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Abstract

Let G be a graph in which each vertex initially has weight 1. In each step, the
weight from a vertex u to a neighbouring vertex v can be moved, provided that the
weight on v is at least as large as the weight on u. The total acquisition number of
G, denoted by at(G), is the minimum cardinality of the set of vertices with positive
weight at the end of the process. In this paper, we investigate random geometric
graphs G(n, r) with n vertices distributed uniformly at random in [0,

√
n]2 and two

vertices being adjacent if and only if their distance is at most r. We show that
asymptotically almost surely at(G(n, r)) = Θ(n/(r lg r)2) for the whole range of
r = rn > 1 such that r lg r 6

√
n. By monotonicity, asymptotically almost surely

at(G(n, r)) = Θ(n) if r < 1, and at(G(n, r)) = Θ(1) if r lg r >
√
n.

∗The third author is supported in part by NSERC and Ryerson University
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1 Introduction

Gossiping and broadcasting are two well studied problems involving information dissemi-
nation in a group of individuals connected by a communication network [8]. In the gossip
problem, each member has a unique piece of information which she would like to pass to
everyone else. In the broadcast problem, there is a single piece of information (starting
at one member) which must be passed to every other member of the network. These
problems have received attention from mathematicians as well as computer scientists due
to their applications in distributed computing [3]. Gossip and broadcast are respectively
known as “all-to-all” and “one-to-all” communication problems. In this paper, we consider
the problem of acquisition, which is a type of “all-to-one” problem. Suppose each vertex
of a graph begins with a weight of 1 (this can be thought of as the piece of information
starting at that vertex). A total acquisition move is a transfer of all the weight from a
vertex u onto a neighbouring vertex v, provided that immediately prior to the move, the
weight on v is at least the weight on u. Suppose a number of total acquisition moves are
made until no such moves remain. Such a maximal sequence of moves is referred to as an
acquisition protocol and the vertices which retain positive weight after an acquisition
protocol is called a residual set. Note that any residual set is necessarily an independent
set. Given a graph G, we are interested in the minimum possible size of a residual set and
refer to this number as the total acquisition number of G, denoted at(G). The re-
striction to total acquisition moves can be motivated by the so-called “smaller to larger”
rule in disjoint set data structures. For example, in the UNION-FIND data structure
with linked lists, when taking a union, the smaller list should always be appended to the
longer list. This heuristic improves the amortized performance over sequences of union
operations.

Example: The weight of a vertex can at most double at every total acquisition move,
and so a vertex with degree d can carry at most weight 2d. (We will later use this fact
in Observation 2.) An acquisition protocol for a cycle C4k (for some k ∈ N) that leaves
a residual set of every fourth vertex is the best we can do; see Figure 1. Therefore,
at(C4k) = k.

1 1 1 1 1 1 1 1

2 2 2 20 0 0 0→ →← ←

4 40 0 0 0 0 0→ →

Figure 1: The total aquisition moves for a fragment of a cycle C4k that leave a residual
set of size at(C4k) = k.

The parameter at(G) was introduced by Lampert and Slater [10] and subsequently
studied in [14, 11]. In [10], it was shown that at(G) 6

⌊
n+1
3

⌋
for any connected graph
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G on n vertices and that this bound is tight. Slater and Wang [14], via a reduction
to the three-dimension matching problem, showed that it is NP-complete to determine
whether at(G) = 1 for general graphs G. In LeSaulnier et al. [11], various upper bounds
on the acquisition number of trees were shown in terms of the diameter and the number
of vertices, n. They also showed that at(G) 6 32 log n log log n (here log n denotes the
natural logarithm but throughout the paper we mostly use lg n, the binary logarithm) for
all graphs with diameter 2 and conjectured that the true bound is constant. For work
on game variations of the parameter and variations where acquisition moves need not
transfer the full weight of vertex, see [16, 13, 15].

Randomness often plays a part in the study of information dissemination problems,
usually in the form of a random network or a randomized protocol, see e.g. [4, 5, 6].
The total acquisition number of the Erdős-Rényi-Gilbert random graph G(n, p) was
recently studied in [2], where potential edges among n vertices are added independently
with probability p. In particular, LeSaulnier et al. [11] asked for the minimum value of
p = pn such that at(G(n, p)) = 1 asymptotically almost surely (see below for a formal
definition). In [2] it was proved that p = lgn

n
≈ 1.4427 logn

n
is a sharp threshold for this

property. Moreover, it was also proved that almost all trees T satisfy at(T ) = Θ(n),
confirming a conjecture of West. Another way randomness can come into the picture
is when initial weights are generated at random. This direction, in particular the case
where vertex weights are initially assigned according to independent Poisson distributions
of intensity 1, was recently considered in [7].

