Ideals and quotients of diagonally quasi-symmetric functions

Shu Xiao Li

Department of Mathematics and Statistics York University Toronto, Canada

lishu3@yorku.ca

Submitted: Dec 1, 2016; Accepted: Jun 29, 2017; Published: Jul 14, 2017 Mathematics Subject Classifications: 05E05

Abstract

In 2004, J.-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diagonally quasi-symmetric functions DQSym in the ring $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$ with two sets of variables. They made conjectures on the structure of the quotient $\mathbb{Q}[\mathbf{x}, \mathbf{y}]/\langle \mathsf{DQSym}^+ \rangle$, which is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper, we construct a Hilbert basis for this quotient when there are infinitely many variables i.e. $\mathbf{x} = x_1, x_2, \ldots$ and $\mathbf{y} = y_1, y_2, \ldots$. Then we apply this construction to the case where there are finitely many variables, and compute the second column of its Hilbert matrix.

1 Introduction

In the polynomial ring $\mathbb{Q}[\mathbf{x}_n] = \mathbb{Q}[x_1, \ldots, x_n]$ with *n* variables, the ring of symmetric polynomials (cf. [13, 14]), Sym_n , is the subspace of invariants under the symmetric group S_n action

$$\sigma \cdot f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$$

The quotient space $\mathbb{Q}[\mathbf{x}_n]/\langle \mathsf{Sym}_n^+ \rangle$ over the ideal generated by symmetric polynomials with no constant term is thus called the coinvariant space of symmetric group. Classic results by Artin [5] and Steinberg [16] asserts that this quotient forms an S_n -module that is isomorphic to the left regular representation. Moreover, considering the natural scalar product

$$\langle f,g\rangle = (f(\partial x_1,\ldots,\partial x_n)(g(x_1,\ldots,x_n)))(0,0,\ldots,0),$$

this quotient is equal to the orthogonal complement of Sym_n . In particular, the coinvariant space is killed by Laplacian operator $\Delta = \partial x_1^2 + \cdots + \partial x_n^2$. Hence, it is also known as the harmonic space.

The electronic journal of combinatorics 24(3) (2017), #P3.3

One can show that $\{h_k(x_k, \ldots, x_n) : 1 \leq k \leq n\}$ forms a Gröbner basis of $\langle \mathsf{Sym}_n^+ \rangle$ with respect to the usual order $x_1 > \cdots > x_n$, where h_k is the complete homogeneous basis of degree k. As a result, the dimension of $\mathbb{Q}[\mathbf{x}_n]/\langle \mathsf{Sym}_n^+ \rangle$ is n!.

One generalization is the diagonal harmonic space. In the context of $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n] = \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$, the diagonally symmetric functions, DSym_n , is the space of invariants under the diagonal action of S_n

$$\sigma \cdot f(x_1, \dots, x_n, y_1, \dots, y_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}, y_{\sigma(1)}, \dots, y_{\sigma(n)}).$$

The diagonal harmonics, $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]/\langle \mathsf{DSym}_n^+ \rangle$, was studied by Garsia and Haiman [9, 12] where it was used to prove the n! conjecture and Macdonald positivity. In particular, its dimension turns out to be $(n+1)^{n-1}$. More interesting results and applications can be found in [6, 7, 11].

The ring of quasi-symmetric functions, QSym, was introduced by Gessel [8] as generating function for Stanley's *P*-partitions [15]. It soon shows great importance in algebraic combinatorics e.g. [4, 10]. In our context, $QSym_n$ can be defined as the space of invariants in $\mathbb{Q}[\mathbf{x}_n]$ under the S_n -action of Hivert

$$\sigma \cdot \left(x_{i_1}^{a_1} \cdots x_{i_k}^{a_k} \right) = x_{j_1}^{a_1} \cdots x_{j_k}^{a_k}$$

where $i_1 < \cdots < i_k, j_1 < \cdots < j_k$ and $\{j_1, \dots, j_k\} = \{\sigma(i_1), \dots, \sigma(i_k)\}.$

In a series of papers by Aval, F. Bergeron and N. Bergeron, the authors studied the quotient $\mathbb{Q}[\mathbf{x}_n]/\langle \mathsf{QSym}_n^+ \rangle$ over the ideal generated by quasi-symmetric polynomials with no constant term, which they called the super-covariant space of S_n . Their main result is that a basis of this quotient corresponds to Dyck paths, and the dimension of the quotient space is the *n*-th Catalan number C_n [1, 2].

After that, they extended QSym to diagonal setting, called diagonally quasi-symmetric functions, DQSym [3]. They described a Hopf algebra structure on DQSym, and made a conjecture about the linear structure of $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]/\langle \mathsf{DQSym}_n^+ \rangle$.

In this paper, we continue the study of the linear structure. We start with the case where there are infinitely many variables i.e. $R = \mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$ is the ring of formal power series where $\mathbf{x} = x_1, x_2, \ldots$ and $\mathbf{y} = y_1, y_2, \ldots$. The main result is that we give a description of a Hilbert basis for the quotient space R/I where $I = \overline{\mathsf{DQSym}^+}$ is the closure of the ideal generated by DQSym without constant terms. This Hilbert basis gives an upper bound on the degree of $\mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]/\langle \mathsf{DQSym}_n^+ \rangle$. We then use it to compute the second column of the Hilbert matrix, which coincides with the conjecture in [3].

2 Definitions

2.1 Bicompositions

An element $\tilde{\alpha} = \begin{pmatrix} \tilde{\alpha}_{11} & \tilde{\alpha}_{12} & \cdots \\ \tilde{\alpha}_{21} & \tilde{\alpha}_{22} & \cdots \end{pmatrix} \in \mathbb{N}^{2\mathbb{N}}$ is called a generalized bicomposition if all but finitely many $(\tilde{\alpha}_{1k}, \tilde{\alpha}_{2k})$ are (0, 0). Let k be the maximum number such that $(\tilde{\alpha}_{1k}, \tilde{\alpha}_{2k}) \neq$

(0,0). The length of $\tilde{\alpha}$, denoted by $\ell(\tilde{\alpha})$, is k. The size of $\tilde{\alpha}$, denoted by $|\tilde{\alpha}|$, is the sum of all its entries. For simplicity, we usually write $\tilde{\alpha}$ as $\begin{pmatrix} \tilde{\alpha}_{11} & \cdots & \tilde{\alpha}_{1k} \\ \tilde{\alpha}_{21} & \cdots & \tilde{\alpha}_{2k} \end{pmatrix}$. There also exists a generalized bicomposition with length 0 and size 0, called the zero bicomposition, denoted by $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Every monomial in R can be expressed as $\mathbf{X}^{\tilde{\alpha}} = x_1^{\tilde{\alpha}_{11}} y_1^{\tilde{\alpha}_{21}} \cdots x_k^{\tilde{\alpha}_{1k}} y_k^{\tilde{\alpha}_{2k}}$ for some generalized bicomposition $\tilde{\alpha}$. A generalized bicomposition α is called a bicomposition if $\ell(\alpha) = 0$ or $(\alpha_{1j}, \alpha_{2j}) \neq (0, 0)$ for all $1 \leq j \leq \ell(\alpha)$.

In this paper, we use Greek letters to denote bicompositions, and Greek letters with tilde to denote generalized bicompositions.

Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be non-zero generalized bicompositions. We write $\tilde{\alpha} = \tilde{\beta}\tilde{\gamma}$ if $\tilde{\alpha}_{ij} = \tilde{\beta}_{ij}$ for all $1 \leq j \leq \ell(\tilde{\alpha}) - \ell(\tilde{\gamma})$, $\tilde{\beta}_{ij} = 0$ for all $j > \ell(\tilde{\alpha}) - \ell(\tilde{\gamma})$ and $\tilde{\alpha}_{i(j+\ell(\tilde{\alpha})-\ell(\tilde{\gamma}))} = \tilde{\gamma}_{ij}$ for all $j \geq 1$. We write $\tilde{\alpha} = {0 \choose 0}\tilde{\beta}$ if $\tilde{\alpha}_{11} = \tilde{\alpha}_{21} = 0$ and $\tilde{\alpha}_{i(j+1)} = \tilde{\beta}_{ij}$ for all $j \geq 2$.

