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Abstract

Let G be a connected graph with maximum degree ∆. Brooks’ theorem states
that G has a ∆-coloring unless G is a complete graph or an odd cycle. A graph G
is degree-choosable if G can be properly colored from its lists whenever each vertex
v gets a list of d(v) colors. In the context of list coloring, Brooks’ theorem can be
strengthened to the following. Every connected graph G is degree-choosable unless
each block of G is a complete graph or an odd cycle; such a graph G is a Gallai tree.

This degree-choosability result was further strengthened to Alon–Tarsi orienta-
tions; these are orientations of G in which the number of spanning Eulerian sub-
graphs with an even number of edges differs from the number with an odd number
of edges. A graph G is degree-AT if G has an Alon–Tarsi orientation in which each
vertex has indegree at least 1. Alon and Tarsi showed that if G is degree-AT, then G
is also degree-choosable. Hladký, Krá ’l, and Schauz showed that a connected graph
is degree-AT if and only if it is not a Gallai tree. In this paper, we consider pairs
(G, x) where G is a connected graph and x is some specified vertex in V (G). We
characterize pairs such that G has no Alon–Tarsi orientation in which each vertex
has indegree at least 1 and x has indegree at least 2. When G is 2-connected, the
characterization is simple to state.

Keywords: list-coloring, choosability, degree-choosable, Alon–Tarsi orientation,
Gallai tree

1 Introduction

Brooks’ theorem is one of the fundamental results in graph coloring. For every connected
graph G, it says that G has a ∆-coloring unless G is a complete graph K∆+1 or an odd
cycle. When we seek to prove coloring results by induction, we often want to color a

∗Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Rich-
mond, VA; dcranston@vcu.edu; Research of the first author is partially supported by NSA Grant 98230-
15-1-0013.
†LBD Data Solutions, Lancaster, PA; landon.rabern@gmail.com

the electronic journal of combinatorics 24(3) (2017), #P3.29 1



subgraph H where different vertices have different lists of allowable colors (those not
already used on their neighbors in the coloring of G−H). This gives rise to list coloring.
Vizing [13] and, independently, Erdős, Rubin, and Taylor [5] extended Brooks’ theorem
to list coloring. They proved an analogue of Brooks’ theorem when each vertex v has ∆
allowable colors (possibly different colors for different vertices). Borodin [3] and Erdős,
Rubin, and Taylor [5] strengthened this Brooks’ analogue to the following result, where a
Gallai tree Gallai treeis a connected graph in which each block is a complete graph or an odd cycle.

Theorem A. If G is connected and not a Gallai tree, then for any list assignment L with
|L(v)| = d(v) for all v ∈ V (G), graph G has a proper coloring ϕ with ϕ(v) ∈ L(v) for all v.

The graphs in Theorem A are degree-choosable degree-

choosable
. It is easy to check that every Gallai

tree is not degree-choosable. So the set of all connected graphs that are not degree-
choosable are precisely the Gallai trees. Hladký, Krá ’l, and Schauz [7] extended this
characterization to the setting of Alon–Tarsi orientations.

For any digraph D, a spanning Eulerian subgraph is one in which each vertex has
indegree equal to outdegree. The parity of a spanning Eulerian subgraph is the parity of
its number of edges. For an orientation of a graph G, let EE (resp. EO) denote the number
of even (resp. odd) spanning Eulerian subgraphs. An orientation is Alon–Tarsi

Alon–Tarsi

orientation(or AT)
if EE and EO differ. A graph G is f -AT f -AT, k-ATif it has an Alon–Tarsi orientation D such that
d+(v) 6 f(v) − 1 for each vertex v. In particular, G is degree-AT degree-AT(resp. k-AT ) if it is
f -AT, where f(v) = d(v) (resp. f(v) = k) for all v. Similarly, a graph G is f -choosable f -choosable

if G has a proper coloring ϕ from any list assignment L such that |L(v)| = f(v) for all
v ∈ V (G). Alon and Tarsi [1] used algebraic methods to prove the following theorem for
choosability. Later, Schauz [11] strengthened the result to paintability, which we discuss
briefly in Section 4.

Theorem B. For a graph G and f : V (G)→ N, if G is f -AT, then G is also f -choosable.

In this paper we characterize those graphs G with a specified vertex x that are not
f -AT, where f(x) = d(x)− 1 and f(v) = d(v) for all other v ∈ V (G). All such graphs are
formed from a few 2-connected building blocks, by repeatedly applying a small number
of operations. Most of the work in the proof is spent on the case when G is 2-connected.
This result is easy to state, so we include it a bit later in the introduction, as our Main
Lemma. Near the end of Section 3, with a little more work we extend our Main Lemma,
by removing the hypothesis of 2-connectedness, to characterize all pairs (G, hx) that are
not AT. This result is Theorem 3.6.

