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Abstract

We show that the subgroup lattice of any finite group satisfies Frankl’s Union-
Closed Conjecture. We show the same for all lattices with a modular coatom, a
family which includes all supersolvable and dually semimodular lattices. A common
technical result used to prove both may be of some independent interest.

1 Introduction

1.1 Frankl’s Conjecture

All groups and lattices considered in this paper will be finite. An element of a lattice is
a join-irreducible if it cannot be written as the join of strictly lesser elements. We will
examine the following conjecture, attributed to Frankl from 1979.
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Conjecture 1.1 (Frankl’s Union-Closed Conjecture). If L is a lattice with at least 2
elements, then there is a join-irreducible a with

∣∣[a, 1̂]
∣∣ 6 1

2
|L|.

There are a number of different equivalent forms of this conjecture. The original form
that Frankl considered involved a related condition for families of sets that are closed
under intersection. The first appearance in print was in the conference proceedings [26],
arising from its mention by Duffus in a problem session. Three forms of the problem
are given in [26]: a statement about families of sets closed under union, Frankl’s original
form, and the lattice statement as we have here. Conjecture 1.1 appears as a 5-difficulty
problem in [30], where it is called a “diabolical” problem. See [6] for further information
and history. The conjecture has been the subject of a Polymath project [4].

We will henceforth refer to Conjecture 1.1 as Frankl’s Conjecture. We will focus on the
lattice form. If we wish to refer to the join-irreducible a satisfying the required condition,
we will say that L satisfies Frankl’s Conjecture with a.

Frankl’s Conjecture, while open in general, is known to hold for many families of
lattices. Poonen in [24] proved and generalized remarks of Duffus from [26]: namely, that
the conjecture holds for distributive lattices, and for relatively complemented (including
geometric) lattices. Reinhold [25] showed the conjecture to hold for dually semimodular
lattices (see also [1, 29]). Whether the conjecture holds for semimodular lattices is in
general unknown, but Czédli and Schmidt in [10] verified it for semimodular lattices that
have a high ratio of elements to join-irreducibles. Joshi, Waphare, and Kavishwar have
recently in [14] shown the conjecture to hold for dismantlable lattices.

We remark that Blinovsky has an arXiv preprint which claims to settle the Frankl
Conjecture. However: his argument is difficult to follow, and has gone through a large
number of arXiv versions in a short time. Moreover, he has also claimed to solve several
other difficult conjectures in a short period, using the same technique. There does not
seem at this time to be a consensus that his proof is correct.

1.2 Subgroup lattices

Recall that for a group G, the subgroup lattice of G is the set L(G) of all subgroups of G,
ordered by inclusion.

Our first main theorem verifies that Frankl’s Conjecture holds for subgroup lattices.

Theorem 1.2. If G is a group and L(G) is the subgroup lattice of G, then L(G) satisfies
Conjecture 1.1.

Subgroup lattices of groups form a large family of lattices. Indeed, it is an important
open question (first asked by Pálfy and Pudlák [22]) as to whether every finite lattice
occurs as an interval in the subgroup lattice of some finite group. Although most experts
on the topics appear to believe the answer to the Pálfy-Pudlák question to be negative,
progress has been somewhat limited. Indeed, the problem is difficult [5] even for lattices
of height 2! See [2] and its references for further discussion of the Pálfy-Pudlák question
and attempts to disprove it.
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In light of the question of Pálfy and Pudlák, it would be highly interesting to settle
Frankl’s Conjecture in intervals of the form [H,G] of L(G). We cannot do this in general,
but give group-theoretic sufficient conditions. We will state these conditions carefully in
Corollary 1.5. We also verify that Frankl’s Conjecture holds for every interval in a solvable
group in Corollary 1.10.

1.3 Modular elements, subgroup lattices, and Frankl’s Conjecture

An essential tool in the proof of Theorem 1.2 also has applications to many other lattices.
For this reason, we give it in a quite general form.