Note that for each generalized bicomposition $\tilde{\alpha}$ that is not a bicomposition, there is a unique way to decompose it into $\tilde{\alpha} = \tilde{\beta} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \gamma$ for some generalized bicomposition $\tilde{\beta}$ and bicomposition γ .

2.2 Diagonally quasi-symmetric functions

The algebra of diagonally quasi-symmetric functions, DQSym , is a subalgebra of $\mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$ spanned by monomials indexed by bicompositions

$$M_{\alpha} = \sum_{i_1 < \dots < i_k} x_{i_1}^{\alpha_{11}} y_{i_1}^{\alpha_{21}} \cdots x_{i_k}^{\alpha_{1k}} y_{i_k}^{\alpha_{2k}}.$$

As a graded algebra, $\mathsf{DQSym} = \bigoplus_{n \ge 0} \mathsf{DQSym}_n$ where $\mathsf{DQSym}_n = \operatorname{span}\{M_\alpha : |\alpha| = n\}$ is the degree *n* component. The algebra structure is defined in [3].

2.3 The F basis

We define a partial ordering \leq on bicompositions: $\alpha \leq \beta$ and β covers α if there exists a $1 \leq k \leq \ell(\alpha) - 1$ such that either $\alpha_{2k} = 0$ or $\alpha_{1(k+1)} = 0$, and

$$\beta = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1(k-1)} & \alpha_{1k} + \alpha_{1(k+1)} & \alpha_{1(k+2)} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{21} & \cdots & \alpha_{2(k-1)} & \alpha_{2k} + \alpha_{2(k+1)} & \alpha_{2(k+2)} & \cdots & \alpha_{2\ell(\alpha)} \end{pmatrix}.$$

By triangularity, $\left\{F_{\alpha} = \sum_{\alpha \leq \beta} M_{\beta}\right\}$ forms a basis for DQSym. For example,

$$F_{\binom{2}{2}} = M_{\binom{2}{2}} + M_{\binom{2}{0} \binom{2}{2}} + M_{\binom{1}{0} \binom{1}{2}} + M_{\binom{1}{0} \binom{1}{0} \binom{2}{0}} + M_{\binom{2}{0} \binom{2}{1}} + M_{\binom{2}{0} \binom{2}{1} \binom{2}{1}} + M_{\binom{1}{0} \binom{1}{1} \binom{1}{0}} + M_{\binom{1}{0} \binom{1}{0} \binom{1}{1} \binom{1}{0}} + M_{\binom{1}{0} \binom{2}{0} \binom{2}{1} \binom{1}{1} \binom{1}{0} \binom{1$$

For convenience, we set $F_{\begin{pmatrix} 0\\0 \end{pmatrix}} = 1$. This basis has the following easy but important properties:

The electronic journal of combinatorics $\mathbf{24(3)}$ (2017), $\#\mathrm{P3.3}$

If $\alpha_{11} \ge 1$ and $\alpha_{11} + \alpha_{21} \ge 2$, then

$$F_{\alpha} = x_1 F_{\left(\begin{array}{cc} \alpha_{11} - 1 & \alpha_{12} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2\ell(\alpha)} \end{array}\right)} + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots);$$
(2.1)

If $\alpha_{11} = 1$ and $\alpha_{21} = 0$, then

$$F_{\alpha} = x_1 F_{\begin{pmatrix} \alpha_{12} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{22} & \cdots & \alpha_{2\ell(\alpha)} \end{pmatrix}} (x_2, x_3, \dots, y_2, y_3, \dots) + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots);$$
(2.2)

If $\alpha_{11} = 0$ and $\alpha_{21} \ge 2$, then

$$F_{\alpha} = y_1 F_{\left(\begin{smallmatrix} 0 & \alpha_{12} & \cdots & \alpha_{1\ell(\alpha)} \\ \alpha_{21} - 1 & \alpha_{22} & \cdots & \alpha_{2\ell(\alpha)} \end{smallmatrix}\right)} + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots);$$
(2.3)

If $\alpha_{11} = 0$ and $\alpha_{21} = 1$, then

$$F_{\alpha} = y_1 F_{\binom{\alpha_{12} \cdots \alpha_{1\ell(\alpha)}}{\alpha_{22} \cdots \alpha_{2\ell(\alpha)}}}(x_2, x_3, \dots, y_2, y_3, \dots) + F_{\alpha}(x_2, x_3, \dots, y_2, y_3, \dots).$$
(2.4)

3 The G basis

In this section, we define a basis $\{G_{\tilde{\epsilon}}\}$ indexed by generalized bicompositions for $\mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$. Base cases: $G_{\begin{pmatrix} 0\\0 \end{pmatrix}} = 1$ and $G_{\tilde{\epsilon}} = F_{\tilde{\epsilon}}$ if $\tilde{\epsilon}$ is a bicomposition. Otherwise, let $\tilde{\epsilon} = \tilde{\alpha} \begin{pmatrix} 0\\0 \end{pmatrix} \beta$ where β is a non-zero bicomposition. Let $k = \ell(\tilde{\epsilon}) - \ell(\beta) - 1$. If $\beta_{11} > 0$,

$$G_{\tilde{\epsilon}} = G_{\tilde{\alpha}\beta} - x_{k+1} G_{\tilde{\alpha} \begin{pmatrix} \beta_{11} - 1 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}.$$
(3.1)

If $\beta_{11} = 0$,

$$G_{\tilde{\epsilon}} = G_{\tilde{\alpha}\beta} - y_{k+1} G_{\tilde{\alpha} \begin{pmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} - 1 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}.$$
(3.2)

Inductively, $\{G_{\tilde{\epsilon}}\}$ is defined for all generalized bicomposition $\tilde{\epsilon}$. Clearly $G_{\tilde{\epsilon}}$ is homogeneous in degree $|\tilde{\epsilon}|$. Hence, we have a notion of leading monomial of $G_{\tilde{\epsilon}}$, denoted by $LM(G_{\tilde{\epsilon}})$ with respect to the lexicographic order with $x_1 > y_1 > x_2 > y_2 > \cdots$. To show that $\{G_{\tilde{\epsilon}}\}$ form a basis, it suffices to prove the leading monomial of $G_{\tilde{\epsilon}}$ is $\mathbf{X}^{\tilde{\epsilon}}$.

Lemma 3.1. Let $\tilde{\alpha} = {\binom{a}{b}} \tilde{\beta}$ be a generalized bicomposition,

1. if
$$a = b = 0$$
, then $G_{\tilde{\alpha}} = G_{\tilde{\beta}}(x_2, x_3, \dots, y_2, y_3, \dots)$,
2. if $a > 0$, then $G_{\tilde{\alpha}} = x_1 G_{\binom{a-1}{b}} + P(x_2, x_3, \dots, y_2, y_3, \dots)$,
3. if $a = 0$ and $b > 0$, then $G_{\tilde{\alpha}} = y_1 G_{\binom{0}{b-1}} + P(x_2, x_3, \dots, y_2, y_3, \dots)$

for some $P \in \mathbb{Q}[[\mathbf{x}, \mathbf{y}]]$.

Proof. We prove by induction on the length of $\tilde{\alpha}$.

