the proof in the first case.

Now, we are going to treat the second case. That is, we assume that there exists
k ∈ [n] such that C(Mk) 6= C((τjM)k), and we choose the greatest possible k with this
property. Let M ′ be the unique map as in Lemma 5.3 (P2) associated with M and we
define two maps M1 := M ′,M2 := τiM

′. First of all, Proposition 3.5, Lemma 5.3, and
Lemma 5.4 state that for all positive integers m types of the root edges of all three maps
M,M1 and M2 coincide. Thus, M,M1,M2 ∈ M̃(n)

µ,ν;2. Moreover, Proposition 3.5 and
Lemma 5.3 say that for all positive integers m the roots of all three maps Mm,Mm

1 , and
Mm

2 are the same. Thus, for all positive integers m > i maps Mm
1 and Mm

2 coincide and

{ηO(M j), ηO(M j
1 ) = ηO(M j

2 ) = ηO((M ′)j)} = {0, 1}, (21)

by Lemma 5.3 (P2). Also

{ηO(M i
1), ηO(M i

2)} = {ηO(τ1(M ′)i), ηO((M ′)i)}
= {ηO((M ′)i+1), ηO((M ′)i+1) + 1} = {ηO((M ′)j), ηO((M ′)j) + 1},

and combining it with Eq. (21), we obtain that there exists an integer l ∈ {1, 2} such that

ηO(Ml) = 2− ηO(M).

In other words, there exists ε ∈ {0, 1} such that Ml = τ εiM
′, and we define:

σO(M) := τ εiM
′.
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Now, it is straightforward from the construction that σO(σO(M)) is again of the same
form. That is σO(σO(M)) := τ εi σO(M)′, where σO(M)′ is a map given by Lemma 5.3
(P2). Thus,

σO(σO(M)) = τ εi (τ
ε
iM

′)′ = τ 2ε
i (M ′)′ = M,

where the last two equalities are clear from the construction of M ′ given in the proof of
Lemma 5.3 (P2) – see Fig. 9.

Since there are no other cases, we have constructed the required involution, which
finishes the proof.

Now, we have all necessary ingredients to prove Theorem 5.2.

Proof of Theorem 5.2. Let O be an orientation of all rooted maps and let us fix a positive
integer n and partitions µ, ν ` n such that `(µ)+ `(ν) = n−3. Thanks to Proposition 3.7

we know that (aηO)(n)
µ,ν;2 is the polynomial in β of the following form:

(aηO)(n)
µ,ν;2 (β) :=

∑
M∈M̃(n)

µ,ν;2

βηO(M) = a+ bβ + cβ2,

where a, b, c are nonnegative integers. Moreover, Lemma 5.5 gives the following equality∑
M∈M̃(n)

µ,ν;2

βηO(M) =
∑

M∈M̃(n)
µ,ν;2

β2−ηO(M).

Hence
(aηO)(n)

µ,ν;2 (β) = a+ bβ + aβ2.

Finally, Proposition 3.9 says that (aηO)(n)
µ,ν;2 (−1) = 0. Thus, there exists a positive integer

(ãηO)(n)
µ,ν;2 such that

(aηO)(n)
µ,ν;2 (β) = (ãηO)(n)

µ,ν;2 · (1 + β)2.

Corollary 3.3 asserts that for all positive integers n and partitions µ, ν ` n such that `(µ)+

`(ν) > n− 3 the set M̃
(n)
µ,ν;i is empty for i > 2. Thus, Proposition 3.7 and Proposition 3.9

give that for any positive integer n, partitions µ, ν ` n such that `(µ) + `(ν) > n− 3, and

a nonnegative integer i, there exists a positive integer (ãηO)(n)
µ,ν;i such that

(aηO)(n)
µ,ν;i (β) = (ãηO)(n)

µ,ν;i (1 + β)i.

Plugging it into Eq. (15), one has the following expression

(HηO)(n)
µ,ν (β) =

∑
06i6[g/2]

(ãηO)(n)
µ,ν;i β

g−2i(β + 1)i,
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where g = n + 1 − (`(µ) + `(ν)) 6 4, and the above equation involves at most three

coefficients (ãηO)(n)
µ,ν;i, where i ∈ {0, 1, 2}. Notice that Lemma 4.3 gives a similar expression

for quantities h
(n)
µ,ν(β):

h(n)
µ,ν(β) =

∑
06i6[g/2]

a
(n)
µ,ν;iβ

g−2i(β + 1)i,

and, again, for g 6 4, it involves at most three coefficients a
(n)
µ,ν;i, where i ∈ {0, 1, 2}. By

Theorem 1.4 we know that
h(n)
µ,ν(β) = (HηO)(n)

µ,ν (β)

for β ∈ {−1, 0, 1}. So for a fixed positive integer n and partitions µ, ν ` n such that
`(µ) + `(ν) > n − 3 it gives rise to a system of three equations with at most three
indeterminates. It is easy to check that this system is non-degenerate. Thus, it has a
unique solution. In other words a

(n)
µ,ν;i = (ãηO)(n)

µ,ν;i for all nonnegative integers i, which
finishes the proof.

