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Abstract

In 2004, J.-C. Aval, F. Bergeron and N. Bergeron studied the algebra of diago-
nally quasi-symmetric functions DQSym in the ring Q[x,y] with two sets of variables.
They made conjectures on the structure of the quotient Q[x,y]/〈DQSym+〉, which
is a quasi-symmetric analogue of the diagonal harmonic polynomials. In this paper,
we construct a Hilbert basis for this quotient when there are infinitely many vari-
ables i.e. x = x1, x2, . . . and y = y1, y2, . . . . Then we apply this construction to the
case where there are finitely many variables, and compute the second column of its
Hilbert matrix.

1 Introduction

In the polynomial ring Q[xn] = Q[x1, . . . , xn] with n variables, the ring of symmetric
polynomials (cf. [13, 14]), Symn, is the subspace of invariants under the symmetric group
Sn action

σ · f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

The quotient space Q[xn]/〈Sym+
n 〉 over the ideal generated by symmetric polynomials

with no constant term is thus called the coinvariant space of symmetric group. Classic
results by Artin [5] and Steinberg [16] asserts that this quotient forms an Sn-module that
is isomorphic to the left regular representation. Moreover, considering the natural scalar
product

〈f, g〉 =
(
f(∂x1, . . . , ∂xn)(g(x1, . . . , xn))

)
(0, 0, . . . , 0),

this quotient is equal to the orthogonal complement of Symn. In particular, the coinvariant
space is killed by Laplacian operator ∆ = ∂x21 + · · ·+ ∂x2n. Hence, it is also known as the
harmonic space.
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One can show that {hk(xk, . . . , xn) : 1 6 k 6 n} forms a Gröbner basis of 〈Sym+
n 〉 with

respect to the usual order x1 > · · · > xn, where hk is the complete homogeneous basis of
degree k. As a result, the dimension of Q[xn]/〈Sym+

n 〉 is n!.
One generalization is the diagonal harmonic space. In the context of Q[xn,yn] =

Q[x1, . . . , xn, y1, . . . , yn], the diagonally symmetric functions, DSymn, is the space of in-
variants under the diagonal action of Sn

σ · f(x1, . . . , xn, y1, . . . , yn) = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)).

The diagonal harmonics, Q[xn,yn]/〈DSym+
n 〉, was studied by Garsia and Haiman [9, 12]

where it was used to prove the n! conjecture and Macdonald positivity. In particular, its
dimension turns out to be (n + 1)n−1. More interesting results and applications can be
found in [6, 7, 11].

The ring of quasi-symmetric functions, QSym, was introduced by Gessel [8] as gener-
ating function for Stanley’s P -partitions [15]. It soon shows great importance in algebraic
combinatorics e.g. [4, 10]. In our context, QSymn can be defined as the space of invariants
in Q[xn] under the Sn-action of Hivert

σ ·
(
xa1i1 · · ·x

ak
ik

)
= xa1j1 · · ·x

ak
jk

where i1 < · · · < ik, j1 < · · · < jk and {j1, . . . , jk} = {σ(i1), . . . , σ(ik)}.
In a series of papers by Aval, F. Bergeron and N. Bergeron, the authors studied the

quotient Q[xn]/〈QSym+
n 〉 over the ideal generated by quasi-symmetric polynomials with

no constant term, which they called the super-covariant space of Sn. Their main result is
that a basis of this quotient corresponds to Dyck paths, and the dimension of the quotient
space is the n-th Catalan number Cn [1, 2].

After that, they extended QSym to diagonal setting, called diagonally quasi-symmetric
functions, DQSym [3]. They described a Hopf algebra structure on DQSym, and made a
conjecture about the linear structure of Q[xn,yn]/〈DQSym+

n 〉.
In this paper, we continue the study of the linear structure. We start with the case

where there are infinitely many variables i.e. R = Q[[x,y]] is the ring of formal power se-
ries where x = x1, x2, . . . and y = y1, y2, . . . . The main result is that we give a description

of a Hilbert basis for the quotient space R/I where I = DQSym+ is the closure of the ideal
generated by DQSym without constant terms. This Hilbert basis gives an upper bound
on the degree of Q[xn,yn]/〈DQSym+

n 〉. We then use it to compute the second column of
the Hilbert matrix, which coincides with the conjecture in [3].