This line of research began in the fifties with Dirac, who studied the minimum number
of edges in an n-vertex k-critical graph G. Since G has minimum degree at least k −
1, clearly |E(G)| > k−1

2
n. Gallai [6] improved this bound by classifying all connected

subgraphs that can be induced by vertices of degree k − 1 in a k-critical graph. By
Theorem A, all such graphs are Gallai trees. Here we consider graphs G that are critical
with respect to Alon–Tarsi orientation. Specifically, G is not (k−1)-AT, but every proper
subgraph is; such graphs are k-AT-critical. The characterization of degree-AT graphs
shows that, much like k-critical graphs, in a k-AT-critical graph G, every connected
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subgraph induced by vertices of degree k − 1 must be a Gallai tree. Our main result
characterizes the subgraphs that can be induced by vertices of degree k − 1, together
with a single vertex of degree k. Thus, it is natural to expect that this result will lead to
improved lower bounds on the number of edges in n-vertex k-AT-critical graphs.

Similar to that for degree-AT, our characterization remains unchanged in the contexts
of list-coloring and paintability, as we show in Section 4. We see a sharp contrast when
we consider graphs G with two specified vertices x1 and x2 that are not f -AT, where
f(xi) = d(xi) − 1 for each i ∈ {1, 2} and f(v) = d(v) for all other v ∈ V (G). For
Alon–Tarsi orientations, we have more than 50 exceptional graphs on seven vertices or
fewer. Furthermore, the characterizations for list-coloring, paintability, and Alon–Tarsi
orientations all differ.

We consider graphs with vertices labeled by natural numbers; that is, pairs (G, h)
where G is a graph and h : V (G) → N. We focus on the case when h(x) = 1 for some x
and h(v) = 0 for all other v; we denote this labeling as hx.

hx

We say that (G, h) is AT (G, h)

is AT

if G
is (dG − h)-AT. When H is an induced subgraph of G, we simplify notation by referring
to the pair (H, h) when we really mean

(
H, h�V (H)

)
.

Given a pair (G, h) and a specified edge e ∈ E(G), when we stretch e stretch e, we form (G′, h′)
from (G, h) by subdividing e twice and setting h′(vi) = 0 for each of the two new vertices,
v1 and v2 (and h′(v) = h(v) for all other vertices v). In Section 2, we prove a Stretching
Lemma, which shows that if (G, h) is not AT and e ∈ E(G), then stretching e often yields
another pair (G′, h′) that is also not AT. Thus, stretching plays a key role in our main
result.

It is easy to check that the three pairs (G, h) shown in Figure 1 are not AT (and we
do this below, in Proposition 1.1). Let D Dbe the collection of all pairs formed from the
graphs in Figure 1 by stretching each bold edge 0 or more times. The Stretching Lemma
implies that each pair in D is not AT. Our Main Lemma is that these are the only pairs
(G, hx), where G is 2-connected and neither complete nor an odd cycle, such that (G, hx)
is not AT, for some vertex x ∈ V (G).

Main Lemma. Let G be 2-connected and x ∈ V (G). Now (G, hx) is AT if and only if

(1) d(x) = 2 and G− x is not a Gallai tree; or

(2) d(x) > 3, G is not complete, and (G, hx) 6∈ D.

The characterization of degree-choosable graphs has been applied to prove a variety
of graph coloring results [2, 4, 8, 9, 12]. Likewise, we think our main results in this paper
may be helpful in proving other results for Alon–Tarsi orientations, such as giving better
lower bounds on the number of edges in k-AT-critical graphs.

To conclude this section, we show that each pair in D is not AT.

Proposition 1.1. If (G, hx) ∈ D, then (G, hx) is not AT.
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Figure 1: Three pairs (G, hx) that are in D. In each case x is labeled 1 and
all other vertices are labeled 0. Each other pair in D can be formed from one
of these pairs by repeatedly stretching one or more bold edges. Note that the
rightmost graph is the Moser spindle.

Proof. For each pair (G, hx) ∈ D, we construct a list assignment L such that |L(x)| =
d(x)− 1 and |L(v)| = d(v) for all other v ∈ V (G), but G has no proper coloring from L.
Now (G, hx) is not AT, by the contrapositive of Theorem B.

Let (G, hx) be some stretching of the leftmost pair in Figure 1. Assign the list {1, 2, 3}
to each of the vertices on the unbolded triangle and assign the list {1, 2} to each other
vertex. If G has some coloring from these lists, then vertex x, labeled 1 in the figure, must
get color 1 or 2; by symmetry, assume it is 1. Along each path from x to the triangle,
colors must alternate 2, 1, . . .. Each of the paths from x to the triangle has odd length;
thus, color 1 is forbidden from appearing on the triangle. So G has no coloring from L.
Now let (G, hx) be some stretching of the center pair in Figure 1. The proof is identical
to the first case, except that each path has even length, so if x gets color 1, then color 2
is forbidden on the triangle.

Finally, consider the rightmost pair in Figure 1. Here d(x) = 4 and d(v) = 3 for all
other v ∈ V (G). Thus, it suffices to show that G is not 3-colorable. Assume that G has a
3-coloring and, by symmetry, assume that x is colored 1. Now colors 2 and 3 must each
appear on two neighbors of x. Thus, the two remaining vertices must be colored 1. Since
they are adjacent, this is a contradiction, which proves that G is not 3-colorable.

2 Subgraphs, subdivisions, and cuts

When Hladký, Krá ’l, and Schauz characterized degree-AT graphs, their proof relied heavily
on the observation that a connected graph G is degree-AT if and only if G has some
induced subgraph H such that H is degree-AT. Below, we reprove this easy lemma, and
also extend it to our setting of pairs (G, hx).

