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Abstract

In this paper, we introduce a new variation of list-colorings. For a graph G and
for a given nonnegative integer t, a t-common list assignment of G is a mapping L
which assigns each vertex v a set L(v) of colors such that given set of t colors belong
to L(v) for every v ∈ V (G). The t-common list chromatic number of G denoted
by cht(G) is defined as the minimum positive integer k such that there exists an
L-coloring of G for every t-common list assignment L of G, satisfying |L(v)| > k for
every vertex v ∈ V (G). We show that for all positive integers k, ` with 2 6 k 6 ` and
for any positive integers i1, i2, . . . , ik−2 with k 6 ik−2 6 · · · 6 i1 6 `, there exists a
graph G such that χ(G) = k, ch(G) = ` and cht(G) = it for every t = 1, . . . , k − 2.
Moreover, we consider the t-common list chromatic number of planar graphs. From
the four color theorem [1, 2] and the result of Thomassen [9], for any t = 1 or 2, the
sharp upper bound of t-common list chromatic number of planar graphs is 4 or 5.
Our first step on t-common list chromatic number of planar graphs is to find such
a sharp upper bound. By constructing a planar graph G such that ch1(G) = 5, we
show that the sharp upper bound for 1-common list chromatic number of planar
graphs is 5. The sharp upper bound of 2-common list chromatic number of planar
graphs is still open. We also suggest several questions related to t-common list
chromatic number of planar graphs.
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1 Introduction

Throughout this paper, all graphs are finite, undirected, and simple. For a graph G, let

V (G) and E(G) be the vertex set and the edge set of G, respectively. The neighborhood

of a vertex v ∈ V (G), denoted by N(v), is the set of vertices adjacent to v.

For a given graph G, a proper k-coloring φ : V (G)→ {1, 2, . . . , k} of a graph G is an

assignment of colors to the vertices of G so that any two adjacent vertices receive distinct

colors. The chromatic number χ(G) of a graph G is the least positive integer k such that

there exists a proper k-coloring of G. If G has a proper k-coloring, namely χ(G) 6 k,

then we say that G is k-colorable. A list assignment of a graph G is a mapping L which

assigns each vertex v a set L(v) of colors. An L-coloring of G is a proper vertex coloring φ

of G such that φ(v) ∈ L(v) for each v. We say G is L-colorable if there exists an L-coloring

of G. For a positive integer k, we say G is k-choosable if G has an L-coloring for every

list assignment L satisfying |L(v)| > k for every v ∈ V (G). The list chromatic number or

choice number ch(G) of G is the minimum positive integer k such that G is k-choosable.

Clearly ch(G) > χ(G) for every graph G.

For a graph G and for a given nonnegative integer t, a t-common list assignment of a

graph G is a mapping L which assigns each vertex v a set L(v) of colors such that given

set of t colors belong to every L(v), namely | ∩v∈V (G) L(v)| > t. Note that 0-common list

assignment is just a list assignment. The t-common list chromatic number of G denoted

by cht(G) is defined as the minimum positive integer k such that G is L-colorable for

every t-common list assignment L of G satisfying |L(v)| > k for every vertex v. Clearly,

cht(G) = t for every integer t > χ(G).

Before exploring this topic, we describe an application of t-common list-coloring. A

company has n chemicals they have manufactured that need to be stored. Some pairs of

chemicals are incompatible. For this reason, such pairs should be kept in distinct storage

vessels. Say t storage vessels can keep all chemicals while other storage vessels can only

keep certain chemicals because of storage vessel’s conditions. Determine minimum positive

integer k such that all chemicals can be stored if the number of possible storage vessels

for each chemical is at least k. In other words, each chemical can potentially be stored

in at least k vessels, given the restriction that some storage vessels can only store certain

chemicals. We can convert this storage problem into a t-common list-coloring problem

on a graph. Consider a graph G = (V,E) with all chemicals as a vertex set, and an edge

between chemicals x, y if and only if x and y are incompatible. For every vertex v ∈ V , let

L(v) be the set of all storage vessels which can keep the chemical corresponding to v. Now

the list assignment L is a t-common list assignment and the above question corresponds

to find t-common list chromatic number cht(G) of G.