In this note we consider the random geometric graph G(Xn, rn), where (i) Xn is
a set of n points located independently uniformly at random in [0,

√
n]2, (ii) (rn)n>1 is

a sequence of positive real integers, and (iii) for X ⊆ R2 and r > 0, the graph G(X , r)
is defined to have vertex set X , with two vertices connected by an edge if and only if
their spatial locations are at Euclidean distance at most r from each other. As typical
in random graph theory, we shall consider only asymptotic properties of G(Xn, rn) as
n → ∞. We will therefore write r = rn, identifying vertices with their spatial locations
and defining G(n, r) as the graph with vertex set [n] = {1, 2, . . . , n} corresponding to n
locations chosen independently uniformly at random in [0,

√
n]2 and a pair of vertices

within Euclidean distance r appears as an edge. For more details see, for example, the
monograph [12].

Finally, we say that an event in a probability space holds asymptotically almost
surely (a.a.s.), if its probability tends to one as n goes to infinity.

We are going to show the following result.

Theorem 1. Let r = rn be any positive real number. Then, a.a.s. at (G(n, r)) = Θ(fn),
where

fn =


n if r < 1,

n
(r lg r)2

if r > 1 and r lg r 6
√
n,

1 if r lg r >
√
n.
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2 Lower Bound

Let us start with the following simple but useful observation.

Observation 2. Let G = (V,E) be a graph. If v ∈ V is to acquire weight w (at any time
during the process of moving weights around), then deg(v), the degree of v, is at least lgw.
Moreover, all vertices that contributed to the weight of w (at this point of the process) are
at graph distance at most lgw from v.

Proof. Note that during each total acquisition move, when weight is shifted onto v from
some neighbouring vertex, the weight of v can at most double. Thus, v can only ever
acquire 1 + 2 + . . . + 2deg(v)−1, in addition to the 1 it starts with, and so v can acquire
at most weight 2deg(v). To see the second part, suppose that some vertex u0 moved the
initial weight of 1 it started with to v through the path (u0, u1, . . . , uk−1, uk = v). It is
easy to see that after ui−1 transfers its weight onto ui, ui has weight at least 2i. So if u0
contributed to the weight of w, u0 must be at graph distance at most lgw from v. The
proof of the observation is finished.

We will also use the following consequence of Chernoff’s bound (see, for example, [9]
and [1]).

Theorem 3 (Chernoff’s Bound).

(i) If X is a Binomial random variable with expectation µ, and 0 < δ < 1, then

Pr[X < (1− δ)µ] 6 exp

(
−δ

2µ

2

)
,

and if δ > 0,

Pr [X > (1 + δ)µ] 6 exp

(
− δ2µ

2 + δ

)
.

(ii) If X is a Poisson random variable with expectation µ, and 0 < ε < 1, then

Pr [X > (1 + ε)µ] 6 exp

(
−ε

2µ

2

)
,

and if ε > 0,

Pr [X > (1 + ε)µ] 6

(
eε

(1 + ε)1+ε

)µ
.

In particular, for X being a Poisson or a Binomial random variable with expectation µ
and for 0 < ε < 1, we have

Pr [|X − µ| > εµ] 6 2

(
−ε

2µ

3

)
.
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Now we are ready to prove the lower bound. First we concentrate on dense graphs for
which, in fact, we show a stronger result that no vertex can acquire large weight a.a.s.

Theorem 4. Suppose that r = rn > c
√

lg n/ lg lg n for some sufficiently large c ∈ R, and
consider any acquisition protocol on G(n, r). Then, a.a.s. each vertex in the residual set
acquires O((r lg r)2) weight. As a result, a.a.s.

at (G(n, r)) = Ω

(
n

(r lg r)2

)
.

Proof. Let ` = 2 lg r + 2 lg lg r + lg(8π). For a contradiction, suppose that at some point
of the process some vertex v acquires weight w > 2` = 8π(r lg r)2. Since one total
acquisition move corresponding to transferring all the weight from some neighbour of v
onto v, increases the weight on v by a factor of at most 2, we may assume that w < 2`+1.
It follows from Observation 2 that all vertices contributing to the weight of w are at graph
distance at most `+1 from v (and so at Euclidean distance at most (`+1)r). The desired
contradiction will be obtained if no vertex has at least 2` vertices (including the vertex
itself) at Euclidean distance at most (`+ 1)r.

The remaining part is a simple consequence of Chernoff’s bound and the union bound
over all vertices. For a given vertex v, the number of vertices at Euclidean distance at
most (` + 1)r is a random variable Y that is stochastically bounded from above by the
random variable X ∼ Bin(n − 1, π(` + 1)2r2/n) with E[X] ∼ π`2r2 ∼ 4π(r lg r)2. (Note
that Y = X if v is at distance at least (` + 1)r from the boundary; otherwise, Y 6 X.)
It follows from Chernoff’s bound that

P(Y > 2`) 6 P
(
X > (2 + o(1))E[X]

)
6 exp

(
− (1/3 + o(1))E[X]

)
6 exp

(
− (4π/3 + o(1))(r lg r)2

)
6 exp

(
− (πc2/3 + o(1)) lg n

)
= o(1/n),

provided that c is large enough. The conclusion follows from the union bound over all n
vertices of G(n, r).