An element m of a lattice L is left-modular if for every a < b in L, the expression
a ∨m ∧ b can be written without parentheses. That is, if a ∨ (m ∧ b) = (a ∨m) ∧ b for
every a < b. We show:

Theorem 1.3 (Main Technical Theorem). Let L be a lattice, let m ∈ L \ {1̂} be left-
modular, and let x, y ∈ L be (not necessarily distinct) join-irreducibles. If m ∨ x ∨ y = 1̂,
then L satisfies Frankl’s Conjecture with either x or y.

It follows from the well-known Dedekind Identity (see Section 2.1 below) that any
normal subgroup N of G is left-modular in L(G). It is straightforward to see that a
subgroup X is a join-irreducible in L(G) if and only if X is cyclic of prime-power order.
Thus, we obtain the following as an easy consequence of Theorem 1.3.

Corollary 1.4. If G is a group with a normal subgroup N / G, such that G/N is generated
by at most two elements of prime-power order, then L(G) satisfies Frankl’s Conjecture.

The proof of Theorem 1.2 will be obtained by combining Corollary 1.4 with results on
finite simple groups.

We similarly obtain a relative version for upper intervals in groups. The statement
is somewhat harder to work with, as we are not aware of any short description for join-
irreducibles in intervals of subgroup lattices.

Corollary 1.5. Let G be a group and H be a subgroup. If X and Y are join-irreducibles
of the interval [H,G], and N / G is such that HN < G but HN ∨X ∨ Y = G, then the
interval [H,G] satisfies Frankl’s Conjecture.

1.4 The Averaged Frankl’s Condition

A related question to Frankl’s Conjecture asks for which lattices the average size over a
join-irreducible element (other than 0̂) is at most 1

2
|L|. We call this condition the Averaged

Frankl’s Condition. The Averaged Frankl’s Condition does not hold for all lattices, but
is known to hold for lattices with a large ratio of elements to join-irreducibles [9]. The
condition obviously holds for uncomplicated subgroup lattices such as L(Zpn) or L(Zn

p ).
Indeed, our techniques allow us to show a stronger condition for a restrictive class of
groups.
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Proposition 1.6. If G is a supersolvable group in which all Sylow subgroups are elemen-
tary abelian, then G satisfies Frankl’s Conjecture with any join-irreducible X.

Supersolvable groups with elementary abelian subgroups are also known as complemented
groups, and were first studied by Hall [12]. We don’t know whether the subgroup lattices
of arbitrary groups satisfy the Averaged Frankl’s Condition.

1.5 Other lattices

Left-modular elements also occur in lattices from elsewhere in combinatorics. A situation
that is both easy and useful is:

Corollary 1.7. If a lattice L has a left-modular coatom m, then L satisfies Frankl’s
Conjecture.

Proof. If 1̂ is a join-irreducible, then the result is trivial. Otherwise, there is some join-
irreducible x such that m ∨ x = 1̂, and we apply Theorem 1.3.

Remark 1.8. Shewale, Joshi, and Kharat prove [29, Theorem 2] that if every coatom of a
lattice L is left-modular, then L satisfies Frankl’s Conjecture. Indeed, a similar technique
is already applied by Reinhold in [25]. After submission of this paper, we learned that
the Shewale, Joshi, and Kharat go on to remark [29, Remark 2] that the same argument
yields (a more general result than) Corollary 1.7.

There has been much study of classes of lattices that have a left-modular coatom.
Dually semimodular lattices have every coatom left-modular, so we recovery the earlier-
mentioned result [25] that such lattices satisfy Frankl’s Conjecture. We also obtain the new
result that supersolvable and left-modular lattices (those with a maximal chain consisting
of left-modular elements) satisfy Frankl’s Conjecture. See e.g. [20] for background on
supersolvable lattices.

Still more generally, the comodernistic lattices recently examined by the second author
and Schweig [28] are those lattices with a left-modular coatom on every interval. This
class of lattices includes all supersolvable, left-modular, and dually semimodular lattices.
It also includes other large classes of examples, including subgroup lattices of solvable
groups and k-equal partition lattices.