Subgraph Lemma. Let G be a connected graph and let H be an induced subgraph of G.
If H is degree-AT, then also G is degree-AT. Similarly, if x ∈ V (H) and (H, hx) is AT,
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then also (G, hx) is AT. Further, if x /∈ V (H), dG(x) > 2, and (H, hx) is AT, then (G, hx)
is AT.

Proof. Suppose that H is degree-AT, and let D′ be an orientation of H showing this.
Let σ be an order of V (G) such that if v <σ w, then dist(v,H) 6 dist(w,H). Extend
D′ to an orientation D of G by orienting each edge vw ∈ E(G) \ E(H) as −→vw precisely
when v <σ w. For every subgraph J of D with V (J) 6⊆ V (H), the vertex w ∈ V (J) that
appears latest in σ is a sink in J . Thus, every directed cycle in D is also a directed cycle
in D′ (and vice versa), so G is degree-AT. The proof of the second statement is identical.
The proof of the third statement is similar, but now for each edge wx with endpoints
equidistant from H, we require that w <σ x, so wx is oriented into x.

Recall that, given a pair (G, h) and a specified edge e ∈ E(G), when we stretch e, we
form (G′, h′) from (G, h) by subdividing e twice and setting h′(vi) = 0 for each of the
two new vertices, v1 and v2 (and h′(v) = h(v) for all other vertices v). By repeatedly
stretching edges, starting from the three pairs in Figure 1, we form all pairs (G, hx), where
G is 2-connected and (G, hx) is not AT. The following lemma will be useful for proving
this.

Stretching Lemma. Form (G′, h′) from (G, h) by stretching some edge e ∈ E(G). Now

(1) if (G, h) is AT, then (G′, h′) is AT; and

(2) if (G′, h′) is AT, then either (G, h) is AT or (G− e, h) is AT.

Proof. Suppose e = u1u2 and call the new vertices v1 and v2 so that G′ contains the
induced path u1v1v2u2. For (1), let D be an orientation of G showing that (G, h) is AT.
By symmetry we may assume u1u2 ∈ E(D). Form an orientation D′ of G′ from D by
replacing u1u2 with the directed path u1v1v2u2. We have a natural parity preserving
bijection between the spanning Eulerian subgraphs of D and D′, so we conclude that
(G′, h′) is AT.

For (2), let D′ be an orientation of G′ showing that (G′, h′) is AT. Suppose G′ contains
the directed path u1v1v2u2 or the directed path u2v2v1u1. By symmetry, we can assume
it is u1v1v2u2. Now form an orientation D of G by replacing u1v1v2u2 with the directed
edge u1u2. As above, we have a parity preserving bijection between the spanning Eulerian
subgraphs of D and D′, so we conclude that (G, h) is AT. So suppose instead that G′

contains neither of the directed paths u1v1v2u2 and u2v2v1u1. Now no spanning Eulerian
subgraph of D′ contains a cycle passing through v1 and v2. So, the spanning Eulerian
subgraph counts of D′ are the same as those of D′ − v1 − v2. However, this gives an
orientation of G− e showing that (G− e, h) is AT.

Given a pair (G, h) that is not AT, the Stretching Lemma suggests a way to construct
a larger graph G′ such that (G′, h′) is not AT. In some cases, we can also use the Stretching

Lemma to construct a smaller graph Ĝ such that (Ĝ, h) is not AT. Specifically, we have
the following.
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Corollary 2.1. If e is an edge in G such that (G, h) is not AT and (G − e, h) is not
AT, then stretching e gives a pair (G′, h′) that is not AT. Further, let G be a graph
with an induced path u1v1v2u2 such that dG(v1) = dG(v2) = 2. If (G, h) is AT, where
h(v1) = h(v2) = 0, and (G− v1 − v2, h) is not AT, then(

(G− v1 − v2) + u1u2, h�V (G)\{v1,v2}
)

is AT.

Proof. The first statement follows directly from part (2) of the Stretching Lemma. Now
we prove the second. Suppose that (G, h) satisfies the hypotheses. Now part (2) of
the Stretching Lemma also shows that either

(
G− v1 − v2, h�V (G)\{v1,v2}

)
is AT or else(

(G− v1 − v2) + u1u2, h�V (G)\{v1,v2}
)

is AT. By hypothesis, the former is false. Thus, the
latter is true.

With standard vertex coloring, we can easily reduce to the case where G is 2-connected.
If G is a connected graph with two blocks, B1 and B2, meeting at a cutvertex x, then we
can color each of B1 and B2 independently, and afterward we can permute colorings to
match at x. For Alon–Tarsi orientations, the situation is not quite as simple. However,
the following lemma plays a similar role for us.

Lemma 2.2. Let A1, A2 ⊆ V (G), and x ∈ V (G) be such that A1 ∪ A2 = V (G) and
A1 ∩A2 = {x}. If G[Ai] is fi-AT for each i ∈ {1, 2}, then G is f -AT, where f(v) = fi(v)
for each v ∈ V (Ai − x) and f(x) = f1(x) + f2(x) − 1. Going the other direction, if G is
f -AT, then G[Ai] is fi-AT for each i ∈ {1, 2}, where fi(v) = f(v) for each v ∈ V (Ai− x)
and f1(x) + f2(x) 6 f(x) + 1.