In order to simplify the proof of the theorem for sparser graphs we will make use
of a technique known as de-Poissonization, which has many applications in geometric
probability (see [12] for a detailed account of the subject). Here we only sketch it.

Consider the following related model of a random geometric graph. Let V = V ′, where
V ′ is a set obtained as a homogeneous Poisson point process of intensity 1 in [0,

√
n]2.

In other words, V ′ consists of N points in the square [0,
√
n]2 chosen independently and

uniformly at random, where N is a Poisson random variable of mean n. Exactly as we did
for the model G(n, r), again identifying vertices with their spatial locations, we connect
by an edge u and v in V ′ if the Euclidean distance between them is at most r. We denote
this new model by P(n, r).

The main advantage of defining V ′ as a Poisson point process is motivated by the
following two properties: the number of vertices of V ′ that lie in any region A ⊆ [0,

√
n]2
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of area a has a Poisson distribution with mean a, and the number of vertices of V ′

in disjoint regions of [0,
√
n]2 are independently distributed. Moreover, by conditioning

P(n, r) upon the event N = n, we recover the original distribution of G(n, r). Therefore,
since Pr(N = n) = Θ(1/

√
n), any event holding in P(n, r) with probability at least

1− o(fn) must hold in G(n, r) with probability at least 1− o(fn
√
n).

Now, let us come back to our problem. For sparser graphs we cannot guarantee that
no vertex acquires large weight a.a.s. but a lower bound of the same order holds.

Theorem 5. Suppose that r = rn > c for some sufficiently large c ∈ R. Then, a.a.s.

at (G(n, r)) = Ω

(
n

(r lg r)2

)
.

Proof. Since Theorem 4 applies to dense graphs, we may assume here that

r = O(
√

lg n/ lg lg n)

(in particular, r lg r = o(
√
n)). Tessellate [0,

√
n]2 into b

√
n/(20r lg r)c2 squares, each

one of side length (20 + o(1))r lg r. Consider the unit circle centered on the center of
each square and call it the center circle. We say that a given square is dangerous if the
corresponding center circle contains at least one vertex and the total number of vertices
contained in the square is less than 1200(r lg r)2.

Consider any acquisition protocol. First, let us show that at least one vertex from
each dangerous square must belong to the residual set. Let u0 be a vertex inside the
corresponding center circle. For a contradiction, suppose that the square has no vertex
in the residual set. In particular, it means that u0 moved the initial weight of 1 it started
with onto some vertex outside the square through some path (u0, u1, . . . , uk). Note that
the Euclidean distance between u0 and the border of the square (and so also uk) is at
least (20 + o(1))r lg r/2− 1 > 9r lg r, provided that c is large enough, and so k > 9 lg r.

u0 ul uk

Figure 2: Residual sets contain at least one vertex from each dangerous square.

Consider the vertex u` on this path, where ` = b4 lg rc > 3 lg r, provided c is large
enough; see Figure 2. Right after u`−1 transferred all the weight onto u`, u` had weight
at least 2` > r3 > 1200(r lg r)2, provided c is large enough. As argued in the proof of the
previous theorem, at some point of the process u` must have acquired weight w satisfying
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2` 6 w < 2`+1. Observation 2 implies that all vertices contributing to the weight of w
are at Euclidean distance at most (` + 1)r from v and so inside the square (as always,
provided c is large enough). However, dangerous squares contain less than 1200(r lg r)2

vertices, and so we get a contradiction. The desired claim holds.
Showing that a.a.s. a positive fraction of the squares is dangerous is straightforward.

In P(n, r), the probability that the center circle contains no vertex is exp(−π) 6 1/3. On
the other hand, the number of vertices falling into the square is a Poisson random variable
X with expectation µ ∼ 400(r lg r)2. By Chernoff’s bound applied with ε = e− 1,

P(X > eµ) 6

(
ee−1

(1 + (e− 1))e

)µ
= exp(−µ).

Hence, we get

P(X > 1200(r lg r)2) 6 P(X > eµ) 6 exp(−µ) 6 1/3,

provided c is large enough. Hence the expected number of dangerous squares is at least
(1/3)(1/400+o(1))n/(r lg r)2 � lg n→∞. By Chernoff bounds, with probability at least
1 − o(n−1/2), the number of dangerous squares in P(n, r) is at least (1/2500)n/(r lg r)2.
By the de-Poissonization argument mentioned before this proof, the number of dangerous
squares in G(n, r) is a.a.s. also at least (1/2500)n/(r lg r)2, and the proof of the theorem
is finished.

The only range of r = rn not covered by the two theorems is when r < c for c as
in Theorem 5. However, in such a situation a.a.s. there are Ω(n) isolated vertices which
clearly remain in the residual set. Moreover, if r is such that r lg r >

√
n, then the trivial

lower bound Ω(1) applies. The lower bound in the main theorem holds for the whole
range of r.

3 Upper Bound

As in the previous section, let us start with a simple, deterministic observation that turns
out to be useful in showing an upper bound. Before we state it, let us define a family of
rooted trees as follows. Let T̂0 be a rooted tree consisting of a single vertex v (the root of
T̂0). For i ∈ N, we define T̂i recursively: the root v of T̂i has i children that are roots of
trees T̂0, T̂1, . . . , T̂i−1; see Figure 3.

