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Abstract

We prove that the pair of statistics (des,maj) on multiset permutations is equi-
distributed with the pair (stc, inv) on certain quotients of the symmetric groups.
We define an analogue of the statistic stc on multiset permutations whose joint
distribution with the inversions equals that of (des,maj). We extend the definition
of the statistic stc to hyperoctahedral and even hyperoctahedral groups. These
functions, together with the Coxeter length, are equidistributed with (ndes,nmaj)
and (ddes, dmaj), respectively.

1 Introduction

The first result about the enumeration of multiset permutations with respect to the statis-
tics now called descent number and major index is due to MacMahon. Let ρ = (ρ1, . . . , ρm)
be a composition of N ∈ N. We denote by Sρ the set of all permutations of the multiset
{1ρ1 , . . . ,mρm}. The descent set Des(w) of the multiset permutation w = w1 · · ·wN ∈ Sρ
is Des(w) = {i ∈ [N − 1] | wi > wi+1}. The descent and major index statistics on Sρ are
given by

des(w) = |Des(w)| and maj(w) =
∑

i∈Des(w)

i.

Then ([10, §462, Vol. 2, Ch. IV, Sect. IX])

∑
k>0

(
m∏
j=1

(
ρj + k

k

)
q

)
xk =

∑
w∈Sρ x

des(w)qmaj(w)∏N
i=0(1− xqi)

∈ Z[q]JxK, (1)
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where, for n, k ∈ N, we set(
n

k

)
p

=
[n]p!

[n− k]p![k]p!
, [n]p! =

n∏
i=1

[i]p, [n]p =
n−1∑
i=0

pi.

The well-known result about the equidistribution on multiset permutations of the in-
version number with the major index also goes back to MacMahon. In [7] Foata and
Schützenberger proved that this equidistribution refines, in the case of the symmetric
group, to inverse descent classes. A pair of statistics that is equidistributed with (des,maj)
is called Euler-Mahonian. In [12] Skandera introduced an Eulerian statistic, which he
called stc, on the symmetric group and proved that the pair (stc, inv) is Euler-Mahonian.
He pointed out that the word statistic obtained by generalising stc in the natural way is
not Eulerian. He also left open the question of finding a suitable generalisation with this
property.

In this note we prove that the joint distribution of (stc, inv) on certain quotients of
the symmetric group is indeed the same as the distribution of (des,maj) on multiset
permutations; we use this result to define a statistic mstc that is Eulerian on multiset
permutations and that, together with inv, is equidistributed with the pair (des,maj).

To the author’s knowledge, not much is known about factorisations of the bivariate
polynomials defined by Euler-Mahonian distributions. More is known (or conjectured)
about the Eulerian polynomial

∑
σ∈Sn x

des(σ) and its generalisations to multiset permuta-
tions. Frobenius proved (see [8]) that the Eulerian polynomial has real, simple, negative
roots, and that −1 features as a root if and only if n is even. Later, Simion proved that
its analogues on permutations of any multiset are also real rooted with simple, negative
roots (see [11]).

We use our first result of equidistribution to show that the polynomial of the joint
distribution of des and maj admits, on the set of permutations of words in the alphabet
{1r, 2r}, for odd r, a unique unitary factor (i.e. a factor which arises from a univariate
polynomial, all of whose roots lie on the unit circle, by means of a monomial substitution;
cf. Section 2 for a precise definition). Together with the factorisation of Carlitz’s q-
Eulerian polynomial showed in [4, Lemma 2.7], this result may be considered a refinement
of Frobenius’ and Simion’s results. The previous results support a conjecture we made in
[4, Conjecture B] and which we translate in Section 2 in terms of the joint distribution of
(stc, inv) on quotients of the symmetric group.

Our interest in detecting factorisations of this type is motivated by questions regarding
analytic properties of certain Dirichlet series studied by the author and Voll in [4]. These
series are closely related to Hadamard products of subgroup zeta functions of free abelian
groups of finite rank. Their numerators are exactly the polynomials of the joint distri-
butions of (des,maj) on appropriate sets of multiset permutations. This combinatorial
description allows us to easily read off analytic properties such as abscissa of convergence,
meromorphic continuation or the existence of a natural boundary.