Theorem 1.9. Comodernistic lattices (including supersolvable, left-modular, and dually
semimodular lattices) satisfy Frankl’s Conjecture.

Subgroup lattices of solvable groups are one family of examples of comodernistic lat-
tices [28, Theorem 1.7]. That is, every interval in the subgroup lattice of a solvable group
has a left-modular coatom. It follows immediately that:

Corollary 1.10. If G is a solvable group, then every interval in L(G) satisfies Frankl’s
Conjecture.

Since the 0̂ element of any lattice is left-modular, Theorem 1.3 also yields the following:

Corollary 1.11. If L is a lattice such that 1̂ = x ∨ y for join-irreducibles x, y, then L
satisfies Frankl’s Conjecture.
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1.6 Organization

In Section 2 we will discuss the group-theoretic aspects of the problem. We will complete
the proof of Corollary 1.4 and Theorem 1.2, pending only on the proof of Theorem 1.3.
In Section 3, we will prove Theorem 1.3 and generalizations, as well as Proposition 1.6.
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2 Groups, generation, and subgroup lattices

The main purpose of this section is to prove Theorem 1.2, as we do in Section 2.3. We
first begin with some basic background on the combinatorics of subgroup lattices.

2.1 Modular elements in subgroup lattices

We first recall the well-known Dedekind Identity (see [27, 1.3.14] or [13, Exercise 2.9]):

Lemma 2.1 (Dedekind Modular Identity). If H,K,N are subgroups of a group G such
that H 6 K, then H(N ∩K) = HN ∩K.

It is also well known that HN is a subgroup of G if and only if HN = NH = H ∨N .
These conditions are obviously satisfied when N is a normal subgroup, and are sometimes
otherwise satisfied.

It is thus immediate from the Dedekind Identity that whenever HN is a subgroup, we
also have that N satisfies the modular relation with H and any K > H. In particular, we
recover our earlier claim that normal subgroups are left-modular in L(G).

2.2 Proof of Corollary 1.4

Corollary 1.4 follows from the left-modularity of a normal subgroup N , together with
another routine exercise: If x and y are elements of prime-power order in G/N , then
there are x, y ∈ G of prime-power order such that x = Nx, y = Ny [13, Exercise 3.12].
In particular, the modular subgroup N and the join-irreducibles 〈x〉 and 〈y〉 satisfy the
conditions of Theorem 1.3.

Corollary 1.5 follows by a similar argument.
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2.3 Proof of Theorem 1.2

In order to prove Theorem 1.2, we will need a result on finite simple groups. King recently
proved the following in [15].

Theorem 2.2 (Prime Generation Theorem [15]). If G is any nonabelian finite simple
group, then G is generated by an involution and an element of prime order.

We now complete the proof of Theorem 1.2. Whenever N is a maximal normal sub-
group of G, the quotient G/N is simple. Of course, abelian simple groups are generated by
a single element of prime order. Nonabelian simple groups are handled by Theorem 2.2.
Theorem 1.2 now follows from Corollary 1.4.

2.4 Overview of generation of simple groups by elements of prime order

The substantive work of King [15] in proving Theorem 2.2 builds on a large body of
preceding work. We will briefly survey some history and mathematical details. We assume
basic knowledge of the Classification of Finite Simple Groups in this discussion, but will
not assume any such elsewhere in the paper.

Definition 2.3. A group G is said to be (p, q)-generated if G is generated by an element
of order p and one of order q.

The case of (2, 3)-generation is particularly well-studied in the literature. Such groups
are exactly the quotients (having order at least 6) of the infinite group PSL2(Z). There is
also a connection with automorphism groups of compact Riemann surfaces [8]. In addition
to the references below, see e.g. [23, 31] for more background on (2, 3)-generation.

The following has been known to hold for some time.

Proposition 2.4. With at most finitely many exceptions, every nonabelian finite simple
group is either (2, 3)- or (2, 5)-generated.