Proof. We begin with the first statement. For each i ∈ {1, 2}, choose an orientation Di

of Ai showing that Ai is fi-AT. Together these Di give an orientation D of G. Since no
cycle has vertices in both A1 − x and A2 − x, we have

EE(D)− EO(D) = EE(D1)EE(D2) + EO(D1)EO(D2)

− EE(D1)EO(D2)− EO(D1)EE(D2)

= (EE(D1)− EO(D1))(EE(D2)− EO(D2))

6= 0.

Hence G is f -AT.
Now we prove the second statement. Suppose that G is f -AT and choose an orientation

D of G showing this. Let Di = D[Ai] for each i ∈ {1, 2}. As above, we have 0 6= EE(D)−
EO(D) = (EE(D1)−EO(D1))(EE(D2)−EO(D2)). Hence, EE(D1)−EO(D1) 6= 0 and
EE(D2) − EO(D2) 6= 0. Since the indegree of x in D is the sum of the indegree of x in
D1 and the indegree of x in D2, the lemma follows.

3 When h is 1 for one vertex

In this section, we prove our Main Lemma. For a graph G and x ∈ V (G) recall that
hx : V (G) → N is defined as hx(x) = 1 and hx(v) = 0 for all v ∈ V (G − x). We classify
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the connected graphs G such that (G, hx) is AT for some x ∈ V (G). We begin with the
case when G is 2-connected, which takes most of the work. At the end of the section, we
extend our characterization to all connected graphs.

We will show that for most 2-connected graphs G and vertices x ∈ V (G), the pair
(G, hx) is AT. Specifically, this is true for all pairs except those in D, defined in the
introduction. In view of the Subgraph Lemma, for a 2-connected graph G and x ∈ V (G),
to show that (G, hx) is AT it suffices to find some induced subgraph H such that (H, hx) is
AT. The subgraphs H that we consider all have dH(x) = 0 or dH(x) > 3. This motivates
the next lemma, which allows us to reduce to the case dG(x) > 3.

Lemma 3.1. If G is a connected graph and x ∈ V (G) with dG(x) = 2, then (G, hx) is
AT if and only if G− x is degree-AT.

Proof. Let D be an orientation of G showing that (G, hx) is AT. Now d−D(x) = 2, so no
spanning Eulerian subgraph contains a cycle passing through x. Therefore, the Eulerian
subgraph counts in G − x are different and G − x is degree-AT. The other direction is
immediate from the Subgraph Lemma.

Recall that our Main Lemma relies on a characterization of degree-AT graphs. As we
mentioned in the introduction, a description of degree-choosable graphs was first given by
Borodin [3] and Erdős, Rubin, and Taylor [5]. Hladký, Krá ’l, and Schauz [7] later extended
the proof from [5] to Alon–Tarsi orientations. For reference, we record their result next.

Lemma 3.2. A connected graph G is degree-AT if and only if it is not a Gallai tree.

Lemmas 3.1 and 3.2 combine to prove Case (1) of our Main Lemma. Before we can
prove Case (2), we need a few more definitions and lemmas. A θ-graph θ-graphconsists of two
vertices joined by three internally disjoint paths, P1, P2, and P3. When we write hx for
a θ-graph, we always assume that d(x) = 3. We will see shortly that if H is a θ-graph
with dH(x) = 3, then (H, hx) is AT. Thus, the Subgraph Lemma implies that if (G, hx)
is not AT, then G has no induced θ-graph H with dH(x) = 3. A T -graph T -graphis formed from
vertices x, z1, z2, z3, by making the zi pairwise adjacent, and joining each vertex zi to x
by a path Pi (where the Pi are disjoint). Equivalently, a T -graph is formed from K4 by
subdividing each of the edges incident to x zero or more times.

Similar to the proof characterizing degree-AT graphs in [7], our approach in proving
our Main Lemma is to find an induced subgraph H such that (H, hx) is AT, and apply
the Subgraph Lemma. So we need the following lemma about pairs (H, hx) that are AT.

Lemma 3.3. The pair (G, hx) is AT whenever (i) G is a θ-graph, (ii) G is a T -graph
and two paths Pi have lengths of opposite parities, as in Figure 2, or (iii) G is formed
from a T -graph by adding an extra vertex with neighborhood {z1, z2, z3}, as in Figure 3.

Proof. In each case, we give an AT orientation D of G such that d−D(v) > hx(v) + 1 for
each v ∈ V (G).

Case (i). Orient the edges of each path Pi consistently, with P1 and P2 into x and P3

out of x; this orientation satisfies the degree requirements. Further, it has exactly three
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Figure 2: The pair (G, hx) is AT, when G is formed from K4 by subdividing
one or two edges incident to x.
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Figure 3: (a) The pair (G, hx) is AT, where G = K5−xy. (b) The pair (G, hx)
is AT, where G is formed from K5− e by subdividing each edge incident to x.

spanning Eulerian subgraphs, including the empty subgraph. Thus, EE +EO is odd, so
EE 6= EO.