2 Definitions

2.1 Bicompositions

An element α̃ =

(
α̃11 α̃12 · · ·
α̃21 α̃22 · · ·

)
∈ N2N is called a generalized bicomposition if all but

finitely many (α̃1k, α̃2k) are (0, 0). Let k be the maximum number such that (α̃1k, α̃2k) 6=
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(0, 0). The length of α̃, denoted by `(α̃), is k. The size of α̃, denoted by |α̃|, is the sum
of all its entries. For simplicity, we usually write α̃ as

(
α̃11 ··· α̃1k

α̃21 ··· α̃2k

)
. There also exists a

generalized bicomposition with length 0 and size 0, called the zero bicomposition, denoted
by
(
0
0

)
.

Every monomial in R can be expressed as Xα̃ = xα̃11
1 yα̃21

1 · · ·xα̃1k
k yα̃2k

k for some general-
ized bicomposition α̃. A generalized bicomposition α is called a bicomposition if `(α) = 0
or (α1j, α2j) 6= (0, 0) for all 1 6 j 6 `(α).

In this paper, we use Greek letters to denote bicompositions, and Greek letters with
tilde to denote generalized bicompositions.

Let α̃, β̃ and γ̃ be non-zero generalized bicompositions. We write α̃ = β̃γ̃ if α̃ij = β̃ij
for all 1 6 j 6 `(α̃)− `(γ̃), β̃ij = 0 for all j > `(α̃)− `(γ̃) and α̃i(j+`(α̃)−`(γ̃)) = γ̃ij for all

j > 1. We write α̃ =
(
0
0

)
β̃ if α̃11 = α̃21 = 0 and α̃i(j+1) = β̃ij for all j > 2.

Note that for each generalized bicomposition α̃ that is not a bicomposition, there is
a unique way to decompose it into α̃ = β̃

(
0
0

)
γ for some generalized bicomposition β̃ and

bicomposition γ.

2.2 Diagonally quasi-symmetric functions

The algebra of diagonally quasi-symmetric functions, DQSym, is a subalgebra of Q[[x,y]]
spanned by monomials indexed by bicompositions

Mα =
∑

i1<···<ik

xα11
i1
yα21
i1
· · ·xα1k

ik
yα2k
ik
.

As a graded algebra, DQSym =
⊕
n>0

DQSymn where DQSymn = span-{Mα : |α| = n} is

the degree n component. The algebra structure is defined in [3].

2.3 The F basis

We define a partial ordering � on bicompositions: α � β and β covers α if there exists a
1 6 k 6 `(α)− 1 such that either α2k = 0 or α1(k+1) = 0, and

β =

(
α11 · · · α1(k−1) α1k + α1(k+1) α1(k+2) · · · α1`(α)

α21 · · · α2(k−1) α2k + α2(k+1) α2(k+2) · · · α2`(α)

)
.

By triangularity,

{
Fα =

∑
α�β

Mβ

}
forms a basis for DQSym. For example,

F( 2
2

) = M( 2
2

)+M( 2 0
0 2

)+M( 1 1
0 2

)+M( 1 1 0
0 0 2

)+M( 2 0
1 1

)+M( 2 0 0
0 1 1

)+M( 1 1 0
0 1 1

)+M( 1 1 0 0
0 0 1 1

).
For convenience, we set F( 0

0

) = 1. This basis has the following easy but important

properties:
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If α11 > 1 and α11 + α21 > 2, then

Fα = x1F(α11−1 α12 ··· α1`(α)
α21 α22 ··· α2`(α)

) + Fα(x2, x3, . . . , y2, y3, . . . ); (2.1)

If α11 = 1 and α21 = 0, then

Fα = x1F(α12 ··· α1`(α)
α22 ··· α2`(α)

)(x2, x3, . . . , y2, y3, . . . ) + Fα(x2, x3, . . . , y2, y3, . . . ); (2.2)

If α11 = 0 and α21 > 2, then

Fα = y1F( 0 α12 ··· α1`(α)
α21−1 α22 ··· α2`(α)

) + Fα(x2, x3, . . . , y2, y3, . . . ); (2.3)

If α11 = 0 and α21 = 1, then

Fα = y1F(α12 ··· α1`(α)
α22 ··· α2`(α)

)(x2, x3, . . . , y2, y3, . . . ) + Fα(x2, x3, . . . , y2, y3, . . . ). (2.4)

3 The G basis

In this section, we define a basis {Gε̃} indexed by generalized bicompositions for Q[[x,y]].
Base cases: G( 0