6 Concluding remarks

We are going to finish this paper by posing some natural questions and remarks related
to the combinatorial side of b-conjecture.

6.1 Removing edges in a different order

Note that the function η given by Definition 3.1 is built recursively by the root-deletion
procedure, which gives a natural order on the set of edges of a given map M . One can
wonder if there are some other, natural ways to define an order on E(M) which have
chances to give an affirmative answer to Conjecture 1.2 using the statistic η as in Defini-
tion 3.1, but with respect to the considered order. For instance, the author of this paper
together with Féray and Śniady studied [6] a problem of understanding a combinatorial
structure of Jack characters, already mentioned in Section 1.4. We proved that a similarly
defined “measure of non-orientability”, but considered with respect to the uniform ran-
dom order on E(M), has many desired properties. Chapuy and the author of this paper
constructed in [2] a certain directed graph associated with a bipartite quandrangulation
q (that is a map with all faces of degree 4), called the Dual Exploration Graph (DEG, for
short), which is visiting all faces of q in some particular order. Since maps (not necessarily
bipartite) with n edges are in a natural bijection with bipartite quadrangulations with
n faces and edges of a given map correspond to faces of an associated quadrangulation,
DEG defines also an order on the set of edges of a given map and La Croix suggested [17]
to use this order to define a measure of non-orientability η with respect to it. We did not
study combinatorial properties of the statistic η defined in this way and we leave open
the problem wether it gives the correct answer for b-conjecture.
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6.2 Unhandled maps and evaluation at b = −1

Corollary 3.3 suggests that unhandled maps are of special interest: indeed, for any measure
of non-orientability η and for any partitions µ, ν, τ of a positive integer n, the top-degree
coefficient in the polynomial (Hη)

τ
µ,ν (β) is given by unhandled maps of type (µ, ν; τ). In

particular this top-degree part does not depend on the choice of η, but it does depend on
the order of edges we are removing from a given map. Moreover, Eq. (16) ensures that
in the case of one-part partition τ = (n), the top-degree coefficient in the polynomial
(Hη)

τ
µ,ν (β) coincides, up to a sign, with the evaluation of this polynomial in β = −1.

We can also prove that for any partitions µ, ν of a positive integer n > 2 and for any
l ∈ [n− 1] the top-degree coefficient in the polynomial (HηO)(n−l,l)

µ,ν (β) coincides with the
evaluation of this polynomial in β = −1 for any set O of orientations (in fact, the main
idea of the proof in the case when `(µ) + `(ν) > n− 3 was given in Lemma 5.3, and the
general case is almost the same). Thus, there are natural questions:

Question 6.1. Is it true that for any measure of non-orientability η, for any positive
integer n, and for any partitions µ, ν, τ ` n the following equality holds true:

(Hη)
τ
µ,ν (−1) = #

(
M̃η

)τ
µ,ν;0

?

Question 6.2. Is it true that for any measure of non-orientability η, for any positive
integer n, and for any partitions µ, ν, τ ` n the following equality holds true:

(Hη)
τ
µ,ν (−1) = hτµ,ν(−1)?

Another interesting direction of the research initiated in this paper is an understand-
ing of the combinatorial structure of an unhandled map of type (µ, ν; τ) for arbitrary
partitions µ, ν, τ of a positive integer n. Note that the set of unhandled maps of a given
type is not rooted invariant. However, Proposition 4.1 together with Theorem 4.2 imply
that unicellular unhandled maps with the black vertex distribution µ and the white vertex
distribution ν are in a bijection with orientable maps with the black vertex distribution
µ, the white vertex distribution ν, and the arbitrary face distribution, which clearly are
rooted invariant (one can even use a proof of Theorem 4.2 to construct such a bijection
recursively). Therefore one can ask the following question:

Question 6.3. Is it true that for any given type (µ, ν; τ) of unhandled maps, there exists
some class of maps (orientable?), with the black vertex distribution µ, the white vertex dis-
tribution ν, and possibly some additional data (labeling faces?), which is rooted invariant,
and which is in some natural bijection with the corresponding set of unhandled maps?

Finally, one can refine Question 6.1 by asking:

Question 6.4. Is it true that for any measure of non-orientability η, for any positive
integer n, and for any partitions µ, ν, τ ` n the following equality holds true:

(Hη)
τ
µ,ν (β) =

{∑
06i6[g/2] ã

τ
µ,ν;iβ

g−2i(β + 1)i for `(µ) + `(ν) + `(τ) 6 2 + n,

0 otherwise ;

the electronic journal of combinatorics 24(3) (2017), #P3.24 37



where g := 2 + n− (`(µ) + `(ν) + `(τ)) and 2iãτµ,ν;i = #
(
M̃η

)τ
µ,ν;i

?

We leave all these questions wide open for future research.
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