In the next section of this paper, we investigate several properties of the t-common list

chromatic numbers. Furthermore we show that for all positive integers k, ` with 2 6 k 6 `
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and for any positive integers i1, i2, . . . , ik−2 with k 6 ik−2 6 · · · 6 i1 6 `, there exists a

graph G such that χ(G) = k, ch(G) = ` and cht(G) = it for all t = 1, . . . , k−2. In Section

3, we consider the t-common list chromatic number of planar graphs. By constructing a

planar graph G such that ch1(G) = 5, we show that the sharp upper bound for 1-common

list chromatic number of planar graphs is 5. Furthermore, we suggest several questions

related to t-common list chromatic number of planar graphs.

2 Some properties of t-common list colorings

In this section, we consider several properties of the t-common list chromatic number. For

a graph G with connected components G1, G2, . . . , Gi and for every nonnegative integer

t, one can easily see that cht(G) = max{cht(Gj) | j = 1, . . . , i}. So from now on, we will

consider the t-common list chromatic number of a connected graph. As with other graph

coloring parameters, it holds that for every subgraph H of G and for every nonnegative

integer t, cht(H) 6 cht(G). The next lemma gives some relationships among χ(G), cht(G)

and ch(G).

Lemma 1. Let G be a connected graph with V (G) = {v1, . . . , vn} and let χ(G) = k. The

following properties hold.

(1) χ(G) = chk−1(G) 6 chk−2(G) 6 · · · 6 ch1(G) 6 ch(G).

(2) For every nonnegative integer t with t > k, cht(G) = t.

Proof. (1) Let t be a positive integer such that t 6 k − 1. Note that the chromatic

number χ(G) is the minimum i such that G has an L-coloring for L(v1) = · · · = L(vn) =

{c1, c2, . . . , ci}. Since the above list assignment L is a special t-common list assignment of

G, we have χ(G) 6 cht(G). Note that every t-common list assignment is a (t−1)-common

list assignment. So χ(G) 6 chk−1(G) 6 chk−2(G) 6 · · · 6 ch1(G) 6 ch(G).

Let L be a (k−1)-common list assignment such that c1, . . . , ck−1 ∈ L(vi) and |L(vi)| =
k for all i = 1, . . . , n. Since χ(G) = k, the vertex set V (G) can be partitioned into k

independent sets I1, . . . , Ik. For all j = 1, . . . , k− 1, assign the color cj to every vertex in

Ij and for every v ∈ Ik, assign the color cv ∈ L(v) \ {c1, . . . , ck−1} to v. This assignment

is an L-coloring, and so chk−1(G) 6 χ(G). This implies that chk−1(G) = χ(G).

(2) By definition of cht(G), one can easily show that cht(G) = t for every t with t > k.

By Lemma 1, we have the following corollary.

Corollary 2. For a connected graph G and a nonnegative integer t, cht(G) = t+ 1 if and

only if t = χ(G)− 1.

For a graph G, a list assignment L of G is called a maximal unavailable list assignment

of G if G has no L-coloring and |L(v)| = ch(G) − 1 for every v ∈ V (G). For example, a
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cycle C3 of length 3 with vertex set {v1, v2, v3} has a maximal unavailable list assignment

L with L(v1) = L(v2) = L(v3) = {a, b}. Note that ch(C3) = 3 and L is the unique

maximal unavailable list assignment up to permutation of colors.

It is known that for all positive integers k and ` with 2 6 k 6 `, there exists a graph

G such that χ(G) = k and ch(G) = ` [5]. In the remaining part of this section, we

generalize this result as follows: for all positive integers k, ` with 2 6 k 6 ` and for any

positive integers i1, i2, . . . , ik−2 with k 6 ik−2 6 · · · 6 i1 6 `, there exists a graph G such

that χ(G) = k, ch(G) = ` and cht(G) = it for all t = 1, . . . , k − 2. For this purpose, we

introduce two graph operations. The first graph operation is defined here, and the second

is defined later. For every graph G with V (G) = {v1, . . . , vn}, the duplication D(G) of G

is defined as follows:

V (D(G)) = V (G) ∪ {vi,j | i, j = 1, . . . , n} and

E(D(G)) = E(G) ∪ {{vi,r, vi,s} | i = 1, . . . , n, {vr, vs} ∈ E(G)}
∪{{vi, vi,j} | i, j = 1, . . . , n}.