0

) = 1 and Gε̃ = Fε̃ if ε̃ is a bicomposition. Otherwise, let ε̃ = α̃
(
0
0

)
β

where β is a non-zero bicomposition. Let k = `(ε̃)− `(β)− 1.
If β11 > 0,

Gε̃ = Gα̃β − xk+1G
α̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

). (3.1)

If β11 = 0,
Gε̃ = Gα̃β − yk+1G

α̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

). (3.2)

Inductively, {Gε̃} is defined for all generalized bicomposition ε̃. Clearly Gε̃ is homogeneous
in degree |ε̃|. Hence, we have a notion of leading monomial of Gε̃, denoted by LM(Gε̃)
with respect to the lexicographic order with x1 > y1 > x2 > y2 > · · · . To show that {Gε̃}
form a basis, it suffices to prove the leading monomial of Gε̃ is Xε̃.

Lemma 3.1. Let α̃ =
(
a
b

)
β̃ be a generalized bicomposition,

1. if a = b = 0, then Gα̃ = Gβ̃(x2, x3, . . . , y2, y3, . . . ),

2. if a > 0, then Gα̃ = x1G(a−1
b

)
β̃

+ P (x2, x3, . . . , y2, y3, . . . ),

3. if a = 0 and b > 0, then Gα̃ = y1G( 0
b−1

)
β̃

+ P (x2, x3, . . . , y2, y3, . . . )

for some P ∈ Q[[x,y]].

Proof. We prove by induction on the length of α̃.
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1. If α̃ =
(
0
0

)
, then Gα̃ = 1 and we are done.

2. If β̃ = β is a bicomposition,

(a) if a = b = 0 and β non-zero,

i. if β11 > 1 and β11 + β21 > 2, using (2.1) and (3.1), we get

Gα̃ = Gβ − x1G(β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
= Fβ − x1F(β11−1 β12 ··· β1`(β)

β21 β22 ··· β2`(β)

)
= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

ii. if β11 = 1 and β21 = 0, using (2.2), (3.1) and induction on `(β̃), we get

Gα̃ = Gβ − x1G( 0 β12 ··· β1`(β)
0 β22 ··· β2`(β)

)
= Gβ − x1G(β12 ··· β1`(β)

β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )
= Fβ − x1F(β12 ··· β1`(β)

β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )
= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

iii. if β11 = 0 and β21 > 2, using (2.3) and (3.2), we get

Gα̃ = Gβ − y1G( 0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
= Fβ − y1F( 0 β12 ··· β1`(β)

β21−1 β22 ··· β2`(β)

)
= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

iv. if β11 = 0 and β21 = 1, using (2.4), (3.2) and induction on `(β̃), we get

Gα̃ = Gβ − y1G( 0 β12 ··· β1`(β)
0 β22 ··· β2`(β)

)
= Gβ − y1G(β12 ··· β1`(β)

β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )
= Fβ − y1F(β12 ··· β1`(β)

β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )
= Fβ(x2, x3, . . . , y2, y3, . . . ) = Gβ(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

the electronic journal of combinatorics 24(3) (2017), #P3.3 5



(b) if a > 1 and a+ b > 2, by definition Gα̃ = Fα̃. Using (2.1), we get

Gα̃ = Fα̃ = x1F(a−1
b

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows, with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

(c) if a = 1 and b = 0, by definition Gα̃ = Fα̃. Using (2.2) and (2a). we get

Gα̃ = Fα̃ = x1Fβ(x2, x3, . . . , y2, y3, . . . ) + Fα̃(x2, x3, . . . , y2, y3, . . . )

= x1G( 0
0

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

(d) if a = 0 and b > 2, by definition Gα̃ = Fα̃. Using (2.3), we get

Gα̃ = Fα̃ = y1F( a
b−1

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows, with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

(e) if a = 0 and b = 1, by definition Gα̃ = Fα̃. Using (2.4) and (2a). we get

Gα̃ = Fα̃ = y1Fβ(x2, x3, . . . , y2, y3, . . . ) + Fα̃(x2, x3, . . . , y2, y3, . . . )

= y1G( 0
0

)
β

+ Fα̃(x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = Fα̃(x2, x3, . . . , y2, y3, . . . ).

3. In the general case, let α̃ = γ̃
(
0
0

)
β where β is a non-empty bicomposition and

k = `(α̃)− `(β)− 1. We prove by induction on k. If k = 1, then we are back in case
(2a) above. Hence, we assume k > 1 and γ̃ =

(
a
b

)
µ̃.