The electronic journal of combinatorics $\mathbf{24(3)}$ (2017), $\#\mathrm{P3.3}$

- 1. If $\tilde{\alpha} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, then $G_{\tilde{\alpha}} = 1$ and we are done.
- 2. If $\tilde{\beta} = \beta$ is a bicomposition,
 - (a) if a = b = 0 and β non-zero,

i. if $\beta_{11} \ge 1$ and $\beta_{11} + \beta_{21} \ge 2$, using (2.1) and (3.1), we get

$$G_{\tilde{\alpha}} = G_{\beta} - x_1 G_{\begin{pmatrix} \beta_{11} - 1 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$$

= $F_{\beta} - x_1 F_{\begin{pmatrix} \beta_{11} - 1 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}}$
= $F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) = G_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots)$

and the lemma follows.

ii. if $\beta_{11} = 1$ and $\beta_{21} = 0$, using (2.2), (3.1) and induction on $\ell(\tilde{\beta})$, we get

$$\begin{aligned} G_{\tilde{\alpha}} &= G_{\beta} - x_1 G_{\begin{pmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ 0 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}} \\ &= G_{\beta} - x_1 G_{\begin{pmatrix} \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}} (x_2, x_3, \dots, y_2, y_3, \dots) \\ &= F_{\beta} - x_1 F_{\begin{pmatrix} \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{pmatrix}} (x_2, x_3, \dots, y_2, y_3, \dots) \\ &= F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) = G_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) \end{aligned}$$

and the lemma follows.

iii. if $\beta_{11} = 0$ and $\beta_{21} \ge 2$, using (2.3) and (3.2), we get

$$\begin{aligned} G_{\tilde{\alpha}} &= G_{\beta} - y_1 G_{\left(\begin{smallmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} - 1 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{smallmatrix}\right)} \\ &= F_{\beta} - y_1 F_{\left(\begin{smallmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{21} - 1 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{smallmatrix}\right)} \\ &= F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) = G_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) \end{aligned}$$

and the lemma follows.

iv. if $\beta_{11} = 0$ and $\beta_{21} = 1$, using (2.4), (3.2) and induction on $\ell(\tilde{\beta})$, we get

$$\begin{aligned} G_{\tilde{\alpha}} &= G_{\beta} - y_1 G_{\left(\begin{smallmatrix} 0 & \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ 0 & \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{smallmatrix}\right)} \\ &= G_{\beta} - y_1 G_{\left(\begin{smallmatrix} \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{smallmatrix}\right)} (x_2, x_3, \dots, y_2, y_3, \dots) \\ &= F_{\beta} - y_1 F_{\left(\begin{smallmatrix} \beta_{12} & \cdots & \beta_{1\ell(\beta)} \\ \beta_{22} & \cdots & \beta_{2\ell(\beta)} \end{smallmatrix}\right)} (x_2, x_3, \dots, y_2, y_3, \dots) \\ &= F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) = G_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) \end{aligned}$$

and the lemma follows.

The electronic journal of combinatorics $\mathbf{24(3)}$ (2017), #P3.3

(b) if $a \ge 1$ and $a + b \ge 2$, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.1), we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = x_1 F_{\binom{a-1}{b}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows, with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

(c) if a = 1 and b = 0, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.2) and (2a). we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = x_1 F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

= $x_1 G_{\binom{0}{0}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$

and the lemma follows with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

(d) if a = 0 and $b \ge 2$, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.3), we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = y_1 F_{\binom{a}{b-1}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

and the lemma follows, with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

(e) if a = 0 and b = 1, by definition $G_{\tilde{\alpha}} = F_{\tilde{\alpha}}$. Using (2.4) and (2a). we get

$$G_{\tilde{\alpha}} = F_{\tilde{\alpha}} = y_1 F_{\beta}(x_2, x_3, \dots, y_2, y_3, \dots) + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$$

= $y_1 G_{\binom{0}{0}\beta} + F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$

and the lemma follows with $P = F_{\tilde{\alpha}}(x_2, x_3, \dots, y_2, y_3, \dots)$.

3. In the general case, let $\tilde{\alpha} = \tilde{\gamma} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \beta$ where β is a non-empty bicomposition and $k = \ell(\tilde{\alpha}) - \ell(\beta) - 1$. We prove by induction on k. If k = 1, then we are back in case (2a) above. Hence, we assume k > 1 and $\tilde{\gamma} = \begin{pmatrix} a \\ b \end{pmatrix} \tilde{\mu}$.

(a) If a = b = 0,

i. if $\beta_{11} \ge 1$, by induction and (3.1), we have

$$\begin{aligned} G_{\tilde{\alpha}} = G_{\binom{0}{0}\tilde{\mu}\binom{0}{0}\beta} &= G_{\binom{0}{0}\tilde{\mu}\beta} - x_k G_{\binom{0}{0}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}} \dots \beta_{1\ell(\beta)}} \\ &= G_{\tilde{\mu}\beta}(x_2, x_3, \dots, y_2, y_3, \dots) \\ &- x_{(k-1)+1} G_{\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}} \dots \beta_{1\ell(\beta)}} (x_2, x_3, \dots, y_2, y_3, \dots) \\ &= G_{\tilde{\mu}\binom{0}{0}\beta}(x_2, x_3, \dots, y_2, y_3, \dots) \end{aligned}$$

and the lemma follows.

ii. if $\beta_{11} = 0$, by induction and (3.2), we have

$$G_{\tilde{\alpha}} = G_{\begin{pmatrix} 0\\0 \end{pmatrix} \tilde{\mu} \begin{pmatrix} 0\\0 \end{pmatrix} \beta} = G_{\begin{pmatrix} 0\\0 \end{pmatrix} \tilde{\mu} \beta} - y_k G_{\begin{pmatrix} 0\\0 \end{pmatrix} \tilde{\mu} \begin{pmatrix} 0\\\beta_{21}-1 \end{pmatrix} \beta_{22} \cdots \beta_{2\ell(\beta)}}$$

The electronic journal of combinatorics $\mathbf{24(3)}$ (2017), $\#\mathrm{P3.3}$

$$=G_{\tilde{\mu}\beta}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots) - y_{(k-1)+1}G_{\tilde{\mu}\begin{pmatrix} 0 & \beta_{12} & \dots & \beta_{1\ell(\beta)} \\ \beta_{21}-1 & \beta_{22} & \dots & \beta_{2\ell(\beta)} \end{pmatrix}}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots) =G_{\tilde{\mu}\begin{pmatrix} 0 \\ 0 \end{pmatrix}\beta}(x_{2}, x_{3}, \dots, y_{2}, y_{3}, \dots)$$

and the lemma follows.

- (b) If $a \ge 1$,
 - i. if $\beta_{11} \ge 1$, by induction and (3.1), we have

$$\begin{aligned} G_{\tilde{\alpha}} = G_{\binom{a}{b}\tilde{\mu}\binom{0}{0}\beta} &= G_{\binom{a}{b}\tilde{\mu}\beta} - x_k G_{\binom{a}{b}}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}} \frac{\beta_{12}}{\beta_{22}} \cdots \frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}}) \\ &= x_1 G_{\binom{a-1}{b}\tilde{\mu}\beta} + P_1(x_2, x_3, \dots, y_2, y_3, \dots) \\ &- x_k \left(x_1 G_{\binom{a-1}{b}} \tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}} \frac{\beta_{12}}{\beta_{22}} \cdots \frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}} \right) \\ &+ P_2(x_2, x_3, \dots, y_2, y_3, \dots) \\ &= x_1 \left(G_{\binom{a-1}{b}\tilde{\mu}\beta} - x_k G_{\binom{a-1}{b}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}} \frac{\beta_{12}}{\beta_{22}} \cdots \beta_{2\ell(\beta)}} \right) \\ &+ P(x_2, x_3, \dots, y_2, y_3, \dots) \\ &= x_1 G_{\binom{a-1}{b}\tilde{\mu}\binom{0}{0}\beta} + P(x_2, x_3, \dots, y_2, y_3, \dots) \end{aligned}$$