Namely D(G) is obtained by the following ways: With G, construct n more copies

G1, G2, . . . , Gn of G, which correspond to vertices of G, and add edges between vi and

every vertex in the corresponding copy Gi for all i = 1, . . . , n. For convenience, let Gi be

the induced subgraph of D(G) with vertex set {vi,j | j = 1, . . . , n} for each i ∈ {1, . . . , n}.
Note that Gi is isomorphic to G.

Lemma 3. Let G be a connected graph with V (G) = {v1, . . . , vn} and let χ(G) = k. Now

the following properties hold.

(1) χ(D(G)) = χ(G) + 1.

(2) ch(D(G)) = ch(G) + 1.

(3) For every nonnegative integer t with 1 6 t 6 k, cht(D(G)) = cht−1(G) + 1.

Proof. (1) Let H be the induced subgraph of D(G) with V (H) = {v1} ∪ {v1,j | j =

1, . . . , n}. Now H is isomorphic to a graph join of a trivial graph and G. So χ(H) = k+1,

which implies that χ(D(G)) > χ(G) + 1.

Let φ : V (G) → {c1, . . . , ck} be a proper k-coloring of G. For all i = 1, . . . , n, let

Ci = {c1, . . . , ck, ck+1}−{φ(vi)}. Now Gi has a proper k-coloring φi with the color set Ci.

These proper k-colorings define a proper (k+1)-coloring of D(G). Hence χ(D(G)) 6 k+1

and so χ(D(G)) = χ(G) + 1.

(2) Let L1 be a maximal unavailable list assignment of G. Choose a color c which does

not belong to L1(v) for any v ∈ V (G). Let L2 be a list assignment of D(G) defined

by L2(vj) = L2(vi,j) = L1(vj) ∪ {c} for all i, j = 1, . . . , n. Suppose that D(G) has an

L2-coloring. Now, c should be assigned to at least one of v1, . . . , vn, say vi, because L1 is

a maximal unavailable list assignment of G, and hence Gi has a proper coloring φ such
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that φ(vi,j) ∈ L1(vj). Since Gi is isomorphic to G, this implies that G has an L1-coloring.

This is a contradiction. So ch(D(G)) > ch(G) + 1.

Let L be a list assignment ofD(G) such that |L(u)| = ch(G)+1 for every u ∈ V (D(G)).

Consider the induced subgraph G of D(G). Now, G has an L-coloring φ. For all i, j =

1, . . . , n, let L3(vi,j) = L(vi,j) − {φ(vi)}. Since for all i, j = 1, . . . , n, |L3(vi,j)| > ch(G),

Gi has an L3-coloring, and hence D(G) has an L-coloring. So ch(D(G)) 6 ch(G) + 1.

Therefore ch(D(G)) = ch(G) + 1.

(3) Let L4 be a (t− 1)-common list assignment of G such that G has no L4-coloring and

|L4(v)| = cht−1(G) − 1 for every v ∈ V (G). Choose a color c which does not belong

to L4(v) for any v ∈ V (G). Let L5 be a t-common list assignment of D(G) defined

by L5(vj) = L5(vi,j) = L4(vj) ∪ {c} for all i, j = 1, . . . , n. Suppose that D(G) has an

L5-coloring. Then c should be assigned to some vi ∈ {v1, . . . , vn}, and hence Gi has a

proper coloring ψ such that ψ(vi,j) ∈ L4(vj). This implies that G has an L4-coloring, a

contradiction. So cht(D(G)) > cht−1(G) + 1.