Generalisations of MacMahon’s result (1) to signed permutations were first obtained
by Adin, Brenti and Roichman in [1] and to even-signed permutations by Biagioli in [2].
In the last section of this note we define Eulerian statistics nstc and dstc which, together
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with the length, are equidistributed with the Euler-Mahonian pairs (ndes, nmaj) on the
hyperoctahedral group and (ddes, dmaj) on the even hyperoctahedral group, respectively.

2 Stc on quotients of the symmetric group and multiset permu-
tations

We start with some definitions and notation, for further notation and basic facts about
Coxeter groups we refer the reader to [3].

For n,m ∈ N, m 6 n we denote with [n] = {1, . . . , n} and [m,n] = {m,m+ 1, . . . , n}.
For a permutation σ ∈ Sn we use the one-line notation or the disjoint cycle notation. For
a (signed) permutation σ ∈ Sn (respectively, Bn), we let

Inv(σ) = {(i, j) ∈ [n]× [n] | i < j, σ(i) > σ(j)} and inv(σ) = | Inv(σ)|.

The symmetric group Sn is a Coxeter group with respect to the set of generators S =
{s1, . . . , sn−1}, where si is the simple transposition (i, i + 1). It is well-known that the
Coxeter length coincides with the inversion number. For J ⊆ [n − 1] the corresponding
quotient is defined as

SJn = {w ∈ Sn | Des(w) ⊆ [n− 1] \ J}.

Moreover we denote with

ISJn = {w ∈ Sn | Des(w−1) ⊆ [n− 1] \ J}

the inverse descent class corresponding to J ⊆ [n− 1].
It is well-known that the symmetric group Sn is in bijection with the set of words

w = w1 · · ·wn ∈ En where

En = {w1 · · ·wn | wi ∈ [0, n− i] for i = 1, . . . . , n}.

One of such bijections is the Lehmer code, defined as follows. For σ ∈ Sn, code(σ) =
c1 · · · cn ∈ En where ci = |{j ∈ [i + 1, n] | σ(i) > σ(j)}|. The sum of the cis gives, for
each permutation, the inversion number. The Eulerian statistic stc is defined as follows
(cf. [12, Definition 3.1]): stc(σ) = st(code(σ)), where for a word w ∈ En,

st(w) = max{r ∈ [n] | ∃ 1 6 i1, · · · < ir 6 n | wi1 · · ·wir > (r − 1)(r − 2) · · · 1 0}.

Informally, st(w) is the maximum r for which there exists a subword of w of length r
elementwise strictly greater than the r-staircase word (r − 1)(r − 2) · · · 1 0.

For example let σ = 452361 ∈ S6. Then code(σ) = 331110, inv(σ) =
∑

i ci = 9,
stc(σ) = st(code(σ)) = 3. The statistic stc constitutes an Eulerian partner for the
inversions on Sn.

Theorem 1 ([12, Theorem 3.1]). Let n ∈ N. Then∑
w∈Sn

xdes(w)qmaj(w) =
∑
w∈Sn

xstc(w)q`(w)
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Recall that given a composition ρ of N , we denote by Sρ the set of permutations of the
multiset {1ρ1 , . . . ,mρm}, i.e. rearrangements of the word wρ = 1 . . . 1︸ ︷︷ ︸

ρ1

2 . . . 2︸ ︷︷ ︸
ρ2

. . .m . . .m︸ ︷︷ ︸
ρm

.

A natural way to associate a permutation to a multiset permutation is the standardi-
sation, which we now describe; cf. also [13, §1.7]. Given ρ a composition of N and a word
w in the alphabet {1ρ1 , . . . ,mρm}, std(w) is the element of SN obtained by w substituting,
in the order of appearance in w from left to right, the ρ1 1s with the sequence 1 2 . . . ρ1,
the ρ2 2s with the sequence ρ1 + 1 . . . ρ1 + ρ2 and so on. So for example if ρ = (2, 3, 2)
and w = 1223132 ∈ Sρ, then std(w) = 1346275 ∈ S7. Clearly the map std : Sρ → SN
is not surjective. The set Sρ is in bijection with certain quotients and inverse descent
classes of SN depending on ρ. In particular, for ρ = (ρ1, . . . , ρm) a composition of N , for
i = 1 . . . ,m− 1 we let

ri =
i∑

k=1

ρk, r = {ri | i ∈ [m− 1]} ⊆ [N − 1] and R = [N − 1] \ r. (2)

The quotient and the inverse descent class that will play a role in our results of equidis-
tribution are SRN and ISRN , respectively.