(a) If a = b = 0,

i. if β11 > 1, by induction and (3.1), we have

Gα̃ =G( 0
0

)
µ̃
(

0
0

)
β

= G( 0
0

)
µ̃β
− xkG( 0

0

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
=Gµ̃β(x2, x3, . . . , y2, y3, . . . )

− x(k−1)+1G
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )
=G

µ̃
(

0
0

)
β
(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

ii. if β11 = 0, by induction and (3.2), we have

Gα̃ =G( 0
0

)
µ̃
(

0
0

)
β

= G( 0
0

)
µ̃β
− ykG( 0

0

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
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=Gµ̃β(x2, x3, . . . , y2, y3, . . . )

− y(k−1)+1G
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)(x2, x3, . . . , y2, y3, . . . )
=G

µ̃
(

0
0

)
β
(x2, x3, . . . , y2, y3, . . . )

and the lemma follows.

(b) If a > 1,

i. if β11 > 1, by induction and (3.1), we have

Gα̃ =G(a
b

)
µ̃
(

0
0

)
β

= G(a
b

)
µ̃β
− xkG(a

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
=x1G(a−1

b

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− xk
(
x1G(a−1

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=x1

(
G(a−1

b

)
µ̃β
− xkG(a−1

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=x1G(a−1
b

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − xkP2.

ii. if β11 = 0, by induction and (3.2), we have

Gα̃ =G(a
b

)
µ̃
(

0
0

)
β

= G(a
b

)
µ̃β
− ykG(a

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
=x1G(a−1

b

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− yk
(
x1G(a−1

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=x1

(
G(a−1

b

)
µ̃β
− ykG(a−1

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=x1G(a−1
b

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − ykP2.

(c) If a = 0 and b > 1,
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i. if β11 > 1, by induction and (3.1), we have

Gα̃ =G( 0
b

)
µ̃
(

0
0

)
β

= G( 0
b

)
µ̃β
− xkG( 0

b

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
=y1G( 0

b−1

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− xk
(
y1G( 0

b−1

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=y1

(
G( 0

b−1

)
µ̃β
− xkG( 0

b−1

)
µ̃
(
β11−1 β12 ··· β1`(β)
β21 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=y1G( 0
b−1

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − xkP2.

ii. if β11 = 0, by induction and (3.2), we have

Gα̃ =G( 0
b

)
µ̃
(

0
0

)
β

= G( 0
b

)
µ̃β
− ykG( 0

b

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
=y1G( 0

b−1

)
µ̃β

+ P1(x2, x3, . . . , y2, y3, . . . )

− yk
(
y1G( 0

b−1

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

)
+ P2(x2, x3, . . . , y2, y3, . . . )

)
=y1

(
G( 0

b−1

)
µ̃β
− ykG( 0

b−1

)
µ̃
(

0 β12 ··· β1`(β)
β21−1 β22 ··· β2`(β)

))
+ P (x2, x3, . . . , y2, y3, . . . )

=y1G( 0
b−1

)
µ̃
(

0
0

)
β

+ P (x2, x3, . . . , y2, y3, . . . )

and the lemma follows with P = P1 − ykP2.

Corollary 3.2. Let ε̃ be a generalized bicomposition, then the leading monomial of Gε̃ is
Xε̃. Hence, {Gα̃} forms a Hilbert basis for R.

Proof. We prove by induction on `(ε̃) and |ε̃|. If ε̃ =
(
0
0

)
, by definition Gε̃ = 1 = X ε̃.

Otherwise, let ε̃ =
(
a
b

)
β̃.

1. If a = b = 0 and β̃ non-zero, by induction on `(ε̃) and Lemma 3.1, we have

LM(Gε̃) = LM(Gβ̃(x2, x3, . . . , y2, y3, . . . )) = (x2, x3, . . . , y2, y3, . . . )
β̃ = Xε̃.
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2. If a > 1, by induction on |ε̃| and Lemma 3.1, we have

LM(Gε̃) = LM

(
x1G(a−1

b

)
β̃

)
= Xε̃.

3. If a = 0 and b > 1, by induction on |ε̃| and Lemma 3.1, we have

LM(Gε̃) = LM

(
y1G( 0

b−1

)
β̃

)
= Xε̃.

4 The Hilbert Basis

The set {xα̃Fβ} is a spanning set of the ideal I. For each α̃ and β, we write xα̃Fβ in terms
of the G basis by the following rules.