and the lemma follows with $P = P_1 - x_k P_2$. ii. if $\beta_{11} = 0$, by induction and (3.2), we have

$$\begin{split} G_{\tilde{\alpha}} = & G_{\binom{a}{b}\tilde{\mu}\binom{0}{0}\beta} = G_{\binom{a}{b}\tilde{\mu}\beta} - y_k G_{\binom{a}{b}}\tilde{\mu}\binom{0}{\beta_{21}-1} \frac{\beta_{12}}{\beta_{22}} \cdots \frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}} \end{pmatrix} \\ = & x_1 G_{\binom{a-1}{b}\tilde{\mu}\beta} + P_1(x_2, x_3, \dots, y_2, y_3, \dots) \\ & - y_k \left(x_1 G_{\binom{a-1}{b}} \tilde{\mu}\binom{0}{\beta_{21}-1} \frac{\beta_{12}}{\beta_{22}} \cdots \frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}} \right) \\ & + P_2(x_2, x_3, \dots, y_2, y_3, \dots) \end{pmatrix} \\ = & x_1 \left(G_{\binom{a-1}{b}\tilde{\mu}\beta} - y_k G_{\binom{a-1}{b}\tilde{\mu}\binom{0}{\beta_{21}-1}} \frac{\beta_{12}}{\beta_{22}} \cdots \frac{\beta_{1\ell(\beta)}}{\beta_{2\ell(\beta)}} \right) \\ & + P(x_2, x_3, \dots, y_2, y_3, \dots) \\ = & x_1 G_{\binom{a-1}{b}\tilde{\mu}\binom{0}{0}\beta} + P(x_2, x_3, \dots, y_2, y_3, \dots) \end{split}$$

and the lemma follows with $P = P_1 - y_k P_2$.

(c) If a = 0 and $b \ge 1$,

The electronic journal of combinatorics $\mathbf{24(3)}$ (2017), #P3.3

i. if $\beta_{11} \ge 1$, by induction and (3.1), we have

$$\begin{aligned} G_{\tilde{\alpha}} = G_{\binom{0}{b}\tilde{\mu}\binom{0}{0}\beta} &= G_{\binom{0}{b}\tilde{\mu}\beta} - x_k G_{\binom{0}{b}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}} &\stackrel{\beta_{12}}{\longrightarrow} &\stackrel{\beta_{1\ell(\beta)}}{\longrightarrow} \\ &= y_1 G_{\binom{0}{b-1}\tilde{\mu}\beta} + P_1(x_2, x_3, \dots, y_2, y_3, \dots) \\ &- x_k \left(y_1 G_{\binom{0}{b-1}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}} &\stackrel{\beta_{12}}{\longrightarrow} &\stackrel{\beta_{1\ell(\beta)}}{\longrightarrow} \\ &+ P_2(x_2, x_3, \dots, y_2, y_3, \dots) \right) \\ &= y_1 \left(G_{\binom{0}{b-1}\tilde{\mu}\beta} - x_k G_{\binom{0}{b-1}\tilde{\mu}\binom{\beta_{11}-1}{\beta_{21}}} &\stackrel{\beta_{12}}{\longrightarrow} &\stackrel{\beta_{1\ell(\beta)}}{\longrightarrow} \\ &+ P(x_2, x_3, \dots, y_2, y_3, \dots) \\ &= y_1 G_{\binom{0}{b-1}\tilde{\mu}\binom{0}{0}\beta} + P(x_2, x_3, \dots, y_2, y_3, \dots) \end{aligned} \end{aligned}$$

and the lemma follows with $P = P_1 - x_k P_2$. ii. if $\beta_{11} = 0$, by induction and (3.2), we have

$$\begin{split} G_{\tilde{\alpha}} = & G_{\binom{0}{b}} \tilde{\mu} \binom{0}{0} \beta = G_{\binom{0}{b}} \tilde{\mu} \beta - y_k G_{\binom{0}{b}} \tilde{\mu} \binom{0}{\beta_{21} - 1} \beta_{22} \cdots \beta_{2\ell(\beta)}}{\beta_{22} - 1} \\ = & y_1 G_{\binom{0}{b-1}} \tilde{\mu} \beta + P_1(x_2, x_3, \dots, y_2, y_3, \dots) \\ & - & y_k \left(y_1 G_{\binom{0}{b-1}} \tilde{\mu} \binom{0}{\beta_{21} - 1} \beta_{22} \cdots \beta_{2\ell(\beta)}}{\beta_{21} - 1} \beta_{22} \cdots \beta_{2\ell(\beta)}} \right) \\ & + & P_2(x_2, x_3, \dots, y_2, y_3, \dots) \Big) \\ = & y_1 \left(G_{\binom{0}{b-1}} \tilde{\mu} \beta - y_k G_{\binom{0}{b-1}} \tilde{\mu} \binom{0}{\beta_{21} - 1} \beta_{22} \cdots \beta_{2\ell(\beta)}}{\beta_{21} - 1} \beta_{22} \cdots \beta_{2\ell(\beta)}} \right) \\ & + & P(x_2, x_3, \dots, y_2, y_3, \dots) \\ = & y_1 G_{\binom{0}{b-1}} \tilde{\mu} \binom{0}{0} \beta + P(x_2, x_3, \dots, y_2, y_3, \dots) \end{split}$$

and the lemma follows with $P = P_1 - y_k P_2$.

Corollary 3.2. Let $\tilde{\epsilon}$ be a generalized bicomposition, then the leading monomial of $G_{\tilde{\epsilon}}$ is $\mathbf{X}^{\tilde{\epsilon}}$. Hence, $\{G_{\tilde{\alpha}}\}$ forms a Hilbert basis for R.

Proof. We prove by induction on $\ell(\tilde{\epsilon})$ and $|\tilde{\epsilon}|$. If $\tilde{\epsilon} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, by definition $G_{\tilde{\epsilon}} = 1 = X^{\tilde{\epsilon}}$. Otherwise, let $\tilde{\epsilon} = \begin{pmatrix} a \\ b \end{pmatrix} \tilde{\beta}$.

1. If a = b = 0 and $\tilde{\beta}$ non-zero, by induction on $\ell(\tilde{\epsilon})$ and Lemma 3.1, we have

$$LM(G_{\tilde{\epsilon}}) = LM(G_{\tilde{\beta}}(x_2, x_3, \dots, y_2, y_3, \dots)) = (x_2, x_3, \dots, y_2, y_3, \dots)^{\beta} = \mathbf{X}^{\tilde{\epsilon}}.$$

The electronic journal of combinatorics 24(3) (2017), #P3.3

2. If $a \ge 1$, by induction on $|\tilde{\epsilon}|$ and Lemma 3.1, we have

$$LM(G_{\tilde{\epsilon}}) = LM\left(x_1G_{\binom{a-1}{b}}_{\tilde{\beta}}\right) = \mathbf{X}^{\tilde{\epsilon}}.$$

3. If a = 0 and $b \ge 1$, by induction on $|\tilde{\epsilon}|$ and Lemma 3.1, we have

$$LM(G_{\tilde{\epsilon}}) = LM\left(y_1G_{\binom{0}{b-1}}_{\tilde{\beta}}\right) = \mathbf{X}^{\tilde{\epsilon}}.$$

The Hilbert Basis 4

The set $\{x^{\tilde{\alpha}}F_{\beta}\}\$ is a spanning set of the ideal *I*. For each $\tilde{\alpha}$ and β , we write $x^{\tilde{\alpha}}F_{\beta}$ in terms of the G basis by the following rules.