We will need the following result due to Foata and Han.

Proposition 2 ([6, Proprieté 2.2]). Let n ∈ N, J ⊆ [n− 1]. Then∑
{w∈Sn|

Des(w)=J}

xdes(w
−1)qmaj(w−1) =

∑
{w∈Sn|

Des(w)=J}

xstc(w)q`(w). (3)

Our first result is the following.

Proposition 3. Let N ∈ N, ρ a composition of N and R ⊆ [N − 1] as in (2). The pair
(stc, `) on SRN is equidistributed with (des,maj) on Sρ:

Cρ(x, q) =
∑
w∈Sρ

xdes(w)qmaj(w) =
∑
w∈SRN

xstc(w)q`(w). (4)

Proof. The standardisation std is a bijection between Sρ and ISRN , and preserves des and
maj, so∑
w∈Sρ

xdes(w)qmaj(w) =
∑
w∈Sρ

xdes(std(w))qmaj(std(w)) =
∑
w∈ISRN

xdes(w)qmaj(w) =
∑
w∈SRN

xstc(w)q`(w),

where the last equality follows from Proposition 2.

As an application, we prove a result about the bivariate factorisation of the polynomial
Cρ(x, q), that in [4] is used to deduce analytic properties of some orbit Dirichlet series.
We will need the following definition (see also [4, Remark 2.9]).
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Definition 4. We say that a bivariate polynomial f(x, y) ∈ Z[x, y] is unitary if there
exist integers α, β > 0 and g ∈ Z[t] so that f(x, y) = g(xαyβ) and all the complex roots
of g lie on the unit circle.

Proposition 5. Let ρ = (r, r) where r ≡ 1 (mod 2). Then

Cρ(x, q) = (1 + xqr)C̃ρ(x, q), (5)

where C̃ρ(x, q) has no unitary factor.

Before we prove Proposition 5, we give a characterisation of the stc for permutations
with at most one descent.

Lemma 6. Let ρ = (ρ1, ρ2), N = ρ1 + ρ2. Let w ∈ S{ρ1}
c

N . Then

stc(w) = |{i ∈ [ρ1] | w(i) > ρ1}|.

Proof. A permutation w ∈ S{ρ1}
c

N has at most a descent at ρ1, so its code is of the form
code(w) = c1 · · · cρ10 · · · 0, with 0 6 c1 6 . . . 6 cρ1 . The first (possibly) non-zero element
of the code is exactly the number of elements of the second block for which the image is
in the first block. This number coincides with the length of the longest possible subword
of the code which is elementwise greater than a staircase word.

Proof of Proposition 5. The polynomial Cρ(x, 1), descent polynomial of Sρ, has all real,
simple, negative roots (cf. [11, Corollary 2]). Thus a factorisation of the form (5) implies

that C̃ρ(x, q) has no unitary factor. To prove (5) we define an involution ϕ on SRN such
that, for all w ∈ SRN , |`(ϕ(w))− `(w)| = r and | stc(ϕ(w))− stc(w)| = 1.

For w ∈ SRN we define

Mw = {i ∈ [r] | w−1(i) 6 r and w−1(i+ r) > r or w−1(i) > r and w−1(i+ r) 6 r},

the set of i ∈ [r] for which i and i + r are not in the same ascending block. Since r
is odd, Mw is non-empty for all w ∈ Sρ. We then define ϕ(w) = ((ι, ι + r)w)R, where
ι = min{i ∈ Mw} and, for σ ∈ SN , σR denotes the unique minimal coset representative
in the quotient SRN . By Lemma 6 clearly stc(ϕ(w)) = stc(w) ± 1. Suppose now that
w−1(ι) 6 r and w−1(ι) > r (the other case is analogous). Then

`(ϕ(w)) = `(w) + |{i ∈ [r] | w(i) > ι}|+ |{i ∈ [r + 1, 2r] | w(i) < ι+ r}|
= `(w) + r − i+ i

as desired.

We now reformulate [4, Conjecture B] in terms of the bivariate distribution of (stc, `)
on quotients of the symmetric group.
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Conjecture A. Let ρ be a composition of N and R ⊆ [N − 1] constructed as in (2).
Then Cρ(x, q) =

∑
w∈SRN

xstc(w)q`(w) has a unitary factor if and only if ρ = (ρ1, . . . , ρm)

where ρ1 = . . . = ρm = r for some odd r and even m. In this case∑
w∈SRN

xstc(w)q`(w) = (1 + xq
rm
2 )C̃ρ(x, q)

for some C̃ρ(x, q) ∈ Z[x, q] with no unitary factors.