(1) We reorder the product xα̃Fβ as · · ·
(
xα̃21
2

(
yα̃22
2

(
xα̃11
1

(
yα̃21
1 Fβ

))))
.

(2) We reduce the above product recursively using (3.1)

xiGγ̃ = xiG( ··· γ̃1i ···
··· γ̃2i ···

) = G( ··· γ̃1i+1 ···
··· γ̃2i ···

) −G( ··· 0 γ̃1i+1 ···
··· 0 γ̃2i ···

); (4.1)

or using (3.2) when γ̃1i = 0 for some i,

yiGγ̃ = yiG( ··· γ̃1i ···
··· γ̃2i ···

) = G( ··· γ̃1i ···
··· γ̃2i+1 ···

) −G( ··· 0 γ̃1i ···
··· 0 γ̃2i+1 ···

). (4.2)

(3) When γ̃1i = a > 0, we reduce yiGγ̃ as

y1Gγ̃ = yiG( ··· a ···
··· γ̃2i ···

) = yi

(
G( ··· 0 a ···

··· 0 γ̃2i ···

) + xiG( ··· a−1 ···
··· γ̃2i ···

)) (4.3)

= yiG( ··· 0 a ···
··· 0 γ̃2i ···

) + xi

(
yiG( ··· a−1 ···

··· γ̃2i ···

)) = · · ·

=
a−1∑
k=0

xki

(
yiG( ··· 0 a−k ···

··· 0 γ̃2i ···

))+ xai

(
yiG( ··· 0 ···

··· γ̃2i ···

)) .
The “ · · · ” above means γ̃11 · · · γ̃1(i−1), γ̃1(i+1) · · · γ̃1`(γ̃), γ̃21 · · · γ̃2(i−1) or
γ̃2(i+1) · · · γ̃1`(γ̃) with respect to their positions in the generalized bicomposition.
For example,

y1F( 1
0

) = y1

(
G( 0 1

0 0

) + x1G( 0
0

)) = y1G( 0 1
0 0

) + x1y1G( 0
0

)
=G( 0 1

1 0

) −G( 0 0 1
0 1 0

) + x1

(
G( 0

1

) −G( 0 0
0 1

))
=G( 0 1

1 0

) −G( 0 0 1
0 1 0

) +G( 1
1

) −G( 0 1
0 1

) −G( 1 0
0 1

) +G( 0 1 0
0 0 1

).
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For each of the above rule, we choose one Gη̃ as leading basis element. We define a
function φ from ({xi} × {Gγ̃}) ∪ ({yi} × {Gγ̃}) to {Gγ̃} as follows. In the case of rules
(4.1), (4.2), we choose φ (xi, Gγ̃) = G( ··· 0 γ̃1i+1 ···

··· 0 γ̃2i ···

) and φ (yi, Gγ̃) = G( ··· 0 γ̃1i ···
··· 0 γ̃2i+1 ···

). In the

case of rule (4.3), we choose φ (yi, Gγ̃) = φ

(
yi, G( ··· 0 a ···

··· 0 γ̃2i ···

)) = G( ··· 0 0 a ···
··· 0 1 γ̃2i ···

). In the

other words, at each step of the expansion, we choose the lexicographically smallest η̃
such that Gη̃ appears as a term in the expansion.

Lemma 4.1. The above process of choosing is invertible, i.e. φ is injective.

Proof. Since each time we multiply xi or yi, the chosen term contains a
(
0
0

)
at position

i. Combining this fact with the rule that we have to multiply yi before xi, we have the
following inverse function.

Let i be the largest number that (γ̃1i, γ̃2i) = (0, 0) and 0 < i < `(γ̃).

(1) If γ̃1(i+1) > 0, then φ−1

(
G( ··· 0 γ̃1(i+1) ···

··· 0 γ̃2(i+1) ···

)) = xiG( ··· γ̃1(i+1)−1 ···
··· γ̃2(i+1) ···

).
(2) If γ̃1(i+1) = 0 and, γ̃1(i+2) = 0 or γ̃2(i+1) > 1, then

φ−1

(
G( ··· 0 γ̃1(i+1) ···

··· 0 γ̃2(i+1) ···

)) = yiG( ··· γ̃1(i+1) ···
··· γ̃2(i+1)−1 ···

).
(3) If γ̃1(i+1) = 0, γ̃2(i+1) = 1 and γ̃1(i+2) > 0, then

φ−1

(
G( ··· 0 0 γ̃1(i+2) ···

··· 0 1 γ̃2(i+2) ···

)) = yiG( ··· γ̃1(i+2) ···
··· γ̃2(i+2) ···

).
Then, we can construct a map Φ : {X α̃Fβ : |β| > 1} → {Gγ̃} that is defined by