- (1) We reorder the product $x^{\tilde{\alpha}}F_{\beta}$ as $\cdots (x_2^{\tilde{\alpha}_{21}}(y_2^{\tilde{\alpha}_{22}}(x_1^{\tilde{\alpha}_{11}}(y_1^{\tilde{\alpha}_{21}}F_{\beta})))))$ (2) We reduce the above product recursively using (3.1)

$$x_i G_{\tilde{\gamma}} = x_i G_{\left(\begin{array}{cc} \dots & \tilde{\gamma}_{1i} & \dots \\ \dots & \tilde{\gamma}_{2i} & \dots \end{array} \right)} = G_{\left(\begin{array}{cc} \dots & \tilde{\gamma}_{1i}+1 & \dots \\ \dots & \tilde{\gamma}_{2i} & \dots \end{array} \right)} - G_{\left(\begin{array}{cc} \dots & 0 & \tilde{\gamma}_{1i}+1 & \dots \\ \dots & 0 & \tilde{\gamma}_{2i} & \dots \end{array} \right)};$$
(4.1)

or using (3.2) when $\tilde{\gamma}_{1i} = 0$ for some i,

$$y_i G_{\tilde{\gamma}} = y_i G_{\left(\dots \quad \tilde{\gamma}_{1i} \quad \dots \\ \dots \quad \tilde{\gamma}_{2i} \quad \dots \right)} = G_{\left(\dots \quad \tilde{\gamma}_{1i} \quad \dots \\ \dots \quad \tilde{\gamma}_{2i+1} \quad \dots \right)} - G_{\left(\dots \quad 0 \quad \tilde{\gamma}_{1i} \quad \dots \\ \dots \quad 0 \quad \tilde{\gamma}_{2i+1} \quad \dots \right)}.$$

$$(4.2)$$

(3) When $\tilde{\gamma}_{1i} = a > 0$, we reduce $y_i G_{\tilde{\gamma}}$ as

$$y_{1}G_{\tilde{\gamma}} = y_{i}G_{\left(\begin{array}{cc} \cdots & a & \cdots \\ \cdots & \tilde{\gamma}_{2i} & \cdots \end{array}\right)} = y_{i}\left(G_{\left(\begin{array}{cc} \cdots & 0 & a & \cdots \\ \cdots & 0 & \tilde{\gamma}_{2i} & \cdots \end{array}\right)} + x_{i}G_{\left(\begin{array}{cc} \cdots & a^{-1} & \cdots \\ \cdots & \tilde{\gamma}_{2i} & \cdots \end{array}\right)}\right)$$

$$= y_{i}G_{\left(\begin{array}{cc} \cdots & 0 & a & \cdots \\ \cdots & 0 & \tilde{\gamma}_{2i} & \cdots \end{array}\right)} + x_{i}\left(y_{i}G_{\left(\begin{array}{cc} \cdots & a^{-1} & \cdots \\ \cdots & \tilde{\gamma}_{2i} & \cdots \end{array}\right)}\right) = \cdots$$

$$= \sum_{k=0}^{a-1} x_{i}^{k}\left(y_{i}G_{\left(\begin{array}{cc} \cdots & 0 & a^{-k} & \cdots \\ \cdots & 0 & \tilde{\gamma}_{2i} & \cdots \end{array}\right)}\right) + x_{i}^{a}\left(y_{i}G_{\left(\begin{array}{cc} \cdots & 0 & \cdots \\ \cdots & \tilde{\gamma}_{2i} & \cdots \end{array}\right)}\right).$$

$$(4.3)$$

The " \cdots " above means $\tilde{\gamma}_{11} \cdots \tilde{\gamma}_{1(i-1)}, \tilde{\gamma}_{1(i+1)} \cdots \tilde{\gamma}_{1\ell(\tilde{\gamma})}, \tilde{\gamma}_{21} \cdots \tilde{\gamma}_{2(i-1)}$ or $\tilde{\gamma}_{2(i+1)} \cdots \tilde{\gamma}_{1\ell(\tilde{\gamma})}$ with respect to their positions in the generalized bicomposition. For example,

$$y_{1}F_{\begin{pmatrix}1\\0\end{pmatrix}} = y_{1}\left(G_{\begin{pmatrix}0&1\\0&0\end{pmatrix}} + x_{1}G_{\begin{pmatrix}0\\0\end{pmatrix}}\right) = y_{1}G_{\begin{pmatrix}0&1\\0&0\end{pmatrix}} + x_{1}y_{1}G_{\begin{pmatrix}0\\0\end{pmatrix}}$$
$$= G_{\begin{pmatrix}0&1\\1&0\end{pmatrix}} - G_{\begin{pmatrix}0&0&1\\0&1&0\end{pmatrix}} + x_{1}\left(G_{\begin{pmatrix}0\\1\end{pmatrix}} - G_{\begin{pmatrix}0&0\\0&1\end{pmatrix}}\right)$$
$$= G_{\begin{pmatrix}0&1\\1&0\end{pmatrix}} - G_{\begin{pmatrix}0&0&1\\0&1&0\end{pmatrix}} + G_{\begin{pmatrix}1\\1&0\end{pmatrix}} - G_{\begin{pmatrix}0&1\\0&1\end{pmatrix}} - G_{\begin{pmatrix}0&1&0\\0&1\end{pmatrix}} + G_{\begin{pmatrix}0&1&0\\0&0&1\end{pmatrix}}.$$

The electronic journal of combinatorics 24(3) (2017), #P3.3

For each of the above rule, we choose one $G_{\tilde{\eta}}$ as leading basis element. We define a function ϕ from $(\{x_i\} \times \{G_{\tilde{\gamma}}\}) \cup (\{y_i\} \times \{G_{\tilde{\gamma}}\})$ to $\{G_{\tilde{\gamma}}\}$ as follows. In the case of rules (4.1), (4.2), we choose $\phi(x_i, G_{\tilde{\gamma}}) = G_{\left(\begin{array}{cc} \cdots & 0 & \tilde{\gamma}_{1i}+1 & \cdots \\ \tilde{\gamma}_{2i} & \cdots & 0 & \tilde{\gamma}_{2i} & \cdots \end{array} \right)}$ and $\phi(y_i, G_{\tilde{\gamma}}) = G_{\left(\begin{array}{cc} \cdots & 0 & \tilde{\gamma}_{1i} & \cdots \\ \tilde{\gamma}_{2i} & \cdots & 0 & \tilde{\gamma}_{2i} + 1 & \cdots \end{array} \right)}$. In the

case of rule (4.3), we choose $\phi(y_i, G_{\tilde{\gamma}}) = \phi\left(y_i, G_{\left(\begin{array}{cc} \cdots & 0 & a \\ \cdots & 0 & \tilde{\gamma}_{2i} & \cdots \end{array}\right)}\right) = G_{\left(\begin{array}{cc} \cdots & 0 & 0 & a \\ \cdots & 0 & 1 & \tilde{\gamma}_{2i} & \cdots \end{array}\right)}$. In the other words, at each step of the expansion, we choose the lexicographically smallest $\tilde{\eta}$ such that $G_{\tilde{\eta}}$ appears as a term in the expansion.

Lemma 4.1. The above process of choosing is invertible, i.e. ϕ is injective.

Proof. Since each time we multiply x_i or y_i , the chosen term contains a $\binom{0}{0}$ at position i. Combining this fact with the rule that we have to multiply y_i before x_i , we have the following inverse function.