Let L′ be a t-common list assignment of D(G) such that |L′(u)| = cht−1(G) + 1 for

every u ∈ V (D(G)). Since a t-common list assignment of G is also a (t− 1)-common list

assignment, G has an L′-coloring φ′. For all i, j = 1, . . . , n, let L6(vi,j) = L′(vi,j)−{φ′(vi)}.
Now the restriction of L6 onto Gi is a (t−1)-common list assignment such that |L6(vi,j)| >
cht−1(G). This implies that for all i = 1, . . . , n, Gi has an L6-coloring, and hence D(G) has

an L′-coloring. So cht(D(G)) 6 cht−1(G) + 1. Therefore cht(D(G)) = cht−1(G) + 1.

For complete bipartite graph Kn,n, χ(Kn,n) = 2 and ch(Kn,n) approaches infinity as n

goes to the infinity. In particular, ch(Kn,n) > k + 1 for n =
(
2k−1
k

)
. One can easily show

that ch(Kn+1,n+1) = ch(Kn,n) or ch(Kn,n) + 1. So for any integer k with k > 2, there

exists a smallest positive integer n such that ch(Kn,n) = k. We denote such an integer by

γ(k).

Now, we introduce the second graph operation. Let G be a connected graph and let

k be a positive integer. Let H be a complete bipartite graph with γ(k) vertices on each

part. For a vertex v ∈ V (G), an attachment A(G, v, k) is a graph defined by

V (A(G, v, k)) = V (G) ∪ V (H) ∪ {x} and

E(A(G, v, k)) = E(G) ∪ E(H) ∪ {{v, x}, {x, u}},

where u is a vertex in H. Namely A(G, v, k) is obtained by connecting G and H with a

path of length 2 whose ends are v and a vertex u in H. For convenience, we use U and

V , where u ∈ U , to refer to the vertex sets in the bipartition of V (H).

The following lemma gives the chromatic number, the list chromatic number, and the

t-common list chromatic number of A(G, v, k) for a connected graph G with χ(G) > 2.

Lemma 4. Let G be a connected graph with χ(G) > 2. For every v ∈ V (G) and for every

positive integer k, the following properties hold.
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(1) χ(A(G, v, k)) = χ(G).

(2) ch(A(G, v, k)) = max{ch(G), k}.
(3) For every nonnegative integer t, cht(A(G, v, k)) = cht(G).

Proof. (1) By the definition of A(G, v, k), the chromatic number of A(G, v, k) is the maxi-

mum of χ(G) and χ(Kγ(k),γ(k)). Since the chromatic number of a complete bipartite graph

is 2, χ(A(G, v, k)) = χ(G).

(2) If k is 2, then γ(2) = 1, namely A(G, v, k) is a graph obtained by attaching a path of

length 3 to v. So ch(A(G, v, k)) = ch(G), which is the maximum of ch(G) and 2. Assume

that k > 3. Since both G and Kγ(k),γ(k) are subgraphs of A(G, v, k), ch(A(G, v, k)) >
max{ch(G), k}. Let L be a list assignment of A(G, v, k) such that |L(w)| = max{ch(G), k}
for every w ∈ V (A(G, v, k)). Now both G and Kγ(k),γ(k) as subgraphs of A(G, v, k)

have L-colorings φ1 and φ2, respectively. By assigning a color c ∈ L(x) − {φ1(v), φ2(u)}
to x, we have L-coloring of A(G, v, k). So ch(A(G, v, k)) 6 max{ch(G), k}. Therefore

ch(A(G, v, k)) = max{ch(G), k}.
(3) Since G is a subgraph of A(G, v, k), cht(A(G, v, k)) > cht(G). Let L1 be a t-common

list assignment of A(G, v, k) such that |L1(w)| = cht(G) for every w ∈ V (A(G, v, k)). Let

c be a color belonging to L1(w) for every vertex w ∈ V (A(G, v, k)). Now G has an L1-

coloring φ2. If φ2(v) = c, then for every u′ ∈ U , let φ3(u
′) = c and for every y ∈ V ∪ {x},

choose a color c′ in L1(y)− {c} and let φ3(y) = c′. Now φ2 and φ3 give an L1-coloring of

A(G, v, k). When φ2(v) 6= c, assign c to every vertex in V ∪ {x} and for every u′ ∈ U ,

assign an arbitrary color c′ in L1(u
′)−{c}. Now φ2 and this assignment give an L1-coloring

of A(G, v, k). So cht(A(G, v, k)) 6 cht(G), and hence cht(A(G, v, k)) = cht(G).