“composing” φ with itself (|α̃|−1) times. By the above Lemma, we also have Φ is injective.
For simplicity, we define φ−1(Gγ̃) (or Φ−1(Gγ̃)) to be X α̃Gβ̃ (or X α̃Fβ) if φ(X α̃Gβ̃) = Gγ̃

(or Φ(X α̃Fβ) = Gγ̃ respectively).

Lemma 4.2. In the expansion of X α̃Fβ in the G basis using the rules above, the term
Φ(X α̃Fβ) appears only once. In particular, it has coefficients 1 or −1.

Proof. We begin with the claim that if µ̃ 6= ν̃, then φ(xiGµ̃) and φ(yiGµ̃) do not appear
in the expansion of xiGν̃ and yiGν̃ respectively.

Let k be the smallest integer such that (µ̃k1, µ̃k2) 6= (ν̃k1, ν̃k2). In rules (4.1), (4.2) and
(4.3), for all Gγ̃ in the expansion of xiGµ̃ or yiGµ̃, the first i− 1 columns of γ̃ is the same
as that of µ̃. Hence, the claim follows if k < i.

If k = i, and if we are multiplying xi using rules (4.1) or (4.2), then the claim holds
because either the i-th or the i + 1-th columns of xiGµ̃ will be different from terms in
expansions of xiGν̃ . If we are multiplying by yi, then note that if the i− th column of µ
is (0, 0), then µ(i+1)1 must be 0 because otherwise, that means we multiplied an xi or xj
or yj with j > i before yi, which violates our rule. And the same condition applies to ν.
With this restriction, it is easy to check that the claim holds.
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If k > i, in both cases, if we choose any term in the expansion that is not φ(xiGν̃) or
φ(yiGν̃), then the i or i + 1 column of its index must be different from that of φ(xiGµ̃)
or φ(yiGµ̃). If we choose φ(xiGν̃) or φ(yiGν̃), we also have φ(xiGµ̃) 6= φ(xiGν̃) and
φ(yiGµ̃)φ(yiGν̃) because µ 6= ν.

Since each term in the expansion of X α̃Fβ corresponds to a sequence of choice using
rules (4.1), (4.2) or (43), if at some point, we choose a term that is different from the choice
in Φ, then a recursive use of the claim asserts that Φ(X α̃Fβ) will not appear again.

We now define an order (<G) on the set of generalized bicompositions as follows

1. If α̃ and β̃ are bicompositions, then α̃ <G β̃ if α̃ <lex β̃.

2. If α̃ is a bicomposition and β̃ is not, then α̃ <G β̃.

3. If α̃ = µ̃
(
0
0

)
α′, β̃ = ν̃

(
0
0

)
β′ where α′ and β′ are bicompositions, let u = `(α̃) −

`(α′)− 1, v = `(α̃)− `(β′)− 1, then α̃ <G β̃ if

(a) u < v, or

(b) u = v, α′11 > 0 and β′11 = 0, or

(c) u = v, α′11 > 0, β′11 > 0 (or α′11 = 0, β′11 = 0) and
←−
φ (Gα̃) <G

←−
φ (Gβ̃) where we

define
←−
φ (Gδ̃) to be γ̃ if φ(xiGγ̃) = Gδ̃ or φ(yiGγ̃) = Gδ̃ for some i.

Lemma 4.3. The order defined above is a total order on the set of generalized bicomposi-
tions such that if Gγ̃ = Φ(X α̃Fβ), then for all Gδ̃ that appears in the expansion of X α̃Fβ,
we have γ̃ >G δ̃.

Proof. Clearly this is a total order. If α̃ < β̃ by (1) or (2), then β̃ cannot appear in the
expansion of Φ−1(α̃) = α̃.

If α̃ < β̃ by (3a), that means φ−1(α̃) = xu+1Gγ̃ or yu+1Gγ̃ for some γ̃. Hence, β̃ cannot
appear in the expansion of Φ−1(α̃) because β̃(v+1)1 = β̃(v+1)2 = 0 cannot be created.