Let *i* be the largest number that $(\tilde{\gamma}_{1i}, \tilde{\gamma}_{2i}) = (0, 0)$ and $0 < i < \ell(\tilde{\gamma})$.

$$\begin{array}{l} \text{(1) If } \tilde{\gamma}_{1(i+1)} > 0, \text{ then } \phi^{-1} \left(G_{\left(\begin{array}{c} \cdots & 0 & \tilde{\gamma}_{1(i+1)} & \cdots \\ \cdots & 0 & \tilde{\gamma}_{2(i+1)} & \cdots \end{array} \right)} \right) = x_i G_{\left(\begin{array}{c} \cdots & \tilde{\gamma}_{1(i+1)^{-1}} & \cdots \\ \tilde{\gamma}_{2(i+1)} & \cdots & \tilde{\gamma}_{2(i+1)} & \cdots \end{array} \right)}. \\ \text{(2) If } \tilde{\gamma}_{1(i+1)} = 0 \text{ and, } \tilde{\gamma}_{1(i+2)} = 0 \text{ or } \tilde{\gamma}_{2(i+1)} > 1, \text{ then} \\ \phi^{-1} \left(G_{\left(\begin{array}{c} \cdots & 0 & \tilde{\gamma}_{1(i+1)} & \cdots \\ \cdots & \tilde{\gamma}_{2(i+1)} & \cdots & 1 \end{array} \right)} \right) = y_i G_{\left(\begin{array}{c} \cdots & \tilde{\gamma}_{1(i+1)} & \cdots \\ \cdots & \tilde{\gamma}_{2(i+1)} & -1 & \cdots & 1 \end{array} \right)}. \\ \text{(3) If } \tilde{\gamma}_{1(i+1)} = 0, \ \tilde{\gamma}_{2(i+1)} = 1 \text{ and } \tilde{\gamma}_{1(i+2)} > 0, \text{ then} \\ \phi^{-1} \left(G_{\left(\begin{array}{c} \cdots & 0 & 0 & \tilde{\gamma}_{1(i+2)} & \cdots \\ \cdots & \tilde{\gamma}_{2(i+2)} & \cdots & 1 \end{array} \right)} \right) = y_i G_{\left(\begin{array}{c} \cdots & \tilde{\gamma}_{1(i+2)} & \cdots \\ \cdots & \tilde{\gamma}_{2(i+2)} & \cdots & 1 \end{array} \right)}. \end{array} \end{array}$$

Then, we can construct a map $\Phi : \{X^{\tilde{\alpha}}F_{\beta} : |\beta| \ge 1\} \to \{G_{\tilde{\gamma}}\}\$ that is defined by "composing" ϕ with itself $(|\tilde{\alpha}|-1)$ times. By the above Lemma, we also have Φ is injective. For simplicity, we define $\phi^{-1}(G_{\tilde{\gamma}})$ (or $\Phi^{-1}(G_{\tilde{\gamma}})$) to be $X^{\tilde{\alpha}}G_{\tilde{\beta}}$ (or $X^{\tilde{\alpha}}F_{\beta}$) if $\phi(X^{\tilde{\alpha}}G_{\tilde{\beta}}) = G_{\tilde{\gamma}}$ (or $\Phi(X^{\tilde{\alpha}}F_{\beta}) = G_{\tilde{\gamma}}$ respectively).

Lemma 4.2. In the expansion of $X^{\tilde{\alpha}}F_{\beta}$ in the G basis using the rules above, the term $\Phi(X^{\tilde{\alpha}}F_{\beta})$ appears only once. In particular, it has coefficients 1 or -1.

Proof. We begin with the claim that if $\tilde{\mu} \neq \tilde{\nu}$, then $\phi(x_i G_{\tilde{\mu}})$ and $\phi(y_i G_{\tilde{\mu}})$ do not appear in the expansion of $x_i G_{\tilde{\nu}}$ and $y_i G_{\tilde{\nu}}$ respectively.

Let k be the smallest integer such that $(\tilde{\mu}_{k1}, \tilde{\mu}_{k2}) \neq (\tilde{\nu}_{k1}, \tilde{\nu}_{k2})$. In rules (4.1), (4.2) and (4.3), for all $G_{\tilde{\gamma}}$ in the expansion of $x_i G_{\tilde{\mu}}$ or $y_i G_{\tilde{\mu}}$, the first i - 1 columns of $\tilde{\gamma}$ is the same as that of $\tilde{\mu}$. Hence, the claim follows if k < i.

If k = i, and if we are multiplying x_i using rules (4.1) or (4.2), then the claim holds because either the *i*-th or the i + 1-th columns of $x_i G_{\tilde{\mu}}$ will be different from terms in expansions of $x_i G_{\tilde{\nu}}$. If we are multiplying by y_i , then note that if the i - th column of μ is (0,0), then $\mu_{(i+1)1}$ must be 0 because otherwise, that means we multiplied an x_i or x_j or y_j with j > i before y_i , which violates our rule. And the same condition applies to ν . With this restriction, it is easy to check that the claim holds. If k > i, in both cases, if we choose any term in the expansion that is not $\phi(x_i G_{\tilde{\nu}})$ or $\phi(y_i G_{\tilde{\nu}})$, then the *i* or i + 1 column of its index must be different from that of $\phi(x_i G_{\tilde{\mu}})$ or $\phi(y_i G_{\tilde{\mu}})$. If we choose $\phi(x_i G_{\tilde{\nu}})$ or $\phi(y_i G_{\tilde{\nu}})$, we also have $\phi(x_i G_{\tilde{\mu}}) \neq \phi(x_i G_{\tilde{\nu}})$ and $\phi(y_i G_{\tilde{\mu}})\phi(y_i G_{\tilde{\nu}})$ because $\mu \neq \nu$.

Since each term in the expansion of $X^{\tilde{\alpha}}F_{\beta}$ corresponds to a sequence of choice using rules (4.1), (4.2) or (43), if at some point, we choose a term that is different from the choice in Φ , then a recursive use of the claim asserts that $\Phi(X^{\tilde{\alpha}}F_{\beta})$ will not appear again. \Box

We now define an order $(<_G)$ on the set of generalized bicompositions as follows

- 1. If $\tilde{\alpha}$ and $\tilde{\beta}$ are bicompositions, then $\tilde{\alpha} <_G \tilde{\beta}$ if $\tilde{\alpha} <_{lex} \tilde{\beta}$.
- 2. If $\tilde{\alpha}$ is a bicomposition and $\tilde{\beta}$ is not, then $\tilde{\alpha} <_G \tilde{\beta}$.
- 3. If $\tilde{\alpha} = \tilde{\mu} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \alpha'$, $\tilde{\beta} = \tilde{\nu} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \beta'$ where α' and β' are bicompositions, let $u = \ell(\tilde{\alpha}) \ell(\alpha') 1$, $v = \ell(\tilde{\alpha}) \ell(\beta') 1$, then $\tilde{\alpha} <_G \tilde{\beta}$ if
 - (a) u < v, or
 - (b) $u = v, \alpha'_{11} > 0$ and $\beta'_{11} = 0$, or
 - (c) $u = v, \alpha'_{11} > 0, \beta'_{11} > 0$ (or $\alpha'_{11} = 0, \beta'_{11} = 0$) and $\overleftarrow{\phi}(G_{\tilde{\alpha}}) <_G \overleftarrow{\phi}(G_{\tilde{\beta}})$ where we define $\overleftarrow{\phi}(G_{\tilde{\delta}})$ to be $\tilde{\gamma}$ if $\phi(x_i G_{\tilde{\gamma}}) = G_{\tilde{\delta}}$ or $\phi(y_i G_{\tilde{\gamma}}) = G_{\tilde{\delta}}$ for some *i*.

Lemma 4.3. The order defined above is a total order on the set of generalized bicompositions such that if $G_{\tilde{\gamma}} = \Phi(X^{\tilde{\alpha}}F_{\beta})$, then for all $G_{\tilde{\delta}}$ that appears in the expansion of $X^{\tilde{\alpha}}F_{\beta}$, we have $\tilde{\gamma} \geq_G \tilde{\delta}$.