Finally, we have the following theorem.

Theorem 5. For all positive integers k, ` with 2 6 k 6 ` and for any positive integers

i1, i2, . . . , ik−2 with k 6 ik−2 6 · · · 6 i1 6 `, there exists a graph G such that χ(G) = k,

ch(G) = ` and cht(G) = it for every t = 1, . . . , k − 2.

Proof. Let k, ` be positive integers satisfying 2 6 k 6 ` and let i1, i2, . . . , ik−2 be positive

integers such that k 6 ik−2 6 · · · 6 i1 6 `. Let H0 = Kγ(ik−2−k+2),γ(ik−2−k+2) and choose a

vertex v in H0. For every j = 1, . . . , k− 3, let Hj = A(D(Hj−1), v, ik−j−2− k+ j+ 2) and

let G = A(D(Hk−3), v, `). The rest is to prove that χ(G) = k, ch(G) = ` and cht(G) = it
for every t = 1, . . . , k − 2.

By Lemmas 3 and 4,

χ(G) = χ(D(Hk−3)) = χ(Hk−3) + 1 = χ(D(Hk−4)) + 1 = · · · = χ(H0) + k − 2 = k.

Note that ch(H0) = ik−2 − k + 2 and

ch(H1) = max{ch(D(H0)), ik−3 − k + 3} = max{ch(H0) + 1, ik−3 − k + 3} = ik−3 − k + 3.
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It can also be shown that for every j 6 t (1 6 t 6 k− 4), ch(Hj) = ik−j−2 − k + j + 2. It

follows that

ch(Ht+1) = max{ch(D(Ht)), ik−t−3 − k + t+ 3}
= max{ch(Ht) + 1, ik−t−3 − k + t+ 3} = ik−t−3 − k + t+ 3.

Therefore for every j = 1, . . . , k − 3, ch(Hj) = ik−j−2 − k + j + 2. Furthermore we have

ch(G) = max{ch(D(Hk−3)), `} = max{ch(Hk−3) + 1, `} = max{i1, `} = `.

Now ch1(G) = ch1(D(Hk−3)) = ch(Hk−3) + 1 = i1 and for every t = 2, . . . , k − 2,

cht(G) = cht−1(Hk−3) + 1 = cht−2(Hk−4) + 2 = · · · = ch(Hk−t−2) + t = it.

3 On t-common list colorings of planar graphs

By the famous four color theorem, every planar graph is known to be 4-colorable [1, 2].

Voigt [10] gave an example of a non-4-choosable planar graph and Thomassen [9] showed

that every planar graph is 5-choosable. So for every planar graph G, ch2(G) 6 ch1(G) 6 5.

From this inequality, one can ask whether there is a planar graph with ch1(G) = 5. We

prove that 5 is the sharp upper bound for 1-common list chromatic number of planar

graphs. To this end, we first introduce the following lemma.

Lemma 6. Let G1 be the graph drawn in Figure 1. Suppose that L is a list assignment

with L(x) = L(y) = L(u1) = L(u2) = {1, 2, 3, 4}, L(v1) = L(w1) = {1, 3, 4, 5}, L(v2) =

L(w2) = {2, 3, 4, 5}, and L(v3) = L(w3) = {1, 2, 4, 5}. Then G1 has no L-coloring φ with

φ(x) = 1, φ(y) = 2.

Proof. Suppose that G1 has such an L-coloring φ. By simple observation, we can check

that {φ(u1), φ(u2)} = {3, 4}, and we may assume that φ(u1) = 4 by symmetry. This

implies that the cycle with vertices v1, v2, and v3 is 2-colorable, which is a contradiction.

Therefore, G1 is not L-colorable with x, y being colored 1, 2, respectively.

Now, the following theorem provides a planar graph G such that ch1(G) = 5 and

ch2(G) = 4.