We summarize the history behind Proposition 2.4. The alternating group An was
shown to be (2, 3)-generated by Miller [21] for n 6= 6, 7, 8; while A6, A7 and A8 are easily
seen to be (2, 5)-generated. Excluding the groups PSp4(q), all but finitely many of the
classical groups are (2, 3)-generated by work of Liebeck and Shalev [16]. In the same
paper [16], the authors showed that, excluding finitely many exceptions, in characteristic
2 or 3 the groups PSp4 are (2, 5)-generated. Cazzola and Di Martino in [7] showed
PSp4 to be (2, 3)-generated in all other characteristics. Lübeck and Malle [17] (building
on earlier work by Malle [18, 19]) showed all simple exceptional groups excluding the
Suzuki groups to be (2, 3)-generated. Evans [11] showed the Suzuki groups to be (2, p)-
generated for any odd prime p dividing the group order, and in particular to be (2, 5)-
generated. Proposition 2.4 now follows by combining the results enumerated here with
the Classification of Finite Simple Groups.

We caution that PSU3(3
2) is known not to be (2, 3)-generated [32], and since it has

order |PSU3(3
2)| = 25 · 33 · 7, the group is certainly not (2, 5)-generated either.

King’s proof of Theorem 2.2 proceeds by showing that every classical simple group G
is either (2, 3)-, (2, 5)-, or (2, r)-generated, where r is a so-called Zsigmondy prime for G.
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3 Proof of Theorem 1.3

Since m 6= 1̂, we see that x∨y 66 m. If x 6 m, then we may replace the triple m,x, y with
m, y, y while still meeting the conditions of the theorem. Thus, we may suppose without
loss of generality that neither x nor y is on the interval [0̂,m].

Suppose without loss of generality that [x, 1̂] has at most as many elements as [y, 1̂].
We will show that

∣∣[x, 1̂]
∣∣ 6 1

2
|L| by constructing an injection from [x, 1̂] to its complement

in L.
We construct this injection in two stages. First, since

∣∣[x, 1̂]
∣∣ 6

∣∣[y, 1̂]
∣∣, there is an

injection ϕ1 that maps

ϕ1 : [x, 1̂] \ [x ∨ y, 1̂]→ [y, 1̂] \ [x ∨ y, 1̂].

(We notice that if x = y, then x ∨ y = x = y, and this will cause no trouble in our
argument.) We then consider the map

ϕ2 : [x ∨ y, 1̂]→ [0̂,m]

α 7→ m ∧ α.

As x ∨ y ∨ (m ∧ α) = (x ∨ y ∨m) ∧ α = 1̂ ∧ α = α by left-modularity, the map ϕ2 is an
injection. Since x 66 m, the image of ϕ2 is contained in the complement of [x, 1̂].

The two maps ϕ1, ϕ2 have disjoint domains. Combining them yields the desired injec-
tion.

3.1 Generalizations

Examining our proof of Theorem 1.3, we observe that we do not use the full power of
left-modularity, but only that m satisfies the left-modular relation for any α > x ∨ y.
Thus, we have actually proved the following generalization:

Proposition 3.1. Let L be a lattice, and let x, y ∈ L be (not necessarily distinct) join-
irreducibles. If m ∈ L\{1̂} satisfies (x∨ y∨m)∧α = (x∨ y)∨ (m∧α) for any α > x∨ y,
and m ∨ x ∨ y = 1̂, then L satisfies Frankl’s Conjecture with either x or y.

While the statement of Proposition 3.1 appears notably more complicated than that
of Theorem 1.3, it yields a reasonably uncomplicated corollary for intervals in subgroup
lattices.

Corollary 3.2. Let G be a group, let H < G, and let X, Y be join-irreducibles of [H,G].
If there is a subgroup K with H < K < G such that K(X ∨ Y ) = G, then the interval
[H,G] satisfies Frankl’s Conjecture.

We in particular are now able to prove Proposition 1.6.

Proof (of Proposition 1.6). It follows by a theorem of Hall [12] that for every subgroup H
in G, there is some subgroup K such that KH = G and H ∩K = 1. The result follows
by combining the theorem of Hall with Corollary 3.2.
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