Proof. Clearly this is a total order. If $\tilde{\alpha} < \tilde{\beta}$ by (1) or (2), then $\tilde{\beta}$ cannot appear in the expansion of $\Phi^{-1}(\tilde{\alpha}) = \tilde{\alpha}$.

If $\tilde{\alpha} < \tilde{\beta}$ by (3a), that means $\phi^{-1}(\tilde{\alpha}) = x_{u+1}G_{\tilde{\gamma}}$ or $y_{u+1}G_{\tilde{\gamma}}$ for some $\tilde{\gamma}$. Hence, $\tilde{\beta}$ cannot appear in the expansion of $\Phi^{-1}(\tilde{\alpha})$ because $\tilde{\beta}_{(v+1)1} = \tilde{\beta}_{(v+1)2} = 0$ cannot be created.

If $\tilde{\alpha} < \tilde{\beta}$ by (3b), that means $\phi^{-1}(\tilde{\alpha}) = x_{u+1}G_{\tilde{\gamma}}$ for some $\tilde{\gamma}$. Hence, $\tilde{\beta}$ cannot appear in the expansion of $\Phi^{-1}(\tilde{\alpha})$ because it is not in that of $x_{u+1}G_{\tilde{\delta}}$ for any $\tilde{\delta}$.

With this ordering, there is a unique leading $G_{\tilde{\delta}}$ for each expansion of $X^{\tilde{\alpha}}F_{\beta}$.

Theorem 4.4. The set $A = \{G_{\tilde{\alpha}} \mid G_{\tilde{\alpha}} \notin Img(\Phi)\}$ forms a Hilbert basis for the quotient space R/I.

Proof. For any polynomial p in R, we write p in terms of the G basis with \leq_G order. For each term $G_{\tilde{\alpha}} \in Img(\Phi)$, we subtract p by $\Phi^{-1}(G_{\tilde{\alpha}}) \in I$ and $G_{\tilde{\alpha}}$ is cancelled. If we repeat this process (possibly countably many times), we can express p as a series of A.

5 Finitely many variables case

In the case that there are finitely many variables, $R_n = \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$, the above constructions of $\mathsf{DQSym}(x_1, \ldots, x_n, y_1, \ldots, y_n)$, the F, G bases and the ideal $I_n = \langle \mathsf{DQSym}^+(x_1, \ldots, x_n, y_1, \ldots, y_n) \rangle$ remain the same by taking $x_i = y_i = 0$ for i > n. In this case, $LM(G_{\tilde{\alpha}}) = X^{\tilde{\alpha}}$ whenever $\ell(\tilde{\alpha}) \leq n$ and hence $\{G_{\tilde{\alpha}} : \ell(\tilde{\alpha}) \leq n\}$ spans R_n .

Let $R_n^{i,j}$ be the span of $\{X^{\tilde{\alpha}} : \ell(\tilde{\alpha}) \leq n, \sum_k \tilde{\alpha}_{1k} = i, \sum_k \tilde{\alpha}_{2k} = j\}$. Since I_n is bihomogeneous in **x** and **y**, $I_n = \bigoplus_{i,j} I_n^{i,j}$ where $I_n^{i,j} = I_n \cap R_n^{i,j}$, and $R_n/I_n = \bigoplus_{i,j} V_n^{i,j}$

where $V_n^{i,j} = R_n / I_n \cap R_n^{i,j}$.

The Hilbert matrix corresponding to R_n/I_n is the matrix $M_n(i,j) = \dim(V_n^{i-1,j-1})$.

The goal of this section is to compute the second column of the Hilbert matrix. The proof is slight generalization of the one in [2].

Lemma 5.1. The set $\{G_{\tilde{\alpha}} \mid G_{\tilde{\alpha}} \notin Img(\Phi), \ell(\tilde{\alpha}) \leq n\}$ spans the quotient R_n/I_n .

Proof. Among all $\tilde{\alpha}$ such that $G_{\tilde{\alpha}} \in Img(\Phi)$, $\ell(\tilde{\alpha}) \leq n$ and $G_{\tilde{\alpha}}$ cannot be reduced to 0, let $\tilde{\beta}$ be the smallest one with respect to the \leq_G order. Then,

$$G_{\tilde{\beta}} = G_{\tilde{\beta}} - \Phi^{-1}(G_{\tilde{\beta}}) + \Phi^{-1}(G_{\tilde{\beta}})$$
$$\equiv G_{\tilde{\beta}} - \Phi^{-1}(G_{\tilde{\beta}}) \mod I_n$$

But since $G_{\tilde{\beta}}$ is the leading term in $\Phi^{-1}(G_{\tilde{\beta}})$, terms in $G_{\tilde{\beta}} - \Phi^{-1}(G_{\tilde{\beta}})$ are strictly smaller than $G_{\tilde{\beta}}$, and thus they reduce to 0. This contradicts to our assumption on $\tilde{\beta}$.

Let B_n be the set of generalized bicompositions $\{\tilde{\alpha}\}$ such that $\sum_{i=1}^{k} (\tilde{\alpha}_{1i} + \tilde{\alpha}_{2i}) < k$ for

all $1 \leq k \leq n$ and $\ell(\tilde{\alpha}) \leq n$. Clearly from the definition of G basis, if $\tilde{\alpha} \notin B_n$, then $G_{\tilde{\alpha}} \in I_n$. Therefore, the set $\{X^{\tilde{\alpha}} : \tilde{\alpha} \in B_n\}$ spans R_n/I_n , the proof is essentially the same as Lemma 5.1. In particular, $X^{\tilde{\alpha}} \in I_n$ for all $|\tilde{\alpha}| \geq n$.

Lemma 5.2. The set $\{X^{\tilde{\alpha}}F_{\beta}: \tilde{\alpha} \in B_n, |\beta| \ge 0\}$ spans R_n .

Proof. We already have $X^{\tilde{\epsilon}} \equiv \sum_{\tilde{\alpha} \in B_n} X^{\tilde{\alpha}} \mod I_n$, which means $X^{\tilde{\epsilon}} = \sum_{\tilde{\alpha} \in B_n} X^{\tilde{\alpha}} + \sum_{|\beta| \ge 1} P_{\beta} F_{\beta}$ for some polynomial P_{β} . If we reduce each monomial P_{β} using the above rule, and write

the product of F basis in terms of F basis, the claim will be satisfied in a finite number of steps. \Box

For a generalized bicomposition $\tilde{\alpha}$ with $\ell(\tilde{\alpha}) \leq n$, we define its reverse $\overline{\alpha}$ to be the generalized bicomposition such that $\overline{\alpha}_{1i} = \tilde{\alpha}_{1(n-i+1)}$ and $\overline{\alpha}_{2i} = \tilde{\alpha}_{2(n-i+1)}$ for all $1 \leq i \leq n$.

We denote the set $\{X^{\tilde{\alpha}} : \overline{\alpha} \in B_n\}$ by A_n . The endomorphism of R_n that sends x_i to x_{n-i+1} and y_i to y_{n-i+1} is clearly an algebra isomorphism that fixes $\mathsf{DQSym}(\mathbf{x}, \mathbf{y})$, in fact, it sends M_{α} to $M_{\alpha'}$ where α' is the reversed bicomposition of α . Therefore, by Lemma 5.2, the set $\{X^{\tilde{\alpha}}F_{\beta} : \tilde{\alpha} \in A_n, |\beta| \ge 0\}$ spans R_n .

Hence, $I_n = \langle F_{\gamma} : |\gamma| \ge 1 \rangle$ is spanned by $\{X^{\tilde{\alpha}}F_{\beta}F_{\gamma} : \tilde{\alpha} \in A_n, |\beta| \ge 0, |\gamma| \ge 1\}$, which means it is spanned by $\{X^{\tilde{\alpha}}F_{\beta} : \tilde{\alpha} \in A_n, |\beta| \ge 1\}$.