. . . T̂i−1 T̂0 T̂1 T̂2 . . . T̂i−1

.

Figure 3: The tree T̂i.
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Clearly, T̂i has 2i vertices and depth i. Moreover, it is straightforward to see that
vertices of T̂i can move their initial weight of 1 to the root v (in particular, at(T̂i) = 1):
indeed, this clearly holds for i = 0 so suppose that it holds inductively up to i− 1. Then,
since all children of the root of T̂i can send all their accumulated weight to the root of T̂i
(starting from the smallest subtree), this also holds for i. This, in particular, shows that
Observation 2 is tight.

As showed in the previous section, the main bottleneck that prevents us from moving
a large weight to some vertex in G(n, r) is that there are simply not enough vertices in the
Euclidean neighborhood of a vertex. If we want to match the lower bound, then rooted
trees induced by the acquisition protocol must be as deep as possible in order to access
vertices that are in a Euclidean sense far away from the corresponding roots. It turns
out that trees T̂i from the family we just introduced are efficient from that perspective.
However, we cannot guarantee that the vertex set of G(n, r) can be partitioned in such a
way that each set has some tree from the family as a spanning subgraph. Fortunately, it
is easy to “trim” T̂i to get a tree on n < 2i vertices that can shift all of its initial weight
to the root.

Observation 6. For any d ∈ N ∪ {0} and n 6 2d, T̂d contains a rooted sub-tree T on n
vertices such that at(T ) = 1. Moreover, the number of vertices at distance ` (0 6 ` 6 d)
from the root of T is at most

(
d
`

)
.

Proof. In order to obtain the desired tree T on n vertices, we trim T̂d by cutting some
of its branches (from largest to smallest, level by level). We may assume that n > 2;
otherwise, the statement trivially holds.

Since we will be trimming the tree recursively, let us concentrate on v, the root of
T̂d, and d branches attached to it. Our goal is to get a tree rooted at v that has n > 2
vertices. Let k0 be the largest integer k such that

1 +
(

1 + 2 + 4 + . . . 2k
)

= 2k+1 6 n;

that is, k0 = blg nc − 1 (note that k0 > 0 as n > 2 and that k0 6 d − 1 as n 6 2d). We
leave the branches inducing the trees T̂0, T̂1, . . . , T̂k0 untouched. We trim the branches
inducing the trees T̂k0+2, T̂k0+3, . . . , T̂d completely (note that possibly k0 = d− 1 in which
case we trim nothing). Finally, we would like to carefully trim the branch inducing the
tree T̂k0+1 so that the number of vertices it contains is precisely n − 2k0+1. If n − 2k0+1

is equal to 0 or 1, then we trim the whole branch or leave just the root of this branch,
respectively. Otherwise, we recursively trim the branch as above. It is straightforward
to see that all vertices of T can move their initial weight of 1 to the root of T which, in
particular, implies that at(T ) = 1, thus proving the first part.

In order to show the second part, it is enough to prove the desired property for T̂d
(since T is a sub-tree of T̂d). We prove it by (strong) induction on d; clearly, the statement
holds for d = 0 and ` = 0. Let d0 ∈ N and suppose inductively that the property holds
for all d such that 0 6 d 6 d0 − 1. The claim clearly holds for ` = 0. We count the
number of grandchildren at distance ` (for any 1 6 ` 6 d0) from the root v by considering
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grandchildren at distance `−1 from each child of v. By the recursive construction of T̂d we
get that the number of vertices at distance ` from v is

∑d0−1
k=`−1

(
k
`−1

)
=
(
d0
`

)
(this equality

is well-known and can be easily proven by induction). The proof of the observation is
finished.

Before we are ready to state the next result, we need to introduce a few definitions.
Let c, ε ∈ (0, 1) be any constants, arbitrarily small. Suppose that we are given a function
r = rn such that r lg r 6

√
n and r > C for some large constant C = C(c, ε) that

will be determined soon. Let k = d
√
n/(cr lg r)e and tessellate [0,

√
n] into k2 large

squares, each one of side length xr lg r, where x =
√
n/(kr lg r). Clearly, c/2 6 x 6 c

(the lower bound follows as cr lg r 6
√
n) and x ∼ c, provided r lg r = o(

√
n). Now,

let ` = 20dxr lg r/(20cr)e = 20dx lg r/(20c)e and tessellate each large square into `2

small squares, each one of side length yr, where y = x lg r/`; see Figure 4. Clearly,
c/2 6 y 6 c (the lower bound follows assuming that C is large enough which we may)
and y ∼ c, provided r = rn →∞ as n→∞.

√
n
k√

n
kl

Figure 4: We tessellate [0,
√
n]2 into k2 large squares, and each large square is tessellated

into l2 small squares; k = d
√
n/(cr lg r)e and l = 20dx lg r/(20c)e.