If α̃ < β̃ by (3b), that means φ−1(α̃) = xu+1Gγ̃ for some γ̃. Hence, β̃ cannot appear
in the expansion of Φ−1(α̃) because it is not in that of xu+1Gδ̃ for any δ̃.

With this ordering, there is a unique leading Gδ̃ for each expansion of X α̃Fβ.

Theorem 4.4. The set A = {Gα̃ | Gα̃ /∈ Img(Φ)} forms a Hilbert basis for the quotient
space R/I.

Proof. For any polynomial p in R, we write p in terms of the G basis with <G order. For
each term Gα̃ ∈ Img(Φ), we subtract p by Φ−1(Gα̃) ∈ I and Gα̃ is cancelled. If we repeat
this process (possibly countably many times), we can express p as a series of A.
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5 Finitely many variables case

In the case that there are finitely many variables, Rn = Q[x1, . . . , xn, y1, . . . , yn], the
above constructions of DQSym(x1, . . . , xn, y1, . . . , yn), the F , G bases and the ideal In =<
DQSym+(x1, . . . , xn, y1, . . . , yn) > remain the same by taking xi = yi = 0 for i > n. In
this case, LM(Gα̃) = X α̃ whenever `(α̃) 6 n and hence {Gα̃ : `(α̃) 6 n} spans Rn.

Let Ri,j
n be the span of {X α̃ : `(α̃) 6 n,

∑
k α̃1k = i,

∑
k α̃2k = j}. Since In is

bihomogeneous in x and y, In =
⊕
i,j

I i,jn where I i,jn = In ∩ Ri,j
n , and Rn/In =

⊕
i,j

V i,j
n

where V i,j
n = Rn/In ∩Ri,j

n .
The Hilbert matrix corresponding to Rn/In is the matrix Mn(i, j) = dim(V i−1,j−1

n ).
The goal of this section is to compute the second column of the Hilbert matrix. The

proof is slight generalization of the one in [2].

Lemma 5.1. The set {Gα̃ | Gα̃ /∈ Img(Φ), `(α̃) 6 n} spans the quotient Rn/In.

Proof. Among all α̃ such that Gα̃ ∈ Img(Φ), `(α̃) 6 n and Gα̃ cannot be reduced to 0,
let β̃ be the smallest one with respect to the <G order. Then,

Gβ̃ = Gβ̃ − Φ−1(Gβ̃) + Φ−1(Gβ̃)

≡ Gβ̃ − Φ−1(Gβ̃) mod In

But since Gβ̃ is the leading term in Φ−1(Gβ̃), terms in Gβ̃ −Φ−1(Gβ̃) are strictly smaller

than Gβ̃, and thus they reduce to 0. This contradicts to our assumption on β̃.

Let Bn be the set of generalized bicompositions {α̃} such that
k∑
i=1

(α̃1i + α̃2i) < k for

all 1 6 k 6 n and `(α̃) 6 n. Clearly from the definition of G basis, if α̃ /∈ Bn, then
Gα̃ ∈ In. Therefore, the set {X α̃ : α̃ ∈ Bn} spans Rn/In, the proof is essentially the same
as Lemma 5.1. In particular, X α̃ ∈ In for all |α̃| > n.

Lemma 5.2. The set {X α̃Fβ : α̃ ∈ Bn, |β| > 0} spans Rn.

Proof. We already have X ε̃ ≡
∑
α̃∈Bn

X α̃ mod In, which means X ε̃ =
∑
α̃∈Bn

X α̃ +
∑
|β|>1

PβFβ

for some polynomial Pβ. If we reduce each monomial Pβ using the above rule, and write
the product of F basis in terms of F basis, the claim will be satisfied in a finite number
of steps.

For a generalized bicomposition α̃ with `(α̃) 6 n, we define its reverse α to be the
generalized bicomposition such that α1i = α̃1(n−i+1) and α2i = α̃2(n−i+1) for all 1 6 i 6 n.

We denote the set {X α̃ : α ∈ Bn} by An. The endomorphism of Rn that sends xi to
xn−i+1 and yi to yn−i+1 is clearly an algebra isomorphism that fixes DQSym(x,y), in fact,
it sends Mα to Mα′ where α′ is the reversed bicomposition of α. Therefore, by Lemma
5.2, the set {X α̃Fβ : α̃ ∈ An, |β| > 0} spans Rn.