Theorem 7. Let G be the graph drawn in Figure 2, while dashed arrows are copies of

G1 as mentioned in Figure 1. The graph G is a planar graph satisfying ch1(G) = 5 and

ch2(G) = 4.

Proof. One can easily check that G is a planar graph. Note that ch1(G) 6 5 by Lemma 1.

Let L be a list assignment of G with L(xi) = {1, 2, 3, 4} for all i, and as defined in

Lemma 6 for the vertices on the copies of G1. Note that the color 4 belongs to all lists.
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u1 u2

w1

w2

w3v3

x

y

x

y

v2

v1

Figure 1: The graph G1 is on the left. For two fixed vertices x, y of G1, we simply draw
a dashed arrow from x to y to represent the graph G1, as on the right.

Suppose that G has an L-coloring φ. There exist xi and xj such that φ(xi) = 1 and

φ(xj) = 2. By Lemma 6, the copy of G1 corresponding to the dashed arrow from xi to

xj has no L-coloring, which is a contradiction. Therefore G is not L-colorable and hence

ch1(G) = 5.

Now, we prove that for every 2-common list assignment L of G with L(v) > 4 for every

vertex v, there exists an L-coloring of G. To this end, it is enough to find a bipartition

of the vertex set of G into two sets U , V such that U induces a bipartite subgraph of G

and V induces a 2-choosable subgraph.

For clarity, we use Gi,j to refer to a copy of G1 corresponding to the dashed arrow

from xi to xj for all i, j ∈ {1, 2, 3, 4} with i 6= j. Moreover, for each i, j, and k, we call

vertices of Gi,j corresponding to uk, vk, and wk by ui,jk , v
i,j
k , and wi,jk , respectively.

Let

S0 = {x1, x2}, S1 = {v1,21 , v1,22 , w1,2
1 , w1,2

2 } ∪ {v
2,1
1 , v2,12 , w2,1

1 , w2,1
2 }

S2 =
⋃

s∈{1,2},t∈{3,4}

(
{us,t1 , v

s,t
2 , v

s,t
3 , w

s,t
1 , w

s,t
2 } ∪ {u

t,s
1 , v

t,s
1 , v

t,s
3 , w

t,s
1 , w

t,s
2 }
)

S3 = {u3,41 , u3,42 , v3,41 , v3,43 , w3,4
1 , w3,4

3 } ∪ {u
4,3
1 , u4,32 , v4,31 , v4,33 , w4,3

1 , w4,3
3 }.

Let S = S0 ∪S1 ∪S2 ∪S3. Now the subgraph G[S] induced by S is a bipartite graph, and

G \ S is a forest, which is always 2-choosable. Therefore ch2(G) = 4.

It is unknown whether there exists a planar graph G satisfing ch2(G) = 5. So we

propose the following question.

Question 1. Is there a planar graph G such that ch2(G) = 5 or does it hold that ch2(G) 6
4 for every planar graph G?

The well-known theorem of Grötzsch [6] states that every planar triangle-free graph

is 3-colorable. This theorem was later slightly sharpened by Grünbaum [7] and Aksionov
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x1

x2x3

x4

Figure 2: The graph G. Each dashed arrow represents a copy of G1.

[3], who showed that every planar graph with at most 3 triangles is 3-colorable. The case

of list coloring is different. Voigt [11], Gutner [8], Glebova et. al [4] gave examples of

triangle-free planar graphs that are not 3-choosable. One can check that for each such

example G, there exists an independent set S such that G−S is a forest. This implies the

1-common list chromatic number ch1(G) is 3. Hence we propose the following question.

Question 2. Is there a triangle-free planar graph G such that ch1(G) = 4 or does it hold

that ch1(G) 6 3 for every triangle-free planar graph G?
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[6] H. Grötzsch. Ein Dreifarbensetz für dreikreisfreie Netze auf der Kugel. Wiss. Z.

Martin-Luter-Univ. Halle Wittenberg, Math. Naturwiss. 8(1): 109–119, 1955.

the electronic journal of combinatorics 24(3) (2017), #P3.32 9
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