We say that a small square is good if the number of vertices it contains is between
(1−ε)(yr)2 and (1+ε)(yr)2; otherwise, it is bad. Moreover, we say that a large square is
good if all small squares it contains are good and the following properties hold (otherwise,
it is bad):

(a) no vertex lies on the border of the large square nor on its two diagonals,

(b) no two vertices lie on any line parallel to any base of the large square,

(c) no two vertices lie on any line passing the center of the large square.

Now we are ready to state the following crucial observation.
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Theorem 7. For any pair c, ε ∈ (0, 1) of constants, there exists a constant C = C(c, ε)
such that the following two properties hold a.a.s. for G(n, r).

(i) All large squares are good, provided that r > C
√

log n.

(ii) The number of large squares that are bad is at most n/(r2 lg5 r), provided that r > C.

Proof. Properties (a)-(c) on the distribution of the vertices hold with probability 1 for all
large squares. Hence, we need to concentrate on showing that small squares are good.

For part (i), consider any small square in G(n, r). The number of vertices in such a
square follows a binomial random variable X ∼ Bin(n, (yr)2/n) with E[X] = (yn)2. It
follows immediately from Chernoff’s bound that the probability of the square being bad
can be estimated as follows:

P
(
|X − (yr)2| > ε(yr)2

)
6 2 exp

(
−ε

2(yr)2

3

)
6 2/n2 = o(1/n),

provided that C >
√

6/(cε). Hence, since there are in total O(n) small squares appearing
in large squares, the expected number of such small squares is o(1), and the conclusion
follows from the first moment method.

For part (ii), consider any small square in P(n, r). As before, let X ∼ Po((yr)2) be
the random variable counting the number of vertices in the square. By Chernoff’s bound,
for the probability of the square being bad we have

P
(
|X − (yr)2| > ε(yr)2

)
6 2 exp

(
−ε

2(yr)2

3

)
6 2 exp

(
−(εcr)2

12

)
.

By a union bound, a given large square is bad with probability at most

2`2 exp

(
−(εcr)2

12

)
6 2 (2 lg r)2 exp

(
−(εcr)2

12

)
6

1

lg4 r
;

both inequalities hold provided C is large enough. (Note that ` 6 20dlg r/20e 6 2 lg r,
provided r > C.)

Now, the number of large squares that are bad can be stochastically bounded from
above by the random variable Y ∼ Bin(k2, 1/ lg4 r). By part (i), we may assume that,
say, r = O(log n) and so, in particular, r lg r = o(

√
n). Note that

E[Y ] =
k2

lg4 r
∼ n

(cr lg r)2 lg4 r
6

n

3r2 lg5 r
,

provided C is large enough. On the other hand, note that, say, E[Y ] = Ω(n/ log3 n).
Hence, it follows immediately from Chernoff’s bound that

P
(
Y >

n

r2 lg5 r

)
6 P (Y > 2E[Y ]) = exp

(
−Ω(n/ log3 n)

)
= o(1/

√
n).

By the de-Poissonization argument explained above, the desired property holds for G(n, r)
and the proof is finished.
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The next deterministic result shows that there exists an acquisition protocol that
pushes weights from all vertices of each large good square into a single vertex.

Theorem 8. Fix c = 1/10000, ε = 1/100, n ∈ N, and radius r = rn > C for some
large enough constant C ∈ R. Consider any distribution of vertices that makes a given
large square S good (with respect to c, ε, r, and n). Finally, let G be the geometric graph
induced by vertices from S with radius r. Then, at(G) = 1.

Before we prove this theorem, let us state the following corollary that follows imme-
diately from Theorems 8 and 7.

Corollary 9. Suppose that r = rn is such that r lg r 6
√
n and r > C for some sufficiently

large C ∈ R. Then, a.a.s.

at (G(n, r)) = O

(
n

(r lg r)2

)
.

Proof. Let c, ε be fixed as in Theorem 8 and let C = C(c, ε) be the constant implied by
Theorem 7. If r > C

√
log n, then Theorem 7(i) implies that a.a.s. all large squares are

good and so by Theorem 8 a.a.s.

at(G(n, r)) 6 k2 = O

(
n

(r lg r)2

)
.

On the other hand, if r > C, then Theorem 7(ii) implies that a.a.s. at most n/(r2 lg5 r)
large squares are bad. Clearly, each large bad square can be tessellated into O(lg2 r)
squares of side length r/

√
2, and so the graph G induced by vertices of any large bad

square satisfies at(G) = O(lg2 r). This time we get that a.a.s.

at(G(n, r)) 6 k2 +
n

r2 lg5 r
·O(lg2 r) = O

(
n

(r lg r)2

)
,

and the proof of the corollary is finished.

The only ranges of r = rn not covered by Corollary 9 are when r < C for C as in the
corollary or when r lg r >

√
n. For the first case there is nothing to prove as the bound

O(n) trivially holds. The latter case follows immediately by monotonicity of at(G).
Hence, it remains to prove Theorem 8.