Case (ii). Let P1 and P2 be two paths with opposite parities. As before, orient the
edges of each path consistently, with P1 and P2 into x and P3 out of x. Orient the
three additional edges as −−→z1z2,

−−→z2z3, and −−→z3z1. The resulting digraph D has four spanning
Eulerian subgraphs, 3 of one parity and 1 of the other. Note that the empty subgraph
and the subgraph {−−→z1z2,

−−→z2z3,
−−→z3z1} have opposite parities. Further, the parities are the

same for the two subgraphs consisting of the directed cycles xP3z3z1P1 and xP3z3z1z2P2.
So, EE 6= EO.

Case (iii). The simplest instance of this case is when G = K5 − e, as on the left in
Figure 3. Denote its vertices by {t, u, v, w, x}, where w 6↔ x. Begin with the transitive

orientation given by t → w → u → v → x, and reverse −→ux and
−→
tv to get −→xu and

−→
vt.

Call this orientation D. We use D to show that (G, hx) is AT. Note that D satisfies the
degree constraints. Consider the Eulerian subgraph counts. Since K4 is not 3-colorable,
(G − x, hx) is not AT. Thus, the even and odd Eulerian subgraph counts of D − x are
equal; in particular, the sum of these is even (in fact there are 2 even and 2 odd, but this is
unimportant). These Eulerian subgraphs are precisely the Eulerian subgraphs of D with
d+(x) = d−(x) = 0. Now consider an Eulerian subgraph H of D with d+(x) = d−(x) = 1.

If
−→
tx ∈ E(H), then E(H) = {−→tx,−→xu,−→uv,−→vt}. If

−→
tx /∈ E(H), then −→vx,−→xu,−→uv ∈ E(H).

Further, E(H) contains all or none of
−→
vt,
−→
tw,−→wv (and no other edges). Thus, D has 3

Eulerian subgraphs with d+(x) = d−(x) = 1. In total, EE + EO is odd, so EE 6= EO.
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To handle larger instances of this case, we repeatedly subdivide edges incident to x and
orient each of the resulting paths consistently, and in the direction of the corresponding
edge in D. The resulting orientation satisfies the degree requirements. Further, the sum
EE + EO remains unchanged, and thus odd. Hence, still EE 6= EO.

Lemma 3.4. Let G be a T -graph. Let P be a path of G where all internal vertices of P
have degree 2 in G and one endvertex of P has degree 2 in G. Form G′ from G by adding
a path P ′ (of length at least 2) joining the endvertices of P . Now (G′, hx) is AT.

Proof. We can assume that G is not AT; otherwise, we are done by the Subgraph Lemma.
By symmetry, assume P is a subpath of P3. First, we get an orientation of G with indegree
at least 1 for all vertices and d−(x) = 2. Orient P1 from z1 to x, P2 from z2 to x, P3

from x to z3, and the triangle as −−→z1z2,
−−→z2z3, and −−→z3z1. To get an orientation of G′, orient

the new path P ′ consistently, and opposite of P . Now the only directed cycle containing
edges of P ′ is P ′P . Since the Eulerian subgraph counts are equal for G, they differ by 1
for G′.

Now we can prove Case (2) of our Main Lemma. For reference, we restate it.

Lemma 3.5. Let G be 2-connected, and choose x ∈ V (G) with d(x) > 3. Now (G, hx) is
AT if and only if G is not complete and (G, hx) 6∈ D.

Proof. If G is complete, then G is not degree-AT, by Lemma 3.2, so clearly (G, hx) is not
AT. When (G, hx) ∈ D the lemma holds by Proposition 1.1.

Now let G be 2-connected, choose x ∈ V (G) with d(x) > 3, and suppose that (G, hx) /∈
D. Since G−x is connected, let H ′ be an induced subgraph of G−x with as few vertices as
possible such that H ′ is connected and contains three neighbors of x; call these neighbors
w1, w2, and w3. Consider a spanning tree T of H ′. Since H ′ is minimum, each leaf of T
is among {w1, w2, w3}. So T is either (i) a path or (ii) a subdivision of K1,3; if possible,
choose T to be in case (ii). Suppose we are in case (i). If there exists e ∈ E(H ′)−E(T ),
then either H ′ is not minimal, or we could be in case (ii), or H ′ = K3. So either H ′ = K3,
H ′ is a path, or we are in case (ii). Assume we are in case (ii) and let s be the vertex with
dT (s) = 3. If E(H ′)−E(T ) has any edge with at least one endpoint outside of N(s), then
we can delete some vertex in N(s) and remain connected, contradicting the minimality
of H ′. Similarly, if N(s) contains at least two edges, then H ′ − s still connects, w1, w2,
and w3. Now let H be the subgraph of G induced by V (H ′)∪ {x}. Note that H is either
a θ-graph (if H ′ is a tree) or a T -graph (if H ′ has one extra edge in N(s), or H ′ = K3).