Proposition 3 suggests a natural extension of the definition of the statistic stc to mul-
tiset permutations, thus answering a question raised by Skandera, see [12, Question 5.1].

For w ∈ Sρ, std(w) ∈ ISRN . This yields a bijection between multiset permutations Sρ
and the quotient SRN

istd : Sρ → SRN , istd(w) = (std(w))−1

which is inversion preserving: inv(w) = inv(istd(w)).

Definition 7. Let ρ be a composition of N . For a multiset permutation w ∈ Sρ the
multistc is

mstc(w) = stc(istd(w)).

The pair (mstc, inv) is equidistributed with (des,maj) on Sρ, as∑
w∈Sρ

xmstc(w)qinv(w) =
∑
w∈SRN

xstc(w)qinv(w) =
∑
w∈Sρ

xdes(w)qmaj(w),

which together with (1) proves the following theorem.

Theorem 8. Let ρ be a composition of N ∈ N. Then

∑
k>0

(
m∏
j=1

(
ρj + k

k

)
q

)
xk =

∑
w∈Sρ x

mstc(w)qinv(w)∏N
i=0(1− xqi)

∈ Z[q]JxK.

3 Signed and even-signed permutations

MacMahon’s result (1) for the symmetric group (i.e. for ρ1 = . . . ρm = 1) is often present in
the literature as Carlitz’s identity, satisfied by Carlitz’s q-Eulerian polynomial An(x, q) =∑

σ∈Sn x
des(σ)qmaj(σ).

This result was extended, for suitable statistics, to the groups of signed and even-
signed permutations. The major indices defined in such extensions are in both cases
equidistributed with the Coxeter length `. In this section we define type B and type
D analogues of the statistic stc, that together with the length satisfy these generalised
Carlitz’s identities.
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3.1 Eulerian companion for the length in type B

Let n ∈ N. The hyperoctahedral group Bn is the group of permutations σ = σ1 · · ·σn of
{±1, . . . ,±n} for which |σ| = |σ1| . . . |σn| ∈ Sn. For σ ∈ Bn, the negative set and negative
statistic are

Neg(σ) = {i ∈ [n] | σ(i) < 0} neg(σ) = |Neg(σ)|.

The Coxeter length ` for σ in Bn has the following combinatorial interpretation (see, for
instance [3]):

`(σ) = inv(σ) + neg(σ) + nsp(σ),

where inv is the usual inversion number and nsp(σ) = |{(i, j) ∈ [n] × [n] | i < j, σ(i) +
σ(j) < 0}| is the number of negative sum pairs.

In [1] an Euler-Mahonian pair of the negative type was defined as follows. The negative
descent and negative major index are, respectively,

ndes(σ) = des(σ) + neg(σ), nmaj(σ) = maj(σ)−
∑

i∈Neg(σ)

σ(i). (6)

The pair (ndes, nmaj) satisfies the following generalised Carlitz’s identity.

Theorem 9 ([1, Theorem 3.2]). Let n ∈ N. Then

∑
r>0

[r + 1]nqx
r =

∑
σ∈Bn

xndes(σ)qnmaj(σ)

(1− x)
n∏
i=1

(1− x2q2i)
in Z[q]JxK. (7)

Motivated by (6) and the well-known fact that the length in type B may be also
written as

`(σ) = inv(σ)−
∑

i∈Neg(σ)

σ(i), (8)

we define the analogue of the statistic stc for signed permutations as follows.

Definition 10. Let σ ∈ Bn. Then

nstc(σ) = stc(σ) + neg(σ).

Theorem 11. Let n ∈ N. Then∑
σ∈Bn

xnstc(σ)q`(σ) =
∑
σ∈Bn

xndes(σ)qnmaj(σ).

Proof. We use essentially the same argument as in the proof of [9, Theorem 3]. There, the
following decomposition of Bn is used. Every permutation τ ∈ Sn is associated with 2n

elements of Bn, via the choice of the n signs. More precisely, given a signed permutation

the electronic journal of combinatorics 24(3) (2017), #P3.27 7



σ ∈ Bn one can consider the ordinary permutation in which the elements are in the same
relative positions as in σ. We write π(σ) = τ . Then

Bn =
⋃
τ∈Sn

B(τ),

where B(τ) = {σ ∈ Bn | π(σ) = τ}. So every σ ∈ Bn is uniquely identified by the
permutation τ = π(σ) and the choice of signs J(σ) = {σ(j) | j ∈ Neg(σ)}.