Proof of Theorem 8. Split S into four triangles using the two diagonals of S. (Note that
by property (a) of the distribution of the vertices, no vertex lies on the border of any
triangle.) By symmetry, we may concentrate on the bottom triangle: the base of the
triangle has length `(yr) and the height is `(yr)/2. Since ` is divisible by 2, the center of
the large square is the corner of four small squares. Clearly, the number of small squares
that are completely inside the triangle is `2/4− `/2 (the total area of the triangle is `2/4,
and there are ` small squares only partially contained in this area, contributing a total
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area of `/2); on the other hand, `2/4 + `/2 of them cover the triangle. Hence, since all
small squares are good, the number of vertices z that lie in the triangle is at most(

`2

4
+
`

2

)
(1 + ε)(yr)2 =

(
1 +

2

`

)
(1 + ε)

(xr lg r)2

4
6 (1 + 2ε)

(xr lg r)2

4
=: z+,

provided that C is large enough. Similarly, we get that z > z− := (1− 2ε)(xr lg r)2/4.
Let d be the smallest integer such that 2d > z. Since z− 6 z 6 z+, it follows that

d = lg z+O(1) = 2 lg r+ 2 lg lg r+O(1). Observation 6 implies that there exists a rooted
sub-tree T of T̂d on z vertices with at(T ) = 1. Our goal is to show that T can be embedded
on the set of vertices that belong to the triangle with the root being the vertex closest (in
Euclidean distance) to the apex of the triangle. If this can be done, then one can merge
all the accumulated weights from the four triangles partitioning S into one of them and
finish the proof: indeed, as the Euclidean distance from the closest vertex to the apex of
the triangle is at most

√
5yr 6

√
5cr 6 r/2, the four roots induce a clique; see Figure 5.

√
5yr

T0
T1 . . .Ti−1

Figure 5: On the left: there is a vertex in the triangle at distance at most
√

5yr from the
apex. On the right: in each triangle, we attempt to embed a tree that includes all vertices
in the triangle. The four roots induce a clique, and so if such trees can be embedded, all
weights in the square can be pushed onto a single vertex.

We divide the triangle into `/20 strips by introducing auxiliary lines Ai (where
i ∈ {0, 1, . . . , `/20}; recall that ` is divisible by 20), all of them are lines parallel to the
base of the triangle. A0 is the line that passes through the apex of the triangle, A1 is
at distance 10yr from A0, etc., A`/20 coincides with the base of the triangle. Note that
there are exactly 10 strips of little squares between any two consecutive auxiliary lines
Aj−1 and Aj. Any two points a1, a2 on the base of the triangle and a line L parallel to
the base induce an auxiliary region, a trapezoid with vertices a1, a2 and two vertices
on L, the intersection of the line between the apex of the triangle and a1 with L, and
the intersection of the line between the apex of the triangle and a2 with L, respectively.
In particular, the triangle itself is a (degenerate) auxiliary region, induced by the two
vertices from the base of the triangle and A0.

We will now give a recursive algorithm how to embed the tree T on all z vertices of the
triangle. As already mentioned, we pick the vertex closest in Euclidean distance to the
apex of the triangle and assign it to the root of T . Let L0 be any line parallel to the base
separating the vertex assigned to the root from other vertices that are not yet assigned
to any vertex of T . (Note that by our assumption of the distribution of the vertices,
there are no two vertices on any line parallel to the base.) This will be a typical situation
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that we have to deal with, in a recursive fashion. Suppose thus that we are given a line
Li−1 parallel to the base such that vertices above Li−1 are already assigned to vertices in
T , and vertices below Li−1 that belong to the auxiliary region Q we currently deal with
are not yet assigned to vertices in T . We will always keep the property that Q contains
exactly the number of vertices we need to assign to some part of the tree T ; these vertices
induce a family of rooted trees in T , with roots that are at graph distance i from the root
of T . Denote by Qi and Ri the number of vertices that belong to Q and, respectively, to
the part of Q above Ai; see Figure 6.

A0

A1

A2

A3

A4a1 a2

L2

Figure 6: The number of vertices in the shaded region is R3, the number of vertices in
the trapezoid determined by L2, the base of the triangle, and the two blue sides of the
triangle associated with Q is Q3.

Let a1 and a2 be the two corners of Q that belong to the base of the triangle. Let b1
and b2 be the intersection points of Ai with the line going through the apex and a1, and
with the line going through the apex and a2, respectively; see Figure 7. If the Euclidean
distance between b1 and b2 is more than r/3, then we split Q into two auxiliary regions
(the first one induced by b1 and some b on Ai, the other one induced by b and b2; in both
situations the auxiliary line Li−1 is used), where b is chosen in such a way that Qi vertices
are partitioned into two families of rooted trees in T as evenly as possible. Observe that
it is possible to split Q in such a way so that both auxiliary sub-regions contain at least
Qi/4 vertices; indeed, one can order the family of rooted trees according to their sizes and
then notice that adding one rooted tree to one of the auxiliary sub-regions obtained after
splitting can increase the total number of vertices there by a multiplicative factor of at
most 2. (Note that by property (c) of the distribution of the vertices, we can perform a
split so that no vertex belongs to the border of any resulting auxiliary region.) We stop
the algorithm prematurely if the Euclidean distance between b1 and b (or between b and
b2) is less than r/20 or more than r/3 (Error 1 is reported). If everything goes well, we
deal with each auxiliary region recursively (we update Qi and Ri, and all lines defining
the auxiliary region).