If H is a θ-graph, then (G, hx) is AT, by Lemma 3.3.i and the Subgraph Lemma. So
assume H is a T -graph. Let z1, z2, z3 be the vertices of degree 3 (other than x), and let
P1, P2, and P3 denote the paths from x to z1, z2, and z3; when we write V (Pi), we exclude
x and zi, so possibly V (Pi) is empty for one or more i ∈ {1, 2, 3}. If any two of P1, P2,
and P3 have lengths with opposite parities, then we are done by Lemma 3.3.ii; so assume
not.

Now (H, hx) ∈ D, so we can assume that V (G − H) 6= ∅. Choose u ∈ V (G − H),
and let Hu be a minimal 2-connected induced subgraph of G that contains V (H) ∪ {u}.
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By the Subgraph Lemma and Lemma 3.2, G− x is a Gallai tree. Thus, so is Hu − x; in
particular, the block Bu of Hu − x containing u is complete or an odd cycle. Therefore,
we either have (i) V (Bu)∩ V (H) = {z1, z2, z3} or (ii) V (Bu)∩ V (H) ⊆ Pi ∪ {zi} for some
i ∈ {1, 2, 3}.

Suppose (i) happens. Now NG(u)∩ V (Hu− x) = {z1, z2, z3}. If x 6↔ u, then (G, hx) is
AT by the Subgraph Lemma and Lemma 3.3.iii. If x↔ u, then x must have odd length
paths to each zi, by Lemma 3.3.ii, with u in the role of some zi. Further, x ↔ zi for all
i ∈ {1, 2, 3}, since otherwise (G, hx) is AT by the Subgraph Lemma, Lemma 3.3.iii, and
the Stretching Lemma. So, H = K4 and Hu = K5. This implies that (ii) cannot happen
for any vertex in V (G−H), since if V (Bu)∩ V (H) = {zi} for some i, then (G, hx) is AT
by Lemma 3.3.i and the Subgraph Lemma. So (i) happens for every vertex in V (G−H);
in particular, V (G−H) is joined to {x, z1, z2, z3}. Since G is not complete, G− x must
contain an induced copy of Figure 3(a); hence, (G, hx) is AT by Lemma 3.3.iii and the
Subgraph Lemma.

So instead (ii) happens for every vertex in V (G − H), including u. By symmetry,
assume V (Bu) ∩ V (H) ⊆ P1 ∪ {z1}. Let z1P1 = v1v2 · · · v`, where v` ↔ x. First, suppose
Bu is an odd cycle of length at least 5. If there is u′ ∈ V (Bu) \ V (H) with u′ ↔ x, then
G contains a θ-graph and (G, hx) is AT, by Lemma 3.3.i and the Subgraph Lemma. So,
we assume u′ 6↔ x for all u′ ∈ V (Bu) \ V (H). Now we are done by Lemma 3.4 and the
Subgraph Lemma.

So instead we assume that Bu is complete. If V (Bu) ∩ V (H) = {v`}, then G has
an induced θ-graph J , where dJ(x) = dJ(v`) = 3, so we are done by Lemma 3.3.i and
the Subgraph Lemma. Thus, we must have V (Bu) ∩ V (H) = {vj, vj+1} for some j ∈
{1, . . . , `− 1}. In particular, Bu is a triangle. If u 6↔ x, then (G, hx) is AT by the
Subgraph Lemma and Lemma 3.4. So we conclude that u↔ x, which requires j = `− 1,
by the minimality of H. Hence, Hu is formed from a T -graph by adding a vertex u that
is adjacent to x and also to the vertices of a K2 endblock Du of H −x. Suppose there are
distinct vertices u1, u2 ∈ V (G − H) adjacent to vertices of the same K2 endblock. Now
G contains an induced copy of Figure 3(a), so (G, hx) is AT by Lemma 3.3.iii and the
Subgraph Lemma. Thus, each K2 endblock has at most one such u.

Let t = |V (G−H)|, and note that 0 6 t 6 3. Suppose t > 2. By symmetry, assume
that for each i ∈ {1, 2} there exists ui such that V (Bui)∩V (H) ⊆ Pi∪{zi}. Let G′ denote
the subgraph of G induced by V (H − P1) ∪ {u2}. Now (G′, hx) is AT by Lemma 3.4, so
(G, hx) is AT by the Subgraph Lemma. If t = 0, then (since (G, hx) /∈ D) graph G
is a T -graph with two paths with lengths of opposite parities. Thus, we are done by
Lemma 3.3.ii and the Subgraph Lemma.

Now assume t = 1, and let {u} = V (G−H). By symmetry, assume V (Bu)∩ V (H) ⊆
P1 ∪ {z1}. If each of P2 and P3 is a single edge and P1 has length 3, then G is the Moser
spindle (shown in Figure 1 on the right), contradicting that (G, hx) /∈ D. Thus, some
Pi is longer than this; suppose it is P1. Let G′ = G − (V (P1) − N(u)); note that G′ is
an induced subgraph, and is formed from two θ-graphs by identifying a vertex of degree
2 in each. Further, this identified vertex is x. Since θ-graphs are not Gallai trees, they
are degree-AT by Lemma 3.2. Thus, Lemma 2.2 shows that (G′, hx) is AT. So we are
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done by the Subgraph Lemma. So instead assume either P2 or P3 is longer than a single
edge; by symmetry, assume it is P2. Let G′ = G− V (P2), and note that G′ is an induced
subgraph of G. Further, (G′, hx) is AT by Lemma 3.4. Thus, we are done by the Subgraph
Lemma.