Hence, In = 〈Fγ : |γ| > 1〉 is spanned by {X α̃FβFγ : α̃ ∈ An, |β| > 0, |γ| > 1}, which
means it is spanned by {X α̃Fβ : α̃ ∈ An, |β| > 1}.
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Lemma 5.3. For X α̃Fβ ∈ Ri,1
n with α̃ ∈ An, |β| > 1 and |α̃|+|β| < n, let Gγ̃ = Φ(X α̃Fβ),

then `(γ̃) 6 n.

Proof. First, rules (4.1) and (4.2) increase the length by 1 while (4.3) increase the length
by 2. Now, we need to track γ̃`(γ̃). If γ̃`(γ̃) comes from β`(β) and gets shifted, since we
can use (4.3) at most once, we can make at most |α̃| + 1 steps to the right. Therefore,
`(γ̃) 6 |α̃|+ 1 + `(β) 6 |α̃|+ 1 + |β| 6 n.

If γ̃`(γ̃) is 1 which comes from multiplying xk or yk to Gε̃ with k > `(ε̃), since α̃ ∈ An,
we have

∑
i>k(α̃1i + α̃2i) < n − k + 1. In this process, we use rules (4.1) and (4.2) only

and each increases the length by 1. Therefore, γ̃`(γ̃) can be shifted to at most position
k + n− k = n.

Corollary 5.4. Let Mn be the Hilbert matrix of Rn/In, then Mn(n−1, 2) =
1

n

(
2n− 2

n− 1

)
,

Mn(i, 2) =
∑

16j6i,16k62

Mn−1(j, k) for 1 6 i 6 n− 2, and Mn(2, 1) = 0 for i > n.

Proof. Lemma 5.1 shows that Ci = {Gα̃ ∈ V i,1
n : Gα̃ /∈ Img(Φ)} spans V i,1

n . Suppose there

is a linear dependence P =
∑
Gα̃∈Ci

aα̃Gα̃ ∈ I i,1n . Since I i,1n is spanned by D = {X α̃Fβ ∈

Ri,1
n : α̃ ∈ An, |β| > 1}, we have P =

∑
Xα̃Fβ∈D

bα̃βX
α̃Fβ. This means the leading term

of P when we expand in G basis is some Gγ̃ such that γ̃ ∈ Img(Φ) and by Lemma 5.3
`(γ̃) 6 n, which is absurd. Therefore, Ci is a linear basis for V i,1

n .
Now, Mn(i, 1) = dimV i−1,1

n = |Ci−1|. Let Gγ̃ ∈ V i,1
n and k be the unique number that

γ̃k2 = 1. First, from definition of G, γ̃ /∈ Bn implies Gγ̃ ∈ In and Gγ̃ ∈ Img(Φ).

If i = n − 1, then |γ̃| = n − 1. If k < `(γ̃), since
n∑

j=k+1

γ̃1j > n − k, we will be using

rules (4.3) when applying φ−1. This reduces the length by 2 while the size by 1, which
means Gγ̃ ∈ Img(Φ). If k = `(γ̃), we only use rules (4.1) and (4.2) when applying φ−1.
In this case, Gγ̃ /∈ Img(Φ) whenever γ̃ ∈ Bn. Therefore, |Cn−2| is the Catalan number
1

n

(
2n− 2

n− 1

)
.

If 1 6 i 6 n − 2, |γ̃| 6 n − 2. From the definition of φ, Gγ̃ /∈ Img(Φ) if and

only if G( γ̃11 ··· γ̃1(n−1)
γ̃21 ··· γ̃2(n−1)

) ∈ V j,k
n−1 \ Img(Φ) for some 1 6 j 6 i, 1 6 k 6 2. Therefore,

Mn(i, 2) =
∑

16j6i,16k62

Mn−1(j, k) for 1 6 i 6 n− 2.

By the symmetryMn(a, b) = Mn(b, a), we obtain the first to rows of the Hilbert matrix,

namely Mn(2, n − 1) =
1

n

(
2n− 2

n− 1

)
, Mn(2, i) =

∑
16j6i,16k62

Mn−1(k, j) for 1 6 i 6 n − 2,

and Mn(2, i) = 0 for i > n.
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This method can be applied directly to some other terms. To be more specific, for
2i+ j 6 n, the set {Gα̃ | Gα̃ /∈ Img(Φ), `(α̃) 6 n} is a linear basis in V i,j

n . Therefore, the
formula for each column stabilizes when the number of variables is large enough. However,
it fails in some other terms and this set is not a linear basis in general.
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