Lemma 5.3. For $X^{\tilde{\alpha}}F_{\beta} \in R_n^{i,1}$ with $\tilde{\alpha} \in A_n$, $|\beta| \ge 1$ and $|\tilde{\alpha}| + |\beta| < n$, let $G_{\tilde{\gamma}} = \Phi(X^{\tilde{\alpha}}F_{\beta})$, then $\ell(\tilde{\gamma}) \leq n$.

Proof. First, rules (4.1) and (4.2) increase the length by 1 while (4.3) increase the length by 2. Now, we need to track $\tilde{\gamma}_{\ell(\tilde{\gamma})}$. If $\tilde{\gamma}_{\ell(\tilde{\gamma})}$ comes from $\beta_{\ell(\beta)}$ and gets shifted, since we can use (4.3) at most once, we can make at most $|\tilde{\alpha}| + 1$ steps to the right. Therefore, $\ell(\tilde{\gamma}) \leq |\tilde{\alpha}| + 1 + \ell(\beta) \leq |\tilde{\alpha}| + 1 + |\beta| \leq n.$

If $\tilde{\gamma}_{\ell(\tilde{\gamma})}$ is 1 which comes from multiplying x_k or y_k to $G_{\tilde{\epsilon}}$ with $k > \ell(\tilde{\epsilon})$, since $\tilde{\alpha} \in A_n$, we have $\sum_{i \ge k} (\tilde{\alpha}_{1i} + \tilde{\alpha}_{2i}) < n - k + 1$. In this process, we use rules (4.1) and (4.2) only and each increases the length by 1. Therefore, $\tilde{\gamma}_{\ell(\tilde{\gamma})}$ can be shifted to at most position k+n-k=n.

Corollary 5.4. Let M_n be the Hilbert matrix of R_n/I_n , then $M_n(n-1,2) = \frac{1}{n} \binom{2n-2}{n-1}$, $M_n(i,2) = \sum_{1 \le j \le i, 1 \le k \le 2} M_{n-1}(j,k)$ for $1 \le i \le n-2$, and $M_n(2,1) = 0$ for $i \ge n$.

Proof. Lemma 5.1 shows that $C_i = \{G_{\tilde{\alpha}} \in V_n^{i,1} : G_{\tilde{\alpha}} \notin Img(\Phi)\}$ spans $V_n^{i,1}$. Suppose there is a linear dependence $P = \sum_{G_{\tilde{\alpha}} \in C_i} a_{\tilde{\alpha}} G_{\tilde{\alpha}} \in I_n^{i,1}$. Since $I_n^{i,1}$ is spanned by $D = \{X^{\tilde{\alpha}}F_{\beta} \in R_n^{i,1} : \tilde{\alpha} \in A_n, |\beta| \ge 1\}$, we have $P = \sum_{X^{\tilde{\alpha}}F_{\beta} \in D} b_{\tilde{\alpha}\beta} X^{\tilde{\alpha}}F_{\beta}$. This means the leading term

of P when we expand in G basis is some $G_{\tilde{\gamma}}$ such that $\tilde{\gamma} \in Img(\Phi)$ and by Lemma 5.3 $\ell(\tilde{\gamma}) \leq n$, which is absurd. Therefore, C_i is a linear basis for $V_n^{i,1}$.

Now, $M_n(i,1) = \dim V_n^{i-1,1} = |C_{i-1}|$. Let $G_{\tilde{\gamma}} \in V_n^{i,1}$ and k be the unique number that $\tilde{\gamma}_{k2} = 1$. First, from definition of $G, \, \tilde{\gamma} \notin B_n$ implies $G_{\tilde{\gamma}} \in I_n$ and $G_{\tilde{\gamma}} \in Img(\Phi)$.

If
$$i = n - 1$$
, then $|\tilde{\gamma}| = n - 1$. If $k < \ell(\tilde{\gamma})$, since $\sum_{j=k+1} \tilde{\gamma}_{1j} \ge n - k$, we will be using

rules (4.3) when applying ϕ^{-1} . This reduces the length by 2 while the size by 1, which means $G_{\tilde{\gamma}} \in Img(\Phi)$. If $k = \ell(\tilde{\gamma})$, we only use rules (4.1) and (4.2) when applying ϕ^{-1} . In this case, $G_{\tilde{\gamma}} \notin Img(\Phi)$ whenever $\tilde{\gamma} \in B_n$. Therefore, $|C_{n-2}|$ is the Catalan number

In this case, C_{ij} , C_{ij}

By the symmetry $M_n(a, b) = M_n(b, a)$, we obtain the first to rows of the Hilbert matrix, namely $M_n(2, n-1) = \frac{1}{n} \binom{2n-2}{n-1}, M_n(2,i) = \sum_{1 \le j \le i, 1 \le k \le 2} M_{n-1}(k,j)$ for $1 \le i \le n-2$, and $M_n(2,i) = 0$ for $i \ge n$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(3) (2017), #P3.3

This method can be applied directly to some other terms. To be more specific, for $2i + j \leq n$, the set $\{G_{\tilde{\alpha}} \mid G_{\tilde{\alpha}} \notin Img(\Phi), \ell(\tilde{\alpha}) \leq n\}$ is a linear basis in $V_n^{i,j}$. Therefore, the formula for each column stabilizes when the number of variables is large enough. However, it fails in some other terms and this set is not a linear basis in general.

References

- J.-C. Aval, N. Bergeron, Catalan Paths and Quasi-Symmetric Functions, Proceedings of the American Mathematics Society, 131:1053–1062, 2003.
- [2] J.-C. Aval, F. Bergeron, N. Bergeron, *Ideals of Quasi-Symmetric Functions and Super-Covariant Polynomials for* S_n , Advances in Mathematics, 181(2):353–367, 2004.
- [3] J.-C. Aval, F. Bergeron, N. Bergeron, *Diagonal Temperley-Lieb invariants and harmonics*, Séminaire Lotharingien de Combinatoire, 54A:B54Aq, 2005.
- [4] M. Aguiar, N. Bergeron, F. Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compositio Mathematica, 142:1–30, 2006.
- [5] E.Artin, *Galois Theory*, Notre Dame Mathematical Lecture 2, Notre Dame, IN, 1944.
- [6] F. Bergeron, N. Bergeron, A. Garsia, M. Haiman, G. Tesler, Lattice Diagram Polynomials and Extended Pieri Rules, Advances in Mathematics, 142:244–334, 1999.
- [7] F. Bergeron, A. Garsia, M. Haiman, G. Tesler, *Identities and Positivity Conjectures* for Some Remarkable Operators in the Theory of Symmetric Functions, Methods and Applications of Analysis, 6(3):363–420, 1999.
- [8] I. Gessel, Multipartite P-partitions and products of skew Schur functions, Contemporary Mathematics, American Mathematics Society, 34:289–317, 1984.
- [9] A. Garsia, M. Haiman, A graded representation model for Macdonald's polynomials, Proceedings of the National Academy of Sciences of the United States of America, 90(8):3607–3610, 1993.
- [10] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.Y. Thibon, Noncommutative symmetric functions, Advances in Mathematics, 112:218–348, 1995.
- [11] J. Haglund, *The q,t-Catalan numbers and the space of diagonal harmonics*, University Lecture Series Vol. 41, American Mathematics Society, 2008.
- [12] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Inventiones Mathematicae, 149(2):371–407, 2002.
- [13] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Second Edition, Oxford University Press, 1995.
- [14] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Second edition, Springer-Verlag, New York, 2001.
- [15] R. Stanley, Enumerative Combinatorics Vol. 2, No. 62 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
- [16] R. Steinberg, Differential equations invariant under finite reflection groups, Transactions of the American Mathematical Society, 112:392–400, 1964.