Finally, Lemmas 3.1, 3.2, and 3.5 combine to prove our Main Lemma. However, this
characterization requires that G be 2-connected. Now we extend our result to the more
general case, when G need only be connected. We use the following two definitions. Let
G be a graph, x a vertex of G, and B a block of G. An x-lobe of G x-lobeis a maximal subgraph
A such that A−x is connected. A B-lobe of G B-lobeis a maximal subgraph A such that A−B
is connected, and A includes a single vertex of B.

Theorem 3.6. If G is connected and x ∈ V (G), then (G, hx) is not AT if and only if

(1) G is a Gallai tree; or

(2) d(x) = 1; or

(3) d(x) = 2 and G− x has a component that is a Gallai tree; or

(4) x is not a cutvertex, for the block B of G containing x, we have (B, hx) ∈ D, and
every other block of G is complete or an odd cycle; or

(5) x is a cutvertex, all but at most one x-lobe of G, say A, is a Gallai tree, and either:
(i) dA(x) = 1; or (ii) dA(x) = 2 and A − x is a Gallai tree; or (iii) for the block B
of A containing x, we have (B, hx) ∈ D and all B-lobes of A are Gallai trees.

Proof. First, we check that if any of Cases (1)–(5) hold, then (G, hx) is not AT. Cases
(1) and (2) are immediate. Case (3) follows from Lemma 3.1. Consider Case (4). By
Proposition 1.1, we know (B, hx) is not AT. Now (G, hx) is not AT by repeated application
of Lemma 2.2. Finally, Case (5) follows from Cases (2), (3), and (4), by Lemma 2.2.

Now, for the other direction, suppose (G, hx) is not AT and none of Cases (1)–(5)
hold. By Lemma 3.1, and not (2) and not (3), we must have d(x) > 3. Suppose x is a
cutvertex. Now, by not (5), either (a) at least two x-lobes of G are not Gallai trees or (b)
(H, hx) is AT for some x-lobe H of G. In each case, (G, hx) is AT by Lemma 2.2, which
is a contradiction.

So assume instead that x is not a cutvertex. Suppose the block B of G containing x is
complete or (B, hx) ∈ D. By not (1) and not (4), some B-lobe H of G is not a Gallai tree.
Since H is a subgraph of G − x, and G − x is connected, Lemma 3.2 and the Subgraph
Lemma imply that G− x is degree-AT; hence, (G, hx) is also AT. So, we conclude that B
is not complete and (B, hx) /∈ D. First suppose that d(x) = 2. By not (3), we know that
G − x is not a Gallai tree. Lemma 3.2 implies that G − x is degree-AT. So, again, the
Subgraph Lemma shows that (G, hx) is AT. Now assume instead that d(x) > 3. Since B
is not complete and (B, hx) /∈ D, Lemma 3.5 now implies that (B, hx) is AT; once more,
the Subgraph Lemma implies that (G, hx) is AT.
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4 Choosability and Paintability

As we mentioned in the introduction, Alon and Tarsi showed that if a graph G is f -AT,
then G is also f -choosable. Online list coloring, also called painting is similar to list
coloring, but now the list for each vertex is progressively revealed, as the graph is colored.
Schauz [11] extended the Alon–Tarsi theorem, to show that if G is f -AT, then G is also
f -paintable (which we define formally below). In this section, we use our characterization
of pairs (G, hx) that are not AT to prove characterizations of pairs (G, hx) that are not
paintable and that are not choosable. More precisely, a pair (G, hx) is choosable choosable

pair

if G
has a proper coloring from its lists L whenever L is such that |L(x)| = d(x) − 1 and
|L(v)| = d(v) for all other v; otherwise (G, hx) is not choosable. A pair being paintable paintable

pair

is
defined analogously. We characterize all pairs (G, hx), where G is connected and (G, hx)
is not choosable (resp. not paintable). In fact, we will see that these characterizations,
for both choosability and paintability, are identical to that for pairs that are not AT.

For completeness, we include the following definition of f -paintable. Schauz [10] gave
a more intuitive (yet equivalent) definition, in terms of a two player game. We say that
G is f -paintable f -paintableif either (i) G is empty or (ii) f(v) > 1 for all v ∈ V (G) and for every
S ⊆ V (G) there is an independent set I ⊆ S such that G − I is f ′-paintable where
f ′(v) := f(v) for all v ∈ V (G)− S and f ′(v) := f(v)− 1 for all v ∈ S − I.

Since all pairs (G, hx) that are AT are also both paintable and choosable, it suffices
to show that every pair (G, hx) that is not AT is also not choosable (here we use that if
a pair is paintable, then it is also choosable).

Theorem 4.1. For every connected graph G, the pair (G, hx) is not choosable if and
only if (G, hx) is not AT. Thus, the same characterization holds for pairs that are not
paintable.

Proof. As noted above, every pair that is AT is also choosable and paintable. Thus, it
suffices to show that each pair (G, hx) in Theorem 3.6 is not choosable.