Now, we want to assign all roots from the family of rooted trees (recall that they are
at level i of T ) to vertices of Q above Ai. If there are more than Ri vertices on level i in T ,
then stop the algorithm prematurely (Error 2 is reported). In fact, we typically only need
to embed a small portion of the vertices of level i, but we nevertheless stop prematurely
if Ri is smaller than the total number of vertices at level i in the tree. Otherwise, we first
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a1 a2

L2

A3b1 b2b

Figure 7: If the Euclidean distance between b1 and b2 is more than r/3, we split the region
into two regions.

assign all roots of the family of rooted trees we deal with. Then, we order the trees rooted
at them according to their sizes (in non-decreasing order), and keep adding whole rooted
trees, as long as the total number of vertices added is at most Ri (see Figure 8). By the
same argument as before, we are guaranteed that at least Ri/2 vertices are assigned to the
corresponding vertices of T . Clearly, if i = `/20, we are able to fit all rooted trees, and so
all Ri (which is equal to Qi in this case) vertices are dealt with. On the other hand, that is,
as long as i < `/20, we introduce any line Li, parallel to the base, that separates vertices
of Q that are assigned (that are above the line) from those that are still not assigned to
any vertex in T (below the line). (As usual, by property (b) of the distribution of the
vertices, we can do it so that no vertex lies on Li.) We continue recursively with the new
auxiliary region below Li and the new family of rooted trees consisting of all the branches
that are not assigned to any vertices; see Figure 8. Note that the line Li depends on Q,
and different auxiliary regions corresponding to embedding vertices of T of the same level
might have a different line Li. We will show below that these lines will all be close to Ai.

L0

A1

. . .. . .. . .. . .. . .. . .. . .. . .. . .

Figure 8: Vertices from layer 1 in the tree are assigned to vertices in Q. We assign the
rest of the vertices in Q by embedding entire branches of the tree, as long as the number
of vertices assigned is at most Ri (in grey). The remaining branches become roots for the
next iteration.

Finally, if at some point of this process two vertices in Q are assigned to two adjacent
vertices in T that are at Euclidean distance more than r, then we clearly have to stop the
algorithm prematurely (Error 3 is reported).

It remains to argue that we never stop the algorithm prematurely as this implies that
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T is embedded on the vertices inside the triangle. Let us deal first with Error 2, then
with Error 3, leaving Error 1 for the end.

Error 2—level i in T contains more vertices than are available in Q above Ai (that
is, more than Ri): First, let us observe that for i ∈ {1, 2, . . . , 50}, the auxiliary line Ai
intersects the triangle so that the Euclidean distance between the two points on the sides of
the triangle under consideration intersecting with Ai is (20yr)i 6 (20cr)i = ri/500 6 r/3.
Hence, splitting of auxiliary regions cannot happen during the first 50 rounds. On the
other hand, for i ∈ {1, 2, . . . , 50} we have (20yr)i > (10cr)i = ri/1000. Let us then
concentrate on any i ∈ {51, 52, . . . , `/20}. We show, inductively, that when dealing with
line Ai, the two corresponding points b1 and b2 are at distance at least r/20. The claim
is true for A50 as argued above. Suppose then that the claim holds for Ai−1 for some
i ∈ {51, 52, . . . , `/20}. If Q is split into two auxiliary regions, then the claim holds for
Ai unless Error 1 is reported. On the other hand, if no splitting is performed, then the
Euclidean distance between the two corresponding points can only increase, and so the
claim clearly holds for Ai. This implies, in particular, that Q contains at least one small
square, and thus Ri > (1− ε)(yr)2 > (1− ε)(cr/2)2 > r210−9. On the other hand, since

i 6
`

20
=

(xr lg r)/(yr)

20
6
c lg r

10c
=

lg r

10
,

we get from Observation 6 that the number of vertices on level i in T is at most(
d

i

)
6

(
2 lg r + 2 lg lg r +O(1)

lg r/10

)
6

(
3 lg r

lg r/10

)
6 (30e)lg r/10 6 27 lg r/10 < r210−9,

provided that C is large enough. Hence, this error never occurs.

Error 3—two vertices assigned to adjacent vertices in T are at distance more than
r: It follows from the definition of Li that for any i ∈ {1, 2, . . . , `/20}, Li lies above the
auxiliary line Ai (L0 is exceptional and lies slightly below A0). We are going to argue
that Li is relatively close to Ai.

Claim: For any i ∈ {4, 5, . . . , `/20}, Li lies below the auxiliary line Ai−4.

We will be done once the claim is proved as it implies that we never connect vertices
by an edge that are at Euclidean distance more than 50(yr) + r/3 6 50cr + r/3 < r.
Indeed, vertices that need to be connected by an edge must lie in the part of Q between
Li−1 and Ai. The Euclidean distance between Li−1 and Ai is at most 50(yr) and the
intersection of Ai and Q is at most r/3; see Figure 9.