Clearly, for σ ∈ Bn we have Inv(σ) = Inv(π(σ)), and thus stc(σ) = stc(π(σ)). So, for
τ = π(σ)

xnstc(σ)q`(σ) = xstc(τ)qinv(τ)
∏

j∈J(σ)

xqj.

The claim follows, as

∑
σ∈Bn

xnstc(σ)q`(σ) =
∑

σ∈B(τ)

∑
τ∈Sn

xstc(τ)qinv(τ)
∑
J⊆[n]

∏
j∈J

xqj = An(x, q)
n∏
i=1

(1 + xqi).

Corollary 12. Let n ∈ N. Then

∑
r>0

[r + 1]nqx
r =

∑
σ∈Bn

xnstc(σ)q`(σ)

(1− x)
n∏
i=1

(1− x2q2i)
in Z[q]JxK. (9)

3.2 Eulerian companion for the length in type D

The even hyperoctahedral group Dn is the subgroup of Bn of signed permutations for
which the negative statistic is even:

Dn = {σ ∈ Bn | neg(σ) ≡ 0 (mod 2)}.

Also for σ in Dn the Coxeter length can be computed in terms of the following statistics:

`(σ) = inv(σ) + nsp(σ). (10)

The problem of finding an analogue, on the group Dn of even signed permutations, was
solved in [2], where type D statistics des and maj were defined, as follows. For σ ∈ Dn

ddes(σ) = des(σ) + |DNeg(σ)|, dmaj(σ) = maj(σ)−
∑

i∈DNeg(σ)

(σ(i) + 1), (11)

where DNeg(σ) = {i ∈ [n]|σ(i) < −1}. The following holds.
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Theorem 13 ([2, Theorem 3.4]). Let n ∈ N. Then

∑
r>0

[r + 1]nqx
r =

∑
σ∈Dn

xddes(σ)qdmaj(σ)

(1− x)(1− xqn)
n−1∏
i=1

(1− x2q2i)
in Z[q]JxK. (12)

Definition 14. Let σ ∈ Dn. We set

dstc(σ) = stc(σ) + |DNeg(σ)| = stc(σ) + neg(σ) + ε(σ),

where

ε(σ) =

{
−1 if σ−1(1) < 0,

0 otherwise .

We now show that the statistic just defined constitutes an Eulerian partner for the
length on Dn, that is, the following holds.

Theorem 15. Let n ∈ N. Then∑
σ∈Dn

xdstc(σ)q`(σ) =
∑
σ∈Dn

xddes(σ)qdmaj(σ).

Proof. We use, as in [2] the following decomposition of Dn. Let

Tn = {α ∈ Dn | des(α) = 0} = {α ∈ Dn | Inv(α) = ∅} (13)

then Dn can be rewritten as the following disjoint union:

Dn =
⋃
τ∈Sn

{ατ | α ∈ Tn}. (14)

For α ∈ Tn and τ ∈ Sn the following hold:

`(ατ) = `(α) + `(τ) = nsp(α) + inv(τ),

nsp(ατ) = nsp(α),

dstc(ατ) = stc(τ) + neg(α) + ε(σ).

The last equation follows from the second equality in (13). Thus∑
σ∈Dn

xdstc(σ)q`(σ) =
∑
α∈Tn

∑
τ∈Sn

xstc(τ)+neg(α)+ε(α)q`(α)+`(τ)

=
∑
α∈Tn

xneg(α)+ε(α)qnsp(α)
∑
τ∈Sn

xstc(τ)qinv(τ)

=
n−1∏
i=1

(1 + xqi)An(x, q)
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for the last equality see [2, Lemma 3.3]. The result follows, as

∑
σ∈Dn

xddes(σ)qdmaj(σ) =
n−1∏
i=1

(1 + xqi)An(x, q).

Corollary 16. Let n ∈ N. Then

∑
r>0

[r + 1]nqx
r =

∑
σ∈Dn

xdstc(σ)q`(σ)

(1− x)(1− xqn)
n−1∏
i=1

(1− x2q2i)
in Z[q]JxK. (15)
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