To show that Gallai trees are not degree-choosable, assign to each block B a list of
colors LB such that |LB| = dB(x) for each x ∈ V (B); further, for all distinct blocks B1 and
B2, we require that LB1 and LB2 are disjoint. For each v ∈ V (G), let L(v) = ∪Bi3vLBi

.
To show that G is not colorable from these lists, we use induction on the number of
blocks. Let B be an endblock and x a cutvertex in B. Let G′ = G \ (V (G) − x). Since
B is complete or an odd cycle, B has no coloring from LB. Thus any coloring ϕ of G
from L does not use LB on x. Hence, ϕ gives a coloring ϕ′ of G′ from its lists L′, where
L′(x) = L(x) \ LB and L′(v) = L(v) for all v ∈ V (G) \ V (B). This coloring ϕ′ of G′

contradicts the induction hypothesis. Thus, G has no coloring from L.
Here we use a similar approach. Consider a pair (G, hx) that satisfies one of Cases

(1)–(5) in Theorem 3.6. We show that (G, hx) is not choosable. Case (1) is immediate
by the previous paragraph. Case (2) is immediate, since |L(x)| = 0. For Case (3), give
lists to the Gallai tree of G − x as above; now let L(x) = {c} for some new color c, and
add c to the list of each neighbor of x. Again G cannot be colored from L. For Case (4),
assign lists to V (B) as in Proposition 1.1 and to the other blocks as above. Again, G has
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no coloring from these lists. Finally, consider Case (5). Assign lists for all blocks outside
of A as above, and assign lists for A as above in Case (2), (3), or (4).

To conclude this section, we consider labelings hx,y, where hx,y(x) = hx,y(y) = 1 and
hx,y(v) = 0 for all other v ∈ V (G). We show that the set of pairs (G, hx,y) that are not
AT differs from the set of pairs that are not paintable. Further, both sets differ from the
set of pairs that are not choosable. It suffices to give a pair (G1, hx,y) that is choosable
but not paintable and a second pair (G2, hx,y) that is paintable but not AT.

0

1 1

0 0

0

1 1

0 0

Figure 4: The pair on the left is choosable, but not paintable. The pair on the
right is paintable, but not AT.

Proposition 4.2. The pair (G1, hx,y) on the left in Figure 4 is choosable, but it is not
paintable. The pair (G2, hx,y) on the right in Figure 4 is paintable, but it is not AT.

Proof. Let (G1, hx,y) denote the pair on the left, where x and y are the vertices labeled 1.
Let (G2, hx,y) denote the pair on the right, where x and y are the vertices labeled 1.

We first show that (G1, hx,y) is choosable. Let L denote the list assignment. If there
exists c ∈ L(x) ∩ L(y), then use c to color x and y, and color the remaining vertices
greedily. So suppose there does not exist such a color c. Let z be a vertex in both
triangles and note that there exist c ∈ (L(x) ∪ L(y)) \ L(z). By symmetry, assume that
c ∈ L(x). Color x with c, and color G1 − x greedily, starting with the vertex of degree 2
and ending with z.

We now show that (G1, hx,y) is not paintable. Let S be the vertices of one triangle.
By definition, there must be I ⊆ S such that G1 − I is f ′-paintable, where f ′(v) := f(v)
for v ∈ V (G1)−S and f ′(v) := f(v)− 1 for v ∈ S − I. I must have one vertex, w. There
are two choices for w; either w is in two triangles or not. If w is not in two triangles, then
G1 − w is a triangle with a pendant edge, where the vertices on the triangle all have list
size 2, so G1−w is not paintable. If w is one of the vertices in two triangles, then G1−w
is a 4-cycle with list sizes 1, 2, 2, 2. Again G1 − I is not paintable (nor choosable).

To see that (G2, hx,y) is not AT, note that any good orientation would need indegrees
summing to at least 7, but G2 has only 6 edges. Now we show that (G2, hx,y) is paintable.
Note that G2 is isomorphic to K2,3, the complete bipartite graph. Call the parts X and
Y , with |X| = 2 and |Y | = 3. We color (take I to be) all vertices in whichever is larger of
X ∩S and Y ∩S, picking X ∩S if their sizes are equal. If we colored at least two vertices,
then it is easy to check that G− I is paintable, since it induces either an independent set,
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or a path where each vertex has at least as many colors as neighbors and one endvertex has
more colors than neighbors. So assume that we colored only a single vertex. If we colored
a vertex of X, then the resulting graph is paintable, since it is a claw, K1,3, with at most
one leaf having a single color and all other vertices having two colors. Finally, suppose we
colored a single vertex of Y . The remaining graph is C4, which is degree-paintable (since
it is degree-AT).

A graph is unstretched unstretchedif it has no induced path u1v1v2u2 where d(v1) = d(v2) = 2 (as
in Corollary 2.1). We finish with the following question.

Question. Are there only finitely many unstretched, 2-connected graphs G such that
(G, hx,y) is not choosable (resp. paintable, AT)? More generally, let hx1,...,xk be a label-
ing that assigns 1 to vertices x1, . . . , xk and 0 to all others. Are there only finitely many
unstretched, 2-connected graphs G such that (G, hx1,...,xk) is not choosable (resp. paintable,
AT)?
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