Proof of the Claim: For a contradiction, suppose that there exists i such that Li lies
above Ai−4 and consider the smallest such i. Hence, Li−1 lies below Ai−5. Let Q1 be
the part of Q that lies between Li−1 and Li, and recall that Q1 contains at least Ri/2
vertices. Similarly, let Q2 be the part between Li−1 and Ai and recall that Q2 contains
precisely Ri vertices. The fact that the area of Q1 is at least five times smaller than the
one of Q2 but it contains at least half of vertices will lead us to the desired contradiction.
Recall that the length of the intersection of Ai−4 with the triangle is s > r/20− 80(yr) >
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Ai−1

Ai−2

Ai−3

Ai−4

Ai−5

Ai

Li
Li−1

Figure 9: All vertices that need to be connected by an edge must be in the part of Q
between Li−1 and Ai.

r/20−r/125 > r/25. Hence, the number of small squares covering Q1 is at most 10(u+2),
where u = ds/(yr)e > 400. The number of vertices in Q1 is then at most 10(u+ 2)(1 + ε),
and so Ri 6 20(u + 2)(1 + ε). On the other hand, the number of small squares that are
completely contained in Q2 \Q1 is at least 40(u−2), and so Ri is at least 40(u−2)(1−ε).
The contradiction follows, since 20(u+ 2)(1 + ε) < 40(u− 2)(1− ε) for any u > 400.

Error 1—the Euclidean distance between b1 and b (or b and b2) is either less than
r/20 or more than r/3: Suppose that we partition Q containing Qi vertices into Q1 and
Q2, where Q1 is the part of Q induced by b1 and b, all the way down to A`/20. Recall that
Q1 contains at least Qi/4 vertices, and that the Euclidean distance between b1 and b2 is
more than r/3 (since we performed splitting).

Li−1 d1 d2d

Q1

b1 b2b

Ai−1

s

.

Li−1

< r/3

> r/20

Ai−1

Figure 10: On the left: definitions of points and regions used in Error 1. On the right:
illustration of the squares in case Error 1 occurs because the Euclidean distance between
b1 and b is less than r/20.

Suppose that Error 1 occurs because the Euclidean distance between b1 and b is less
than r/20. Exactly the same argument can be applied to the case when the Euclidean
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distance between b and b2 is less than r/20. Let d1, d, and d2 be the three points of
intersection of the line Li−1 with the lines going between the apex of the triangle and
b1, b and, respectively, b2; see Figure 10. Note that the Euclidean distance between
d1 and d is less than r/20 and, since by the claim Li−1 lies below Ai−5, the Euclidean
distance between d1 and d2, denoted by s, satisfies s > r/3 − 100(yr) > 3r/10. As the
corresponding triangles are similar, the length of the intersection of each horizontal line
between Li−1 and A`/20 inside Q1 is at most a factor of (r/20)/(r/3) = 3/20 of the total
length of the intersection of the line with the triangle. Hence, the area of Q1 is by a
multiplicative factor of at most 3/20 smaller than the area of Q, which will be denoted
by A.

Arguing as in the previous error, the area of small squares completely contained in Q
is at least A · u−2

u
· 10
11

> 0.9A (u = ds/(yr)e > d(3r/10)/(yr)e > 3000). Indeed, since
Li−1 might cross small squares, the first row of small squares that intersects Q might
be completely lost, giving an additional factor of 10/11 (note that there are at least 10
complete rows between Ai−1 and Ai). It follows that Qi > 0.9A(1− ε) > 0.89A.

On the other hand, the area of small squares having non-empty intersection with Q1 is
at most A · 3

20
· u′+3

u′
· 11
10
< 0.17A (u′ = d(3s/20)/(yr)e > 450). Hence, the total number of

vertices in Q1 is at most 0.17A(1 + ε) < 0.18A. This time we get Qi 6 4 · 0.18A = 0.72A,
and the desired contradiction occurs.

Finally, let us note that Error 1 cannot occur because the Euclidean distance between
b1 and b is larger than r/3 (provided that the distances between b1 and b as well as between
b and b2 are at least r/20). Since we consider the smallest i for which such error occurred,
the length of the intersection of Ai with Q is at most r/3 + 20(yr) and so the Euclidean
distance between b1 and b is at most r/3 + 20(yr) − r/20 < r/3. The same argument
shows that the Euclidean distance between b and b2 cannot be larger than r/3.

4 Concluding remarks

The proof of the lower bound can be easily generalized to show that for any fixed dimension
d and sufficiently large radius r, at(G) = Ω(n/(r lg r)d). For d = 1, it is also easy to get
the matching upper bound at(G) = O(n/(r lg r)). It is natural to conjecture that for
d > 3 the proof of the upper bound can also be adapted to show at(G) = O(n/(r lg r)d),
but in order not to make the paper too technical, we opted for not pursuing further this
approach.
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